1
|
Hao R, Li H, Li X, Liu J, Ji X, Zhang H, Zhang Z, Yang P, Zhai Z. Transcriptomic profiling of lncRNAs and mRNAs in a venous thrombosis mouse model. iScience 2025; 28:111561. [PMID: 39949957 PMCID: PMC11821396 DOI: 10.1016/j.isci.2024.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 02/16/2025] Open
Abstract
This study explores the role of lncRNAs and mRNAs in venous thromboembolism (VTE) using an inferior vena cava (IVC) mouse model. RNA sequencing identified differentially expressed lncRNAs and mRNAs between model and control groups. Enrichment analyses revealed significant pathways, including HIF-1α signaling, glycolysis/gluconeogenesis, and platelet activation. A lncRNA-miRNA-mRNA network highlighted key regulatory interactions. Validation using qRT-PCR confirmed the RNA-seq findings. These results provide insights into the molecular mechanisms of VTE and suggest potential biomarkers and therapeutic targets for thrombosis.
Collapse
Affiliation(s)
- Risheng Hao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Capital Medical University, Beijing, China
| | - Haobo Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xincheng Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jixiang Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaofan Ji
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhu Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhenguo Zhai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Yang M, Ke Z, Wang D. Heterogeneous nuclear ribonucleoprotein K is a potential target for enhancing the chemosensitivity of nasopharyngeal carcinoma. Open Life Sci 2024; 19:20220975. [PMID: 39479349 PMCID: PMC11524390 DOI: 10.1515/biol-2022-0975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 11/02/2024] Open
Abstract
The resistance of tumor cells to chemotherapy drugs is a critical determinant in the recurrence and metastasis of nasopharyngeal carcinoma (NPC). Therefore, it is crucial to identify effective biotargets that can enhance the sensitivity of NPC cells to chemotherapy drugs. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) plays a central role in regulating chemotherapy resistance across various tumor types. However, its specific function in NPC cells remains unclear. This study reveals that hnRNPK is overexpressed in NPC tissues while weakly expressed in normal nasopharyngeal tissues. The expression level of hnRNPK is negatively associated with NPC patient survival. Importantly, hnRNPK is a key inducer of chemotherapy resistance in NPC, as evidenced by the significant increase in NPC cell sensitivity to cisplatin following hnRNPK knockdown. Mechanistically, hnRNPK induces chemotherapy resistance in NPC cells by suppressing the activation of the Akt/caspase 3 pathway. In NPC tumor-bearing mice, hnRNPK knockdown enhances the efficacy of cisplatin chemotherapy. Consequently, this work identifies a potential target for enhancing the sensitivity of NPC cells to chemotherapy.
Collapse
Affiliation(s)
- Ming Yang
- Department of Otorhinolaryngology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Zhaoyang Ke
- Department of Otorhinolaryngology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Daji Wang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
3
|
Zhang H, Feng Q, Ma Q, Li L, Xing Y. Serum lncRNA RAMP2-AS1 Served as a Biomarker of Deep Vein Thrombosis Occurrence and Development in Elderly. Indian J Hematol Blood Transfus 2024; 40:660-667. [PMID: 39469176 PMCID: PMC11512952 DOI: 10.1007/s12288-024-01782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 10/30/2024] Open
Abstract
The incidence of deep vein thrombosis (DVT) is increasing with aging, which needs a screening and monitoring biomarker. This study focused on the significance of aging- and angiogenesis-related lncRNA RAMP2-AS1 (RAMP2-AS1) aiming to identify a promising biomarker for the incidence of DVT. Serum samples were collected from 63 healthy individuals and 98 patients with DVT. The serum RAMP2-AS1 level was analyzed by PCR and its significance in DVT detection and development prediction was evaluated by ROC and multivariate Cox regression analysis. The regulatory effect of RAMP2-AS1 on endothelial progenitor cells (EPCs) was evaluated by CCK8 and transwell assays. RAMP2-AS1 was significantly downregulated in patients with DVT, which could discriminate patients with DVT from healthy individuals with relatively high sensitivity and specificity. The downregulation of RAMP2-AS1 could predict poor outcomes and was associated with activities of daily living (ADL), neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR), and monocyte to high-density lipoprotein cholesterol ratio (MHR) of patients with DVT. RAMP2-AS1 was identified as an independent prognostic factor of DVT by Cox regression analysis. In EPCs, overexpressing RAMP2-AS1 significantly suppressed cell proliferation, migration, and invasion. Downregulated serum RAMP2-AS1 could predict the incidence and progression of DVT. RAMP2-AS1 inhibited EPCs growth and motility, which provides a target for thrombolytic therapy. RAMP2-AS1 level could be included in the risk assessment model of DVT.
Collapse
Affiliation(s)
- Hailong Zhang
- Department of Vascular Surgery, Beidahuang Industry Group General Hospital, Harbin, 150088 China
| | - Qichen Feng
- Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191 China
| | - Qingfeng Ma
- Laboratory Department, The People’s Hospital of Feicheng, Taian, 271600 China
| | - Li Li
- Laboratory Department, The People’s Hospital of Feicheng, Taian, 271600 China
| | - Youzhong Xing
- Department of Blood Transfusion, Jinan Central Hospital, No.105 Jiefang Road, Jinan, 250013 China
| |
Collapse
|
4
|
Takada YK, Wu X, Wei D, Hwang S, Takada Y. FGF1 Suppresses Allosteric Activation of β3 Integrins by FGF2: A Potential Mechanism of Anti-Inflammatory and Anti-Thrombotic Action of FGF1. Biomolecules 2024; 14:888. [PMID: 39199276 PMCID: PMC11351609 DOI: 10.3390/biom14080888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Several inflammatory cytokines bind to the allosteric site (site 2) and allosterically activate integrins. Site 2 is also a binding site for 25-hydroxycholesterol, an inflammatory lipid mediator, and is involved in inflammatory signaling (e.g., TNF and IL-6 secretion) in addition to integrin activation. FGF2 is pro-inflammatory and pro-thrombotic, and FGF1, homologous to FGF2, has anti-inflammatory and anti-thrombotic actions, but the mechanism of these actions is unknown. We hypothesized that FGF2 and FGF1 bind to site 2 of integrins and regulate inflammatory signaling. Here, we describe that FGF2 is bound to site 2 and allosterically activated β3 integrins, suggesting that the pro-inflammatory action of FGF2 is mediated by binding to site 2. In contrast, FGF1 bound to site 2 but did not activate these integrins and instead suppressed integrin activation induced by FGF2, indicating that FGF1 acts as an antagonist of site 2 and that the anti-inflammatory action of FGF1 is mediated by blocking site 2. A non-mitogenic FGF1 mutant (R50E), which is defective in binding to site 1 of αvβ3, suppressed β3 integrin activation by FGF2 as effectively as WT FGF1.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Xuesong Wu
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - David Wei
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Samuel Hwang
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Yoshikazu Takada
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
- Department of Biochemistry and Molecular Medicine, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Sun LL, Liu Z, Ran F, Huang D, Zhang M, Li XQ, Li WD. Non-coding RNAs regulating endothelial progenitor cells for venous thrombosis: promising therapy and innovation. Stem Cell Res Ther 2024; 15:7. [PMID: 38169418 PMCID: PMC10762949 DOI: 10.1186/s13287-023-03621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Venous thromboembolism, which includes deep venous thrombosis (DVT) and pulmonary embolism, is the third most common vascular disease in the world and seriously threatens the lives of patients. Currently, the effect of conventional treatments on DVT is limited. Endothelial progenitor cells (EPCs) play an important role in the resolution and recanalization of DVT, but an unfavorable microenvironment reduces EPC function. Non-coding RNAs, especially long non-coding RNAs and microRNAs, play a crucial role in improving the biological function of EPCs. Non-coding RNAs have become clinical biomarkers of diseases and are expected to serve as new targets for disease intervention. A theoretical and experimental basis for the development of new methods for preventing and treating DVT in the clinic will be provided by studies on the role and molecular mechanism of non-coding RNAs regulating EPC function in the occurrence and development of DVT. To summarize, the characteristics of venous thrombosis, the regulatory role of EPCs in venous thrombosis, and the effect of non-coding RNAs regulating EPCs on venous thrombosis are reviewed. This summary serves as a useful reference and theoretical basis for research into the diagnosis, prevention, treatment, and prognosis of venous thrombosis.
