1
|
Jia ZX, Xiao BT, Li J, Cai XH, Qin W, Zhou M, Lu XZ. BTK inhibitors enhance NKG2D ligand expression by regulating IL-10/STAT3 pathway in activated non-GCB diffuse large B-cell lymphoma cells. Anticancer Drugs 2025; 36:374-382. [PMID: 40029697 DOI: 10.1097/cad.0000000000001696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The aim of this study is to explore the role of the IL-10/STAT3 pathway in the upregulation of natural killer group 2, member D (NKG2D) ligands (MICA and ULBP2) induced by Bruton's tyrosine kinase (BTK) inhibitors in non-germinal center B-cell-like diffuse large B-cell lymphoma cells. The expression levels of NKG2D ligands and the IL-10/STAT3 pathway in SUDHL4, U2932, and OCI-LY3 cells were analyzed using western blotting. After stimulation of the B-cell receptor signaling pathway with IgM antibodies, the expression levels of NKG2D ligands, as well as IL-10 and phosphorylated STAT3 (p-STAT3) were significantly reduced. In contrast, treatment with ibrutinib produced effects opposite to those induced by IgM antibodies. Additionally, treatment of U2932 and OCI-LY3 cells with the STAT3 inhibitor (STAT3-IN-1) led to an increase in NKG2D ligand expression and a decrease in IL-10 levels. When IL-10 neutralizing antibodies were introduced, p-STAT3 levels decreased, and NKG2D ligand expression increased. Similar outcomes were observed when the BTK inhibitors ACP-196 and BGB-3111 were administered. Our findings suggest that the IL-10/STAT3 pathway plays a key role in the upregulation of NKG2D ligands induced by BTK inhibitors in U2932 and OCI-LY3 cells.
Collapse
Affiliation(s)
- Zhu-Xia Jia
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
- The Changzhou Medical Center of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Bi-Tao Xiao
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Jin Li
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Xiao-Hui Cai
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Wei Qin
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Min Zhou
- Department of Hematology, The Third People's Hospital of Changzhou
| | - Xu-Zhang Lu
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
- The Changzhou Medical Center of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Chandra A, Law SF, Pignolo RJ. Changing landscape of hematopoietic and mesenchymal cells and their interactions during aging and in age-related skeletal pathologies. Mech Ageing Dev 2025; 225:112059. [PMID: 40220914 DOI: 10.1016/j.mad.2025.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Aging profoundly impacts mesenchymal and hematopoietic lineage cells, including their progenitors-the skeletal stem cells (SSCs) and hematopoietic stem cells (HSCs), respectively. SSCs are crucial for skeletal development, homeostasis, and regeneration, maintaining bone integrity by differentiating into osteoblasts, adipocytes, and other lineages that contribute to the bone marrow (BM) microenvironment. Meanwhile, HSCs sustain hematopoiesis and immune function. With aging, SSCs and HSCs undergo significant functional decline, partly driven by cellular senescence-a hallmark of aging characterized by irreversible growth arrest, secretion of pro-inflammatory factors (senescence associated secretory phenotype, SASP), and impaired regenerative potential. In SSCs, senescence skews lineage commitment toward adipogenesis at the expense of osteogenesis, contributing to increased bone marrow adiposity (BMAd), reduced bone quality, and osteoporosis. Similarly, aged HSCs exhibit diminished self-renewal, biased differentiation, and heightened inflammation, compromising hematopoietic output and immune function. In this review, we examine the age-related cellular and molecular changes in SSCs and HSCs, their lineage decisions in the aging microenvironment, and the interplay between skeletal and hematopoietic compartments. We also discuss the role of senescence-driven alterations in BM homeostasis and how targeting cellular aging mechanisms may offer therapeutic strategies for mitigating age-related skeletal and hematopoietic decline.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering; Department of Medicine, Divisions of Hospital Internal Medicine and Section on Geriatric Medicine and Gerontology; Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA.
| | - Susan F Law
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert J Pignolo
- Department of Physiology and Biomedical Engineering; Department of Medicine, Divisions of Hospital Internal Medicine and Section on Geriatric Medicine and Gerontology; Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Zhou L, Ma B, Ruscetti M. Cellular senescence offers distinct immunological vulnerabilities in cancer. Trends Cancer 2025; 11:334-350. [PMID: 39732594 PMCID: PMC11981858 DOI: 10.1016/j.trecan.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/30/2024]
Abstract
Chronic damage following oncogene induction or cancer therapy can produce cellular senescence. Senescent cells not only exit the cell cycle but communicate damage signals to their environment that can trigger immune responses. Recent work has revealed that senescent tumor cells are highly immunogenic, leading to new ways to activate antitumor immunosurveillance and potentiate T cell-directed immunotherapies. However, other studies have determined that heterogeneous senescent stromal cell populations contribute to immunosuppression and tumor progression, sparking the development of senotherapeutics to target senescent cells that evade immune detection. We review current findings that provide deeper insights into the mechanisms contributing to the dichotomous role of senescence in immune modulation and how that can be leveraged for cancer immunotherapy.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Boyang Ma
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, MA, USA; Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Wu L, Zhu L, Chen J. Diverse potential of chimeric antigen receptor-engineered cell therapy: Beyond cancer. Clin Transl Med 2025; 15:e70306. [PMID: 40205818 PMCID: PMC11982526 DOI: 10.1002/ctm2.70306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-engineered cell therapies have made significant progress in haematological cancer treatment. This success has motivated researchers to investigate its potential applications in non-cancerous diseases, with substantial strides already made in this field. MAIN BODY This review summarises the latest research on CAR-engineered cell therapies, with a particular focus on CAR-T cell therapy for non-cancerous diseases, including but not limited to infectious diseases, autoimmune diseases, cardiac diseases and immune-mediated disorders in transplantation. Additionally, the review discusses the current obstacles that need to be addressed for broader clinical applications. CONCLUSION With ongoing research and continuous improvements, CAR-engineered cell therapy holds promise as a potent tool for treating various diseases in the future. KEY POINTS CAR-engineered cell therapy has expanded beyond cancer to treat autoimmune diseases, infections, cardiac diseases, and transplant-related rejection. The CAR platform is diverse, with various cell types such as CAR-T, CAR-NK, and CAR-M potentially suited for different disease contexts. The safety, efficacy, and practicality of CAR cell therapy in non-cancer diseases remain challenging, requiring further technological optimization and clinical translation.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Lingfeng Zhu
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| | - Jin Chen
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
5
|
You L, Wu Q. Cellular senescence in tumor immune escape: Mechanisms, implications, and therapeutic potential. Crit Rev Oncol Hematol 2025; 208:104628. [PMID: 39864532 DOI: 10.1016/j.critrevonc.2025.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Cellular senescence, a hallmark of aging, has emerged as a captivating area of research in tumor immunology with profound implications for cancer prevention and treatment. In the tumor microenvironment, senescent cells exhibit a dual role, simultaneously hindering tumor development through collaboration with immune cells and evading immune cell attacks by upregulating immunoinhibitory proteins. However, the intricate immune escape mechanism of cellular senescence in the tumor microenvironment remains a subject of intense investigation. Chronic inflammation is exacerbated by cellular senescence through the upregulation of pro-inflammatory factors such as interleukin-1β, thereby augmenting the risk of tumorigenesis. Additionally, the interplay between autophagy and cellular senescence adds another layer of complexity. Autophagy, known to slow down the aging process by reducing p53/p21 levels, may be downregulated by cellular senescence. To harness the therapeutic potential of cellular senescence, targeting its immunological aspects has gained significant attention. Strategies such as immune checkpoint inhibitors and T-cell senescence inhibition are being explored in the context of cellular senescence immunotherapy. In this comprehensive review, we provide a compelling overview of the regulation of cellular senescence and delve into the influencing factors, including chronic inflammation, autophagy, and circadian rhythms, associated with senescence in the tumor microenvironment. We specifically focus on unraveling the enigmatic dual role of cellular senescence in tumor immune escape. By deciphering the intricate nature of cellular senescence in the tumor microenvironment, this review aims to advance our understanding and pave the way for leveraging senescence as a promising target for tumor immunotherapy applications.
Collapse
Affiliation(s)
- Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China; College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
6
|
McLarnon T, Watterson S, McCallion S, Cooper E, English AR, Kuan Y, Gibson DS, Murray EK, McCarroll F, Zhang S, Bjourson AJ, Rai TS. Sendotypes predict worsening renal function in chronic kidney disease patients. Clin Transl Med 2025; 15:e70279. [PMID: 40147025 PMCID: PMC11949504 DOI: 10.1002/ctm2.70279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Senescence associated secretory phenotype (SASP) contributes to age-related pathology, however the role of SASP in Chronic Kidney Disease (CKD) is unclear. Here, we employ a variety of omic techniques to show that senescence signatures can separate CKD patients into distinct senescence endotypes (Sendotype). METHODS Using specific numbers of senescent proteins, we clustered CKD patients into two distinct sendotypes based on proteomic expression. These clusters were evaluated with three independent criteria assessing inter and intra cluster distances. Differential expression analysis was then performed to investigate differing proteomic expression between sendotypes. RESULTS These clusters accurately stratified CKD patients, with patients in each sendotype having different clinical profiles. Higher expression of these proteins correlated with worsened disease symptomologies. Biological signalling pathways such as TNF, Janus kinase-signal transducers and activators of transcription (JAK-STAT) and NFKB were differentially enriched between patient sendotypes, suggesting potential mechanisms driving the endotype of CKD. CONCLUSION Our work reveals that, combining clinical features with SASP signatures from CKD patients may help predict whether a patient will have worsening or stable renal trajectory. This has implications for the CKD clinical care pathway and will help clinicians stratify CKD patients accurately. KEY POINTS Senescent proteins are upregulated in severe patients compared to mild patients Senescent proteins can stratify patients based on disease severity High expression of senescent proteins correlates with worsening renal trajectories.
