1
|
Song JY, Pan Z. Aberrant expression in lymphoma, a diagnostic pitfall. Hum Pathol 2025; 156:105706. [PMID: 39674282 DOI: 10.1016/j.humpath.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
One of the major difficulties in practical hematopathology is to accurately assign cell lineage and thus ensure proper classification of lymphomas. The lineage-specific markers of lymphoma are detected by immunohistochemistry or flow cytometry immunophenotypic methods. However, aberrant gain or loss of these markers is occasionally encountered during daily practice, which often creates diagnostic challenges. In addition, lymphoma may aberrantly express non-hematopoietic markers, and vice versa. This review article provides an overview of aberrant gain of expression of lineage-associated antigens in mature lymphoid neoplasms, including recommendations to avoid diagnostic pitfalls and ultimately to reach accurate diagnoses.
Collapse
Affiliation(s)
- Joo Y Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zenggang Pan
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Chen W, Zhang Z. Recent Advances in Understanding the Clinical Responses of Brentuximab Vedotin in Lymphoma and the Correlation with CD30 Expression. Onco Targets Ther 2025; 18:1-14. [PMID: 39802262 PMCID: PMC11720807 DOI: 10.2147/ott.s487088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
Brentuximab vedotin (BV) is an antibody-drug conjugate that combines the CD30 monoclonal antibody with the microtubule-disrupting agent, monomethyl auristatin E, which induces apoptosis in the tumor cell upon its release from the conjugate. The safety and efficacy of BV have been assessed in several studies in patients with T- and B-cell lymphomas. This article reviews the currently available data on the distribution of CD30 expression in T- and B-cell lymphomas, as well as the various levels of CD30 positivity cutoff used in the literature. It also analyzes the relationship between CD30 expression levels and the clinical response to BV in clinical trials for both T- and B-cell lymphomas and investigates BV efficacy in patients with low or undetectable levels of CD30 and examines potential mechanisms by which BV exerts its effect on these patients. This review contributes to the growing evidence suggesting that CD30 expression levels do not predict the clinical benefit of BV as the drug demonstrated substantial efficacy in patients across a wide range of CD30 expression levels while suggesting that the antitumor activity was not associated with CD30 expression levels. Furthermore, the potential of BV as a targeted approach along with its mechanism of action is also summarized to explain its key role in the future treatments of lymphomas, especially for CD30-expressing lymphomas.
Collapse
Affiliation(s)
- Wen Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
3
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
4
|
Yang Z, Du W, Zhang X, Chen D, Fang Q, He Y, Yang Y, Li D, Fan J. Nonsmoking and Nondrinking Oral Squamous Cell Carcinoma Patients: A Different Entity. Front Oncol 2021; 11:558320. [PMID: 34262853 PMCID: PMC8273760 DOI: 10.3389/fonc.2021.558320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Our goal was to analyze the demographic and pathologic characteristics as well as prognosis in nonsmoking and nondrinking (NSND) oral squamous cell carcinoma (SCC) patients compared with typical oral SCC patients. PATIENTS AND METHODS A total of 353 patients were retrospectively enrolled and divided into two groups: the NSND group and the current smoking/current drinking (CSCD) group. Demographic, pathologic, and molecular data were compared between the two groups. The main research endpoints were locoregional control (LRC) and disease-specific survival (DSS). RESULTS In the NSND group, 16.3%, 41.9%, and 53.5% of patients were aged no more than 40 years, were female, and had an educational background of high school or above compared to 3.7%, 6.0%, and 38.2% of patients in the CSCD group, respectively. A total of 15.1% of the NSND patients had SCC of the lower gingiva and floor of the mouth, which was lower than the 35.6% of patients in the CSCD group. CSCD patients were likely to have an advanced disease stage (48.7% vs 32.5%, p=0.042) and poorly differentiated cancer (26.6% vs 16.3%, p=0.042). The NSND patients had a mean Ki-67 index of 24.5%, which was lower than the mean of 35.7% in the CSCD patients. The two groups had no HPV infection and similar p16 expression (4.7% vs 10.1%, p=0.132), but there was higher expression of p53 (38.6% vs 17.4%, p<0.001) and p63 (59.9% vs 29.1%, p<0.001) in the CSCD group. The 5-year LRC rates for NSND patients and CSCD patients were 48% and 38%, respectively, and the difference was significant (p=0.048). The 5-year DSS rates for NSND patients and CSCD patients were 56% and 39%, respectively, and the difference was significant (p=0.047). Further, a Cox model confirmed the independence of smoking and drinking status for affecting LRC and DSS. CONCLUSION NSND oral SCC patients are a different entity. HPV infection has a limited role in carcinogenesis in NSND patients, and p16 expression is associated with worse locoregional control.