Collapse
Affiliation(s)
- Li-Li Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Feng Ran
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Dian Huang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Ming Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Wen-Dong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
6
|
Zhong Z, Li K, Shen C, Ma Y, Guo L. Erythropoietin improves pulmonary hypertension by promoting the homing and differentiation of bone marrow mesenchymal stem cells in lung tissue. Hum Cell 2024; 37:214-228. [PMID: 37968533 DOI: 10.1007/s13577-023-01009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease thatultimately progresses to right-sided heart failure and death. Erythropoietin (EPO) has been shown to have therapeutic potential in cardiovascular diseases, including PAH. In this study, we aimed to investigate the improvement effect of EPO pretreated bone marrow mesenchymal stem cells (BMSCs) on PAH. BMSCs were obtained from the bone marrow of male SD rats. Female rats were randomly divided into six groups, including control group, monocrotaline (MCT)-induced group, and four groups with different doses of EPO pretreated BMSCs. Lung tissue was taken for testing at 2 weeks of treatment. Our results showed EPO promoted homing and endothelial cell differentiation of BMSCs in the lung tissues of PAH rats. EPO and BMSCs treatment attenuated pulmonary arterial pressure, polycythemia, and pulmonary artery structural remodeling. Furthermore, BMSCs inhibited pulmonary vascular endothelial-to-mesenchymal transition (EndoMT) in PAH rats, which was further suppressed by EPO in a concentration-dependent manner. Meanwhile, EPO and BMSC treatment elevated pulmonary angiogenesis in PAH rats. BMSCs inhibited TNF-α, IL-1β, IL-6, and MCP-1 in lung tissues of PAH rats, which was further decreased by EPO in a concentration-dependent manner. Thus, EPO improved pulmonary hypertension (PH) by promoting the homing and differentiation of BMSCs in lung tissue.
Collapse
Affiliation(s)
- Zhendong Zhong
- Institute for Laboratory Animal Research, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Kang Li
- Department of Gastroenterology, People's Hospital of Tibet Autonomous Region, Lhasa, 850000, Tibet, China
| | - Chongyang Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 230041, Sichuan, China
| | - Yuxiao Ma
- Department of Biology, New York University, 100 Washington Square E, New York, NY, 10003, United States of America.
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2,1St Ring Rd., Chengdu, 610072, Sichuan, China.
| |
Collapse
|
7
|
Amirlatifi S, Kooshari Z, Salmani K, Fallah Ziyarani M, Azizi S, Ghotbi E, Zolali B. Evaluation of long noncoding RNA (LncRNA) in pathogenesis of HELLP syndrome: diagnostic and future approach. J OBSTET GYNAECOL 2023; 43:2174836. [PMID: 36795605 DOI: 10.1080/01443615.2023.2174836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
HELLP syndrome is a disorder during pregnancy which is defined by elevation of liver enzymes, haemolysis, and low platelet count. This syndrome is a multifactorial one and both genetic and environmental components can have a crucial role in this syndrome's pathogenesis. Long noncoding RNAs (lncRNAs), are defined as long non-protein coding molecules (more than 200 nucleotides), which are functional units in most cellular processes such as cell cycle, differentiation, metabolism and some diseases progression. As these markers discovered, there has been some evidence that they have an important role in the function of some organs, such as placenta; therefore, alteration and dysregulation of these RNAs can develop or alleviate HELLP disorder. Although the role of lncRNAs has been shown in HELLP syndrome, the process is still unclear. In this review, our purpose is to evaluate the association between molecular mechanisms of lncRNAs and HELLP syndrome pathogenicity to elicit some novel approaches for HELLP diagnosis and treatment.
Collapse
Affiliation(s)
- Shahrzad Amirlatifi
- Clinical Research Development unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Kooshari
- Clinical Research Development unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kiana Salmani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Fallah Ziyarani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Azizi
- Clinical Research Development unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elena Ghotbi
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bita Zolali
- Clinical Research Development unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Fakhri S, Moradi SZ, Faraji F, Farhadi T, Hesami O, Iranpanah A, Webber K, Bishayee A. Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance. Cancer Metastasis Rev 2023; 42:959-1020. [PMID: 37505336 DOI: 10.1007/s10555-023-10119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer development and progression. In this line, revealing the precise mechanisms of the TME and associated signaling pathways of tumor resistance could pave the road for cancer prevention and efficient treatment. The use of nanomedicine could be a step forward in overcoming the barriers in tumor-targeted therapy. Novel delivery systems benefit from enhanced permeability and retention effect, decreasing tumor resistance, reducing tumor hypoxia, and targeting tumor-associated factors, including immune cells, endothelial cells, and fibroblasts. Emerging evidence also indicates the engagement of multiple dysregulated mediators in the TME, such as matrix metalloproteinase, vascular endothelial growth factor, cytokines/chemokines, Wnt/β-catenin, Notch, Hedgehog, and related inflammatory and apoptotic pathways. Hence, investigating novel multitargeted agents using a novel delivery system could be a promising strategy for regulating TME and drug resistance. In recent years, small molecules from natural sources have shown favorable anticancer responses by targeting TME components. Nanoformulations of natural compounds are promising therapeutic agents in simultaneously targeting multiple dysregulated factors and mediators of TME, reducing tumor resistance mechanisms, overcoming interstitial fluid pressure and pericyte coverage, and involvement of basement membrane. The novel nanoformulations employ a vascular normalization strategy, stromal/matrix normalization, and stress alleviation mechanisms to exert higher efficacy and lower side effects. Accordingly, the nanoformulations of anticancer monoclonal antibodies and conventional chemotherapeutic agents also improved their efficacy and lessened the pharmacokinetic limitations. Additionally, the coadministration of nanoformulations of natural compounds along with conventional chemotherapeutic agents, monoclonal antibodies, and nanomedicine-based radiotherapy exhibits encouraging results. This critical review evaluates the current body of knowledge in targeting TME components by nanoformulation-based delivery systems of natural small molecules, monoclonal antibodies, conventional chemotherapeutic agents, and combination therapies in both preclinical and clinical settings. Current challenges, pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Tara Farhadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Osman Hesami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
9
|
Marques IS, Tavares V, Neto BV, Mota INR, Pereira D, Medeiros R. Long Non-Coding RNAs in Venous Thromboembolism: Where Do We Stand? Int J Mol Sci 2023; 24:12103. [PMID: 37569483 PMCID: PMC10418965 DOI: 10.3390/ijms241512103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Venous thromboembolism (VTE), a common condition in Western countries, is a cardiovascular disorder that arises due to haemostatic irregularities, which lead to thrombus generation inside veins. Even with successful treatment, the resulting disease spectrum of complications considerably affects the patient's quality of life, potentially leading to death. Cumulative data indicate that long non-coding RNAs (lncRNAs) may have a role in VTE pathogenesis. However, the clinical usefulness of these RNAs as biomarkers and potential therapeutic targets for VTE management is yet unclear. Thus, this article reviewed the emerging evidence on lncRNAs associated with VTE and with the activity of the coagulation system, which has a central role in disease pathogenesis. Until now, ten lncRNAs have been implicated in VTE pathogenesis, among which MALAT1 is the one with more evidence. Meanwhile, five lncRNAs have been reported to affect the expression of TFPI2, an important anticoagulant protein, but none with a described role in VTE development. More investigation in this field is needed as lncRNAs may help dissect VTE pathways, aiding in disease prediction, prevention and treatment.