Collapse
Affiliation(s)
- Thomas McLarnon
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Steven Watterson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Sean McCallion
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Eamonn Cooper
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Andrew R. English
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
- School of Health and Life SciencesTeesside University, Campus HeartMiddlesbroughUK
| | - Ying Kuan
- Western Health and Social Care Trust, Altnagelvin Area HospitalLondonderryUK
| | - David S. Gibson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Elaine K. Murray
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Frank McCarroll
- Western Health and Social Care Trust, Altnagelvin Area HospitalLondonderryUK
| | - Shu‐Dong Zhang
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Anthony J. Bjourson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Taranjit Singh Rai
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| |
Collapse
|
7
|
Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov 2025; 24:300-315. [PMID: 39875569 DOI: 10.1038/s41573-024-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'. In this Review article, we highlight how the processes of inflammation and senescence drive each other, leading to loss of immune function. To break this cycle, therapies are needed that target the interactions between the altered tissue environment and the immune system instead of targeting each component alone. We discuss the relative merits and drawbacks of therapies that are directed at eliminating senescent cells (senolytics) and those that inhibit inflammation (senomorphics) in the context of tissue niches. Furthermore, we discuss therapeutic strategies designed to directly boost immune cell function and improve immune surveillance in tissues.
Collapse
Affiliation(s)
| | - Roel P H De Maeyer
- Division of Medicine, University College London, London, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
8
|
Wang S, Huo T, Lu M, Zhao Y, Zhang J, He W, Chen H. Recent Advances in Aging and Immunosenescence: Mechanisms and Therapeutic Strategies. Cells 2025; 14:499. [PMID: 40214453 PMCID: PMC11987807 DOI: 10.3390/cells14070499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest. Senescent cells (SCs) accumulate in the body with age and secrete harmful substances known as the senescence-associated secretory phenotype (SASP), causing chronic inflammation; at the same time, chronic inflammation leads to a decrease in immune system function, known as immunosenescence, which further accelerates the aging process. Cellular senescence and immunosenescence are closely related to a variety of chronic diseases, including cardiovascular diseases, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Studying the mechanisms of cellular senescence and immunosenescence and developing targeted interventions are crucial for improving the immune function and quality of life of elderly people. Here, we review a series of recent studies focusing on the molecular mechanisms of cellular senescence and immunosenescence, the regulation of aging by the immune system, and the latest advances in basic and clinical research on senolytics. We summarize the cellular and animal models related to aging research, as well as the mechanisms, strategies, and future directions of aging interventions from an immunological perspective, with the hope of laying the foundation for developing novel and practical anti-aging therapies.
Collapse
Affiliation(s)
- Shuaiqi Wang
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Tong Huo
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Mingyang Lu
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Yueqi Zhao
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
| | - Wei He
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
| |
Collapse
|
9
|
Fernández C, Ormeno D, Villalobos V, Garrido M, Canelo J, Cerda O, Maldonado F, Caceres M. Characterization of senescence and nuclear reorganization in aging gingival cells. NPJ AGING 2025; 11:12. [PMID: 39984468 PMCID: PMC11845497 DOI: 10.1038/s41514-025-00200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/17/2025] [Indexed: 02/23/2025]
Abstract
Cellular senescence is a stress response that limits tumor formation by promoting the removal of damaged cells through the immune system. In this study, we observed accumulation of senescent cells during human aging gingival tissue, by increased levels of γH2A.X, 53BP1, and SAHF, along with a greater distance of H3K9me3 from the nuclear periphery. Additionally, primary gingival fibroblasts from older individuals displayed an enlarged nuclear area and perimeter, accompanied by DNA damage responses and increased Lamin B1 invaginations. The combination of phospho-p38 (Thr180/Tyr182) foci with form factor demonstrated an 79.27% predictive accuracy for aging in gingival fibroblasts, with an AUC of 0.83. In co-culture experiments, our findings revealed that senescent fibroblasts from aged donors exhibit slower and fewer recruitment of PBMCs and decreased levels of the Natural Killer cell receptor ligand MICA/B and the CD112R ligand Nectin-2, suggesting potential impairment in immune surveillance mechanisms during aging.
Collapse
Affiliation(s)
- Christian Fernández
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII). Universidad de Chile, Santiago, Chile
| | - Diego Ormeno
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII). Universidad de Chile, Santiago, Chile
| | - Verónica Villalobos
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII). Universidad de Chile, Santiago, Chile
| | - Mauricio Garrido
- Millennium Institute on Immunology and Immunotherapy (IMII). Universidad de Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javiera Canelo
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Felipe Maldonado
- Department of Anesthesia and Perioperative Medicine. Hospital Clínico de la Universidad de Chile. Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mónica Caceres
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy (IMII). Universidad de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Liu G, Chen Y, Dai S, Wu G, Wang F, Chen W, Wu L, Luo P, Shi C. Targeting the NLRP3 in macrophages contributes to senescence cell clearance in radiation-induced skin injury. J Transl Med 2025; 23:196. [PMID: 39966955 PMCID: PMC11834210 DOI: 10.1186/s12967-025-06204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The persistent accumulation of senescence cells is one of the characteristics of radiation-induced skin injury (RISI), leading to fibrosis and impaired healing. However, the reasons why these senescence cells are resistant to clearance remain unclear. METHODS The mouse RISI model was established using an X-ray generator, and a shield was used to cover all areas except the skin of the right leg or back for protecting surrounding tissue. ScRNA sequencing, immunohistochemistry, immunofluorescence, qPCR, western blot, primary cell co-culture system and fluorescence microsphere phagocytosis assay were performed for the functional and mechanistic investigations. RESULTS The dynamic changes of senescence cell levels and multiple immune cell levels during RISI were evaluated, we found that macrophages could remove senescence cells from the dermis, and the clearance ability gradually strengthens over time. ScRNA sequencing revealed that macrophages with high senescence clearance capacity exhibited increased NOD-like receptor family pyrin domain-containing 3 (NLRP3) expression compared to those with low senescence clearance capacity. Inhibition or conditional knockout of Nlrp3 in macrophages led to senescence cell clearance dysfunction and impaired healing. Further studies found that interleukin-33 secreted by senescence cells inhibited the expression of NLRP3 in macrophages and their ability to phagocytize senescence cells, especially in the early stages after radiation. In addition, Nocardia rubra cell wall skeleton (Nr-CWS), an approved immunomodulator, was found to activate macrophage NLRP3 expression, reduce senescence cell burden, and accelerate the healing of RISI. CONCLUSION This study underscored NLRP3 in macrophages as a critical intervention target for senescence cell immunosurveillance and emphasized Nr-CWS as a potential therapeutic agent for accelerating senescence cell clearance in RISI.
Collapse
Affiliation(s)
- Gaoyu Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shijie Dai
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gang Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine of Ministry of Education, Institute of Medicine and Equipment for High Altitude Region, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fulong Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wanchao Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lingling Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
11
|
Majewska J, Krizhanovsky V. GD3 ganglioside checkpoints in immune surveillance of senescent cells. NATURE AGING 2025; 5:182-183. [PMID: 39814961 DOI: 10.1038/s43587-025-00803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Affiliation(s)
- Julia Majewska
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Escriche-Navarro B, Garrido E, Clara-Trujillo S, Labernadie A, Sancenon F, García-Fernández A, Martínez-Máñez R. Nanodevice-Mediated Immune Cell Recruitment: Targeting Senescent Cells via MMP-3-Responsive CXCL12-Coated Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5880-5892. [PMID: 39835371 DOI: 10.1021/acsami.4c17748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Senescent cells are involved in age-related disorders in different organs and are therapeutic targets for fibrotic and chronic pathologies. Immune-modulating agents, able to enhance senescent cell detection and elimination by endogenous immune cells, have emerged as pharmacological strategies. We report herein a nanoparticle for immune cell-mediated senolytic therapy designed to recruit immune cells in response to specific enzymatic matrix metalloproteinase-3 (MMP-3) activity in the senescence-associated secretory phenotype. For this, mesoporous silica nanoparticles (MSNs) are coated with a peptide substrate of the metalloproteinase MMP-3, and the peptide is decorated with chemokine CXCL12 that enhances immune cell recruitment (NPs@CXCL12). Controlled release studies confirmed the progressive and specific release of CXCL12 in the presence of MMP-3. The ability of immune cell recruitment in response to a senescent microenvironment (senescent WI-38 fibroblasts) is confirmed by Transwell migration assays with green fluorescent Jurkat T-cells, showing NPs@CXCL12 has an enhanced chemotaxis effect toward senescent cells compared to free CXCL12 (2-fold). Moreover, the cytotoxic capacity of human primary natural killer (NK) cells over senescent WI-38 is also confirmed, and their migration trajectories in response to NPs@CXCL12 or free CXCL12 are monitored by using a microfluidic device. Results confirm the ability of NPs@CXCL12 to generate a chemotactic gradient able to attract NK cells. When compared with free CXCL12, the NPs@CXCL12 system showed a reduction of up to 15.56% in the population of NK cells migrating toward free CXCL12 under competitive conditions. This study demonstrates the potential of designing nanoparticles to recruit immune cells under specific responses to eliminate senescent cells. Results confirm that NPs@CXCL12 can effectively establish a chemotactic gradient to attract NK cells.