Collapse
Affiliation(s)
- Zhan Yang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Wei Du
- Department of Head Neck and Thyroid Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xu Zhang
- Department of Head Neck and Thyroid Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Defeng Chen
- Department of Head Neck and Thyroid Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qigen Fang
- Department of Head Neck and Thyroid Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yuezhong He
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Yang Yang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Li
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jie Fan
- Department of Head Neck and Thyroid Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Integration of Metabolomics and Gene Expression Profiling Elucidates IL4I1 as Modulator of Ibrutinib Resistance in ABC-Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13092146. [PMID: 33946867 PMCID: PMC8124963 DOI: 10.3390/cancers13092146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this study, we present a workflow to understand the modulator of ibrutinib resistance in ABC diffuse large B cell lymphoma by integrating Metabolomics and Gene expression profiling as shown in the graphical abstract. We performed an untargeted metabolomics analysis using a Q-Exactive high-resolution mass spectrometer to dissect the metabolic reprogramming associated with acquired ibrutinib resistance in paired ibrutinib-sensitive and ibrutinib-resistant DLBCL cell lines. Further, we identified common denominators, integrating metabolome and transcriptome data, confirming clinical significance, integrating pathways, and identifying the candidate gene driving ibrutinib resistance and metabolic reprogramming. Our work demonstrates that a multi-omics approach can be a robust and impartial strategy to uncover genes and pathways that cause metabolic deregulation in cancer cells. Abstract Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL). B-cell NHLs rely on Bruton’s tyrosine kinase (BTK) mediated B-cell receptor signaling for survival and disease progression. However, they are often resistant to BTK inhibitors or soon acquire resistance after drug exposure resulting in the drug-tolerant form. The drug-tolerant clones proliferate faster, have increased metabolic activity, and shift to oxidative phosphorylation; however, how this metabolic programming occurs in the drug-resistant tumor is poorly understood. In this study, we explored for the first time the metabolic regulators of ibrutinib-resistant activated B-cell (ABC) DLBCL using a multi-omics analysis that integrated metabolomics (using high-resolution mass spectrometry) and transcriptomic (gene expression analysis). Overlay of the unbiased statistical analyses, genetic perturbation, and pharmaceutical inhibition was further used to identify the key players contributing to the metabolic reprogramming of the drug-resistant clone. Gene-metabolite integration revealed interleukin four induced 1 (IL4I1) at the crosstalk of two significantly altered metabolic pathways involved in producing various amino acids. We showed for the first time that drug-resistant clones undergo metabolic reprogramming towards oxidative phosphorylation and are modulated via the BTK-PI3K-AKT-IL4I1 axis. Our report shows how these cells become dependent on PI3K/AKT signaling for survival after acquiring ibrutinib resistance and shift to sustained oxidative phosphorylation; additionally, we outline the compensatory pathway that might regulate this metabolic reprogramming in the drug-resistant cells. These findings from our unbiased analyses highlight the role of metabolic reprogramming during drug resistance development. Our work demonstrates that a multi-omics approach can be a robust and impartial strategy to uncover genes and pathways that drive metabolic deregulation in cancer cells.
