1
|
Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion 2025; 82:102022. [PMID: 40023438 DOI: 10.1016/j.mito.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | | | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| |
Collapse
|
2
|
Albinhassan TH, Alharbi BM, AlSuhaibani ES, Mohammad S, Malik SS. Small Heat Shock Proteins: Protein Aggregation Amelioration and Neuro- and Age-Protective Roles. Int J Mol Sci 2025; 26:1525. [PMID: 40003991 PMCID: PMC11855743 DOI: 10.3390/ijms26041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Protein misfolding, aggregation, and aberrant aggregate accumulation play a central role in neurodegenerative disease progression. The proteotoxic factors also govern the aging process to a large extent. Molecular chaperones modulate proteostasis and thereby impact aberrant-protein-induced proteotoxicity. These chaperones have a diverse functional spectrum, including nascent protein folding, misfolded protein sequestration, refolding, or degradation. Small heat shock proteins (sHsps) possess an ATP-independent chaperone-like activity that prevents protein aggregation by keeping target proteins in a folding-competent state to be refolded by ATP-dependent chaperones. Due to their near-universal upregulation and presence in sites of proteotoxic stress like diseased brains, sHsps were considered pathological. However, gene knockdown and overexpression studies have established their protective functions. This review provides an updated overview of the sHsp role in protein aggregation amelioration and highlights evidence for sHsp modulation of neurodegenerative disease-related protein aggregation and aging.
Collapse
Affiliation(s)
- Tahani H. Albinhassan
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Bothina Mohammed Alharbi
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| | | | - Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (T.H.A.); (S.M.)
| |
Collapse
|
3
|
Hunt LC, Curley M, Nyamkondiwa K, Stephan A, Jiao J, Kavdia K, Pagala VR, Peng J, Demontis F. The ubiquitin-conjugating enzyme UBE2D maintains a youthful proteome and ensures protein quality control during aging by sustaining proteasome activity. PLoS Biol 2025; 23:e3002998. [PMID: 39879147 PMCID: PMC11778781 DOI: 10.1371/journal.pbio.3002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are key for protein turnover and quality control via ubiquitination. Some E2s also physically interact with the proteasome, but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Mechanistically, UBE2D/eff is necessary to maintain optimal proteasome function: UBE2D/eff knockdown reduces the proteolytic activity of the proteasome, and this is rescued by transgenic expression of human UBE2D2, an eff homolog. Likewise, human UBE2D2 partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi and re-establishes the physiological levels of effRNAi-regulated proteins. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. However, some of the proteins that are concertedly up-regulated by aging and effRNAi are proteostasis regulators (e.g., chaperones and Pomp) that are transcriptionally induced presumably as part of an adaptive stress response to the loss of proteostasis. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.
Collapse
Affiliation(s)
- Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kudzai Nyamkondiwa
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Vishwajeeth R. Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
4
|
McKendry J, Coletta G, Nunes EA, Lim C, Phillips SM. Mitigating disuse-induced skeletal muscle atrophy in ageing: Resistance exercise as a critical countermeasure. Exp Physiol 2024; 109:1650-1662. [PMID: 39106083 PMCID: PMC11442788 DOI: 10.1113/ep091937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
The gradual deterioration of physiological systems with ageing makes it difficult to maintain skeletal muscle mass (sarcopenia), at least partly due to the presence of 'anabolic resistance', resulting in muscle loss. Sarcopenia can be transiently but markedly accelerated through periods of muscle disuse-induced (i.e., unloading) atrophy due to reduced physical activity, sickness, immobilisation or hospitalisation. Periods of disuse are detrimental to older adults' overall quality of life and substantially increase their risk of falls, physical and social dependence, and early mortality. Disuse events induce skeletal muscle atrophy through various mechanisms, including anabolic resistance, inflammation, disturbed proteostasis and mitochondrial dysfunction, all of which tip the scales in favour of a negative net protein balance and subsequent muscle loss. Concerningly, recovery from disuse atrophy is more difficult for older adults than their younger counterparts. Resistance training (RT) is a potent anabolic stimulus that can robustly stimulate muscle protein synthesis and mitigate muscle losses in older adults when implemented before, during and following unloading. RT may take the form of traditional weightlifting-focused RT, bodyweight training and lower- and higher-load RT. When combined with sufficient dietary protein, RT can accelerate older adults' recovery from a disuse event, mitigate frailty and improve mobility; however, few older adults regularly participate in RT. A feasible and practical approach to improving the accessibility and acceptability of RT is through the use of resistance bands. Moving forward, RT must be prescribed to older adults to mitigate the negative consequences of disuse atrophy.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Giulia Coletta
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Everson A. Nunes
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Changhyun Lim
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
5
|
Snow S, Mir DA, Ma Z, Horrocks J, Cox M, Ruzga M, Sayed H, Rogers AN. Neuronal CBP-1 is Required for Enhanced Body Muscle Proteostasis in Response to Reduced Translation Downstream of mTOR. FRONT BIOSCI-LANDMRK 2024; 29:264. [PMID: 39082355 PMCID: PMC11412575 DOI: 10.31083/j.fbl2907264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The ability to maintain muscle function decreases with age and loss of proteostatic function. Diet, drugs, and genetic interventions that restrict nutrients or nutrient signaling help preserve long-term muscle function and slow age-related decline. Previously, it was shown that attenuating protein synthesis downstream of the mechanistic target of rapamycin (mTOR) gradually increases expression of heat shock response (HSR) genes in a manner that correlates with increased resilience to protein unfolding stress. Here, we investigate the role of specific tissues in mediating the cytoprotective effects of low translation. METHODS This study uses genetic tools (transgenic Caenorhabditis elegans (C. elegans), RNA interference and gene expression analysis) as well as physiological assays (survival and paralysis assays) in order to better understand how specific tissues contribute to adaptive changes involving cellular cross-talk that enhance proteostasis under low translation conditions. RESULTS We use the C. elegans system to show that lowering translation in neurons or the germline increases heat shock gene expression and survival under conditions of heat stress. In addition, we find that low translation in these tissues protects motility in a body muscle-specific model of proteotoxicity that results in paralysis. Low translation in neurons or germline also results in increased expression of certain muscle regulatory and structural genes, reversing reduced expression normally observed with aging in C. elegans. Enhanced resilience to protein unfolding stress requires neuronal expression of cbp-1. CONCLUSIONS Low translation in either neurons or the germline orchestrate protective adaptation in other tissues, including body muscle.
Collapse
Affiliation(s)
- Santina Snow
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Dilawar Ahmad Mir
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Zhengxin Ma
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Jordan Horrocks
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Matthew Cox
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Marissa Ruzga
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Hussein Sayed
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Aric N. Rogers
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| |
Collapse
|
6
|
Ganne A, Mainali N, Balasubramaniam M, Atluri R, Pahal S, Asante J, Nagel C, Vallurupalli S, Shmookler Reis RJ, Ayyadevara S. Ezetimibe Lowers Risk of Alzheimer's and Related Dementias over Sevenfold, Reducing Aggregation in Model Systems by Inhibiting 14-3-3G::Hexokinase Interaction. AGING BIOLOGY 2024; 2:20240028. [PMID: 39263528 PMCID: PMC11389752 DOI: 10.59368/agingbio.20240028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Numerous factors predispose to progression of cognitive impairment to Alzheimer's disease and related dementias (ADRD), most notably age, APOE(ε4) alleles, traumatic brain injury, heart disease, hypertension, obesity/diabetes, and Down's syndrome. Protein aggregation is diagnostic for neurodegenerative diseases, and may be causal through promotion of chronic neuroinflammation. We isolated aggregates from postmortem hippocampi of ADRD patients, heart-disease patients, and age-matched controls. Aggregates, characterized by high-resolution proteomics (with or without crosslinking), were significantly elevated in heart-disease and ADRD hippocampi. Hexokinase-1 (HK1) and 14-3-3G/γ proteins, previously implicated in neuronal signaling and neurodegeneration, are especially enriched in ADRD and heart-disease aggregates vs. controls (each P<0.008), and their interaction was implied by extensive crosslinking in both disease groups. Screening the hexokinase-1::14-3-3G interface with FDA-approved drug structures predicted strong affinity for ezetimibe, a benign cholesterol-lowering medication. Diverse cultured human-cell and whole-nematode models of ADRD aggregation showed that this drug potently disrupts HK1::14-3-3G adhesion, reduces disease-associated aggregation, and activates autophagy. Mining clinical databases supports drug reduction of ADRD risk, decreasing it to 0.14 overall (P<0.0001; 95% C.I. 0.06-0.34), and <0.12 in high-risk heart-disease subjects (P<0.006). These results suggest that drug disruption of the 14-3-3G::HK1 interface blocks an early "lynchpin" adhesion, prospectively reducing aggregate accrual and progression of ADRD.