Collapse
Affiliation(s)
- Blanca Escriche-Navarro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7a planta, 46026 Valencia, Spain
| | - Eva Garrido
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Sandra Clara-Trujillo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Anna Labernadie
- Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Félix Sancenon
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7a planta, 46026 Valencia, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7a planta, 46026 Valencia, Spain
| |
Collapse
|
13
|
Reen V, D’Ambrosio M, Søgaard PP, Tyson K, Leeke BJ, Clément I, Dye ICA, Pombo J, Kuba A, Lan Y, Burr J, Bomann IC, Kalyva M, Birch J, Khadayate S, Young G, Provencher D, Mes-Masson AM, Vernia S, McGranahan N, Brady HJM, Rodier F, Nativio R, Percharde M, McNeish IA, Gil J. SMARCA4 regulates the NK-mediated killing of senescent cells. SCIENCE ADVANCES 2025; 11:eadn2811. [PMID: 39813356 PMCID: PMC11734740 DOI: 10.1126/sciadv.adn2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Induction of senescence by chemotherapeutic agents arrests cancer cells and activates immune surveillance responses to contribute to therapy outcomes. In this investigation, we searched for ways to enhance the NK-mediated elimination of senescent cells. We used a staggered screen approach, first identifying siRNAs potentiating the secretion of immunomodulatory cytokines to later test for their ability to enhance NK-mediated killing of senescent cells. We identified that genetic or pharmacological inhibition of SMARCA4 enhanced senescent cell elimination by NK cells. SMARCA4 expression is elevated during senescence and its inhibition derepresses repetitive elements, inducing the SASP via activation of cGAS/STING and MAVS/MDA5 pathways. Moreover, a PROTAC targeting SMARCA4 synergized with cisplatin to increase the infiltration of CD8 T cells and mature, activated NK cells in an immunocompetent model of ovarian cancer. Our results indicate that SMARCA4 inhibitors enhance NK-mediated surveillance of senescent cells and may represent senotherapeutic interventions for ovarian cancer.
Collapse
Affiliation(s)
- Virinder Reen
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Mariantonietta D’Ambrosio
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Pia Pernille Søgaard
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Katie Tyson
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Bryony J. Leeke
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Isabelle Clément
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et Médicine Nucléaire, Université de Montréal, Montreal, QC, Canada
| | - Isabel C. A. Dye
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Joaquim Pombo
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Adam Kuba
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et Médicine Nucléaire, Université de Montréal, Montreal, QC, Canada
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
| | - Yemin Lan
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Joanna Burr
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Ida C. Bomann
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Maria Kalyva
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Jodie Birch
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Sanjay Khadayate
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - George Young
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département d’Obstétrique-Gynécologie, Université de Montréal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Santiago Vernia
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Hugh J. M. Brady
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et Médicine Nucléaire, Université de Montréal, Montreal, QC, Canada
| | - Raffaella Nativio
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Michelle Percharde
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Jesús Gil
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
14
|
Strandberg J, Louie A, Lee S, Hahn M, Srinivasan P, George A, De La Cruz A, Zhang L, Hernandez Borrero L, Huntington KE, De La Cruz P, Seyhan AA, Koffer PP, Wazer DE, DiPetrillo TA, Graff SL, Azzoli CG, Rounds SI, Klein-Szanto AJ, Tavora F, Yakirevich E, Abbas AE, Zhou L, El-Deiry WS. TRAIL agonists rescue mice from radiation-induced lung, skin, or esophageal injury. J Clin Invest 2025; 135:e173649. [PMID: 39808500 PMCID: PMC11870730 DOI: 10.1172/jci173649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
Radiotherapy can be limited by pneumonitis, which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found that 2 different agonists, parenteral PEGylated trimeric TRAIL (TLY012) and oral TRAIL-inducing compound (TIC10/ONC201), could reduce pneumonitis, alveolar wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22 weeks in TLY012-rescued survivors versus unrescued surviving irradiated mice. Wild-type orthotopic breast tumor-bearing mice receiving 20 Gy thoracic radiation were protected from pneumonitis with disappearance of tumors. At the molecular level, radioprotection appeared to be due to inhibition of CCL22, a macrophage-derived chemokine previously associated with radiation pneumonitis and pulmonary fibrosis. Treatment with anti-CCL22 reduced lung injury in vivo but less so than TLY012. Pneumonitis severity was worse in female versus male mice, and this was associated with increased expression of X-linked TLR7. Irradiated mice had reduced esophagitis characterized by reduced epithelial disruption and muscularis externa thickness following treatment with the ONC201 analog ONC212. The discovery that short-term treatment with TRAIL pathway agonists effectively rescues animals from pneumonitis, dermatitis, and esophagitis following high doses of thoracic radiation exposure has important translational implications.
Collapse
Affiliation(s)
- Jillian Strandberg
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Biomedical Engineering Graduate Group, Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Anna Louie
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
| | - Seulki Lee
- D&D Pharmatech, Seongnam-si, South Korea
| | - Marina Hahn
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Praveen Srinivasan
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Andrew George
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Leiqing Zhang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Liz Hernandez Borrero
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Kelsey E. Huntington
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
| | - Payton De La Cruz
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Paul P. Koffer
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Radiation Oncology, Warren Alpert Medical School, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - David E. Wazer
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Radiation Oncology, Warren Alpert Medical School, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Thomas A. DiPetrillo
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Radiation Oncology, Warren Alpert Medical School, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Stephanie L. Graff
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Christopher G. Azzoli
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Hematology/Oncology Division, Department of Medicine, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
| | - Sharon I. Rounds
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
- Division of Pulmonary Medicine, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
- Providence Veterans Administration Medical Center, Providence, Rhode Island, USA
| | | | - Fabio Tavora
- Argos Laboratory, Universidade Federal do Ceará Fortaleza, Ceará, Brazil
| | - Evgeny Yakirevich
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Abbas E. Abbas
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Division of Thoracic Surgery, Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Biomedical Engineering Graduate Group, Brown University, Providence, Rhode Island, USA
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, Rhode Island, USA
- Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Group, Brown University, Providence, Rhode Island, USA
- Division of Pulmonary Medicine, Warren Alpert Medical School of Brown University and Lifespan Health System, Providence, Rhode Island, USA
| |
Collapse
|
15
|
Wang Z, Chen C, Ai J, Gao Y, Wang L, Xia S, Jia Y, Qin Y. The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities. MedComm (Beijing) 2025; 6:e70048. [PMID: 39811803 PMCID: PMC11731108 DOI: 10.1002/mco2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression. This dual role necessitates a careful evaluation of the beneficial and detrimental aspects of senescence within the tumor microenvironment (TME). Specifically, senescent cells display a unique senescence-associated secretory phenotype that releases a diverse array of soluble factors affecting the TME. Furthermore, the impact of senescence on tumor-immune interaction is complex and often underappreciated. Senescent immune cells create an immunosuppressive TME favoring tumor progression. In contrast, senescent tumor cells could promote a transition from immune evasion to clearance. Given these intricate dynamics, therapies targeting senescence hold promise for advancing antitumor strategies. This review aims to summarize the dual effects of senescence on tumor progression, explore its influence on tumor-immune interactions, and discuss potential therapeutic strategies, alongside challenges and future directions. Understanding how senescence regulates antitumor immunity, along with new therapeutic interventions, is essential for managing tumor cell senescence and remodeling the immune microenvironment.
Collapse
Affiliation(s)
- Zehua Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yaping Gao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lei Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shurui Xia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yongxu Jia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanru Qin
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
16
|
McHugh D, Durán I, Gil J. Senescence as a therapeutic target in cancer and age-related diseases. Nat Rev Drug Discov 2025; 24:57-71. [PMID: 39548312 DOI: 10.1038/s41573-024-01074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Cellular senescence is a stress response that restrains the growth of aged, damaged or abnormal cells. Thus, senescence has a crucial role in development, tissue maintenance and cancer prevention. However, lingering senescent cells fuel chronic inflammation through the acquisition of a senescence-associated secretory phenotype (SASP), which contributes to cancer and age-related tissue dysfunction. Recent progress in understanding senescence has spurred interest in the development of approaches to target senescent cells, known as senotherapies. In this Review, we evaluate the status of various types of senotherapies, including senolytics that eliminate senescent cells, senomorphics that suppress the SASP, interventions that mitigate senescence and strategies that harness the immune system to clear senescent cells. We also summarize how these approaches can be combined with cancer therapies, and we discuss the challenges and opportunities in moving senotherapies into clinical practice. Such therapies have the potential to address root causes of age-related diseases and thus open new avenues for preventive therapies and treating multimorbidities.
Collapse
Affiliation(s)
- Domhnall McHugh
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Imanol Durán
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jesús Gil
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
17
|
Zheng H, Wu J, Feng J, Cheng H. Cellular Senescence and Anti-Aging Strategies in Aesthetic Medicine: A Bibliometric Analysis and Brief Review. Clin Cosmet Investig Dermatol 2024; 17:2243-2259. [PMID: 39399066 PMCID: PMC11471065 DOI: 10.2147/ccid.s403417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Background Skin aging is the most obvious feature of human aging, and delaying aging has become a hot and difficult research topic in aesthetic medicine. The accumulation of dysfunctional senescent cells is one of the important mechanisms of skin aging, based on which a series of anti-aging strategies have been generated. In this paper, from the perspective of cellular senescence, we utilize bibliometrics and research review to explore the research hotspots and trends in this field, with a view to providing references for skin health and aesthetic medicine. Methods We obtained literature related to this field from the Web of Science Core Collection database from 1994 to 2024. Bibliometrix packages in R, CiteSpace, VOSviewer, Origin, and Scimago Graphica were utilized for data mining and visualization. Results A total of 2,796 documents were included in the analysis. The overall trend of publications showed a continuous and rapid increase from 2016-2023, but the total citations improved poorly over time. In this field, Journal of Cosmetic Dermatology, Journal of Investigative Dermatology, Experimental Gerontology are core journals. Kim J, Lee JH, Lee S, Rattan SIS, Chung JH and Kim JH are the core authors in this field. Seoul National University is the first in terms of publications. Korea is the country with the most publications, but USA has the most total citations. Top 10 keywords include: gene-expression, skin, cellular senescence, cell, oxidative stress, antioxidants, in vitro, fibroblasts, mechanism, cancer. Current research trends are focused on neurodegeneration, skin rejuvenation, molecular docking, fibrosis, wound healing, SASP, skin barrier, and antioxidants. The core literature and references reflect topics such as the major molecular pathways in the aging process, and the relationship with tumors. Conclusion This field of research has been rapidly rising in recent years. Relevant research hotspots focus on oxidative stress, fibroblasts, and senescence-associated secretory phenotype. Anti-aging strategies targeting cellular senescence hold great promise, including removal of senescent cells or attenuation of SASP factors, corresponding to senolytics and senomorphics therapies, respectively.