Collapse
|
6
|
p63 expression in human tumors and normal tissues: a tissue microarray study on 10,200 tumors. Biomark Res 2021; 9:7. [PMID: 33494829 PMCID: PMC7830855 DOI: 10.1186/s40364-021-00260-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background Tumor protein 63 (p63) is a transcription factor of the p53 gene family involved in differentiation of several tissues including squamous epithelium. p63 immunohistochemistry is broadly used for tumor classification but published data on its expression in cancer is conflicting. Methods To comprehensively catalogue p63 expression, tissue microarrays (TMAs) containing 12,620 tissue samples from 115 tumor entities and 76 normal tissue types were analyzed. Results p63 expression was seen in various normal tissues including squamous epithelium and urothelium. At least occasional weak p63 positivity could be detected in 61 (53%) of 115 different tumor types. The frequencies of p63 positivity was highest in squamous cell carcinomas irrespective of their origin (96–100%), thymic tumors (100%), urothelial carcinomas (81–100%), basal type tumors such as basal cell carcinomas (100%), and various salivary gland neoplasias (81–100%). As a rule, p63 was mostly expressed in cancers derived from p63 positive normal tissues and mostly not detectable in tumors derived from p63 negative cancers. However, exceptions from this rule occurred. A positive p63 immunostaining in cancers derived from p63 negative tissues was unrelated to aggressive phenotype in 422 pancreatic cancers, 160 endometrium cancers and 374 ovarian cancers and might be caused by aberrant squamous differentiation or represent stem cell properties. In 355 gastric cancers, aberrant p63 expression occurred in 4% and was linked to lymph node metastasis (p = 0.0208). Loss of p63 in urothelial carcinomas - derived from p63 positive urothelium - was significantly linked to advanced stage, high grade (p < 0.0001 each) and poor survival (p < 0.0001) and might reflect clinically relevant tumor dedifferentiation. Conclusion The high prevalence of p63 expression in specific tumor types makes p63 immunohistochemistry a suitable diagnostic tool. Loss of p63 expression might constitute a feature of aggressive cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00260-5.
Collapse
|
7
|
An Algorithmic Immunohistochemical Approach to Define Tumor Type and Assign Site of Origin. Adv Anat Pathol 2020; 27:114-163. [PMID: 32205473 DOI: 10.1097/pap.0000000000000256] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunohistochemistry represents an indispensable complement to an epidemiology and morphology-driven approach to tumor diagnosis and site of origin assignment. This review reflects the state of my current practice, based on 15-years' experience in Pathology and a deep-dive into the literature, always striving to be better equipped to answer the age old questions, "What is it, and where is it from?" The tables and figures in this manuscript are the ones I "pull up on the computer" when I am teaching at the microscope and turn to myself when I am (frequently) stuck. This field is so exciting because I firmly believe that, through the application of next-generation immunohistochemistry, we can provide better answers than ever before. Specific topics covered in this review include (1) broad tumor classification and associated screening markers; (2) the role of cancer epidemiology in determining pretest probability; (3) broad-spectrum epithelial markers; (4) noncanonical expression of broad tumor class screening markers; (5) a morphologic pattern-based approach to poorly to undifferentiated malignant neoplasms; (6) a morphologic and immunohistochemical approach to define 4 main carcinoma types; (7) CK7/CK20 coordinate expression; (8) added value of semiquantitative immunohistochemical stain assessment; algorithmic immunohistochemical approaches to (9) "garden variety" adenocarcinomas presenting in the liver, (10) large polygonal cell adenocarcinomas, (11) the distinction of primary surface ovarian epithelial tumors with mucinous features from metastasis, (12) tumors presenting at alternative anatomic sites, (13) squamous cell carcinoma versus urothelial carcinoma, and neuroendocrine neoplasms, including (14) the distinction of pheochromocytoma/paraganglioma from well-differentiated neuroendocrine tumor, site of origin assignment in (15) well-differentiated neuroendocrine tumor and (16) poorly differentiated neuroendocrine carcinoma, and (17) the distinction of well-differentiated neuroendocrine tumor G3 from poorly differentiated neuroendocrine carcinoma; it concludes with (18) a discussion of diagnostic considerations in the broad-spectrum keratin/CD45/S-100-"triple-negative" neoplasm.