Collapse
Affiliation(s)
- Akshatha Ganne
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | | | - Ramani Atluri
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Joseph Asante
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Corey Nagel
- College of Nursing, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Srikanth Vallurupalli
- Central Arkansas Veterans Healthcare System, Little Rock AR 72205
- Department of Internal Medicine, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
- Central Arkansas Veterans Healthcare System, Little Rock AR 72205
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205
- Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205
- Central Arkansas Veterans Healthcare System, Little Rock AR 72205
| |
Collapse
|
7
|
Neal CL, Kronert WA, Camillo JRT, Suggs JA, Huxford T, Bernstein SI. Aging-affiliated post-translational modifications of skeletal muscle myosin affect biochemical properties, myofibril structure, muscle function, and proteostasis. Aging Cell 2024; 23:e14134. [PMID: 38506610 PMCID: PMC11296117 DOI: 10.1111/acel.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
The molecular motor myosin is post-translationally modified in its globular head, its S2 hinge, and its thick filament domain during human skeletal muscle aging. To determine the importance of such modifications, we performed an integrative analysis of transgenic Drosophila melanogaster expressing myosin containing post-translational modification mimic mutations. We determined effects on muscle function, myofibril structure, and myosin biochemistry. Modifications in the homozygous state decreased jump muscle function by a third at 3 weeks of age and reduced indirect flight muscle function to negligible levels in young flies, with severe effects on flight muscle myofibril assembly and/or maintenance. Expression of mimic mutations in the heterozygous state or in a wild-type background yielded significant, but less severe, age-dependent effects upon flight muscle structure and function. Modification of the residue in the globular head disabled ATPase activity and in vitro actin filament motility, whereas the S2 hinge mutation reduced actin-activated ATPase activity by 30%. The rod modification diminished filament formation in vitro. The latter mutation also reduced proteostasis, as demonstrated by enhanced accumulation of polyubiquitinated proteins. Overall, we find that mutation of amino acids at sites that are chemically modified during human skeletal muscle aging can disrupt myosin ATPase, myosin filament formation, and/or proteostasis, providing a mechanistic basis for the observed muscle defects. We conclude that age-specific post-translational modifications present in human skeletal muscle are likely to act in a dominant fashion to affect muscle structure and function and may therefore be implicated in degeneration and dysfunction associated with sarcopenia.
Collapse
Affiliation(s)
- Clara L. Neal
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - William A. Kronert
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Jared Rafael T. Camillo
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Jennifer A. Suggs
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Tom Huxford
- Department of Chemistry and BiochemistrySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Sanford I. Bernstein
- Department of Biology, Molecular Biology Institute, Heart InstituteSan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
8
|
Snow S, Mir D, Ma Z, Horrocks J, Cox M, Ruzga M, Sayed H, Rogers AN. Neuronal CBP-1 is required for enhanced body muscle proteostasis in response to reduced translation downstream of mTOR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585263. [PMID: 38559178 PMCID: PMC10980069 DOI: 10.1101/2024.03.15.585263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The ability to maintain muscle function decreases with age and loss of proteostatic function. Diet, drugs, and genetic interventions that restrict nutrients or nutrient signaling help preserve long-term muscle function and slow age-related decline. Previously, it was shown that attenuating protein synthesis downstream of the mechanistic target of rapamycin (mTOR) gradually increases expression of heat shock response (HSR) genes in a manner that correlates with increased resilience to protein unfolding stress. Here, we investigate the role of specific tissues in mediating the cytoprotective effects of low translation. Methods This study uses genetic tools (transgenic C. elegans , RNA interference and gene expression analysis) as well as physiological assays (survival and paralysis assays) in order to better understand how specific tissues contribute to adaptive changes involving cellular cross-talk that enhance proteostasis under low translation conditions. Results We use the C. elegans system to show that lowering translation in neurons or the germline increases heat shock gene expression and survival under conditions of heat stress. In addition, we find that low translation in these tissues protects motility in a body muscle-specific model of proteotoxicity that results in paralysis. Low translation in neurons or germline also results in increased expression of certain muscle regulatory and structural genes, reversing reduced expression normally observed with aging in C. elegans . Enhanced resilience to protein unfolding stress requires neuronal expression of cbp-1 . Conclusion Low translation in either neurons or the germline orchestrate protective adaptation in other tissues, including body muscle.
Collapse
|
9
|
Balasubramaniam M, Ganne A, Mainali N, Pahal S, Ayyadevara S, Shmookler Reis RJ. Alzheimer's-specific brain amyloid interactome: Neural-network analysis of intra-aggregate crosslinking identifies novel drug targets. iScience 2024; 27:108745. [PMID: 38274404 PMCID: PMC10809092 DOI: 10.1016/j.isci.2023.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by peri-neuronal amyloid plaque and intra-neuronal neurofibrillary tangles. These aggregates are identified by the immunodetection of "seed" proteins (Aβ1-42 and hyperphosphorylated tau, respectively), but include many other proteins incorporated nonrandomly. Using click-chemistry intra-aggregate crosslinking, we previously modeled amyloid "contactomes" in SY5Y-APPSw neuroblastoma cells, revealing that aspirin impedes aggregate growth and complexity. By an analogous strategy, we now construct amyloid-specific aggregate interactomes of AD and age-matched-control hippocampi. Comparing these interactomes reveals AD-specific interactions, from which neural-network (NN) analyses predict proteins with the highest impact on pathogenic aggregate formation and/or stability. RNAi knockdowns of implicated proteins, in C. elegans and human-cell-culture models of AD, validated those predictions. Gene-Ontology meta-analysis of AD-enriched influential proteins highlighted the involvement of mitochondrial and cytoplasmic compartments in AD-specific aggregation. This approach derives dynamic consensus models of aggregate growth and architecture, implicating highly influential proteins as new targets to disrupt amyloid accrual in the AD brain.