Collapse
Affiliation(s)
- Huilan Zheng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jingping Wu
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jinhong Feng
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| |
Collapse
|
18
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
19
|
Imb M, Véghelyi Z, Maurer M, Kühnel H. Exploring Senolytic and Senomorphic Properties of Medicinal Plants for Anti-Aging Therapies. Int J Mol Sci 2024; 25:10419. [PMID: 39408750 PMCID: PMC11476546 DOI: 10.3390/ijms251910419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Senolytic and senomorphic therapies have gained more and more attention in the last decade. This kind of therapy is based on the killing of cellular senescent cells without harming the "normal" cells. Aging is not a disease. Clinical studies on healthy people will be difficult to conduct. Therefore, one possibility is to draw on the large repertoire of medicinal plants and use their senolytic properties to provide mild anti-aging therapies. Chamomile, goldenrod, reishi, and green tea were tested for their ability to trigger senolysis. Quercetin was used as control substance. Cellular senescence was induced with 25 µM etoposide in human dermal fibroblasts and established for at least 14 days. The plant extracts were tested for their antioxidant potential (DPPH assay) and their polyphenol content. Senolysis was determined by presto blue assay of young and etoposide-induced senescent cells, and SA-β-Gal assays were also performed. The senomorphic properties of the plants were investigated using IL-6 ELISA and qPCR. It turned out that chamomile triggers a kind of cytokine storm and causes the cytokine values in the ELISA and in the qPCR to rise extremely, and other senescence-associated phenotype (SASP) markers were also elevated. Goldenrod and quercetin tend to have a senolytic and senomorphic effect, respectively. Regarding the senolytic and senomorphic properties of herbs, we found that all tested herbs can have a senolytic effect, and a senomorphic effect of quercetin has also been discovered. With regard to the effect of chamomile, however, we can say that seemingly harmless tea products may have harmful effects, especially in combination with chemotherapy, at least in cell culture experiments. Nevertheless, inflammation is a double-bladed mechanism with positive effects, for example, in healing, but also known negative effects.
Collapse
Affiliation(s)
| | | | | | - Harald Kühnel
- Department of Applied Life Sciences, Bioengineering, University of Applied Sciences Campus Wien, Favoritenstraße 222, 1100 Vienna, Austria
| |
Collapse
|
20
|
Chowdhury SR, Murphy KC, Parikh CN, DeMarco KD, Zhou L, Ruscetti M. Measuring the impact of therapy-induced senescence on NK cell phenotypes in cancer. Methods Cell Biol 2024; 190:171-201. [PMID: 39515879 DOI: 10.1016/bs.mcb.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cellular senescence is a damage-induced condition characterized by enduring cell cycle arrest and a heightened secretory profile known as the senescence-associated secretory phenotype (SASP). The SASP consists not only of release of inflammatory cytokines and chemokines that attract and activate a diverse repertoire of innate and adaptive immune cells, but also the upregulation of immunomodulatory cell surface molecules that promote immune clearance of senescent cells. Natural Killer (NK) cells are particularly adept at sensing and eliminating senescent cells. In the setting of cancer, commonly administered cytotoxic and cytostatic therapies can elicit senescence and in turn reactivate NK cell immune surveillance against tumors. Here, we detail a series of in vivo, ex vivo, and in vitro assays to assess the impact of therapy-induced senescence on NK cell phenotypes, including their activation, exhaustion, migration, and killing capacity in the context of pancreatic cancer. Importantly, this methodology can be adapted to investigate NK cell biology across various disease states and treatment modalities and help inform NK cell-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Shreya R Chowdhury
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Katherine C Murphy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Chaitanya N Parikh
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Kelly D DeMarco
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lin Zhou
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States.
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States.
| |
Collapse
|
21
|
Yoshihara K, Horiguchi M. Drug Delivery Strategies for Age-Related Diseases. Int J Mol Sci 2024; 25:8693. [PMID: 39201377 PMCID: PMC11354581 DOI: 10.3390/ijms25168693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Drug delivery systems (DDSs) enable the controlled release of drugs in the body. DDSs have attracted increasing attention for the treatment of various disorders, including cancer, inflammatory diseases, and age-related diseases. With recent advancements in our understanding of the molecular mechanisms of aging, new target molecules and drug delivery carriers for age-related diseases have been reported. In this review, we will summarize the recent research on DDSs for age-related diseases and identify DDS strategies in the treatment of age-related diseases.
Collapse
Affiliation(s)
| | - Michiko Horiguchi
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Dori, Sanyo Onoda 756-0884, Japan
| |
Collapse
|
22
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Hernandez-Gonzalez F, Pietrocola F, Cameli P, Bargagli E, Prieto-González S, Cruz T, Mendoza N, Rojas M, Serrano M, Agustí A, Faner R, Gómez-Puerta JA, Sellares J. Exploring the Interplay between Cellular Senescence, Immunity, and Fibrosing Interstitial Lung Diseases: Challenges and Opportunities. Int J Mol Sci 2024; 25:7554. [PMID: 39062798 PMCID: PMC11276754 DOI: 10.3390/ijms25147554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) are characterized by the gradual and irreversible accumulation of scar tissue in the lung parenchyma. The role of the immune response in the pathogenesis of pulmonary fibrosis remains unclear. In recent years, substantial advancements have been made in our comprehension of the pathobiology driving fibrosing ILDs, particularly concerning various age-related cellular disturbances and immune mechanisms believed to contribute to an inadequate response to stress and increased susceptibility to lung fibrosis. Emerging studies emphasize cellular senescence as a key mechanism implicated in the pathobiology of age-related diseases, including pulmonary fibrosis. Cellular senescence, marked by antagonistic pleiotropy, and the complex interplay with immunity, are pivotal in comprehending many aspects of lung fibrosis. Here, we review progress in novel concepts in cellular senescence, its association with the dysregulation of the immune response, and the evidence underlining its detrimental role in fibrosing ILDs.
Collapse
Affiliation(s)
- Fernanda Hernandez-Gonzalez
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Federico Pietrocola
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Solna, Sweden;
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neuro-Sciences, University of Siena, 53100 Siena, Italy; (P.C.); (E.B.)
| | - Sergio Prieto-González
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Tamara Cruz
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Nuria Mendoza
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Manuel Serrano
- Cambridge Institute of Science, Altos Labs, Cambridge CB21 6GP, UK;
| | - Alvar Agustí
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Rosa Faner
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Biomedicine Department, University of Barcelona, 08036 Barcelona, Spain
| | - Jose A. Gómez-Puerta
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Rheumatology Department, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Jacobo Sellares
- Department of Respiratory Medicine, Respiratory Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain; (A.A.); (J.S.)
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (S.P.-G.); (T.C.); (N.M.); (R.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| |
Collapse
|
24
|
Rampazzo Morelli N, Pipella J, Thompson PJ. Establishing evidence for immune surveillance of β-cell senescence. Trends Endocrinol Metab 2024; 35:576-585. [PMID: 38307810 DOI: 10.1016/j.tem.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
Cellular senescence is a programmed state of cell cycle arrest that involves a complex immunogenic secretome, eliciting immune surveillance and senescent cell clearance. Recent work has shown that a subpopulation of pancreatic β-cells becomes senescent in the context of diabetes; however, it is not known whether these cells are normally subject to immune surveillance. In this opinion article, we advance the hypothesis that immune surveillance of β-cells undergoing a senescence stress response normally limits their accumulation during aging and that the breakdown of these mechanisms is a driver of senescent β-cell accumulation in diabetes. Elucidation and therapeutic activation of immune surveillance mechanisms in the pancreas holds promise for the improvement of approaches to target stressed senescent β-cells in the treatment of diabetes.
Collapse
Affiliation(s)
- Nayara Rampazzo Morelli
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jasmine Pipella
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Thompson
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
25
|
Zheng CQ, Zeng LJ, Liu ZH, Miao CF, Yao LY, Song HT, Hu XM, Zhou X. Insights into the Roles of Natural Killer Cells in Osteoarthritis. Immunol Invest 2024; 53:766-787. [PMID: 38622991 DOI: 10.1080/08820139.2024.2337025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Osteoarthritis (OA) is now widely acknowledged as a low-grade inflammatory condition, in which the intrinsic immune system plays a significant role in its pathogenesis. While the involvement of macrophages and T cells in the development of OA has been extensively reviewed, recent research has provided mounting evidence supporting the crucial contribution of NK cells in both the initiation and advancement of OA. Accumulated evidence has emerged in recent years indicating that NK cells play a critical role in OA development and progression. This review will outline the ongoing understanding of the utility of NK cells in the etiology of OA, focusing on how NK cells interact with chondrocytes, synoviocytes, osteoclasts, and other immune cells to influence the course of OA disease.