Collapse
|
8
|
Ciuffoli V, Lena AM, Gambacurta A, Melino G, Candi E. Myoblasts rely on TAp63 to control basal mitochondria respiration. Aging (Albany NY) 2019; 10:3558-3573. [PMID: 30487319 PMCID: PMC6286837 DOI: 10.18632/aging.101668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
p53, with its family members p63 and p73, have been shown to promote myoblast differentiation by regulation of the function of the retinoblastoma protein and by direct activation of p21Cip/Waf1 and p57Kip2, promoting cell cycle exit. In previous studies, we have demonstrated that the TAp63γ isoform is the only member of the p53 family that accumulates during in vitro myoblasts differentiation, and that its silencing led to delay in myotube fusion. To better dissect the role of TAp63γ in myoblast physiology, we have generated both sh-p63 and Tet-On inducible TAp63γ clones. Gene array analysis of sh-p63 C2C7 clones showed a significant modulation of genes involved in proliferation and cellular metabolism. Indeed, we found that sh-p63 C2C7 myoblasts present a higher proliferation rate and that, conversely, TAp63γ ectopic expression decreases myoblasts proliferation, indicating that TAp63γ specifically contributes to myoblasts proliferation, independently of p53 and p73. In addition, sh-p63 cells have a defect in mitochondria respiration highlighted by a reduction in spare respiratory capacity and a decrease in complex I, IV protein levels. These results demonstrated that, beside contributing to cell cycle exit, TAp63γ participates to myoblasts metabolism control.
Collapse
Affiliation(s)
- Veronica Ciuffoli
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy.,MRC-Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy.,IDI-IRCCS, Biochemistry laboratory, Rome, Italy
| |
Collapse
|
9
|
Smirnov A, Cappello A, Lena AM, Anemona L, Mauriello A, Di Daniele N, Annicchiarico-Petruzzelli M, Melino G, Candi E. ZNF185 is a p53 target gene following DNA damage. Aging (Albany NY) 2019; 10:3308-3326. [PMID: 30446632 PMCID: PMC6286825 DOI: 10.18632/aging.101639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
The transcription factor p53 is a key player in the tumour suppressive DNA damage response and a growing number of target genes involved in these pathways has been identified. p53 has been shown to be implicated in controlling cell motility and its mutant form enhances metastasis by loss of cell directionality, but the p53 role in this context has not yet being investigated. Here, we report that ZNF185, an actin cytoskeleton-associated protein from LIM-family of Zn-finger proteins, is induced following DNA-damage. ChIP-seq analysis, chromatin crosslinking immune-precipitation experiments and luciferase assays demonstrate that ZNF185 is a bona fide p53 target gene. Upon genotoxic stress, caused by DNA-damaging drug etoposide and UVB irradiation, ZNF185 expression is up-regulated and in etoposide-treated cells, ZNF185 depletion does not affect cell proliferation and apoptosis, but interferes with actin cytoskeleton remodelling and cell polarization. Bioinformatic analysis of different types of epithelial cancers from both TCGA and GTEx databases showed a significant decrease in ZNF185 mRNA level compared to normal tissues. These findings are confirmed by tissue micro-array IHC staining. Our data highlight the involvement of ZNF185 and cytoskeleton changes in p53-mediated cellular response to genotoxic stress and indicate ZNF185 as potential biomarker for epithelial cancer diagnosis.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Angela Cappello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Lucia Anemona
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome 00133, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy.,MRC-Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy.,Istituto Dermopatico dell'Immacolata-IRCCS, Rome 00163, Italy
| |
Collapse
|
10
|