Collapse
Affiliation(s)
| | - Akshatha Ganne
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Sonu Pahal
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Srinivas Ayyadevara
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| | - Robert J. Shmookler Reis
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA
| |
Collapse
|
10
|
Balasubramaniam M, Narasimhappagari J, Liu L, Ganne A, Ayyadevara S, Atluri R, Ayyadevara H, Caldwell G, Shmookler Reis RJ, Barger SW, Griffin WST. Rescue of ApoE4-related lysosomal autophagic failure in Alzheimer's disease by targeted small molecules. Commun Biol 2024; 7:60. [PMID: 38191671 PMCID: PMC10774381 DOI: 10.1038/s42003-024-05767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Homozygosity for the ε4 allele of APOE increases the odds of developing Alzheimer's by 12 to 15 times relative to the most common ε3;ε3 genotype, and its association with higher plaque loads comports with evidence that APOEε4 compromises autophagy. The ApoE4 protein specifically binds a cis element ("CLEAR") in the promoters of several autophagy genes to block their transcription. We used a multifaceted approach to identify a druggable site in ApoE4, and virtual screening of lead-like compounds identified small molecules that specifically bind to this site to impede ApoE4::DNA binding. We validated these molecules both in vitro and in vivo with models expressing ApoE4, including ApoE4 targeted-replacement mice. One compound was able to significantly restore transcription of several autophagy genes and protected against amyloid-like aggregation in a C. elegans AD model. Together, these findings provide proof-of-principle evidence for pharmacological remediation of lysosomal autophagy by ApoE4 via ApoE4-targeted lead molecules that represent a novel tack on neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Akshatha Ganne
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Ramani Atluri
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Guy Caldwell
- University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Robert J Shmookler Reis
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - W Sue T Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|
11
|
Granic A, Suetterlin K, Shavlakadze T, Grounds M, Sayer A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin Sci (Lond) 2023; 137:1721-1751. [PMID: 37986616 PMCID: PMC10665130 DOI: 10.1042/cs20230319] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ageing is a complex biological process associated with increased morbidity and mortality. Nine classic, interdependent hallmarks of ageing have been proposed involving genetic and biochemical pathways that collectively influence ageing trajectories and susceptibility to pathology in humans. Ageing skeletal muscle undergoes profound morphological and physiological changes associated with loss of strength, mass, and function, a condition known as sarcopenia. The aetiology of sarcopenia is complex and whilst research in this area is growing rapidly, there is a relative paucity of human studies, particularly in older women. Here, we evaluate how the nine classic hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication contribute to skeletal muscle ageing and the pathophysiology of sarcopenia. We also highlight five novel hallmarks of particular significance to skeletal muscle ageing: inflammation, neural dysfunction, extracellular matrix dysfunction, reduced vascular perfusion, and ionic dyshomeostasis, and discuss how the classic and novel hallmarks are interconnected. Their clinical relevance and translational potential are also considered.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| | - Karen Suetterlin
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, U.K
| | - Tea Shavlakadze
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, NY, U.S.A
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| |
Collapse
|
12
|
Varland S, Silva RD, Kjosås I, Faustino A, Bogaert A, Billmann M, Boukhatmi H, Kellen B, Costanzo M, Drazic A, Osberg C, Chan K, Zhang X, Tong AHY, Andreazza S, Lee JJ, Nedyalkova L, Ušaj M, Whitworth AJ, Andrews BJ, Moffat J, Myers CL, Gevaert K, Boone C, Martinho RG, Arnesen T. N-terminal acetylation shields proteins from degradation and promotes age-dependent motility and longevity. Nat Commun 2023; 14:6774. [PMID: 37891180 PMCID: PMC10611716 DOI: 10.1038/s41467-023-42342-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Rui Duarte Silva
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal.
| | - Ine Kjosås
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Alexandra Faustino
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Annelies Bogaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, D-53127, Bonn, Germany
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1, CNRS, UMR6290, 35065, Rennes, France
| | - Barbara Kellen
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Michael Costanzo
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Camilla Osberg
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway
| | - Katherine Chan
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Xiang Zhang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Amy Hin Yan Tong
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Simonetta Andreazza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Juliette J Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lyudmila Nedyalkova
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Matej Ušaj
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Jason Moffat
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 1×8, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Charles Boone
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
- RIKEN Centre for Sustainable Resource Science, Wako, Saitama, 351-0106, Japan
| | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139, Faro, Portugal.
- Departmento de Ciências Médicas, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
- iBiMED - Institute of Biomedicine, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5021, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5006, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
13
|
Jung R, Lechler MC, Fernandez-Villegas A, Chung CW, Jones HC, Choi YH, Thompson MA, Rödelsperger C, Röseler W, Kaminski Schierle GS, Sommer RJ, David DC. A safety mechanism enables tissue-specific resistance to protein aggregation during aging in C. elegans. PLoS Biol 2023; 21:e3002284. [PMID: 37708127 PMCID: PMC10501630 DOI: 10.1371/journal.pbio.3002284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
During aging, proteostasis capacity declines and distinct proteins become unstable and can accumulate as protein aggregates inside and outside of cells. Both in disease and during aging, proteins selectively aggregate in certain tissues and not others. Yet, tissue-specific regulation of cytoplasmic protein aggregation remains poorly understood. Surprisingly, we found that the inhibition of 3 core protein quality control systems, namely chaperones, the proteasome, and macroautophagy, leads to lower levels of age-dependent protein aggregation in Caenorhabditis elegans pharyngeal muscles, but higher levels in body-wall muscles. We describe a novel safety mechanism that selectively targets newly synthesized proteins to suppress their aggregation and associated proteotoxicity. The safety mechanism relies on macroautophagy-independent lysosomal degradation and involves several previously uncharacterized components of the intracellular pathogen response (IPR). We propose that this protective mechanism engages an anti-aggregation machinery targeting aggregating proteins for lysosomal degradation.
Collapse
Affiliation(s)
- Raimund Jung
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Marie C. Lechler
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - Ana Fernandez-Villegas
- Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Chyi Wei Chung
- Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Harry C. Jones
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
| | - Yoon Hee Choi
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
| | | | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | - Waltraud Röseler
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | | | - Ralf J. Sommer
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Tübingen, Germany
| | - Della C. David
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- The Babraham Institute, Signalling Program, Cambridge, United Kingdom
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Sahinyan K, Lazure F, Blackburn DM, Soleimani VD. Decline of regenerative potential of old muscle stem cells: contribution to muscle aging. FEBS J 2023; 290:1267-1289. [PMID: 35029021 DOI: 10.1111/febs.16352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023]
Abstract
Muscle stem cells (MuSCs) are required for life-long muscle regeneration. In general, aging has been linked to a decline in the numbers and the regenerative potential of MuSCs. Muscle regeneration depends on the proper functioning of MuSCs, which is itself dependent on intricate interactions with its niche components. Aging is associated with both cell-intrinsic and niche-mediated changes, which can be the result of transcriptional, posttranscriptional, or posttranslational alterations in MuSCs or in the components of their niche. The interplay between cell intrinsic alterations in MuSCs and changes in the stem cell niche environment during aging and its impact on the number and the function of MuSCs is an important emerging area of research. In this review, we discuss whether the decline in the regenerative potential of MuSCs with age is the cause or the consequence of aging skeletal muscle. Understanding the effect of aging on MuSCs and the individual components of their niche is critical to develop effective therapeutic approaches to diminish or reverse the age-related defects in muscle regeneration.
Collapse
Affiliation(s)
- Korin Sahinyan
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
15
|
Physiological Consequences of Targeting 14-3-3 and Its Interacting Partners in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232415457. [PMID: 36555098 PMCID: PMC9779020 DOI: 10.3390/ijms232415457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The mammalian 14-3-3 family comprises seven intrinsically unstructured, evolutionarily conserved proteins that bind >200 protein targets, thereby modulating cell-signaling pathways. The presence of 14-3-3 proteins in cerebrospinal fluid provides a sensitive and specific biomarker of neuronal damage associated with Alzheimer’s disease (AD), Creutzfeldt−Jakob disease (CJD), spongiform encephalitis, brain cancers, and stroke. We observed significant enrichment of 14-3-3 paralogs G, S, and Z in human brain aggregates diagnostic of AD. We used intra-aggregate crosslinking to identify 14-3-3 interaction partners, all of which were significantly enriched in AD brain aggregates relative to controls. We screened FDA-approved drugs in silico for structures that could target the 14-3-3G/hexokinase interface, an interaction specific to aggregates and AD. C. elegans possesses only two 14-3-3 orthologs, which bind diverse proteins including DAF-16 (a FOXO transcription factor) and SIR-2.1 (a sensor of nutrients and stress), influencing lifespan. Top drug candidates were tested in C. elegans models of neurodegeneration-associated aggregation and in a human neuroblastoma cell-culture model of AD-like amyloidosis. Several drugs opposed aggregation in all models assessed and rescued behavioral deficits in C. elegans AD-like neuropathy models, suggesting that 14-3-3 proteins are instrumental in aggregate accrual and supporting the advancement of drugs targeting 14-3-3 protein complexes with their partners.