Collapse
Affiliation(s)
- Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Inês N. R. Mota
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; (I.S.M.); (V.T.); (B.V.N.); (I.N.R.M.)
- Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| |
Collapse
|
10
|
Zhang B, Qin J. LINC00659 exacerbates endothelial progenitor cell dysfunction in deep vein thrombosis of the lower extremities by activating DNMT3A-mediated FGF1 promoter methylation. Thromb J 2023; 21:24. [PMID: 36890543 PMCID: PMC9996960 DOI: 10.1186/s12959-023-00462-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/10/2023] Open
Abstract
It has been shown that long non-coding RNA (lncRNA) LINC00659 was markedly upregulated in the peripheral blood of patients with deep venous thrombosis (DVT). However, the function of LINC00659 in lower extremity DVT (LEDVT) remains to be largely unrevealed. A total of 30 inferior vena cava (IVC) tissue samples and peripheral blood (60 ml per subject) were obtained from LEDVT patients (n = 15) and healthy donors (n = 15), and then LINC00659 expression was detected by RT-qPCR. The results displayed that LINC00659 is upregulated in IVC tissues and isolated endothelial group cells (EPCs) of patients with LEDVT. LINC00659 knock-down promoted the proliferation, migration, and angiogenesis ability of EPCs, while an pcDNA-eukaryotic translation initiation factor 4A3 (EIF4A3), a EIF4A3 overexpression vector, or fibroblast growth factor 1 (FGF1) small interfering RNA (siRNA) combined with LINC00659 siRNA could not enhance this effect. Mechanistically, LINC00659 bound with EIF4A3 promoter to upregulated EIF4A3 expression. Besides, EIF4A3 could facilitate FGF1 methylation and its downregulated expression by recruiting DNA methyltransferases 3A (DNMT3A) to the FGF1 promoter region. Additionally, LINC00659 inhibition could alleviate LEDVT in mice. In summary, the data indicated the roles of LINC00659 in the pathogenesis of LEDVT, and the LINC00659/EIF4A3/FGF1 axis could be a novel therapeutic target for the treatment of LEDVT.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Peripheral Vessel, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| | - Jie Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710061, Shanxi, China
| |
Collapse
|
11
|
Zhu X, Chen B, Xu H. By modulating miR-525-5p/Bax axis, LINC00659 promotes vascular endothelial cell apoptosis. Immun Inflamm Dis 2023; 11:e764. [PMID: 36705418 PMCID: PMC9846115 DOI: 10.1002/iid3.764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Deep vein thrombosis (DVT) is a vascular disease that has no effective treatment at present. Endothelial cells play a crucial role in the processes vasoconstriction, platelet activation, and blood coagulation and are an integral part of the vascular response to injury resulting in thrombus formation. OBJECTIVE The aim of this study was to investigate the roles and mechanisms of long noncoding RNA LINC00659 (LINC00659) in endothelial cells. METHODS The functions of LINC00659 and miR-525-5p on endothelial cells were explored by cell transfection assays, and the expression levels of LINC00659, miR-525-5p, and Bax in human umbilical vein endothelial cells (HUVECs) were assessed with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Binding sites of LINC00659 and miR-525-5p were subsequently analyzed with bioinformatics software, and validated with dual-luciferase reporter gene assay. Effects of LINC00659 and miR-525-5p on proliferation and apoptosis of HUVECs were detected with MTT (3-(45)-dimethylthiahiazo (-z-y1)-35-di-phenytetrazoliumromide) assay and flow cytometry. RT-qPCR and western blot analysis were used to evaluate the mRNA and protein levels of apoptosis-related markers Bcl-2 and Bax in HUVECs. RESULTS LINC00659 directly targeted and negatively regulated miR-525-5p, and Bax was a target of miR-525-5p. Upregulation of LINC00659 could inhibit proliferation and promote apoptosis of HUVECs, while the silencing of LINC00659 could increase the viability of HUVECs and inhibit apoptosis via upregulating miR-525-5p. Further mechanistic studies revealed miR-525-5p could negatively regulate Bax in HUVECs, and increased the viability of HUVECs and inhibited apoptosis by downregulating Bax expression. CONCLUSION LINC00659 played an important role in DVT by regulating the apoptosis of vascular endothelial cells through regulating miR-525-5p/Bax axis.
Collapse
Affiliation(s)
- Xizheng Zhu
- Department of Interventional RadiologyWuhan Asia General HospitalWuhanChina
| | - Beijia Chen
- Department of CardiologyFifth Hospital in WuhanWuhanChina
| | - Hui Xu
- Department of Interventional RadiologyWuhan Asia General HospitalWuhanChina
| |
Collapse
|
12
|
Wang S, Wang F, Ren J, Yang H. LncRNA NEAT1 Promotes Vascular Endothelial Cell Dysfunction via miR-218-5p/GAB2 and Serves as a Diagnostic Biomarker for Deep Vein Thrombosis. Clin Appl Thromb Hemost 2023; 29:10760296231179447. [PMID: 37321605 DOI: 10.1177/10760296231179447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE Deep vein thrombosis (DVT) is a common peripheral disease. This study aimed to elucidate the diagnostic biomarker of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in the DVT, and explore possible mechanisms in Human umbilical vein endothelial cells (HUVECs). METHODS 101 patients with lower extremity DVT and 82 healthy controls were enrolled. RT-qPCR was designed to resolve the mRNA levels of NEAT1, miR-218-5p, and GAB2. ROC was applied for the diagnosis of DVT. Systemic inflammation (IL-1β, IL-6, and TNF-α) and adhesion factor (SELP, VCAM-1, and ICAM-1) were examined by the ELISA. And cell proliferation, migration, and apoptosis were conducted by the CCK-8, Transwell, flow cytometry assay. The targeting relationship was validated by Dual luciferase reporter and RIP analysis. RESULTS NEAT1 and GAB2 were upregulated in patients with DVT, while miR-218-5p was decreased (P < .01). Serum NEAT1 can identify DVT patients from healthy individuals. NEAT1 was positively correalted with fibrinolysis factors, coagulation factors, and vasoconstrictors. NEAT1 inhibited the proliferation, migration, and promoted apoptosis as well as inflammation and adhesion factors secretion of HUVECs (P < .05), but all were impaired by overexpression of miR-218-5p (P < .05). NEAT1 promoted GAB2 expression in DVT by acting as a sponge for miR-218-5p. CONCLUSION Elevated NEAT1 is a possible DVT diagnostic biomarker, and is implicated in vascular endothelial cell dysfunction via miR-218-5p/GAB2 axis.