Frezza V, Fierro C, Gatti E, Peschiaroli A, Lena AM, Petruzzelli MA, Candi E, Anemona L, Mauriello A, Pelicci PG, Melino G, Bernassola F. ΔNp63 promotes IGF1 signalling through IRS1 in squamous cell carcinoma. Aging (Albany NY) 2019; 10:4224-4240. [PMID: 30594912 PMCID: PMC6326668 DOI: 10.18632/aging.101725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Accumulating evidence has proved that deregulation of ΔNp63 expression plays an oncogenic role in head and neck squamous cell carcinomas (HNSCCs). Besides p63, the type 1-insulin-like growth factor (IGF) signalling pathway has been implicated in HNSCC development and progression. Most insulin/IGF1 signalling converges intracellularly onto the protein adaptor insulin receptor substrate-1 (IRS-1) that transmits signals from the receptor to downstream effectors, including the PI3K/AKT and the MAPK kinase pathways, which, ultimately, promote proliferation, invasion, and cell survival. Here we report that p63 directly controls IRS1 transcription and cellular abundance and fosters the PI3K/AKT and MAPK downstream signalling pathways. Inactivation of ΔNp63 expression indeed reduces tumour cell responsiveness to IGF1 stimulation, and inhibits the growth potential of HNSCC cells. In addition, a positive correlation was observed between p63 and IRS1 expression in human HNSCC tissue arrays and in publicly available gene expression data. Our findings indicate that aberrant expression of ΔNp63 in HNSSC may act as an oncogenic stimulus by altering the IGF signalling pathway.
Collapse
Affiliation(s)
- Valentina Frezza
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Claudia Fierro
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Elena Gatti
- Department of Experimental Oncology European Institute of Oncology, Milan 20139, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy Institute of Translational Pharmacology (IFT-CNR), Rome 00133, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | | | - Eleonora Candi
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy.,Istituto Dermopatico dell'Immacolata, IRCCS,, Rome 00163, Italy
| | - Lucia Anemona
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology European Institute of Oncology, Milan 20139, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy.,Medical Research Council, Toxicology Unit, University of Cambridge, Leicester LE1 9HN, UK
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR University of Rome "Tor Vergata", Rome 00133, Italy
| |
Collapse
|
11
|
Lopriore P, Capitanio N, Panatta E, Di Daniele N, Gambacurta A, Melino G, Amelio I. TAp73 regulates ATP7A: possible implications for ageing-related diseases. Aging (Albany NY) 2019; 10:3745-3760. [PMID: 30530920 PMCID: PMC6326685 DOI: 10.18632/aging.101669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
The p53 family member p73 controls a wide range of cellular function. Deletion of p73 in mice results in increased tumorigenesis, infertility, neurological defects and altered immune system. Despite the extensive effort directed to define the molecular underlying mechanism of p73 function a clear definition of its transcriptional signature and the extent of overlap with the other p53 family members is still missing. Here we describe a novel TAp73 target, ATP7A a member of a large family of P-type ATPases implicated in human neurogenerative conditions and cancer chemoresistance. Modulation of TAp73 expression influences basal expression level of ATP7A in different cellular models and chromatin immunoprecipitation confirmed a physical direct binding of TAp73 on ATP7A genomic regions. Bioinformatic analysis of expression profile datasets of human lung cancer patients suggests a possible implication of TAp73/ATP7A axis in human cancer. These data provide a novel TAp73-dependent target which might have implications in ageing-related diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Piervito Lopriore
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom.,Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Emanuele Panatta
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom
| | - Nicola Di Daniele
- Department of Systems Medicine, Nephrology and Hypertension Unit, Tor Vergata University Hospital, Rome, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom.,Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Ivano Amelio
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom
| |
Collapse
|
12
|
Hu WM, Jin JT, Wu CY, Lu JB, Zhang LH, Zeng J, Lin SX. Expression of P63 and its correlation with prognosis in diffuse large B-cell lymphoma: a single center experience. Diagn Pathol 2019; 14:128. [PMID: 31711519 PMCID: PMC6844053 DOI: 10.1186/s13000-019-0880-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