Collapse
|
16
|
An evaluation of aging measures: from biomarkers to clocks. Biogerontology 2022; 24:303-328. [PMID: 36418661 DOI: 10.1007/s10522-022-09997-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Abstract
With the increasing number of aged population and growing burden of healthy aging demands, a rational standard for evaluation aging is in urgent need. The advancement of medical testing technology and the prospering of artificial intelligence make it possible to evaluate the biological status of aging from a more comprehensive view. In this review, we introduced common aging biomarkers and concluded several famous aging clocks. Aging biomarkers reflect changes in the organism at a molecular or cellular level over time while aging clocks tend to be more of a generalization of the overall state of the organism. We expect to construct a framework for aging evaluation measurement from both micro and macro perspectives. Especially, population-specific aging clocks and multi-omics aging clocks may better fit the demands to evaluate aging in a comprehensive and multidimensional manner and make a detailed classification to represent different aging rates at tissue/organ levels. This framework will promisingly provide a crucial basis for disease diagnosis and intervention assessment in geroscience.
Collapse
|
17
|
Hughes DC, Baehr LM, Waddell DS, Sharples AP, Bodine SC. Ubiquitin Ligases in Longevity and Aging Skeletal Muscle. Int J Mol Sci 2022; 23:7602. [PMID: 35886949 PMCID: PMC9315556 DOI: 10.3390/ijms23147602] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
The development and prevalence of diseases associated with aging presents a global health burden on society. One hallmark of aging is the loss of proteostasis which is caused in part by alterations to the ubiquitin-proteasome system (UPS) and lysosome-autophagy system leading to impaired function and maintenance of mass in tissues such as skeletal muscle. In the instance of skeletal muscle, the impairment of function occurs early in the aging process and is dependent on proteostatic mechanisms. The UPS plays a pivotal role in degradation of misfolded and aggregated proteins. For the purpose of this review, we will discuss the role of the UPS system in the context of age-related loss of muscle mass and function. We highlight the significant role that E3 ubiquitin ligases play in the turnover of key components (e.g., mitochondria and neuromuscular junction) essential to skeletal muscle function and the influence of aging. In addition, we will briefly discuss the contribution of the UPS system to lifespan. By understanding the UPS system as part of the proteostasis network in age-related diseases and disorders such as sarcopenia, new discoveries can be made and new interventions can be developed which will preserve muscle function and maintain quality of life with advancing age.
Collapse
Affiliation(s)
- David C. Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - Leslie M. Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| | - David S. Waddell
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA;
| | - Adam P. Sharples
- Institute for Physical Performance, Norwegian School of Sport Sciences (NiH), 0863 Oslo, Norway;
| | - Sue C. Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (L.M.B.); (S.C.B.)
| |
Collapse
|
18
|
Ganne A, Balasubramaniam M, Griffin WST, Shmookler Reis RJ, Ayyadevara S. Glial Fibrillary Acidic Protein: A Biomarker and Drug Target for Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14071354. [PMID: 35890250 PMCID: PMC9322874 DOI: 10.3390/pharmaceutics14071354] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament structural protein involved in cytoskeleton assembly and integrity, expressed in high abundance in activated glial cells. GFAP is neuroprotective, as knockout mice are hypersensitive to traumatic brain injury. GFAP in cerebrospinal fluid is a biomarker of Alzheimer’s disease (AD), dementia with Lewy bodies, and frontotemporal dementia (FTD). Here, we present novel evidence that GFAP is markedly overexpressed and differentially phosphorylated in AD hippocampus, especially in AD with the apolipoprotein E [ε4, ε4] genotype, relative to age-matched controls (AMCs). Kinases that phosphorylate GFAP are upregulated in AD relative to AMC. A knockdown of these kinases in SH-SY5Y-APPSw human neuroblastoma cells reduced amyloid accrual and lowered protein aggregation and associated behavioral traits in C. elegans models of polyglutamine aggregation (as observed in Huntington’s disease) and of Alzheimer’s-like amyloid formation. In silico screening of the ChemBridge structural library identified a small molecule, MSR1, with stable and specific binding to GFAP. Both MSR1 exposure and GF AP-specific RNAi knockdown reduce aggregation with remarkably high concordance of aggregate proteins depleted. These data imply that GFAP and its phosphorylation play key roles in neuropathic aggregate accrual and provide valuable new biomarkers, as well as novel therapeutic targets to alleviate, delay, or prevent AD.
Collapse
Affiliation(s)
- Akshatha Ganne
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - W. Sue T. Griffin
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Robert J. Shmookler Reis
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (R.J.S.R.); (S.A.); Tel.: +1-501-526-5820 (R.J.S.R.); +1-501-526-7282 (S.A.)
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (R.J.S.R.); (S.A.); Tel.: +1-501-526-5820 (R.J.S.R.); +1-501-526-7282 (S.A.)
| |
Collapse
|
19
|
Nunes EA, Stokes T, McKendry J, Currier BS, Phillips SM. Disuse-induced skeletal muscle atrophy in disease and non-disease states in humans: mechanisms, prevention, and recovery strategies. Am J Physiol Cell Physiol 2022; 322:C1068-C1084. [PMID: 35476500 DOI: 10.1152/ajpcell.00425.2021] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decreased skeletal muscle contractile activity (disuse) or unloading leads to muscle mass loss, also known as muscle atrophy. The balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB) is the primary determinant of skeletal muscle mass. A reduced mechanical load on skeletal muscle is one of the main external factors leading to muscle atrophy. However, endocrine and inflammatory factors can act synergistically in catabolic states, amplifying the atrophy process and accelerating its progression. Additionally, older individuals display aging-induced anabolic resistance, which can predispose this population to more pronounced effects when exposed to periods of reduced physical activity or mechanical unloading. Different cellular mechanisms contribute to the regulation of muscle protein balance during skeletal muscle atrophy. This review summarizes the effects of muscle disuse on muscle protein balance and the molecular mechanisms involved in muscle atrophy in the absence or presence of disease. Finally, a discussion of the current literature describing efficient strategies to prevent or improve the recovery from muscle atrophy is also presented.
Collapse
Affiliation(s)
- Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Brad S Currier
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
20
|
Hughes S, van Dop M, Kolsters N, van de Klashorst D, Pogosova A, Rijs AM. Using a Caenorhabditis elegans Parkinson's Disease Model to Assess Disease Progression and Therapy Efficiency. Pharmaceuticals (Basel) 2022; 15:512. [PMID: 35631338 PMCID: PMC9143865 DOI: 10.3390/ph15050512] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Despite Parkinson's Disease (PD) being the second most common neurodegenerative disease, treatment options are limited. Consequently, there is an urgent need to identify and screen new therapeutic compounds that slow or reverse the pathology of PD. Unfortunately, few new therapeutics are being produced, partly due to the low throughput and/or poor predictability of the currently used model organisms and in vivo screening methods. Our objective was to develop a simple and affordable platform for drug screening utilizing the nematode Caenorhabditis elegans. The effect of Levodopa, the "Gold standard" of PD treatment, was explored in nematodes expressing the disease-causing α-synuclein protein. We focused on two key hallmarks of PD: plaque formation and mobility. Exposure to Levodopa ameliorated the mobility defect in C. elegans, similar to people living with PD who take the drug. Further, long-term Levodopa exposure was not detrimental to lifespan. This C. elegans-based method was used to screen a selection of small-molecule drugs for an impact on α-synuclein aggregation and mobility, identifying several promising compounds worthy of further investigation, most notably Ambroxol. The simple methodology means it can be adopted in many labs to pre-screen candidate compounds for a positive impact on disease progression.