Collapse
Affiliation(s)
- Shuping Wang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Fei Wang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Juan Ren
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Hongyu Yang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| |
Collapse
|
13
|
Knockdown of lncRNA XIST Ameliorates IL-1 β-Induced Apoptosis of HUVECs and Change of Tissue Factor Level via miR-103a-3p/HMGB1 Axis in Deep Venous Thrombosis by Regulating the ROS/NF- κB Signaling Pathway. Cardiovasc Ther 2022; 2022:6256384. [PMID: 36474713 PMCID: PMC9699739 DOI: 10.1155/2022/6256384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
Background The effect of lncRNA X inactive-specific transcript (XIST) inducing cardiovascular diseases on deep vein thrombosis (DVT) and its mechanism has not been reported. In this study, we uncovered the mystery that lncRNA XIST causes DVT with HUVEC dysfunction. Method The expression levels of lncRNA XIST and miR-103a-3p were detected by qRT-PCR, and HMGB1 expression was determined by qRT-PCR and western blot. The correlations among the expression levels of lncRNA XIST, miR-103a-3p, and HMGB1 were determined by Spearman's rank-order correlation test. XIST siRNA (si-XIST) was transfected into HUVECs to knock down the intrinsic expression of lncRNA XIST. The influences of si-XIST on interleukin-1 beta- (IL-1β-) treated HUVEC viability and apoptosis and the level of tissue factor (TF) were detected by MTT, flow cytometry, and ELISA kit, respectively. The relationships between lncRNA XIST, miR-103a-3p, and HMGB1 were predicted by the Encyclopedia of RNA Interactomes (ENCORI) database and verified by dual luciferase reporter assay. The effects of lncRNA XIST and miR-103a-3p on HMGB1 expression were detected by qRT-PCR, western blot, and immunofluorescence analysis. The levels of ROS/NF-κB pathway-related proteins were detected to study the regulatory mechanism of lncRNA XIST/miR-103a-3p/HMGB1 on IL-1β-treated HUVECs apoptosis and change of TF level. Results The upregulated expression levels of lncRNA XIST and HMGB1 and downregulated level of miR-103a-3p were found in the plasma of DVT patients and IL-1β-treated HUVECs. Si-XIST promoted cell viability and inhibited HUVEC apoptosis and ameliorated the change of TF level triggered by IL-1β. lncRNA XIST sponged miR-103a-3p and miR-103a-3p targeted HMGB1. Si-XIST inhibited the ROS/NF-κB pathway to suppress HUVEC apoptosis and ameliorate the change of TF level induced by IL-1β via the miR-103a-3p/HMGB1 axis. Conclusion lncRNA XIST sponged miR-103a-3p improving HMGB1 expression to exacerbate DVT by activating the ROS/NF-κB signaling pathway. Our findings indicated that lncRNA XIST can be used as a potential therapeutic target in DVT.
Collapse
|
14
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
15
|
Feng Y, Lei B, Zhang H, Niu L, Li X, Luo X, Zhang F. Long noncoding RNA TUG1 induces angiogenesis of endothelial progenitor cells and dissolution of deep vein thrombosis. Thromb J 2022; 20:54. [PMID: 36163177 PMCID: PMC9511754 DOI: 10.1186/s12959-022-00413-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/03/2022] [Indexed: 03/09/2024] Open
Abstract
Objective Long non-coding RNA (lncRNA) essentially controls many physiological and pathological processes of deep vein thrombosis (DVT). Based on that, lncRNA taurine upregulated gene 1 (TUG1)-involved angiogenesis of endothelial progenitor cells (EPCs) and dissolution of DVT was explored. Methods In the in-vitro experiments, EPCs were engineered with mimic, inhibitor, siRNA, and plasmid, after which tube formation, proliferation, migration, and apoptosis were checked. In the in-vivo experiments, a DVT mouse model was established. Before the DVT operation, the mice were injected with agomir, antagomir, siRNA, and plasmid. Subsequently, thrombosis and damage to the femoral vein were pathologically evaluated. TUG1, miR-92a-3p, and 3-Hydroxy-3-methylglutaryl coenzyme A reductase (Hmgcr) expression in the femoral vein was tested. The relationship between TUG1, miR-92a-3p, and Hmgcr was validated. Results DVT mice showed suppressed TUG1 and Hmgcr expression, and elevated miR-92a-3p expression. In EPCs, TUG1 overexpression or miR-92a-3p inhibition promoted cellular angiogenesis, whereas Hmgcr silencing blocked cellular angiogenesis. In DVT mice, elevated TUG1 or inhibited miR-92a-3p suppressed thrombosis and damage to the femoral vein whilst Hmgcr knockdown acted oppositely. In both cellular and animal models, TUG1 overexpression-induced effects could be mitigated by miR-92a-3p up-regulation. Mechanically, TUG1 interacted with miR-92a-3p to regulate Hmgcr expression. Conclusion Evidently, TUG1 promotes the angiogenesis of EPCs and dissolution of DVT via the interplay with miR-92a-3p and Hmgcr. Supplementary Information The online version contains supplementary material available at 10.1186/s12959-022-00413-y.
Collapse
Affiliation(s)
- Yaping Feng
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Bo Lei
- Anesthesia Department, Beijing Haidian Maternal & Child Health Hospital, No. 33 Haidian South Road, Haidian District, Beijing, 100080, China.
| | - Huan Zhang
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Luyuan Niu
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiangtao Li
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiaoyun Luo
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Fuxian Zhang
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|
16
|
Zhao Y, Wang C, Cui T, Wang Q, Xu Y, Miao C, Liu S. LncRNA FGD5-AS1 reduces cardiomyocyte apoptosis and inflammation by modulating Akt and miR-223-3p expression. Am J Transl Res 2022; 14:6175-6186. [PMID: 36247255 PMCID: PMC9556440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) are known to be involved in heart development and function. In this study, we aimed to explore the effect of the lncRNA FGD5 antisense RNA 1 (FGD5-AS1) on acute myocardial infarction (AMI) by targeting miR-223-3p. METHODS An AMI model was established both in vivo and in vitro. The levels of FGD5-AS1, miR-223-3p and inflammatory factors were detected by real-time quantitative reverse transcription PCR. Cardiomyocyte apoptosis was assessed using TdT-mediated dUTP nick-end labeling assay. The protein levels of cleaved caspase-3, Bcl-2 and Bax were examined using Western blot. Cardiac function was evaluated using hemodynamic analysis and hematoxylin-eosin and Masson's trichrome staining. In addition, an underlying competitive endogenous RNA mechanism was revealed by bioinformatics analysis, dual-luciferase reporter assay and rescue experiments. RESULTS We found decreased expression of FGD5-AS1 in AMI. Furthermore, FGD5-AS1 expression significantly decreased the infarct size, improved cardiac performance and attenuated cardiac fibrosis by reducing myocardial apoptosis and inflammation. miR-223-3p was a direct target of FGD5-AS1. Moreover, miRNA-223-3p directly downregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes. Further experiments demonstrated that FGD5-AS1 modulated Akt activity to reduce myocardial injury through miR-223-3p. CONCLUSION The FGD5-AS1/miR-223-3p/Akt pathway is involved in AMI, suggesting that FGD5-AS1 may act as a potential biomarker and therapeutic target for AMI.