Background Large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin’s lymphoma among adults. In some cases, DLBCL may seem similar to carcinoma cells, presenting a round, oval, or polygonal shape and clear nuclei. We found that the expression of P63 accounted for a considerable proportion of DLBCL cases. Under the circumstances, P63 expression may lead to a misdiagnosis, especially with a small biopsy. We aim to investigate the expression status and prognostic significance of P63 in a cohort of Chinese DLBCL patients. Methods P63, ΔNP63(P40), P53 and Ki67 were detected by immunohistochemistry (IHC). A ROC curve was adopted to find the best cut-off value for positive P63/P53 expression and high Ki67 expression. We defined P53 as positive when ≥50% of the tumor cells showed staining. The relationship between P63 and P53/Ki67 expression was examined. Time-to-event endpoints were estimated according to the Kaplan-Meier method. Moreover, multivariate analyses were conducted to evaluate the prognostic factors in DLBCL. Results Out of all the 159 DLBCL cases, 76 (47.8%) expressed P63 in the nuclei, while 41 (25.8%) were determined to have high expression by using a ROC cut-off value “≥6”. Examination of the different P63 isoforms revealed that the ΔNP63(P40) was unclearly and weakly expressed in only 3 cases, showing a fuzzy yellow cytoplasm. P63 expression was not correlated with subtype (GCB or non-GCB) or P53 but was correlated with a high proliferative index (Ki67). Kaplan-Meier analyses revealed that P63 expression was correlated with overall survival, and P63 positive cases showed poor survival outcomes (P<0.05) in our cohort. Conclusions ΔNP63(P40) is a useful marker in the differential diagnosis of poorly differentiated squamous cell carcinoma versus DLBCL in small needle biopsy. P63 may be involved in DLBCL tumor progression, and it is an unfavorable prognostic marker in DLBCL. A subgroup of P63 and P53 coexpression DLBCL patients with an extremely poor prognosis should be noted.
Collapse
Affiliation(s)
- Wan-Ming Hu
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jie-Tian Jin
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Chen-Yan Wu
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jia-Bin Lu
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Li-Hong Zhang
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jing Zeng
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou, China. .,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | - Su-Xia Lin
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou, China. .,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Wang X, Cao X, Sun R, Tang C, Tzankov A, Zhang J, Manyam GC, Xiao M, Miao Y, Jabbar K, Tan X, Pang Y, Visco C, Xie Y, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Parsons BM, Winter JN, Piris MA, Li S, Miranda RN, Medeiros LJ, Li Y, Xu-Monette ZY, Young KH. Clinical Significance of PTEN Deletion, Mutation, and Loss of PTEN Expression in De Novo Diffuse Large B-Cell Lymphoma. Neoplasia 2018; 20:574-593. [PMID: 29734016 PMCID: PMC5994742 DOI: 10.1016/j.neo.2018.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 01/12/2023]
Abstract
PTEN loss has been associated with poorer prognosis in many solid tumors. However, such investigation in lymphomas is limited. In this study, PTEN cytoplasmic and nuclear expression, PTEN gene deletion, and PTEN mutations were evaluated in two independent cohorts of diffuse large B-cell lymphoma (DLBCL). Cytoplasmic PTEN expression was found in approximately 67% of total 747 DLBCL cases, more frequently in the activated B-cell-like subtype. Nuclear PTEN expression was less frequent and at lower levels, which significantly correlated with higher PTEN mRNA expression. Remarkably, loss of PTEN protein expression was associated with poorer survival only in DLBCL with AKT hyperactivation. In contrast, high PTEN expression was associated with Myc expression and poorer survival in cases without abnormal AKT activation. Genetic and epigenetic mechanisms for loss of PTEN expression were investigated. PTEN deletions (mostly heterozygous) were detected in 11.3% of DLBCL, and showed opposite prognostic effects in patients with AKT hyperactivation and in MYC rearranged DLBCL patients. PTEN