Collapse
Affiliation(s)
- Chang-Qing Zheng
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Ling-Jun Zeng
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Zhi-Hong Liu
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Chen-Fang Miao
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Ling-Yan Yao
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Hong-Tao Song
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Xiao-Mu Hu
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| | - Xin Zhou
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou, People's Republic of China
| |
Collapse
|
26
|
Spina JS, Carr TL, Phillips LA, Knight HL, Crosbie NE, Lloyd SM, Jhala MA, Lam TJ, Karman J, Clements ME, Day TA, Crane JD, Housley WJ. Modulating in vitro lung fibroblast activation via senolysis of senescent human alveolar epithelial cells. Aging (Albany NY) 2024; 16:10694-10723. [PMID: 38976646 PMCID: PMC11272128 DOI: 10.18632/aging.205994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/18/2024] [Indexed: 07/10/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related disease with poor prognosis and limited therapeutic options. Activation of lung fibroblasts and differentiation to myofibroblasts are the principal effectors of disease pathology, but damage and senescence of alveolar epithelial cells, specifically type II (ATII) cells, has recently been identified as a potential trigger event for the progressive disease cycle. Targeting ATII senescence and the senescence-associated secretory phenotype (SASP) is an attractive therapeutic strategy; however, translatable primary human cell models that enable mechanistic studies and drug development are lacking. Here, we describe a novel system of conditioned medium (CM) transfer from bleomycin-induced senescent primary alveolar epithelial cells (AEC) onto normal human lung fibroblasts (NHLF) that demonstrates an enhanced fibrotic transcriptional and secretory phenotype compared to non-senescent AEC CM treatment or direct bleomycin damage of the NHLFs. In this system, the bleomycin-treated AECs exhibit classical hallmarks of cellular senescence, including SASP and a gene expression profile that resembles aberrant epithelial cells of the IPF lung. Fibroblast activation by CM transfer is attenuated by pre-treatment of senescent AECs with the senolytic Navitoclax and AD80, but not with the standard of care agent Nintedanib or senomorphic JAK-targeting drugs (e.g., ABT-317, ruxolitinib). This model provides a relevant human system for profiling novel senescence-targeting therapeutics for IPF drug development.
Collapse
Affiliation(s)
- Joseph S. Spina
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | - Jozsef Karman
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
- Current address: Merck, Cambridge, MA 02141, USA
| | | | - Tovah A. Day
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Justin D. Crane
- Department of Biology, Northeastern University, Boston, MA 02115, USA
- Current address: Pfizer Inc., Cambridge, MA 02139, USA
| | | |
Collapse
|
27
|
Jain SS, Burton Sojo G, Sun H, Friedland BN, McNamara ME, Schmidt MO, Wellstein A. The Role of Aging and Senescence in Immune Checkpoint Inhibitor Response and Toxicity. Int J Mol Sci 2024; 25:7013. [PMID: 39000121 PMCID: PMC11241020 DOI: 10.3390/ijms25137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular senescence accumulates with age and has been shown to impact numerous physiological and pathological processes, including immune function. The role of cellular senescence in cancer is multifaceted, but the impact on immune checkpoint inhibitor response and toxicity has not been fully evaluated. In this review, we evaluate the impact of cellular senescence in various biological compartments, including the tumor, the tumor microenvironment, and the immune system, on immune checkpoint inhibitor efficacy and toxicity. We provide an overview of the impact of cellular senescence in normal and pathological contexts and examine recent studies that have connected aging and cellular senescence to immune checkpoint inhibitor treatment in both the pre-clinical and clinical contexts. Overall, senescence plays a multi-faceted, context-specific role and has been shown to modulate immune-related adverse event incidence as well as immune checkpoint inhibitor response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anton Wellstein
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (S.S.J.)
| |
Collapse
|
28
|
Deng X, Terunuma H. Adoptive NK cell therapy: a potential revolutionary approach in longevity therapeutics. Immun Ageing 2024; 21:43. [PMID: 38926847 PMCID: PMC11201368 DOI: 10.1186/s12979-024-00451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The aging process intricately involves immune system dynamics, with a crucial role in managing senescent cells (SNCs) and their senescence-associated secretory phenotypes (SASPs). Unfortunately, immunosenescence, a progressively dysregulated immunity with age, hampers effective SNC elimination, leading to accumulation, coupled with the release of SASPs, which, in turn, inhibits immunity and heightened susceptibility to aging-associated diseases (AADs). Natural killer (NK) cells, integral to the innate immune system, play a pivotal role in addressing SNCs swiftly. These cells also coordinate with other components of both innate and adaptive immunity to surveil and eliminate these cells. Accordingly, preserving NK cell function during aging is crucial for evading AADs and promoting healthy aging. Alternatively, NK-cell-based therapies present promising avenues for addressing the challenges associated with aging. Notable, recent studies in adoptive NK cell therapy have shown promise in rejuvenating immunosenescence, eliminating SNCs, and alleviating SASPs. This progress provides the proof-concept of adoptive NK cell therapy for senotherapy and holds promise as an emerging revolution in longevity therapeutics.
Collapse
Affiliation(s)
- Xuewen Deng
- Biotherapy Institute of Japan, Inc. 2-4-8 Edagawa, Koto-Ku, Tokyo, 135-0051, Japan.
| | - Hiroshi Terunuma
- Biotherapy Institute of Japan, Inc. 2-4-8 Edagawa, Koto-Ku, Tokyo, 135-0051, Japan
- N2 Clinic Yotsuya, 5F 2-6 Samon-Cho, Shinjuku-Ku, Tokyo, 160-0017, Japan
| |
Collapse
|
29
|
Pessoa J, Nóbrega-Pereira S, de Jesus BB. Senescent cell-derived vaccines: a new concept towards an immune response against cancer and aging? Aging (Albany NY) 2024; 16:10657-10665. [PMID: 38942604 PMCID: PMC11236300 DOI: 10.18632/aging.205975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/13/2024] [Indexed: 06/30/2024]
Abstract
Two recent seminal works have untangled the intricate role of tumor-associated senescent cells in cancer progression, or regression, by guiding our immune system against cancer cells. The characterization of these unique, yet diverse cell populations, should be considered, particularly when contemplating the use of senolytics, which are drugs that selectively eliminate senescent cells, in a cancer framework. Here, we will describe the current knowledge in this field. In particular, we will discuss how the presence of senescent cells in tumors could be used as a therapeutic target in immunogenic cancers and how we may hypothetically design an adaptive anti-aging vaccine.
Collapse
Affiliation(s)
- João Pessoa
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
30
|
Liu S, Li K, He Y, Chen S, Yang W, Chen X, Feng S, Xiong L, Peng Y, Shao Z. PGC1α-Inducing Senomorphic Nanotherapeutics Functionalized with NKG2D-Overexpressing Cell Membranes for Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400749. [PMID: 38554394 PMCID: PMC11165536 DOI: 10.1002/advs.202400749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Cellular senescence is a significant contributor to intervertebral disc aging and degeneration. However, the application of senotherapies, such as senomorphics targeting senescence markers and the senescence-associated secretory phenotype (SASP), remains limited due to challenges in precise delivery. Given that the natural killer group 2D (NKG2D) ligands are increased on the surface of senescent nucleus pulposus (NP) cells, the NKG2D-overexpressing NP cell membranes (NNPm) are constructed, which is expected to achieve a dual targeting effect toward senescent NP cells based on homologous membrane fusion and the NKG2D-mediated immunosurveillance mechanism. Then, mesoporous silica nanoparticles carrying a peroxisome proliferator-activated receptor-ɣ coactivator 1α (PGC1α)inducer (SP) are coated with NNPm (SP@NNPm) and it is found that SP@NNPm selectively targets senescent NP cells, and the SP cores exhibit pH-responsive drug release. Moreover, SP@NNPm effectively induces PGC1α-mediated mitochondrial biogenesis and mitigates senescence-associated markers induced by oxidative stress and the SASP, thereby alleviating puncture-induced senescence and disc degeneration. This dual-targeting nanotherapeutic system represents a novel approach to delivery senomorphics for disc degeneration treatment.
Collapse
Affiliation(s)
- Sheng Liu
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kanglu Li
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuxin He
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Sheng Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wenbo Yang
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xuanzuo Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shiqing Feng
- The Second Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250033China
- Department of OrthopedicsQilu Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250012China
- Department of OrthopedicsTianjin Medical University General HospitalTianjin Medical UniversityTianjin300052China
| | - Liming Xiong
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yizhong Peng
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zengwu Shao
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
31
|
Reynolds LE, Maallin S, Haston S, Martinez-Barbera JP, Hodivala-Dilke KM, Pedrosa AR. Effects of senescence on the tumour microenvironment and response to therapy. FEBS J 2024; 291:2306-2319. [PMID: 37873605 DOI: 10.1111/febs.16984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Cellular senescence is a state of durable cell arrest that has been identified both in vitro and in vivo. It is associated with profound changes in gene expression and a specific secretory profile that includes pro-inflammatory cytokines, growth factors and matrix-remodelling enzymes, referred to as the senescence-associated secretory phenotype (SASP). In cancer, senescence can have anti- or pro-tumour effects. On one hand, it can inhibit tumour progression in a cell autonomous manner. On the other hand, senescence can also promote tumour initiation, progression, metastatic dissemination and resistance to therapy in a paracrine manner. Therefore, despite efforts to target senescence as a potential strategy to inhibit tumour growth, senescent cancer and microenvironmental cells can eventually lead to uncontrolled proliferation and aggressive tumour phenotypes. This can happen either through overcoming senescence growth arrest or through SASP-mediated effects in adjacent tumour cells. This review will discuss how senescence affects the tumour microenvironment, including extracellular matrix remodelling, the immune system and the vascular compartment, to promote tumourigenesis, metastasis and resistance to DNA-damaging therapies. It will also discuss current approaches used in the field to target senescence: senolytics, improving the immune clearance of senescent cells and targeting the SASP.
Collapse
Affiliation(s)
- Louise E Reynolds
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Seynab Maallin
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Scott Haston
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Kairbaan M Hodivala-Dilke
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| | - Ana-Rita Pedrosa
- Adhesion and Angiogenesis Lab, Centre for Tumour Microenvironment, Barts Cancer Institute, John Vane Science Centre, Queen Mary University London, UK
| |
Collapse
|
32
|
Du M, Sun L, Guo J, Lv H. Macrophages and tumor-associated macrophages in the senescent microenvironment: From immunosuppressive TME to targeted tumor therapy. Pharmacol Res 2024; 204:107198. [PMID: 38692466 DOI: 10.1016/j.phrs.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In-depth studies of the tumor microenvironment (TME) have helped to elucidate its cancer-promoting mechanisms and inherent characteristics. Cellular senescence, which acts as a response to injury and can the release of senescence-associated secretory phenotypes (SASPs). These SASPs release various cytokines, chemokines, and growth factors, remodeling the TME. This continual development of a senescent environment could be associated with chronic inflammation and immunosuppressive TME. Additionally, SASPs could influence the phenotype and function of macrophages, leading to the recruitment of tumor-associated macrophages (TAMs). This contributes to tumor proliferation and metastasis in the senescent microenvironment, working in tandem with immune regulation, angiogenesis, and therapeutic resistance. This comprehensive review covers the evolving nature of the senescent microenvironment, macrophages, and TAMs in tumor development. We also explored the links between chronic inflammation, immunosuppressive TME, cellular senescence, and macrophages. Moreover, we compiled various tumor-specific treatment strategies centered on cellular senescence and the current challenges in cellular senescence research. This study aimed to clarify the mechanism of macrophages and the senescent microenvironment in tumor progression and advance the development of targeted tumor therapies.