Collapse
Affiliation(s)
- Yu Zhao
- Cardiovascular Ward 1, Central Hospital of Zibo Mining Group Co., Ltd.Zibo, Shandong, China
| | - Cuancuan Wang
- Department of Cardiology, Tianjin Fifth Central HospitalTianjin, China
| | - Tiejun Cui
- The Third Department of Internal Medicine, Laoling People’s HospitalDezhou, Shandong, China
| | - Qiaoyi Wang
- Department of Emergency, Weifang Traditional Chinese Medicine HospitalWeifang, Shandong, China
| | - Yingchun Xu
- Department of Cardiology, Liaocheng Second People’s HospitalLiaocheng, Shandong, China
| | - Chunbo Miao
- Department of VIP of Internal Medicine, Liaocheng Second People’s HospitalLiaocheng, Shandong, China
| | - Shaoyan Liu
- Department of Cardiology, Laiyang Central HospitalYantai, Shandong, China
| |
Collapse
|
17
|
Ma J, Lei P, Chen H, Wang L, Fang Y, Yan X, Yang Q, Peng B, Jin L, Sun D. Advances in lncRNAs from stem cell-derived exosome for the treatment of cardiovascular diseases. Front Pharmacol 2022; 13:986683. [PMID: 36147326 PMCID: PMC9486024 DOI: 10.3389/fphar.2022.986683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality globally. Benefiting from the advantages of early diagnosis and precision medicine, stem cell-based therapies have emerged as promising treatment options for CVDs. However, autologous or allogeneic stem cell transplantation imposes a potential risk of immunological rejection, infusion toxicity, and oncogenesis. Fortunately, exosome can override these limitations. Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) in exosome from stem cell paracrine factors play critical roles in stem cell therapy and participate in numerous regulatory processes, including transcriptional silencing, transcriptional activation, chromosome modification, and intranuclear transport. Accordingly, lncRNAs can treat CVDs by directly acting on specific signaling pathways. This mini review systematically summarizes the key regulatory actions of lncRNAs from different stem cells on myocardial aging and apoptosis, ischemia-reperfusion injury, retinopathy, atherosclerosis, and hypertension. In addition, the current challenges and future prospects of lncRNAs treatment for CVDs are discussed.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Xiaoqing Yan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- *Correspondence: Da Sun, ; Libo Jin,
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- *Correspondence: Da Sun, ; Libo Jin,
| |
Collapse
|
18
|
Zhou H, Zhu J, Wan H, Shao C, Chen T, Yang J, He Y, Wan H. The combination of danhong injection plus tissue plasminogen activator ameliorates mouse tail thrombosis-induced by κ-carrageenan. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154320. [PMID: 35830758 DOI: 10.1016/j.phymed.2022.154320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND After thrombosis, t-PA thrombolysis is the first choice, but the use of t-PA can easily lead to hemorrhagic injury and neurotoxicity. The combination of Danhong injection (DHI) and tissue plasminogen activator (t-PA) therapy may be a new strategy to find high-efficiency anti-thrombosis and low bleeding risk. However, nothing is about the effect of DHI plus t-PA on platelet activation. PURPOSE The present research was to explore the optimal dose of DHI and t-PA in vivo and mechanisms involved with the treatment of combining DHI and t-PA for thrombotic disease and determined whether DHI plus t-PA affects thrombotic processes related to platelet activation. METHODS Mice were induced by administering κ-carrageenan intraperitoneally, the ratio of different doses of DHI and t-PA in vivo, and the optimal dose effects on platelet aggregation, platelet adhesion, thrombosis formation, and platelet activation were determined. The effects of the αIIbβ3 signaling pathway were analyzed in mice. RESULTS In vitro, DHI (62% v/v), t-PA (1 mg/ml), and DHI + t-PA (62% v/v + 1 mg/ml) decreased rat platelet aggregation and adhesion, with a stronger effect from the combination as compared to t-PA monotherapy. In vivo, injections of κ-carrageenan were used to induce BALB/c mice. The optimal dose of DHI, t-PA, and DHI + t-PA is 12 ml/kg, 10 mg/kg, and 12 ml/kg + 7.5 mg/kg. The administration of DHI (12 ml/kg), t-PA (10 mg/kg), and DHI + t-PA (12 ml/kg + 7.5 mg/kg) decreased thrombi in mouse tissue vessels. Furthermore, the reduction of thrombosis formation by DHI, t-PA, and DHI + t-PA was related to lower collagen deposition, and lowered expressions of collagen I, matrix metalloproteinase 2 (MMP-2), and metalloproteinase 9 (MMP-9) in mouse tails, with increased efficacy in combination as compared to t-PA alone. The anti-thrombosis actions of DHI, t-PA, and their combination regulated the expression of CD41, purinergic receptor (P2Y12), guanine nucleotide-binding protein G (q) subunit alpha (GNAQ), phosphatidylinositol phospholipase c beta (PLCβ), Ras-related protein 1 (Rap1), RIAM, talin1, fibrinogen alpha chain (FG), kindlin-3, and RAS guany1-releasing protein 1 (RasGRP1). CONCLUSIONS Based on expression, the mechanism responsible for thrombosis may be attributed to platelet activation via the αIIbβ3 signaling pathway. Combination therapy with DHI and t-PA exerted potent thrombolytic effects. Thus, our data can be used as a foundation for further clinical studies examining the efficacy of traditional Chinese medicines for the treatment of thrombosis.
Collapse
Affiliation(s)
- Huifen Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiaqi Zhu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Chongyu Shao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Tianhang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Haitong Wan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
19
|
Mechanical Stretch Induced Skin Regeneration: Molecular and Cellular Mechanism in Skin Soft Tissue Expansion. Int J Mol Sci 2022; 23:ijms23179622. [PMID: 36077018 PMCID: PMC9455829 DOI: 10.3390/ijms23179622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Skin soft tissue expansion is one of the most basic and commonly used techniques in plastic surgery to obtain excess skin for a variety of medical uses. However, skin soft tissue expansion is faced with many problems, such as long treatment process, poor skin quality, high retraction rate, and complications. Therefore, a deeper understanding of the mechanisms of skin soft tissue expansion is needed. The key to skin soft tissue expansion lies in the mechanical stretch applied to the skin by an inflatable expander. Mechanical stimulation activates multiple signaling pathways through cellular adhesion molecules and regulates gene expression profiles in cells. Meanwhile, various types of cells contribute to skin expansion, including keratinocytes, dermal fibroblasts, and mesenchymal stem cells, which are also regulated by mechanical stretch. This article reviews the molecular and cellular mechanisms of skin regeneration induced by mechanical stretch during skin soft tissue expansion.
Collapse
|
20
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
21
|
Yang B, Zhang Z. Suppression of long intergenic non-protein coding RNA 1123 constrains lower extremity deep vein thrombosis via microRNA-125a-3p to target interleukin 1 receptor type 1. Bioengineered 2022; 13:13452-13461. [PMID: 35659191 PMCID: PMC9275874 DOI: 10.1080/21655979.2022.2076496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Lower extremity deep vein thrombosis (LEDVT) is a disorder of venous return caused by abnormal blood clotting. LEDVT can obstruct the lumen and is the third most common vascular disease after cerebrovascular disease and coronary artery disease. LncRNAs are associated with thrombosis and potentially affect the pathogenesis of DVT. However, no studies have reported the effect of LINC01123 on LEDVT. The aim of this study was to investigate the effect of LINC01123 on LEDVT in rats via the miR-125a-3p/interleukin 1 receptor type 1 (IL1R1) axis. Lentiviral vectors that altering LINC01123, miR-125a-3p and IL1R1 expression were pre-injected into the tail vein of rats, and an LEDVT model was established 1 day later. Detection of LINC01123, miR-125a-3p and IL1R1 expression was performed. Inflammatory factors in femoral venous blood, the length and weight of the thrombus, the histomorphological changes were determined in the rat model. The targeting relation of miR-125a-3p with LINC01123 or IL1R1 was verified. The results presented that LEDVT rats expressed high LINC01123 and IL1R1 and low miR-125a-3p expression levels. After silencing LINC01123 or elevating miR-125a-3p, the rate of thrombosis, length and weight of thrombus, and levels of inflammatory factors were reduced. The targeting relation was presented between miR-125a-3p with LINC01123 or IL1R1. Elevating IL1R1 was available to turn around the action of silence of LINC01123 on LEDVT rats. All in all, suppression of LINC01123 restrains LEDVT via miR-125a-3p to target IL1R1.