mutations, detected in 10.6% of patients, were associated with upregulation of genes involved in central nervous system function, metabolism, and AKT/mTOR signaling regulation. Loss of PTEN cytoplasmic expression was also associated with TP53 mutations, higher PTEN-targeting microRNA expression, and lower PD-L1 expression. Remarkably, low PTEN mRNA expression was associated with down-regulation of a group of genes involved in immune responses and B-cell development/differentiation, and poorer survival in DLBCL independent of AKT activation. Collectively, multi-levels of PTEN abnormalities and dysregulation may play important roles in PTEN expression and loss, and that loss of PTEN tumor-suppressor function contributes to the poor survival of DLBCL patients with AKT hyperactivation.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xin Cao
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Ruifang Sun
- Tumor Biobank, Department of Pathology, Shanxi Cancer Hospital, Taiyuan, China
| | | | | | - Jun Zhang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Min Xiao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yi Miao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Xiaohong Tan
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuyang Pang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Yan Xie
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, Texas, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | - Ben M Parsons
- Gundersen Lutheran Health System, La Crosse, Wisconsin, USA
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Miguel A Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yong Li
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
14
|
Li T, Sun X, Liu Y. miR-27b expression in diagnosis and evaluation prognosis of prostate cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11415-11424. [PMID: 31966497 PMCID: PMC6966086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/18/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The aim of study was to investigate the expression of microRNA-27b in different prostate tissues and its anti-tumor effects in prostate cancer. METHODS Measuring the expression of microRNA-27b, evaluating the PI3K protein expression in 28 benign prostatic hyperplasia and 63 prostate cancer tissues, analyzing the correlation between miRNA-27b and PI3K, and miRNA-27b's correlation with Gleason Grading and clinical stages were analyzed. We divided the prostate cancer patients into two groups: low group and high group, comparing the overall survival and progression free survival. In the cell experiment, the PC3 was divided into three groups: NC group, BL group and miRNA group. The cells of difference groups were measuring the cell proliferation, apoptosis and cycle and evaluating PI3K, AKT and P21 protein expressions of difference groups. RESULTS The microRNA-27b expression of prostate cancer significantly increased Compared with benign prostatic hyperplasia (P<0.05). The PI3K protein expression of prostate cancer tissues were significantly enhanced compared with benign prostatic hyperplasia. The PI3K protein expression was positive correlation with miRNA-27b in cancer tissues. Furthermore, the microRNA-27b expression was significantly correlated with the Gleason Grading and clinical stages in prostate cancer (P<0.05, respectively). The patients with higher miR-27b expression level had both poorer overall survival and progression free survival. In cell experiment, the cell proliferation of miRNA group was significantly lower than NC group (P<0.05); the cell apoptosis and G1 phase of miRNA group were significantly difference compared with NC group (P<0.05, respectively); Compared with NC group, PI3K, AKT and P21 protein expressions were significantly down-regulation in miRNA group (P<0.05, respectively). CONCLUSIONS miR-27b was up-regulated in prostate cancer tissue compared with benign prostatic hyperplasia tissues, and its expression level was correlated with a variety of important clinical pathological parameters. In the treatment of prostate cancer, miR-27b inhibition had effects to suppress prostate cancer proliferation by regulation PI3K/AKT/P21 signaling pathway. Moreover; miR-27b may serve as a promising biomarker for predicting the prognosis of prostate cancer.