Collapse
Affiliation(s)
- Samantha Hughes
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
- A-LIFE Amsterdam Institute for Life and Environment, Section Environmental Health and Toxicology, Vrije Univeristeit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Maritza van Dop
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - Nikki Kolsters
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - David van de Klashorst
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - Anastasia Pogosova
- HAN BioCentre, HAN University of Applied Sciences, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands; (M.v.D.); (N.K.); (D.v.d.K.); (A.P.)
| | - Anouk M. Rijs
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Univeristeit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
21
|
Modeling Alzheimer's Disease in Caenorhabditis elegans. Biomedicines 2022; 10:biomedicines10020288. [PMID: 35203497 PMCID: PMC8869312 DOI: 10.3390/biomedicines10020288] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of dementia. After decades of research, we know the importance of the accumulation of protein aggregates such as β-amyloid peptide and phosphorylated tau. We also know that mutations in certain proteins generate early-onset Alzheimer’s disease (EOAD), and many other genes modulate the disease in its sporadic form. However, the precise molecular mechanisms underlying AD pathology are still unclear. Because of ethical limitations, we need to use animal models to investigate these processes. The nematode Caenorhabditis elegans has received considerable attention in the last 25 years, since the first AD models overexpressing Aβ peptide were described. We review here the main results obtained using this model to study AD. We include works studying the basic molecular mechanisms of the disease, as well as those searching for new therapeutic targets. Although this model also has important limitations, the ability of this nematode to generate knock-out or overexpression models of any gene, single or combined, and to carry out toxicity, recovery or survival studies in short timeframes with many individuals and at low cost is difficult to overcome. We can predict that its use as a model for various diseases will certainly continue to increase.
Collapse
|
22
|
Liu D, Fan YB, Tao XH, Pan WL, Wu YX, Wang XH, He YQ, Xiao WF, Li YS. Mitochondrial Quality Control in Sarcopenia: Updated Overview of Mechanisms and Interventions. Aging Dis 2021; 12:2016-2030. [PMID: 34881083 PMCID: PMC8612607 DOI: 10.14336/ad.2021.0427] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
Sarcopenia is a common geriatric disorder characterized by decreased muscle strength, low muscle mass and poor physical performance. This aging-related skeletal muscle deterioration leads to adverse outcomes and severely impairs the quality of life of patients. The accumulation of dysfunctional mitochondria with aging is an important factor in the occurrence and progression of sarcopenia. Mitochondrial quality control (MQC) fundamentally ensures the normal mitochondrial functions and is comprised of four main parts: proteostasis, biogenesis, dynamics and autophagy. Therefore, any pathophysiologic factors compromising the quality control of homeostasis in the skeletal muscle may lead to sarcopenia. However, the specific theoretical aspects of these processes have not been fully elucidated. Current therapeutic interventions using nutritional and pharmaceutical treatments show a modest therapeutic efficacy; however, only physical exercise is recommended as the first-line therapy for sarcopenia, which can ameliorate skeletal muscle deficiency by maintaining the homeostatic MQC. In this review, we summarized the known mechanisms that contribute to the pathogenesis of sarcopenia by impairing normal mitochondrial functions and described potential interventions that mitigate sarcopenia through improving MQC.
Collapse
Affiliation(s)
- Di Liu
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yi-Bin Fan
- 2Department of Dermatology, Zhejiang provincial people's hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao-Hua Tao
- 2Department of Dermatology, Zhejiang provincial people's hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Wei-Li Pan
- 2Department of Dermatology, Zhejiang provincial people's hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Xiang Wu
- 3School of Kinesiology, Jianghan University, Wuhan 430056, China
| | - Xiu-Hua Wang
- 4Xiang Ya Nursing School, The Central South University, Changsha 410013, China
| | - Yu-Qiong He
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wen-Feng Xiao
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,5National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yu-Sheng Li
- 1Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,5National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
23
|
Hunt LC, Graca FA, Pagala V, Wang YD, Li Y, Yuan ZF, Fan Y, Labelle M, Peng J, Demontis F. Integrated genomic and proteomic analyses identify stimulus-dependent molecular changes associated with distinct modes of skeletal muscle atrophy. Cell Rep 2021; 37:109971. [PMID: 34758314 PMCID: PMC8852763 DOI: 10.1016/j.celrep.2021.109971] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy is a debilitating condition that occurs with aging and disease, but the underlying mechanisms are incompletely understood. Previous work determined that common transcriptional changes occur in muscle during atrophy induced by different stimuli. However, whether this holds true at the proteome level remains largely unexplored. Here, we find that, contrary to this earlier model, distinct atrophic stimuli (corticosteroids, cancer cachexia, and aging) induce largely different mRNA and protein changes during muscle atrophy in mice. Moreover, there is widespread transcriptome-proteome disconnect. Consequently, atrophy markers (atrogenes) identified in earlier microarray-based studies do not emerge from proteomics as generally induced by atrophy. Rather, we identify proteins that are distinctly modulated by different types of atrophy (herein defined as “atroproteins”) such as the myokine CCN1/Cyr61, which regulates myofiber type switching during sarcopenia. Altogether, these integrated analyses indicate that different catabolic stimuli induce muscle atrophy via largely distinct mechanisms. Skeletal muscle wasting is caused by many catabolic stimuli, which were thought to act via shared mechanisms. Hunt et al. now show that distinct catabolic stimuli induce muscle wasting via largely different molecular changes. The authors identify atrophy-associated proteins (“atroproteins”) that may represent diagnostic biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zuo-Fei Yuan
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
24
|
Shmookler Reis RJ, Atluri R, Balasubramaniam M, Johnson J, Ganne A, Ayyadevara S. "Protein aggregates" contain RNA and DNA, entrapped by misfolded proteins but largely rescued by slowing translational elongation. Aging Cell 2021; 20:e13326. [PMID: 33788386 PMCID: PMC8135009 DOI: 10.1111/acel.13326] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023] Open
Abstract
All neurodegenerative diseases feature aggregates, which usually contain disease-specific diagnostic proteins; non-protein constituents, however, have rarely been explored. Aggregates from SY5Y-APPSw neuroblastoma, a cell model of familial Alzheimer's disease, were crosslinked and sequences of linked peptides identified. We constructed a normalized "contactome" comprising 11 subnetworks, centered on 24 high-connectivity hubs. Remarkably, all 24 are nucleic acid-binding proteins. This led us to isolate and sequence RNA and DNA from Alzheimer's and control aggregates. RNA fragments were mapped to the human genome by RNA-seq and DNA by ChIP-seq. Nearly all aggregate RNA sequences mapped to specific genes, whereas DNA fragments were predominantly intergenic. These nucleic acid mappings are all significantly nonrandom, making an artifactual origin extremely unlikely. RNA (mostly cytoplasmic) exceeded DNA (chiefly nuclear) by twofold to fivefold. RNA fragments recovered from AD tissue were ~1.5-to 2.5-fold more abundant than those recovered from control tissue, similar to the increase in protein. Aggregate abundances of specific RNA sequences were strikingly differential between cultured SY5Y-APPSw glioblastoma cells expressing APOE3 vs. APOE4, consistent with APOE4 competition for E-box/CLEAR motifs. We identified many G-quadruplex and viral sequences within RNA and DNA of aggregates, suggesting that sequestration of viral genomes may have driven the evolution of disordered nucleic acid-binding proteins. After RNA-interference knockdown of the translational-procession factor EEF2 to suppress translation in SY5Y-APPSw cells, the RNA content of aggregates declined by >90%, while reducing protein content by only 30% and altering DNA content by ≤10%. This implies that cotranslational misfolding of nascent proteins may ensnare polysomes into aggregates, accounting for most of their RNA content.