Collapse
Affiliation(s)
- Ming Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lu Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Huina Lv
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
33
|
Deng Y, Kumar A, Xie K, Schaaf K, Scifo E, Morsy S, Li T, Ehninger A, Bano D, Ehninger D. Targeting senescent cells with NKG2D-CAR T cells. Cell Death Discov 2024; 10:217. [PMID: 38704364 PMCID: PMC11069534 DOI: 10.1038/s41420-024-01976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
This study investigates the efficacy of NKG2D chimeric antigen receptor (CAR) engineered T cells in targeting and eliminating stress-induced senescent cells in vitro. Cellular senescence contributes to age-related tissue decline and is characterized by permanent cell cycle arrest and the senescence-associated secretory phenotype (SASP). Immunotherapy, particularly CAR-T cell therapy, emerges as a promising approach to selectively eliminate senescent cells. Our focus is on the NKG2D receptor, which binds to ligands (NKG2DLs) upregulated in senescent cells, offering a target for CAR-T cells. Using mouse embryonic fibroblasts (MEFs) and astrocytes (AST) as senescence models, we demonstrate the elevated expression of NKG2DLs in response to genotoxic and oxidative stress. NKG2D-CAR T cells displayed potent cytotoxicity against these senescent cells, with minimal effects on non-senescent cells, suggesting their potential as targeted senolytics. In conclusion, our research presents the first evidence of NKG2D-CAR T cells' ability to target senescent brain cells, offering a novel approach to manage senescence-associated diseases. The findings pave the way for future investigations into the therapeutic applicability of NKG2D-targeting CAR-T cells in naturally aged organisms and models of aging-associated brain diseases in vivo.
Collapse
Affiliation(s)
- Yushuang Deng
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Avadh Kumar
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
- Lonza Netherlands B.V., Geleen, Urmonderbaan 20-B, 6167 RD, Geleen, Netherlands
| | - Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Kristina Schaaf
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Enzo Scifo
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Sarah Morsy
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
- AvenCell Europe GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Tao Li
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, 53127, Bonn, Germany
| | - Armin Ehninger
- AvenCell Europe GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.
| |
Collapse
|
34
|
Favaretto G, Rossi MN, Cuollo L, Laffranchi M, Cervelli M, Soriani A, Sozzani S, Santoni A, Antonangeli F. Neutrophil-activating secretome characterizes palbociclib-induced senescence of breast cancer cells. Cancer Immunol Immunother 2024; 73:113. [PMID: 38693312 PMCID: PMC11063017 DOI: 10.1007/s00262-024-03695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Senescent cells have a profound impact on the surrounding microenvironment through the secretion of numerous bioactive molecules and inflammatory factors. The induction of therapy-induced senescence by anticancer drugs is known, but how senescent tumor cells influence the tumor immune landscape, particularly neutrophil activity, is still unclear. In this study, we investigate the induction of cellular senescence in breast cancer cells and the subsequent immunomodulatory effects on neutrophils using the CDK4/6 inhibitor palbociclib, which is approved for the treatment of breast cancer and is under intense investigation for additional malignancies. Our research demonstrates that palbociclib induces a reversible form of senescence endowed with an inflammatory secretome capable of recruiting and activating neutrophils, in part through the action of interleukin-8 and acute-phase serum amyloid A1. The activation of neutrophils is accompanied by the release of neutrophil extracellular trap and the phagocytic removal of senescent tumor cells. These findings may be relevant for the success of cancer therapy as neutrophils, and neutrophil-driven inflammation can differently affect tumor progression. Our results reveal that neutrophils, as already demonstrated for macrophages and natural killer cells, can be recruited and engaged by senescent tumor cells to participate in their clearance. Understanding the interplay between senescent cells and neutrophils may lead to innovative strategies to cope with chronic or tumor-associated inflammation.
Collapse
Affiliation(s)
- Gabriele Favaretto
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | | | - Lorenzo Cuollo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
35
|
Yang Z, Liu Y, Zhao H. CAR T treatment beyond cancer: Hope for immunomodulatory therapy of non-cancerous diseases. Life Sci 2024; 344:122556. [PMID: 38471620 DOI: 10.1016/j.lfs.2024.122556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Engineering a patient's own T cells to accurately identify and eliminate cancer cells has effectively cured individuals afflicted with previously incurable hematologic cancers. These findings have stimulated research into employing chimeric antigen receptor (CAR) T therapy across various areas within the field of oncology. However, evidence from both clinical and preclinical investigations emphasize the broader potential of CAR T therapy, extending beyond oncology to address autoimmune disorders, persistent infections, cardiac fibrosis, age-related ailments and other conditions. Concurrently, the advent of novel technologies and platforms presents additional avenues for utilizing CAR T therapy in non-cancerous contexts. This review provides an overview of the rationale behind CAR T therapy, delineates ongoing challenges in its application to cancer treatment, summarizes recent findings in non-cancerous diseases, and engages in discourse regarding emerging technologies that bear relevance. The review delves into prospective applications of this therapeutic approach across a diverse range of scenarios. Lastly, the review underscores concerns related to precision and safety, while also outlining the envisioned trajectory for extending CAR T therapy beyond cancer treatment.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Yingfeng Liu
- Department of Neurosurgery, Tianshui First People's Hospital, Tianshui, Gansu 741000, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, China.
| |
Collapse
|
36
|
Elshazly AM, Shahin U, Al Shboul S, Gewirtz DA, Saleh T. A Conversation with ChatGPT on Contentious Issues in Senescence and Cancer Research. Mol Pharmacol 2024; 105:313-327. [PMID: 38458774 PMCID: PMC11026153 DOI: 10.1124/molpharm.124.000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Artificial intelligence (AI) platforms, such as Generative Pretrained Transformer (ChatGPT), have achieved a high degree of popularity within the scientific community due to their utility in providing evidence-based reviews of the literature. However, the accuracy and reliability of the information output and the ability to provide critical analysis of the literature, especially with respect to highly controversial issues, has generally not been evaluated. In this work, we arranged a question/answer session with ChatGPT regarding several unresolved questions in the field of cancer research relating to therapy-induced senescence (TIS), including the topics of senescence reversibility, its connection to tumor dormancy, and the pharmacology of the newly emerging drug class of senolytics. ChatGPT generally provided responses consistent with the available literature, although occasionally overlooking essential components of the current understanding of the role of TIS in cancer biology and treatment. Although ChatGPT, and similar AI platforms, have utility in providing an accurate evidence-based review of the literature, their outputs should still be considered carefully, especially with respect to unresolved issues in tumor biology. SIGNIFICANCE STATEMENT: Artificial Intelligence platforms have provided great utility for researchers to investigate biomedical literature in a prompt manner. However, several issues arise when it comes to certain unresolved biological questions, especially in the cancer field. This work provided a discussion with ChatGPT regarding some of the yet-to-be-fully-elucidated conundrums of the role of therapy-induced senescence in cancer treatment and highlights the strengths and weaknesses in utilizing such platforms for analyzing the scientific literature on this topic.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Uruk Shahin
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Sofian Al Shboul
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Tareq Saleh
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| |
Collapse
|
37
|
Mladenić K, Lenartić M, Marinović S, Polić B, Wensveen FM. The "Domino effect" in MASLD: The inflammatory cascade of steatohepatitis. Eur J Immunol 2024; 54:e2149641. [PMID: 38314819 DOI: 10.1002/eji.202149641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly common complication of obesity, affecting over a quarter of the global adult population. A key event in the pathophysiology of MASLD is the development of metabolic-associated steatohepatitis (MASH), which greatly increases the chances of developing cirrhosis and hepatocellular carcinoma. The underlying cause of MASH is multifactorial, but accumulating evidence indicates that the inflammatory process in the hepatic microenvironment typically follows a pattern that can be roughly divided into three stages: (1) Detection of hepatocyte stress by tissue-resident immune cells including γδ T cells and CD4-CD8- double-negative T cells, followed by their secretion of pro-inflammatory mediators, most notably IL-17A. (2) Recruitment of pro-inflammatory cells, mostly of the myeloid lineage, and initiation of inflammation through secretion of effector-type cytokines such as TNF, TGF-β, and IL-1β. (3) Escalation of the inflammatory response by recruitment of lymphocytes including Th17, CD8 T, and B cells leading to chronic inflammation, hepatic stellate cell activation, and fibrosis. Here we will discuss these three stages and how they are consecutively linked like falling domino tiles to the pathophysiology of MASH. Moreover, we will highlight the clinical potential of inflammation as a biomarker and therapeutic target for the treatment of MASLD.
Collapse
Affiliation(s)
- Karlo Mladenić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sonja Marinović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
38
|
Wu R, Sun F, Zhang W, Ren J, Liu GH. Targeting aging and age-related diseases with vaccines. NATURE AGING 2024; 4:464-482. [PMID: 38622408 DOI: 10.1038/s43587-024-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
Aging is a major risk factor for numerous chronic diseases. Vaccination offers a promising strategy to combat these age-related diseases by targeting specific antigens and inducing immune responses. Here, we provide a comprehensive overview of recent advances in vaccine-based interventions targeting these diseases, including Alzheimer's disease, type II diabetes, hypertension, abdominal aortic aneurysm, atherosclerosis, osteoarthritis, fibrosis and cancer, summarizing current approaches for identifying disease-associated antigens and inducing immune responses against these targets. Further, we reflect on the recent development of vaccines targeting senescent cells, as a strategy for more broadly targeting underlying causes of aging and associated pathologies. In addition to highlighting recent progress in these areas, we discuss important next steps to advance the therapeutic potential of these vaccines, including improving and robustly demonstrating efficacy in human clinical trials, as well as rigorously evaluating the safety and long-term effects of these vaccine strategies.