Collapse
Affiliation(s)
- Tian Li
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510700, Guangdong, China
- Minimally Invasive Technique and Product Translational Center, Guangzhou Medical UniversityGuangzhou 510700, Guangdong, China
| | - Xiangzhou Sun
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, Guangdong, China
| | - Yifan Liu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510700, Guangdong, China
- Minimally Invasive Technique and Product Translational Center, Guangzhou Medical UniversityGuangzhou 510700, Guangdong, China
| |
Collapse
|
15
|
Hepatic p63 regulates steatosis via IKKβ/ER stress. Nat Commun 2017; 8:15111. [PMID: 28480888 PMCID: PMC5424198 DOI: 10.1038/ncomms15111] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/01/2017] [Indexed: 12/28/2022] Open
Abstract
p53 family members control several metabolic and cellular functions. The p53 ortholog p63 modulates cellular adaptations to stress and has a major role in cell maintenance and proliferation. Here we show that p63 regulates hepatic lipid metabolism. Mice with liver-specific p53 deletion develop steatosis and show increased levels of p63. Down-regulation of p63 attenuates liver steatosis in p53 knockout mice and in diet-induced obese mice, whereas the activation of p63 induces lipid accumulation. Hepatic overexpression of N-terminal transactivation domain TAp63 induces liver steatosis through IKKβ activation and the induction of ER stress, the inhibition of which rescues the liver functions. Expression of TAp63, IKKβ and XBP1s is also increased in livers of obese patients with NAFLD. In cultured human hepatocytes, TAp63 inhibition protects against oleic acid-induced lipid accumulation, whereas TAp63 overexpression promotes lipid storage, an effect reversible by IKKβ silencing. Our findings indicate an unexpected role of the p63/IKKβ/ER stress pathway in lipid metabolism and liver disease.
Collapse
|
16
|
Expression of p63 protein in anaplastic large cell lymphoma: implications for genetic subtyping. Hum Pathol 2017; 64:19-27. [PMID: 28153507 DOI: 10.1016/j.humpath.2017.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 11/22/2022]
Abstract
Anaplastic large cell lymphomas (ALCLs) are CD30-positive T-cell non-Hodgkin lymphomas that bear chromosomal rearrangements of the TP53 homologue TP63 in a subset of cases that demonstrate aggressive clinical behavior. In the present study, we examined the relationship between p63 protein expression by immunohistochemistry and the results of fluorescence in situ hybridization using TP63 probes in 116 ALCLs. We also determined the relative expression of full-length TAp63 and truncated ΔNp63 isoforms (eg, p40) in ALCL cell lines and a subset of clinical cases. Overall, 35.3% of ALCLs were positive for p63 protein. Primary cutaneous and anaplastic lymphoma kinase-negative ALCLs were positive more frequently than anaplastic lymphoma kinase-positive ALCLs (P=.0034). As previously reported, cases with TP63 gene rearrangements expressed p63 uniformly. p63 expression in nonrearranged cases was associated with extra copies of TP63 on 3q28 (P<.0001). Extra copies of TP63 correlated with extra copies of the DUSP22 locus on 6p25.3 (P<.0001). Results of immunohistochemistry, Western blotting, and RNA sequencing indicated that p63 expression in nonrearranged cases was entirely attributable to TAp63 isoforms. Taken together, these findings indicate that ALCLs without TP63 rearrangements may express TAp63 isoforms of p63 and that this expression is associated with extra copies of TP63, probably due to widespread genomic copy number abnormalities rather than focal gains. Immunohistochemistry for p63 in ALCL is not specific for TP63 rearrangements but is useful clinically as a screening test to select cases for further testing by fluorescence in situ hybridization. Immunohistochemistry for ΔNp63 (p40) is not informative in the evaluation of ALCL.
Collapse
|
17
|
Ferraiuolo M, Di Agostino S, Blandino G, Strano S. Oncogenic Intra-p53 Family Member Interactions in Human Cancers. Front Oncol 2016; 6:77. [PMID: 27066457 PMCID: PMC4814729 DOI: 10.3389/fonc.2016.00077] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
The p53 gene family members p53, p73, and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologs but hold peculiar functional properties. p53, p73, and p63 are tumor suppressor genes that promote differentiation, senescence, and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic “gain of function” activities correlated with the induction of proliferation, invasion, chemoresistance, and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53) with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor, Ets-1, NF-kB and YAP) or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response and DNA double-strand breaks response), enhanced invasion, and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild-type p53 (wt-p53) protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73, and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers.
Collapse
Affiliation(s)
- Maria Ferraiuolo
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy; Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Di Agostino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Department of Molecular Medicine, Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|