Collapse
Affiliation(s)
- Robert J. Shmookler Reis
- Central Arkansas Veterans Healthcare System Little Rock AR USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
- BioInformatics Program University of Arkansas for Medical Sciences and University of Arkansas at Little Rock Little Rock AR USA
| | - Ramani Atluri
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | | | - Jay Johnson
- BioInformatics Program University of Arkansas for Medical Sciences and University of Arkansas at Little Rock Little Rock AR USA
| | - Akshatha Ganne
- BioInformatics Program University of Arkansas for Medical Sciences and University of Arkansas at Little Rock Little Rock AR USA
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System Little Rock AR USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
| |
Collapse
|
25
|
Romani M, Sorrentino V, Oh CM, Li H, de Lima TI, Zhang H, Shong M, Auwerx J. NAD + boosting reduces age-associated amyloidosis and restores mitochondrial homeostasis in muscle. Cell Rep 2021; 34:108660. [PMID: 33472069 PMCID: PMC7816122 DOI: 10.1016/j.celrep.2020.108660] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Aging is characterized by loss of proteostasis and mitochondrial homeostasis. Here, we provide bioinformatic evidence of dysregulation of mitochondrial and proteostasis pathways in muscle aging and diseases. Moreover, we show accumulation of amyloid-like deposits and mitochondrial dysfunction during natural aging in the body wall muscle of C. elegans, in human primary myotubes, and in mouse skeletal muscle, partially phenocopying inclusion body myositis (IBM). Importantly, NAD+ homeostasis is critical to control age-associated muscle amyloidosis. Treatment of either aged N2 worms, a nematode model of amyloid-beta muscle proteotoxicity, human aged myotubes, or old mice with the NAD+ boosters nicotinamide riboside (NR) and olaparib (AZD) increases mitochondrial function and muscle homeostasis while attenuating amyloid accumulation. Hence, our data reveal that age-related amyloidosis is a contributing factor to mitochondrial dysfunction and that both are features of the aging muscle that can be ameliorated by NAD+ metabolism-enhancing approaches, warranting further clinical studies. Amyloidosis and mitochondrial dysfunction typify muscle aging and disease across species NAD+ homeostasis is required to maintain proteostasis in nematodes and mammalian cells Reducing age-associated amyloidosis improves healthspan and mitochondrial function Late-life NAD+ boosting reduces amyloidosis and mitochondrial dysfunction during aging
Collapse
Affiliation(s)
- Mario Romani
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vincenzo Sorrentino
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Chang-Myung Oh
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Department of Endocrinology and Metabolism, CHA Bundang Medical Center, School of Medicine CHA University, Seongnam 13497, South Korea; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Hao Li
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Tanes Imamura de Lima
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hongbo Zhang
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, South Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
26
|
Xie X, Chamoli M, Bhaumik D, Sivapatham R, Angeli S, Andersen JK, Lithgow GJ, Schilling B. Quantification of Insoluble Protein Aggregation in Caenorhabditis elegans during Aging with a Novel Data-Independent Acquisition Workflow. J Vis Exp 2020. [PMID: 32831297 DOI: 10.3791/61366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We and others have shown that the aging process results in a proteome-wide accumulation of insoluble proteins. Knocking down genes encoding the insoluble proteins over 40% of the time results in an extension of the lifespan in C. elegans, suggesting that many of these proteins are key determinants of the aging process. Isolation and quantitative identification of these insoluble proteins are crucial to understand key biological processes that occur during aging. Here, we present a modified and improved protocol that details how to extract and isolate the SDS-insoluble proteins (insolublome) from C. elegans more efficiently to streamline mass spectrometric workflows via a novel label-free quantitative proteomics analysis. This improved protocol utilizes a highly efficient sonicator for worm lysis that greatly increases efficiency for protein extraction and allows us to use significantly less starting material (approximately 3,000 worms) than in previous protocols (typically using at least 40,000 worms). Subsequent quantitative proteomic analysis of the insolublome was performed using data-dependent acquisition (DDA) for protein discovery and identification and data-independent acquisition (DIA) for comprehensive and more accurate protein quantification. Bioinformatic analysis of quantified proteins provides potential candidates that can be easily followed up with other molecular methods in C. elegans. With this workflow, we routinely identify more than 1000 proteins and quantify more than 500 proteins. This new protocol enables efficient compound screening with C. elegans. Here, we validated and applied this improved protocol to wild-type C. elegans N2-Bristol strain and confirmed that aged day-10 N2 worms showed greater accumulation of the insolublome than day-2 young worms.
Collapse
|
27
|
Age-Related Maintenance of the Autophagy-Lysosomal System Is Dependent on Skeletal Muscle Type. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4908162. [PMID: 32774673 PMCID: PMC7396090 DOI: 10.1155/2020/4908162] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The skeletal muscle plays an important role in maintaining whole-body mechanics, metabolic homeostasis, and interorgan crosstalk. However, during aging, functional and structural changes such as fiber integrity loss and atrophy can occur across different species. A commonly observed hallmark of aged skeletal muscle is the accumulation of oxidatively modified proteins and protein aggregates which point to an imbalance in proteostasis systems such as degradation machineries. Recently, we showed that the ubiquitin-proteasomal system was impaired. Specifically, the proteasomal activity, which was declining in aged M. soleus (SOL) and M. extensor digitorum longus (EDL). Therefore, in order to understand whether another proteolytic system would compensate the decline in proteasomal activity, we aimed to investigate age-related changes in the autophagy-lysosomal system (ALS) in SOL, mostly consisting of slow-twitch fibers, and EDL, mainly composed of fast-twitch fibers, from young (4 months) and old (25 months) C57BL/6JRj mice. Here, we focused on changes in the content of modified proteins and the ALS. Our results show that aged SOL and EDL display high levels of protein modifications, particularly in old SOL. While autophagy machinery appears to be functional, lysosomal activity declines gradually in aged SOL. In contrast, in old EDL, the ALS seems to be affected, demonstrated by an increased level of key autophagy-related proteins, which are known to accumulate when their delivery or degradation is impaired. In fact, lysosomal activity was significantly decreased in old EDL. Results presented herein suggest that the ALS can compensate the high levels of modified proteins in the more oxidative muscle, SOL, while EDL seems to be more prone to ALS age-related alterations.
Collapse
|
28
|
Kakraba S, Ayyadevara S, Penthala NR, Balasubramaniam M, Ganne A, Liu L, Alla R, Bommagani SB, Barger SW, Griffin WST, Crooks PA, Shmookler Reis RJ. A Novel Microtubule-Binding Drug Attenuates and Reverses Protein Aggregation in Animal Models of Alzheimer's Disease. Front Mol Neurosci 2020; 12:310. [PMID: 31920540 PMCID: PMC6920216 DOI: 10.3389/fnmol.2019.00310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/29/2019] [Indexed: 11/14/2022] Open
Abstract
Age-progressive neurodegenerative pathologies, including Alzheimer’s disease (AD), are distinguished and diagnosed by disease-specific components of intra- or extra-cellular aggregates. Increasing evidence suggests that neuroinflammation promotes protein aggregation, and is involved in the etiology of neurological diseases. We synthesized and tested analogs of the naturally occurring tubulin-binding compound, combretastatin A-4. One such analog, PNR502, markedly reduced the quantity of Alzheimer-associated amyloid aggregates in the BRI-Aβ1–42 mouse model of AD, while blunting the ability of the pro-inflammatory cytokine IL-1β to raise levels of amyloid plaque and its protein precursors in a neuronal cell-culture model. In transgenic Caenorhabditis elegans (C. elegans) strains that express human Aβ1–42 in muscle or neurons, PNR502 rescued Aβ-induced disruption of motility (3.8-fold, P < 0.0001) or chemotaxis (1.8-fold, P < 0.05), respectively. Moreover, in C. elegans with neuronal expression of Aβ1–42, a single day of PNR502 exposure reverses the chemotaxis deficit by 54% (P < 0.01), actually exceeding the protection from longer exposure. Moreover, continuous PNR502 treatment extends nematode lifespan 23% (P ≤ 0.001). Given that PNR502 can slow, prevent, or reverse Alzheimer-like protein aggregation in human-cell-culture and animal models, and that its principal predicted and observed binding targets are proteins previously implicated in Alzheimer’s, we propose that PNR502 has therapeutic potential to inhibit cerebral Aβ1–42 aggregation and prevent or reverse neurodegeneration.