Collapse
Affiliation(s)
- Ruochen Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
39
|
Zingoni A, Antonangeli F, Sozzani S, Santoni A, Cippitelli M, Soriani A. The senescence journey in cancer immunoediting. Mol Cancer 2024; 23:68. [PMID: 38561826 PMCID: PMC10983694 DOI: 10.1186/s12943-024-01973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer progression is continuously controlled by the immune system which can identify and destroy nascent tumor cells or inhibit metastatic spreading. However, the immune system and its deregulated activity in the tumor microenvironment can also promote tumor progression favoring the outgrowth of cancers capable of escaping immune control, in a process termed cancer immunoediting. This process, which has been classified into three phases, i.e. "elimination", "equilibrium" and "escape", is influenced by several cancer- and microenvironment-dependent factors. Senescence is a cellular program primed by cells in response to different pathophysiological stimuli, which is based on long-lasting cell cycle arrest and the secretion of numerous bioactive and inflammatory molecules. Because of this, cellular senescence is a potent immunomodulatory factor promptly recruiting immune cells and actively promoting tissue remodeling. In the context of cancer, these functions can lead to both cancer immunosurveillance and immunosuppression. In this review, the authors will discuss the role of senescence in cancer immunoediting, highlighting its context- and timing-dependent effects on the different three phases, describing how senescent cells promote immune cell recruitment for cancer cell elimination or sustain tumor microenvironment inflammation for immune escape. A potential contribution of senescent cells in cancer dormancy, as a mechanism of therapy resistance and cancer relapse, will be discussed with the final objective to unravel the immunotherapeutic implications of senescence modulation in cancer.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, 00185, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
- IRCCS Neuromed, Pozzilli, 86077, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| | - Alessandra Soriani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| |
Collapse
|
40
|
Chaib S, López-Domínguez JA, Lalinde-Gutiérrez M, Prats N, Marin I, Boix O, García-Garijo A, Meyer K, Muñoz MI, Aguilera M, Mateo L, Stephan-Otto Attolini C, Llanos S, Pérez-Ramos S, Escorihuela M, Al-Shahrour F, Cash TP, Tchkonia T, Kirkland JL, Abad M, Gros A, Arribas J, Serrano M. The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2. NATURE CANCER 2024; 5:448-462. [PMID: 38267628 PMCID: PMC10965441 DOI: 10.1038/s43018-023-00712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
Chemotherapy often generates intratumoral senescent cancer cells that strongly modify the tumor microenvironment, favoring immunosuppression and tumor growth. We discovered, through an unbiased proteomics screen, that the immune checkpoint inhibitor programmed cell death 1 ligand 2 (PD-L2) is highly upregulated upon induction of senescence in different types of cancer cells. PD-L2 is not required for cells to undergo senescence, but it is critical for senescent cells to evade the immune system and persist intratumorally. Indeed, after chemotherapy, PD-L2-deficient senescent cancer cells are rapidly eliminated and tumors do not produce the senescence-associated chemokines CXCL1 and CXCL2. Accordingly, PD-L2-deficient pancreatic tumors fail to recruit myeloid-derived suppressor cells and undergo regression driven by CD8 T cells after chemotherapy. Finally, antibody-mediated blockade of PD-L2 strongly synergizes with chemotherapy causing remission of mammary tumors in mice. The combination of chemotherapy with anti-PD-L2 provides a therapeutic strategy that exploits vulnerabilities arising from therapy-induced senescence.
Collapse
Affiliation(s)
- Selim Chaib
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Marta Lalinde-Gutiérrez
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Neus Prats
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ines Marin
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Genentech, South San Francisco, CA, USA
| | - Olga Boix
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Andrea García-Garijo
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Kathleen Meyer
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | - María Isabel Muñoz
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mònica Aguilera
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lidia Mateo
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Susana Llanos
- DNA Replication Group, Spanish National Cancer Research Center, Madrid, Spain
| | - Sandra Pérez-Ramos
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marta Escorihuela
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Fatima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Center, Madrid, Spain
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - María Abad
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | - Alena Gros
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Joaquín Arribas
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute, Centro de Investigación Biomédica en Red Cáncer, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Cambridge Institute of Science, Altos Labs, Cambridge, UK.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
41
|
Sharma R. Exploring the emerging bidirectional association between inflamm-aging and cellular senescence in organismal aging and disease. Cell Biochem Funct 2024; 42:e3970. [PMID: 38456500 DOI: 10.1002/cbf.3970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
There is strong evidence that most individuals in the elderly population are characterized by inflamm-aging which refers to a subtle increase in the systemic pro-inflammatory environment and impaired innate immune activation. Although a variety of distinct factors are associated with the progression of inflamm-aging, emerging research is demonstrating a dynamic relationship between the processes of cellular senescence and inflamm-aging. Cellular senescence is a recognized factor governing organismal aging, and through a characteristic secretome, accumulating senescent cells can induce and augment a pro-inflammatory tissue environment that provides a rationale for immune system-independent activation of inflamm-aging and associated diseases. There is also accumulating evidence that inflamm-aging or its components can directly accelerate the development of senescent cells and ultimately senescent cell burden in tissues in a likely vicious inflammatory loop. The present review is intended to describe the emerging senescence-based molecular etiology of inflamm-aging as well as the dynamic reciprocal interactions between inflamm-aging and cellular senescence. Therapeutic interventions concurrently targeting cellular senescence and inflamm-aging are discussed and limitations as well as research opportunities have been deliberated. An effort has been made to provide a rationale for integrating inflamm-aging with cellular senescence both as an underlying cause and therapeutic target for further studies.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| |
Collapse
|
42
|
Zheng L, He S, Wang H, Li J, Liu Y, Liu S. Targeting Cellular Senescence in Aging and Age-Related Diseases: Challenges, Considerations, and the Emerging Role of Senolytic and Senomorphic Therapies. Aging Dis 2024; 15:2554-2594. [PMID: 38421832 PMCID: PMC11567261 DOI: 10.14336/ad.2024.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Cellular senescence is characterized by the permanent arrest of cell proliferation and is a response to endogenous and exogenous stress. The continuous accumulation of senescent cells (SnCs) in the body leads to the development of aging and age-related diseases (such as neurodegenerative diseases, cancer, metabolic diseases, cardiovascular diseases, and osteoarthritis). In the face of the growing challenge of aging and age-related diseases, several compounds have received widespread attention for their potential to target SnCs. As a result, senolytics (compounds that selectively eliminate SnCs) and senomorphics (compounds that alter intercellular communication and modulate the behavior of SnCs) have become hot research topics in the field of anti-aging. In addition, strategies such as combination therapies and immune-based approaches have also made significant progress in the field of anti-aging therapy. In this article, we discuss the latest research on anti-aging targeting SnCs and gain a deeper understanding of the mechanism of action and impact of different anti-aging strategies on aging and age-related diseases, with the aim of providing more effective references and therapeutic ideas for clinical anti-aging treatment in the face of the ever-grave challenges of aging and age-related diseases.
Collapse
Affiliation(s)
- Liyao Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Wang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
43
|
Calabrò A, Accardi G, Aiello A, Caruso C, Galimberti D, Candore G. Senotherapeutics to Counteract Senescent Cells Are Prominent Topics in the Context of Anti-Ageing Strategies. Int J Mol Sci 2024; 25:1792. [PMID: 38339070 PMCID: PMC10855240 DOI: 10.3390/ijms25031792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Cellular senescence is implicated in ageing and associated with a broad spectrum of age-related diseases. Importantly, a cell can initiate the senescence program irrespective of the organism's age. Various stress signals, including those defined as ageing hallmarks and alterations leading to cancer development, oncogene activation, or loss of cancer-suppressive functions, can trigger cellular senescence. The primary outcome of these alterations is the activation of nuclear factor (NF)-κB, thereby inducing the senescence-associated secretory phenotype (SASP). Proinflammatory cytokines and chemokines, components of this phenotype, contribute to chronic systemic sterile inflammation, commonly referred to as inflamm-ageing. This inflammation is linked to age-related diseases (ARDs), frailty, and increased mortality in older individuals. Additionally, senescent cells (SCs) accumulate in multiple tissues with age and are believed to underlie the organism functional decline, as demonstrated by models. An escalating effort has been dedicated to identify senotherapeutics that selectively target SCs by inducing apoptosis; these drugs are termed senolytics. Concurrently, small molecules that suppress senescent phenotypes without causing cell death are known as senomorphics. Both natural and synthetic senotherapeutics, along with immunotherapies employing immune cell-mediated clearance of SCs, currently represent the most promising strategies to combat ageing and ARDs. Indeed, it is fascinating to observe that information regarding the immune reaction to SCs indicates that regulation by specific lymphocyte subsets, elevated in the oldest centenarians, plays a role in attaining extreme longevity. Regardless, the application of methods already utilized in cancer treatment, such as CAR cells and monoclonal antibodies, broadens the spectrum of potential approaches to be utilized.
Collapse
Affiliation(s)
- Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.C.); (G.A.); (A.A.); (G.C.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.C.); (G.A.); (A.A.); (G.C.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.C.); (G.A.); (A.A.); (G.C.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.C.); (G.A.); (A.A.); (G.C.)