Collapse
Affiliation(s)
- Baocai Yang
- Department of General surgery, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
- Department of Vascular Surgery, Yancheng First People’s Hospital of Jiangsu Province, Yancheng, Jiangsu Province, China
| | - ZiXiang Zhang
- Department of General surgery, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| |
Collapse
|
22
|
Wang H, Lin S, Yang Y, Zhao M, Li X, Zhang L. Significant role of long non-coding RNA MALAT1 in deep vein thrombosis via the regulation of vascular endothelial cell physiology through the microRNA-383-5p/BCL2L11 axis. Bioengineered 2022; 13:13728-13738. [PMID: 35706417 PMCID: PMC9276002 DOI: 10.1080/21655979.2022.2080412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Deep vein thrombosis (DVT) is a vascular disease. The long non-coding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is positively expressed in DVT tissues, and regulates the biological behavior of endothelial progenitor cells. Here, we explored whether MALAT1 affected the physiology of human vascular endothelial cells (HUVECs) and analyzed its underlying mechanism. To overexpress/silence the expression of MALAT1 in HUVECs, MALAT1-plasmid/MALAT1-small interfering RNA (siRNA) was used. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and flow cytometry analyses were performed to observe the cell viability and apoptosis. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to determine the apoptosis-related protein and gene expression levels. We used Starbase software to predict the associations among MALAT1, microRNA (miR)-383-5p, and BCL2-like 11 (BCL2L11). Luciferase reporter assay was used to validate their relationship. Compared to the control vector group, MALAT1-plasmid suppressed the viability and induced apoptosis of HUVECs, while improving Bcl-2-associated X protein (Bax) expression and decreasing Bcl-2 expression. There was an interaction between MALAT1 and miR-383-5p. Compared to the control siRNA group, MALAT1-siRNA increased the cell viability, reduced cell apoptosis, upregulated Bcl-2 expression, and suppressed Bax expression. These changes were reversed by the miR-383-5p inhibitor. Additionally, we verified that BCL2L11 is a target of miR-383-5p. miR-383-5p improved the cell proliferation, while decreasing cell apoptosis in HUVECs by targeting BCL2L11. Therefore, the lncRNA-MALAT1/miR-383-5p/BCL2L11 axis may be effective for DVT treatment.
Collapse
Affiliation(s)
- Hecheng Wang
- Department of Academic Affairs, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Shusen Lin
- Department of Vascular Surgery, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Yujie Yang
- Department of Academic Affairs, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Mingyu Zhao
- Department of Vascular Surgery, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Xichun Li
- Department of Vascular Surgery, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, China
| | - Lanli Zhang
- Department of Ultrasound, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar 161000, Chin
| |
Collapse
|
23
|
MicroRNA-136-5p from Endothelial Progenitor Cells-released Extracellular Vesicles Mediates TXNIP to Promote the Dissolution of Deep Venous Thrombosis. Shock 2022; 57:714-721. [PMID: 35583913 DOI: 10.1097/shk.0000000000001920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Endothelial progenitor cells-released extracellular vesicles (EPCs-EVs) have previously been reported to promote the dissolution of deep venous thrombosis (DVT) through delivery of microRNA (miR). Given that, this research was projected to search the relative action of EPCs-EVs transferring of miR-136-5p in DVT. METHODS From EPCs transfected with miR-136-5p agomir or antagomir, EVs were extracted and then injected into DVT mice. Meanwhile, based on the treatment with EPCs-EVs loading miR-136-5p antagomir, silenced thioredoxin-interacting protein (TXNIP) lentivirus was injected into DVT mice to perform the rescue experiments. Afterwards, the length and weight of venous thrombosis, EPC apoptosis and inflammatory factors, plasmin, fibrinogen, and thrombin-antithrombin were measured. miR-136-5p and TXNIP expression in DVT mice, and their targeting relationship were evaluated. RESULTS miR-136-5p expression was suppressed and TXNIP expression was elevated in DVT mice. EPCs-EV reduced the length and weight of venous thrombosis, suppressed cell apoptosis and inflammatory reaction, as well as elevated level of plasmin, and reduced levels of fibrinogen and thrombin-antithrombin in DVT mice. Restored miR-136-5p loaded by EPCs-EV further attenuated DVT but EPCs-EV transfer of depleted miR-136-5p resulted in the opposite consequences. miR-136-5p targeted TXNIP and silenced TXNIP rescued the effect of EPCs-EV transfer of depleted miR-136-5p on DVT. CONCLUSION miR-136-5p from EPCs-EV suppresses TXNIP expression to reduce the thrombus size in DVT, offering a promising treatment target for DVT.
Collapse
|
24
|
Upregulated miR-206 Aggravates Deep Vein Thrombosis by Regulating GJA1-Mediated Autophagy of Endothelial Progenitor Cells. Cardiovasc Ther 2022; 2022:9966306. [PMID: 35360546 PMCID: PMC8956392 DOI: 10.1155/2022/9966306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
Background Deep vein thrombosis (DVT) is the third most prevalent vascular disease worldwide. MicroRNAs (miRNAs) play regulatory roles in functions of endothelial progenitor cells (EPCs), which is becoming a promising therapeutic choice for thrombus resolution. Nevertheless, the role of miR-206 in EPCs is unclear. Methods EPCs were isolated from the peripheral blood of patients with DVT. In DVT mouse models, DVT was induced by stenosis of the inferior vena cava (IVC). The levels of miR-206 and gap junction protein alpha 1 (GJA1) in EPCs and vascular tissues of DVT mice were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The proliferation, migration, apoptosis, and angiogenesis were tested by cell counting kit-8 (CCK-8) assay, Transwell assay, flow cytometry analysis, and in vitro tube formation assay. The levels of autophagy-related proteins as well as the level of GJA1 in EPCs and vascular tissues were evaluated by western blotting. DVT formation in vivo was observed through hematoxylin-eosin (HE) staining. The expression of thrombus resolution markers, CD34 molecule (CD34) and matrix metallopeptidase 2 (MMP2), in the thrombi was measured by immunofluorescence staining. Results miR-206 overexpression inhibited proliferation, migration, and angiogenesis and promoted apoptosis of EPCs, while miR-206 knockdown exerted an opposite effect on EPC phenotypes. Downregulation of GJA1, the target of miR-206, abolished the influence of miR-206 on EPC phenotypes. Furthermore, silencing of miR-206 suppressed the autophagy of EPCs via upregulating GJA1. miR-206 knockdown repressed thrombus formation, enhanced the homing ability of EPCs to the thrombosis site, and facilitated thrombus resolution in DVT mouse models. Additionally, miR-206 was upregulated while GJA1 was downregulated in vascular tissues of DVT mice. miR-206 knockdown elevated GJA1 expression in vascular tissues of DVT mice. The expression of miR-206 was negatively correlated with that of GJA1 in DVT mice. Conclusion miR-206 knockdown upregulates GJA1 to inhibit autophagy of EPCs and then promote EPC proliferation, migration, and angiogenesis, thereby enhancing EPC homing to thrombi and facilitating thrombus resolution.
Collapse
|
25
|
Hsa_circ_0001020 accelerates the lower extremity deep vein thrombosis via sponging miR-29c-3p to promote MDM2 expression. Thromb Res 2022; 211:38-48. [DOI: 10.1016/j.thromres.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022]
|
26
|
Dong P, Tang X, Wang J, Zhu B, Li Z. miR-653-5p suppresses the viability and migration of fibroblast-like synoviocytes by targeting FGF2 and inactivation of the Wnt/beta-catenin pathway. J Orthop Surg Res 2022; 17:5. [PMID: 34983591 PMCID: PMC8725305 DOI: 10.1186/s13018-021-02887-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Several studies reported that fibroblast-like synoviocytes (FLSs) and miRNAs are associated with RA pathogenesis. This study explored the function of miR-653-5p in the regulation of human fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) cells. Methods The mRNA and protein levels of genes were measured by RT-qPCR and western blot, respectively. MTT, wound healing, and invasion assays were used to evaluate the viability and metastasis of FLSs. Luciferase reporter and RNA pull-down assays were employed to determine the interaction between miR-653-5p and FGF2. Results RT-qPCR results demonstrated that miR-653-5p expression was decreased and FGF2 level was increased in synovial tissues and FLSs of RA. Moreover, the viability and metastasis of FLSs were accelerated by miR-653-5p addition, which was restrained by miR-653-5p suppression. Furthermore, we demonstrated that levels of Rac1, Cdc42, and RhoA were decreased after miR-653-5p addition. Besides, luciferase reporter and RNA pull-down assays implied that miR-653-5p targeted the 3′-UTR of FGF2. Functional assays showed that FGF2 overexpression neutralized the suppressive effects of miR-653-5p addition on HFLS-RA cell viability, metastasis, and the levels of Rho family proteins. Meanwhile, the levels of β-catenin, cyclin D1, and c-myc were declined by miR-653-5p supplementation, but enhanced by FGF2 addition. Conclusion In sum, we manifested that miR-653-5p restrained HFLS-RA cell viability and metastasis via targeting FGF2 and repressing the Wnt/beta-Catenin pathway.