Collapse
Affiliation(s)
- Samuel Kakraba
- BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Akshatha Ganne
- BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States
| | - Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ramani Alla
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shoban Babu Bommagani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Steven W Barger
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - W Sue T Griffin
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Robert J Shmookler Reis
- BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, United States.,Central Arkansas Veterans Healthcare Service, Little Rock, AR, United States.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
29
|
Gabrawy MM, Campbell S, Carbone MA, Morozova TV, Arya GH, Turlapati LB, Walston JD, Starz-Gaiano M, Everett L, Mackay TFC, Leips J, Abadir PM. Lisinopril Preserves Physical Resilience and Extends Life Span in a Genotype-Specific Manner in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2019; 74:1844-1852. [PMID: 31197356 PMCID: PMC7329186 DOI: 10.1093/gerona/glz152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Indexed: 11/14/2022] Open
Abstract
Physical resiliency declines with age and comorbid conditions. In humans, angiotensin-converting enzyme (ACE) has been associated with attenuation of the decline in physical performance with age. ACE-inhibitor compounds, commonly prescribed for hypertension, often have beneficial effects on physical performance however the generality of these effects are unclear. Here, we tested the effects of the ACE-inhibitor Lisinopril on life span, and age-specific speed, endurance, and strength using three genotypes of the Drosophila melanogaster Genetic Reference Panel. We show that age-related decline in physical performance and survivorship varies with genetic background. Lisinopril treatment increased mean life span in all Drosophila Genetic Reference Panel lines, but its effects on life span, speed, endurance, and strength depended on genotype. We show that genotypes with increased physical performance on Lisinopril treatment experienced reduced age-related protein aggregation in muscle. Knockdown of skeletal muscle-specific Ance, the Drosophila ortholog of ACE, abolished the effects of Lisinopril on life span, implying a role for skeletal muscle Ance in survivorship. Using transcriptome profiling, we identified genes involved in stress response that showed expression changes associated with genotype and age-dependent responsiveness to Lisinopril. Our results demonstrate that Ance is involved in physical decline and demonstrate genetic variation in phenotypic responses to an ACE inhibitor.
Collapse
Affiliation(s)
- Mariann M Gabrawy
- Department of Biological Sciences, University of Maryland, Baltimore
- Biology of Healthy Aging Program, Division of Geriatric Medicine and Gerontology, School of Medicine, Johns Hopkins University, Baltimore
| | - Sarah Campbell
- Department of Biological Sciences, University of Maryland, Baltimore
| | - Mary Anna Carbone
- Program in Genetics, Department of Biological Sciences, North Carolina State University
| | - Tatiana V Morozova
- Program in Genetics, Department of Biological Sciences, North Carolina State University
| | - Gunjan H Arya
- Program in Genetics, Department of Biological Sciences, North Carolina State University
| | - Lavanya B Turlapati
- Program in Genetics, Department of Biological Sciences, North Carolina State University
| | - Jeremy D Walston
- Biology of Healthy Aging Program, Division of Geriatric Medicine and Gerontology, School of Medicine, Johns Hopkins University, Baltimore
| | | | - Logan Everett
- Program in Genetics, Department of Biological Sciences, North Carolina State University
| | - Trudy F C Mackay
- Program in Genetics, Department of Biological Sciences, North Carolina State University
| | - Jeff Leips
- Department of Biological Sciences, University of Maryland, Baltimore
| | - Peter M Abadir
- Biology of Healthy Aging Program, Division of Geriatric Medicine and Gerontology, School of Medicine, Johns Hopkins University, Baltimore
| |
Collapse
|
30
|
Fuqua JD, Mere CP, Kronemberger A, Blomme J, Bae D, Turner KD, Harris MP, Scudese E, Edwards M, Ebert SM, de Sousa LGO, Bodine SC, Yang L, Adams CM, Lira VA. ULK2 is essential for degradation of ubiquitinated protein aggregates and homeostasis in skeletal muscle. FASEB J 2019; 33:11735-11745. [PMID: 31361156 PMCID: PMC6902739 DOI: 10.1096/fj.201900766r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Basal protein turnover, which largely relies on the degradation of ubiquitinated substrates, is instrumental for maintenance of muscle mass and function. However, the regulation of ubiquitinated protein degradation in healthy, nonatrophying skeletal muscle is still evolving, and potential tissue-specific modulators remain unknown. Using an unbiased expression analysis of 34 putative autophagy genes across mouse tissues, we identified unc-51 like autophagy activating kinase (Ulk)2, a homolog of the yeast autophagy related protein 1, as particularly enriched in skeletal muscle. Subsequent experiments revealed accumulations of insoluble ubiquitinated protein aggregates associated with the adaptors sequestosome 1 (SQSTM1, also known as p62) and next to breast cancer type 1 susceptibility protein gene 1 protein (NBR1) in adult muscles with ULK2 deficiency. ULK2 deficiency also led to impaired muscle force and caused myofiber atrophy and degeneration. These features were not observed in muscles with deficiency of the ULK2 paralog, ULK1. Furthermore, short-term ULK2 deficiency did not impair autophagy initiation, autophagosome to lysosome fusion, or protease activities of the lysosome and proteasome. Altogether, our results indicate that skeletal muscle ULK2 has a unique role in basal selective protein degradation by stimulating the recognition and proteolytic sequestration of insoluble ubiquitinated protein aggregates associated with p62 and NBR1. These findings have potential implications for conditions of poor protein homeostasis in muscles as observed in several myopathies and aging.-Fuqua, J. D., Mere, C. P., Kronemberger, A., Blomme, J., Bae, D., Turner, K. D., Harris, M. P., Scudese, E., Edwards, M., Ebert, S. M., de Sousa, L. G. O., Bodine, S. C., Yang, L., Adams, C. M., Lira, V. A. ULK2 is essential for degradation of ubiquitinated protein aggregates and homeostasis in skeletal muscle.
Collapse
Affiliation(s)
- Jordan D Fuqua
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Caleb P Mere
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Ana Kronemberger
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Jay Blomme
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Dam Bae
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Kristen D Turner
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Matthew P Harris
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Estevão Scudese
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA.,Nursing and Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mitchell Edwards
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Scott M Ebert
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, USA
| | - Luís G O de Sousa
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Sue C Bodine
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, Iowa, USA
| | - Ling Yang
- Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, Iowa, USA.,Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA.,Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa, USA
| | - Christopher M Adams
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, Iowa, USA.,Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa, USA.,Obesity Research and Education Initiative, The University of Iowa, Iowa City, Iowa, USA
| | - Vitor A Lira
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, Iowa, USA.,Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa, USA.,Obesity Research and Education Initiative, The University of Iowa, Iowa City, Iowa, USA.,François M. Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
31
|
Huang C, Wagner-Valladolid S, Stephens AD, Jung R, Poudel C, Sinnige T, Lechler MC, Schlörit N, Lu M, Laine RF, Michel CH, Vendruscolo M, Kaminski CF, Kaminski Schierle GS, David DC. Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans. eLife 2019; 8:e43059. [PMID: 31050339 PMCID: PMC6524967 DOI: 10.7554/elife.43059] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Reduced protein homeostasis leading to increased protein instability is a common molecular feature of aging, but it remains unclear whether this is a cause or consequence of the aging process. In neurodegenerative diseases and other amyloidoses, specific proteins self-assemble into amyloid fibrils and accumulate as pathological aggregates in different tissues. More recently, widespread protein aggregation has been described during normal aging. Until now, an extensive characterization of the nature of age-dependent protein aggregation has been lacking. Here, we show that age-dependent aggregates are rapidly formed by newly synthesized proteins and have an amyloid-like structure resembling that of protein aggregates observed in disease. We then demonstrate that age-dependent protein aggregation accelerates the functional decline of different tissues in C. elegans. Together, these findings imply that amyloid-like aggregates contribute to the aging process and therefore could be important targets for strategies designed to maintain physiological functions in the late stages of life.