- Italian Association of Anti-Ageing Physicians, 20133 Milan, Italy;
| | | | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.C.); (G.A.); (A.A.); (G.C.)
| |
Collapse
|
44
|
Wang L, Mao L, Xiao W, Chen P. Natural killer cells immunosenescence and the impact of lifestyle management. Biochem Biophys Res Commun 2023; 689:149216. [PMID: 37976836 DOI: 10.1016/j.bbrc.2023.149216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Natural killer cells (NKs) are lymphocytes of the innate immune system that quickly respond to viruses, infections, and tumors during their short cell life cycle. However, it was recently found that NKs undergo quantitative, distributional, structural, and functional phenotypic changes during aging that suppress immune responses, which is known as immunosenescence. The aging host environment, cytokine regulation, cytomegalovirus status, and hypothalamic‒pituitary‒adrenal axis have significant effects on NK function. Different lifestyle management interventions modulate the number and cytotoxic activity of NKs, which are essential for rebuilding the immune barrier against pathogens in elderly individuals. Based on recent studies, we review the phenotypic changes of and potential threats of NKs during aging and explore the underlying mechanisms. By summarizing the effects of lifestyle management on NKs and their application prospects, we aim to provide evidence for enhancing immune system function against immune diseases in elderly individuals.
Collapse
Affiliation(s)
- Lian Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Liwei Mao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Peijie Chen
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
45
|
Schwartz RE, Conboy IM. Non-Intrinsic, Systemic Mechanisms of Cellular Senescence. Cells 2023; 12:2769. [PMID: 38132089 PMCID: PMC10741531 DOI: 10.3390/cells12242769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Cellular senescence is believed to contribute to aging and disease through the activity of secreted factors that promote inflammation, remodel the extracellular matrix, and adversely modify the behavior of non-senescent cells. While the markers and properties of senescent cells are still under investigation, it is postulated that cellular senescence manifests in vivo as the consequence of cellular damage that accumulates and becomes exacerbated with time. Yet, the notions that senescence has a solely intrinsic and time-dependent nature are questioned by the rapid induction of senescence in young mice and young cells in vitro by exposure to blood from aged animals. Here, we review some of the research on the systemically present factors that increase with age and may contribute to extrinsically induced senescence or "bystander senescence". These include proteins, reactive oxygen species, lipids, and nucleic acids, which may be present in individual soluble form, in vesicles, and in non-membranous multi-component macromolecules.
Collapse
Affiliation(s)
| | - Irina M. Conboy
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA;
| |
Collapse
|
46
|
Zhang XX, Yu X, Zhu L, Luo JH. Establishment of a 6-signature risk model associated with cellular senescence for predicting the prognosis of breast cancer. Medicine (Baltimore) 2023; 102:e35923. [PMID: 37986376 PMCID: PMC10659633 DOI: 10.1097/md.0000000000035923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023] Open
Abstract
This study focused on screening novel markers associated with cellular senescence for predicting the prognosis of breast cancer. The RNA-seq expression profile of BRCA and clinical data were obtained from TCGA. The pam algorithm was used to cluster patients based on senescence-related genes. The weighted gene co-expression network analysis was used to identify co-expressed genes, and LASSO-Cox analysis was performed to build a risk prognosis model. The performance of the model was also evaluated. We additionally explored the role of senescence in cancer development and possible regulatory mechanism. The patients were clustered into 2 subtypes. A total of 5259 genes significantly related to senescence were identified by weighted gene co-expression network analysis. LASSO-Cox finally established a 6-signature risk model (ADAMTS8, DCAF12L2, PCDHA10, PGK1, SLC16A2, and TMEM233) that exhibited favorable and stable performance in our training, validation, and whole BRCA datasets. Furthermore, the superiority of our model was also observed after comparing it to other published models. The 6-signature was proved to be an independent risk factor for prognosis. In addition, mechanism prediction implied the activation of glycometabolism processes such as glycolysis and TCA cycle under the condition of senescence. Glycometabolism pathways were further found to negatively correlate with the infiltration level of CD8 T-cells and natural killer cells but positively correlate with M2 macrophage infiltration and expressions of tissue degeneration biomarkers, which suggested the deficit immune surveillance and risk of tumor migration. The constructed 6-gene model based on cellular senescence could be an effective indicator for predicting the prognosis of BRCA.
Collapse
Affiliation(s)
- Xiu-Xia Zhang
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yu
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Zhu
- Pathology Department, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun-Hua Luo
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Martyshkina YS, Tereshchenko VP, Bogdanova DA, Rybtsov SA. Reliable Hallmarks and Biomarkers of Senescent Lymphocytes. Int J Mol Sci 2023; 24:15653. [PMID: 37958640 PMCID: PMC10647376 DOI: 10.3390/ijms242115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The phenomenon of accumulation of senescent adaptive immunity cells in the elderly is attracting attention due to the increasing risk of global epidemics and aging of the global population. Elderly people are predisposed to various infectious and age-related diseases and are at higher risk of vaccination failure. The accumulation of senescent cells increases age-related background inflammation, "Inflammaging", causing lymphocyte exhaustion and cardiovascular, neurodegenerative, autoimmune and cancer diseases. Here, we present a comprehensive contemporary review of the mechanisms and phenotype of senescence in the adaptive immune system. Although modern research has not yet identified specific markers of aging lymphocytes, several sets of markers facilitate the separation of the aging population based on normal memory and exhausted cells for further genetic and functional analysis. The reasons for the higher predisposition of CD8+ T-lymphocytes to senescence compared to the CD4+ population are also discussed. We point out approaches for senescent-lymphocyte-targeting markers using small molecules (senolytics), antibodies and immunization against senescent cells. The suppression of immune senescence is the most relevant area of research aimed at developing anti-aging and anti-cancer therapy for prolonging the lifespan of the global population.
Collapse
Affiliation(s)
- Yuliya S. Martyshkina
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Valeriy P. Tereshchenko
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| | - Daria A. Bogdanova
- Division of Immunobiology and Biomedicine, Center for Genetics and Life Sciences, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia; (Y.S.M.)
| | - Stanislav A. Rybtsov
- Resource Center for Cell Technology and Immunology, Sirius University of Science and Technology, Olimpiyskiy Ave. b.1, Sirius 354340, Krasnodar Region, Russia
| |
Collapse
|
48
|
Jain SS, McNamara ME, Varghese RS, Ressom HW. Deconvolution of immune cell composition and biological age of hepatocellular carcinoma using DNA methylation. Methods 2023; 218:125-132. [PMID: 37574160 PMCID: PMC10529003 DOI: 10.1016/j.ymeth.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has been an approved indication for the administration of immunotherapy since 2017, but biomarkers that predict therapeutic response have remained limited. Understanding and characterizing the tumor immune microenvironment enables better classification of these tumors and may reveal biomarkers that predict immunotherapeutic efficacy. In this paper, we applied a cell-type deconvolution algorithm using DNA methylation array data to investigate the composition of the tumor microenvironment in HCC. Using publicly available and in-house datasets with a total cohort size of 57 patients, each with tumor and matched normal tissue samples, we identified key differences in immune cell composition. We found that NK cell abundance was significantly decreased in HCC tumors compared to adjacent normal tissue. We also applied DNA methylation "clocks" which estimate phenotypic aging and compared these findings to expression-based determinations of cellular senescence. Senescence and epigenetic aging were significantly increased in HCC tumors, and the degree of age acceleration and senescence was strongly associated with decreased NK cell abundance. In summary, we found that NK cell infiltration in the tumor microenvironment is significantly diminished, and that this loss of NK abundance is strongly associated with increased senescence and age-related phenotype. These findings point to key interactions between NK cells and the senescent tumor microenvironment and offer insights into the pathogenesis of HCC as well as potential biomarkers of therapeutic efficacy.
Collapse
Affiliation(s)
- Sidharth S Jain
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Megan E McNamara
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Rency S Varghese
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Habtom W Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
49
|
Lin MJ, Hu SL, Tian Y, Zhang J, Liang N, Sun R, Gong SX, Wang AP. Targeting Vascular Smooth Muscle Cell Senescence: A Novel Strategy for Vascular Diseases. J Cardiovasc Transl Res 2023; 16:1010-1020. [PMID: 36973566 DOI: 10.1007/s12265-023-10377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Vascular diseases are a major threat to human health, characterized by high rates of morbidity, mortality, and disability. VSMC senescence contributes to dramatic changes in vascular morphology, structure, and function. A growing number of studies suggest that VSMC senescence is an important pathophysiological mechanism for the development of vascular diseases, including pulmonary hypertension, atherosclerosis, aneurysm, and hypertension. This review summarizes the important role of VSMC senescence and senescence-associated secretory phenotype (SASP) secreted by senescent VSMCs in the pathophysiological process of vascular diseases. Meanwhile, it concludes the progress of antisenescence therapy targeting VSMC senescence or SASP, which provides new strategies for the prevention and treatment of vascular diseases.
Collapse
Affiliation(s)
- Meng-Juan Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shi-Liang Hu
- Department of Rheumatology, Shaoyang Central Hospital, Shaoyang, 422000, China
| | - Ying Tian
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Jing Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Na Liang
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Rong Sun
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Ai-Ping Wang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
| |
Collapse
|
50
|
Marcozzi S, Bigossi G, Giuliani ME, Lai G, Giacconi R, Piacenza F, Malavolta M. Spreading Senescent Cells' Burden and Emerging Therapeutic Targets for Frailty. Cells 2023; 12:2287. [PMID: 37759509 PMCID: PMC10528263 DOI: 10.3390/cells12182287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The spreading of senescent cells' burden holds profound implications for frailty, prompting the exploration of novel therapeutic targets. In this perspective review, we delve into the intricate mechanisms underlying senescent cell spreading, its implications for frailty, and its therapeutic development. We have focused our attention on the emerging age-related biological factors, such as microbiome and virome alterations, elucidating their significant contribution to the loss of control over the accumulation rate of senescent cells, particularly affecting key frailty domains, the musculoskeletal system and cerebral functions. We believe that gaining an understanding of these mechanisms could not only aid in elucidating the involvement of cellular senescence in frailty but also offer diverse therapeutic possibilities, potentially advancing the future development of tailored interventions for these highly diverse patients.
Collapse
Affiliation(s)
- Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| |
Collapse
|