Collapse
Affiliation(s)
- Peilong Dong
- Department of Orthopedics, Affiliated Jianhu Hospital of Nantong University, No. 666 Nanhuan Road, Jianhu, Yancheng, 224700, Jiangsu, People's Republic of China
| | - Xiaobo Tang
- Department of Orthopedics, Affiliated Jianhu Hospital of Nantong University, No. 666 Nanhuan Road, Jianhu, Yancheng, 224700, Jiangsu, People's Republic of China
| | - Jian Wang
- Department of Orthopedics, Affiliated Jianhu Hospital of Nantong University, No. 666 Nanhuan Road, Jianhu, Yancheng, 224700, Jiangsu, People's Republic of China
| | - Botao Zhu
- Department of Orthopedics, Affiliated Jianhu Hospital of Nantong University, No. 666 Nanhuan Road, Jianhu, Yancheng, 224700, Jiangsu, People's Republic of China
| | - Zhiyun Li
- Department of Orthopedics, Affiliated Jianhu Hospital of Nantong University, No. 666 Nanhuan Road, Jianhu, Yancheng, 224700, Jiangsu, People's Republic of China.
| |
Collapse
|
27
|
Kheshtchin N, Hadjati J. Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy. J Cell Physiol 2021; 237:1285-1298. [PMID: 34796969 DOI: 10.1002/jcp.30643] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022]
Abstract
The development of new strategies of anticancer immunotherapies has provided promising approaches in the treatment of solid tumors. However, despite the improved survival in responders, most of the patients show incomplete responses with a lack of remarkable clinical improvement. Hypoxia has been identified as a common characteristic of solid tumors contributing to different aspects of tumor progression, including invasion, metastasis, and the creation of the immunosuppressive tumor microenvironment. Hypoxia, through its main mediator, hypoxia-inducible factor-1 (HIF-1) is also associated with the limited efficacy of immunotherapies. Therefore, designing new strategies for immunotherapy implicating therapeutic targeting of HIF-1 molecules may enhance the clinical effectiveness of immunotherapy. Here, we discuss the contribution of hypoxia to the development of the immunosuppressive tumor microenvironment. We will also outline different strategies for targeting hypoxia to provide insight into the therapeutic potential of the application of such strategies to improve the clinical benefit of cancer immunotherapy.
Collapse
Affiliation(s)
- Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Wang B, Wu W, Xu K, Wu H. MicroRNA-223-3p is involved in fracture healing by regulating fibroblast growth factor receptor 2. Bioengineered 2021; 12:12040-12048. [PMID: 34753389 PMCID: PMC8810112 DOI: 10.1080/21655979.2021.2002498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are powerful modulators of fracture healing. The research explored the level of serum miR-223-3p in fracture patients and its potential mechanism in fracture healing. In the study, miR-223-3p levels in 42 patients with intra-articular fracture and 40 patients with hand fracture were detected by real-time fluorescence quantitative PCR reaction (qRT-PCR). Subsequently, osteoblasts MC3T3-E1 was transfected with miR-223-3p mimic or inhibitor, and cell function was detected by Cell counting kit (CCK-8) assay and flow cytometry. Dual-luciferase reporter assay verified the regulation mechanism of miR-223-3p and its target genes. We found that miR-223-3p was significantly elevated over time in patients with intra-articular fracture and hand fracture compared with healthy individuals. Moreover, increased miR-223-3p significantly reduced cell viability and promoted cell apoptosis. The fibroblast growth factor receptor 2 (FGFR2) was the target of miR-223-3p. Serum FGFR2 was significantly decreased in patients, which was contrary to the expression of miR-223-3p. Moreover, FGFR2 levels in cells were negatively regulated by miR-223-3p. Finally, si-FGFR2 significantly reversed the promotion of miR-223-3p inhibitor on cell viability and the inhibition of cell apoptosis. Our research suggested that miR-223-3p is highly expressed in fracture patients, and regulates osteoblast cell viability and apoptosis by targeting FGFR2. This may be a valuable target for fracture healing therapy and provide a new perspective for its treatment.
Collapse
Affiliation(s)
- Bin Wang
- Orthopaedic Centre, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), 315010, Zhejiang, China
| | - Wei Wu
- Orthopaedic Centre, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), 315010, Zhejiang, China
| | - Ke Xu
- Orthopaedic Centre, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), 315010, Zhejiang, China
| | - Haihao Wu
- Orthopaedic Centre, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), 315010, Zhejiang, China
| |
Collapse
|
29
|
Xiao ST, Kuang CY. Endothelial progenitor cells and coronary artery disease: Current concepts and future research directions. World J Clin Cases 2021; 9:8953-8966. [PMID: 34786379 PMCID: PMC8567528 DOI: 10.12998/wjcc.v9.i30.8953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular injury is a frequent pathology in coronary artery disease. To repair the vasculature, scientists have found that endothelial progenitor cells (EPCs) have excellent properties associated with angiogenesis. Over time, research on EPCs has made encouraging progress regardless of pathology or clinical technology. This review focuses on the origins and cell markers of EPCs, and the connection between EPCs and coronary artery disease. In addition, we summarized various studies of EPC-capturing stents and EPC infusion therapy, and aim to learn from past technology to predict the future.