Collapse
Affiliation(s)
- Chaolie Huang
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Sara Wagner-Valladolid
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Amberley D Stephens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Raimund Jung
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Chetan Poudel
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Tessa Sinnige
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Marie C Lechler
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Graduate Training Centre of NeuroscienceUniversity of TübingenTübingenGermany
| | - Nicole Schlörit
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
- Graduate Training Centre of NeuroscienceUniversity of TübingenTübingenGermany
| | - Meng Lu
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Romain F Laine
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Claire H Michel
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Clemens F Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Della C David
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| |
Collapse
|
32
|
Fernando R, Drescher C, Deubel S, Jung T, Ost M, Klaus S, Grune T, Castro JP. Low proteasomal activity in fast skeletal muscle fibers is not associated with increased age-related oxidative damage. Exp Gerontol 2019; 117:45-52. [DOI: 10.1016/j.exger.2018.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 01/07/2023]
|
33
|
Fernando R, Drescher C, Nowotny K, Grune T, Castro JP. Impaired proteostasis during skeletal muscle aging. Free Radic Biol Med 2019; 132:58-66. [PMID: 30194981 DOI: 10.1016/j.freeradbiomed.2018.08.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/03/2018] [Accepted: 08/30/2018] [Indexed: 01/03/2023]
Abstract
Aging is a complex phenomenon that has detrimental effects on tissue homeostasis. The skeletal muscle is one of the earliest tissues to be affected and to manifest age-related changes such as functional impairment and the loss of mass. Common to these alterations and to most of tissues during aging is the disruption of the proteostasis network by detrimental changes in the ubiquitin-proteasomal system (UPS) and the autophagy-lysosomal system (ALS). In fact, during aging the accumulation of protein aggregates, a process mainly driven by increased levels of oxidative stress, has been observed, clearly demonstrating UPS and ALS dysregulation. Since the UPS and ALS are the two most important pathways for the removal of misfolded and aggregated proteins and also of damaged organelles, we provide here an overview on the current knowledge regarding the connection between the loss of proteostasis and skeletal muscle functional impairment and also how redox regulation can play a role during aging. Therefore, this review serves for a better understanding of skeletal muscle aging in regard to the loss of proteostasis and how redox regulation can impact its function and maintenance.
Collapse
Affiliation(s)
- Raquel Fernando
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Cathleen Drescher
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Kerstin Nowotny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Faculty of Medicine, Department for Biomedicine, University of Porto, 4200-319, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
34
|
Coen PM, Musci RV, Hinkley JM, Miller BF. Mitochondria as a Target for Mitigating Sarcopenia. Front Physiol 2019; 9:1883. [PMID: 30687111 PMCID: PMC6335344 DOI: 10.3389/fphys.2018.01883] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is the loss of muscle mass, strength, and physical function that is characteristic of aging. The progression of sarcopenia is gradual but may be accelerated by periods of muscle loss during physical inactivity secondary to illness or injury. The loss of mobility and independence and increased comorbidities associated with sarcopenia represent a major healthcare challenge for older adults. Mitochondrial dysfunction and impaired proteostatic mechanisms are important contributors to the complex etiology of sarcopenia. As such, interventions that target improving mitochondrial function and proteostatic maintenance could mitigate or treat sarcopenia. Exercise is currently the only effective option to treat sarcopenia and does so, in part, by improving mitochondrial energetics and protein turnover. Exercise interventions also serve as a discovery tool to identify molecular targets for development of alternative therapies to treat sarcopenia. In summary, we review the evidence linking mitochondria and proteostatic maintenance to sarcopenia and discuss the therapeutic potential of interventions addressing these two factors to mitigate sarcopenia.
Collapse
Affiliation(s)
- Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States
| | - J Matthew Hinkley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
35
|
Matsunami K. Frailty and Caenorhabditis elegans as a Benchtop Animal Model for Screening Drugs Including Natural Herbs. Front Nutr 2018; 5:111. [PMID: 30534551 PMCID: PMC6275236 DOI: 10.3389/fnut.2018.00111] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/06/2018] [Indexed: 01/14/2023] Open
Abstract
Caenorhabditis elegans has been used in research for years to clarify the genetic cascades and molecular mechanisms of aging, longevity, and health span. Health span is closely related to frailty; however, frailty has a different concept and is evaluated using various parameters in humans, such as Fried's Frailty Criteria. The C. elegans model has several advantages when performing a chemical screen to identify drug candidates. Several mouse models of frailty were recently developed, including a homozygous IL-10 knockout. These mouse models are useful for understanding human frailty; however, they are not appropriate for primary drug screening because they require large spaces, expensive cost, and time consuming assessments. Therefore, a combination of these models may be a promising tool for discovering drugs and understanding the mechanisms of frailty. In addition, natural products, and herbs are attractive sources of novel drugs with pharmacological activity and low toxicity, in fact, over 60% of currently-available drugs are estimated to be related to natural compounds. In this review, the possibility of identifying natural agents (i.e., herb extracts and compounds) that could improve frailty are proposed, and the advantages and limitations of these models are also discussed.
Collapse
Affiliation(s)
- Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
36
|
Abstract
Given its pivotal role in fatty acid oxidation and energy metabolism, l-carnitine has been investigated as ergogenic aid for enhancing exercise capacity in the healthy athletic population. Early research indicates its beneficial effects on acute physical performance, such as increased maximum oxygen consumption and higher power output. Later studies point to the positive impact of dietary supplementation with l-carnitine on the recovery process after exercise. It is demonstrated that l-carnitine alleviates muscle injury and reduces markers of cellular damage and free radical formation accompanied by attenuation of muscle soreness. The supplementation-based increase in serum and muscle l-carnitine contents is suggested to enhance blood flow and oxygen supply to the muscle tissue via improved endothelial function thereby reducing hypoxia-induced cellular and biochemical disruptions. Studies in older adults further showed that l-carnitine intake can lead to increased muscle mass accompanied by a decrease in body weight and reduced physical and mental fatigue. Based on current animal studies, a role of l-carnitine in the prevention of age-associated muscle protein degradation and regulation of mitochondrial homeostasis is suggested.
Collapse
Affiliation(s)
- Roger Fielding
- Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Linda Riede
- analyze & realize GmbH, Waldseeweg 6, 13467 Berlin, Germany.
| | - James P Lugo
- Lonza Inc., 90 Boroline Road, Allendale, NJ 07401, USA.
| | | |
Collapse
|
37
|
Musci RV, Hamilton KL, Miller BF. Targeting mitochondrial function and proteostasis to mitigate dynapenia. Eur J Appl Physiol 2018; 118:1-9. [PMID: 28986697 PMCID: PMC5756099 DOI: 10.1007/s00421-017-3730-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 12/25/2022]
Abstract
Traditionally, interventions to treat skeletal muscle aging have largely targeted sarcopenia-the age-related loss of skeletal muscle mass. Dynapenia refers to the age-related loss in skeletal muscle function due to factors outside of muscle mass, which helps to inform treatment strategies for aging skeletal muscle. There is evidence that mechanisms to maintain protein homeostasis and proteostasis, deteriorate with age. One key mechanism to maintain proteostasis is protein turnover, which is an energetically costly process. When there is a mismatch between cellular energy demands and energy provision, inelastic processes related to metabolism are maintained, but there is competition for the remaining energy between the elastic processes of somatic maintenance and growth. With aging, mitochondrial dysfunction reduces ATP generation capacity, constraining the instantaneous supply of energy, thus compromising growth and somatic maintenance processes. Further, with age the need for somatic maintenance increases because of the accumulation of protein damage. In this review, we highlight the significant role mitochondria have in maintaining skeletal muscle proteostasis through increased energy provision, protein turnover, and substrate flux. In addition, we provide evidence that improving mitochondrial function could promote a cellular environment that is conducive to somatic maintenance, and consequently for mitigating dynapenia. Finally, we highlight interventions, such as aerobic exercise, that could be used to improve mitochondrial function and improve outcomes related to dynapenia.
Collapse
Affiliation(s)
- Robert V Musci
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| | - Karyn L Hamilton
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA
| | - Benjamin F Miller
- Translational Research on Aging and Chronic Disease Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523-1582, USA.
| |
Collapse
|