Collapse
Affiliation(s)
- Sen-Tong Xiao
- Department of Cardiovascular Diseases, People’s Hospital Affiliated to Guizhou Medical University, Guiyang 550003, Guizhou Province, China
| | - Chun-Yan Kuang
- Department of Cardiovascular Diseases, Guizhou Provincial People's Hospital, Guiyang 550003, Guizhou Province, China
| |
Collapse
|
30
|
Wu R, Hu W, Chen H, Wang Y, Li Q, Xiao C, Fan L, Zhong Z, Chen X, Lv K, Zhong S, Shi Y, Chen J, Zhu W, Zhang J, Hu X, Wang J. A Novel Human Long Noncoding RNA SCDAL Promotes Angiogenesis through SNF5-Mediated GDF6 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004629. [PMID: 34319658 PMCID: PMC8456203 DOI: 10.1002/advs.202004629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/23/2021] [Indexed: 06/08/2023]
Abstract
Angiogenesis is essential for vascular development. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating angiogenesis remain under-explored. Human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) are shown to exert more potent cardioprotective effects against cardiac ischemia than human bone marrow-derived MSCs (hBM-MSCs), associated with enhanced neovascularization. The purpose of this study is to search for angiogenic lncRNAs enriched in hES-MSCs, and investigate their roles and mechanisms. AC103746.1 is one of the most highly expressed intergenic lncRNAs detected in hES-MSCs versus hBM-MSCs, and named as SCDAL (stem cell-derived angiogenic lncRNA). SCDAL knockdown significantly reduce the angiogenic potential and reparative effects of hES-MSCs in the infarcted hearts, while overexpression of SCDAL in either hES-MSCs or hBM-MSCs exhibits augmented angiogenesis and cardiac function recovery. Mechanistically, SCDAL induces growth differentiation factor 6 (GDF6) expression via direct interaction with SNF5 at GDF6 promoter. Secreted GDF6 promotes endothelial angiogenesis via non-canonical vascular endothelial growth factor receptor 2 activation. Furthermore, SCDAL-GDF6 is expressed in human endothelial cells, and directly enhances endothelial angiogenesis in vitro and in vivo. Thus, these findings uncover a previously unknown lncRNA-dependent regulatory circuit for angiogenesis. Targeted intervention of the SCDAL-GDF6 pathway has potential as a therapy for ischemic heart diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wangxing Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Huan Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou310012P. R. China
| | - Yingchao Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Qingju Li
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Changchen Xiao
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Lin Fan
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Zhiwei Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Xiaoying Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Kaiqi Lv
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Shuhan Zhong
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Yanna Shi
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jinghai Chen
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Wei Zhu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jianyi Zhang
- Department of Biomedical EngineeringUniversity of Alabama at BirminghamSchool of Medicine and School of EngineeringBirminghamAL35294USA
| | - Xinyang Hu
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| | - Jian'an Wang
- Department of CardiologySecond Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310009P. R. China
- Cardiovascular Key Laboratory of Zhejiang ProvinceHangzhou310009P. R. China
| |
Collapse
|
31
|
Hong Q, Ling L, Huang W, Liu Y, Zhuo Y, Hong Z, Wu B, Zhang Y. LncRNA RNCR3 promotes endothelial cell proliferation and inflammatory cytokine secretion via regulating miR-185-5p/cyclin D2 axis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27025-27032. [PMID: 33501579 DOI: 10.1007/s11356-020-12117-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Endothelial cell is one critical structure of blood vessels, and irregular migration and proliferation of endothelial cell might cause progression of several vascular diseases such as atherosclerosis and restenosis. We showed that TNF-α, PDGF-bb, and IL-1β promote RNCR3 expression in a dose-dependent manner inhuman endothelial cell. RNCR3 level is higher in serum of atherosclerosis patients compared with those in control volunteers. Overexpression of RNCR3 promotes cell proliferation and three inflammatory cytokine secretion including IL-6, IL-1β, and TNF-α in endothelial cell. We illustrated that overexpression of RNCR3 inhibits miR-185-5p expression in endothelial cell. Furthermore, we indicated that miR-185-5p level is lower in the serum of patients with atherosclerosis compared with those in control volunteers. There is a negative correlation between miR-185-5p and RNCR3 expression in serum of patients with atherosclerosis. Using Targetscan, it predicted that miR-185-5p may bind to cyclin D2 and miR-185-5p is one potential target of miR-185-5p. Luciferase reporter data indicated that miR-185-5p suppresses luciferase value of wild-type cyclin D2 while it has no influence of cyclin D2 mutant. Overexpression of RNCR3 enhances cyclin D2 expression in endothelial cell. Moreover, RNCR3 induces cell growth and enhances inflammatory cytokine secretion through modulating cyclin D2 expression in endothelial cell. These results suggested that RNCR3 may serve as one new target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Quanlong Hong
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Lin Ling
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Wenli Huang
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yilan Liu
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yafen Zhuo
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Zhenzhen Hong
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Bing Wu
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Yi Zhang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
32
|
Zhu J, Sun LL, Li WD, Li XQ. Clarification of the Role of miR-9 in the Angiogenesis, Migration, and Autophagy of Endothelial Progenitor Cells Through RNA Sequence Analysis. Cell Transplant 2020; 29:963689720963936. [PMID: 33028108 PMCID: PMC7784562 DOI: 10.1177/0963689720963936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have previously reported that miR-9 promotes the homing, proliferation, and angiogenesis of endothelial progenitor cells (EPCs) by targeting transient receptor potential melastatin 7 via the AKT autophagy pathway. In this way, miR-9 promotes thrombolysis and recanalization following deep vein thrombosis (DVT). However, the influence of miR-9 on messenger RNA (mRNA) expression profiles of EPCs remains unclear. The current study comprises a comprehensive exploration of the mechanisms underlying the miR-9-regulated angiogenesis of EPCs and highlights potential treatment strategies for DVT. We performed RNA sequence analysis, which revealed that 4068 mRNAs were differentially expressed between EPCs overexpressing miR-9 and the negative control group, of which 1894 were upregulated and 2174 were downregulated. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that these mRNAs were mainly involved in regulating cell proliferation/migration processes/pathways and the autophagy pathway, both of which represent potential EPC-based treatment strategies for DVT. Reverse transcriptase quantitative polymerase chain reaction confirmed the changes in mRNA expression related to EPC angiogenesis, migration, and autophagy. We also demonstrate that miR-9 promotes EPC migration and angiogenesis by regulating FGF5 directly or indirectly. In summary, miR-9 enhances the expression of VEGFA, FGF5, FGF12, MMP2, MMP7, MMP10, MMP11, MMP24, and ATG7, which influences EPC migration, angiogenesis, and autophagy. We provide a comprehensive evaluation of the miR-9-regulated mRNA expression in EPCs and highlight potential targets for the development of new therapeutic interventions for DVT.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Vascular Surgery, 105860The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Li-Li Sun
- Department of Vascular Surgery, 105860The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Vascular Surgery, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Wen-Dong Li
- Department of Vascular Surgery, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, 105860The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Vascular Surgery, Kunshan First People's Hospital, Kunshan, Jiangsu, China
| |
Collapse
|
33
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Taheri M. Non-coding RNAs regulate angiogenic processes. Vascul Pharmacol 2020; 133-134:106778. [PMID: 32784009 DOI: 10.1016/j.vph.2020.106778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis has critical roles in numerous physiologic processes during embryonic and adult life such as wound healing and tissue regeneration. However, aberrant angiogenic processes have also been involved in the pathogenesis of several disorders such as cancer and diabetes mellitus. Vascular endothelial growth factor (VEGF) is implicated in the regulation of this process in several physiologic and pathologic conditions. Notably, several non-coding RNAs (ncRNAs) have been shown to influence angiogenesis through modulation of expression of VEGF or other angiogenic factors. In the current review, we summarize the function and characteristics of microRNAs and long non-coding RNAs which regulate angiogenic processes. Understanding the role of these transcripts in the angiogenesis can facilitate design of therapeutic strategies to defeat the pathogenic events during this process especially in the human malignancies. Besides, angiogenesis-related mechanisms can improve tissue regeneration after conditions such as arteriosclerosis, myocardial infarction and limb ischemia. Thus, ncRNA-regulated angiogenesis can be involved in the pathogenesis of several disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, Li X, Cao K, Deng H, He Y, Liao Q, Xiang B, Zhou M, Guo C, Zeng Z, Li G, Li X, Xiong W. The role of microenvironment in tumor angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:204. [PMID: 32993787 PMCID: PMC7526376 DOI: 10.1186/s13046-020-01709-5] [Citation(s) in RCA: 420] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
Tumor angiogenesis is necessary for the continued survival and development of tumor cells, and plays an important role in their growth, invasion, and metastasis. The tumor microenvironment—composed of tumor cells, surrounding cells, and secreted cytokines—provides a conducive environment for the growth and survival of tumors. Different components of the tumor microenvironment can regulate tumor development. In this review, we have discussed the regulatory role of the microenvironment in tumor angiogenesis. High expression of angiogenic factors and inflammatory cytokines in the tumor microenvironment, as well as hypoxia, are presumed to be the reasons for poor therapeutic efficacy of current anti-angiogenic drugs. A combination of anti-angiogenic drugs and antitumor inflammatory drugs or hypoxia inhibitors might improve the therapeutic outcome.
Collapse
Affiliation(s)
- Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Jie Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Xiangying Deng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China.
| |
Collapse
|