1
|
He K, Chen K, Hu R, Wen T, Li Y, Xia L, Xiao L, Zhao Y, Cui D, Gao J, Liu L, Lai L, Su M. Endogenous ERMAP Affects T-Cell Function in EAE Mice. Immunology 2025; 175:200-213. [PMID: 40065719 DOI: 10.1111/imm.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/12/2024] [Accepted: 01/29/2025] [Indexed: 05/07/2025] Open
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) autoimmune disease (AID) mediated by myelin-reactive CD4+ T cells. Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of human MS. Erythrocyte membrane-associated protein (ERMAP) is a novel erythrocyte-specific adhesion/receptor molecule associated with erythrocyte adhesion. We have previously characterised it as a novel inhibitory immune checkpoint molecule and demonstrated that recombinant ERMAP proteins ameliorate EAE; however, the specific mechanism of action of ERMAP and the effects of endogenous ERMAP on T-cell function are largely unknown. In this study, we investigate the role of endogenous ERMAP in T-cell and macrophage homeostasis and EAE development. We show here that erythrocyte membrane-associated protein (ERMAP) gene knockout (ERMAP-/-) mice have increased numbers of T cells and pro-inflammatory M1 macrophages and enhanced T-cell activation, as compared to wild-type (ERMAP+/+) mice. When induced to develop EAE, ERMAP-/- mice have more severe EAE symptoms and pathology, which are related to increased numbers of T cells (especially Th1 and Th17 T cells) and M1 macrophages, enhanced activation of T cells, and increased generation of inflammatory cytokines, but decreased proportion of Th2 T cells, regulatory T cells (Tregs), and anti-inflammatory M2 macrophages. Global gene analysis by RNA-seq shows that signalling molecules in the peroxisome proliferator-activated receptor (PPAR) pathway are decreased in ERMAP-/- mice. Our results suggest that endogenous ERMAP plays an important role in T-cell and macrophage homeostasis and EAE development.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Knockout
- Lymphocyte Activation/immunology
- Multiple Sclerosis/immunology
- Mice, Inbred C57BL
- Disease Models, Animal
- Female
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Cytokines/metabolism
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Keke He
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kezhu Chen
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Rong Hu
- Translational Medicine Research Center of Guizhou Medical University, Guiyang, Guizhou, China
| | - Tinghao Wen
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuandi Li
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lu Xia
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Li Xiao
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Youbo Zhao
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dongbing Cui
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Gao
- Translational Medicine Research Center of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lu Liu
- The Second People's Hospital/the Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Min Su
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Li M, Yu Q, Anayyat U, Yang H, Wei Y, Wang X. Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarization. GeroScience 2024; 46:6229-6256. [PMID: 38904930 PMCID: PMC11493917 DOI: 10.1007/s11357-024-01223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Neuroinflammation, triggered by aberrantly activated microglia, is widely recognized as a key contributor to the initiation and progression of Alzheimer's disease (AD). Microglial activation in the central nervous system (CNS) can be classified into two distinct phenotypes: the pro-inflammatory M1 phenotype and the anti-inflammatory M2 phenotype. In this study, we investigated the effects of a non-invasive rotating magnetic field (RMF) (0.2T, 4Hz) on cognitive and memory impairments in a sporadic AD model of female Kunming mice induced by AlCl3 and D-gal. Our findings revealed significant improvements in cognitive and memory impairments following RMF treatment. Furthermore, RMF treatment led to reduced amyloid-beta (Aβ) deposition, mitigated damage to hippocampal morphology, prevented synaptic and neuronal loss, and alleviated cell apoptosis in the hippocampus and cortex of AD mice. Notably, RMF treatment ameliorated neuroinflammation, facilitated the transition of microglial polarization from M1 to M2, and inhibited the NF-кB/MAPK pathway. Additionally, RMF treatment resulted in reduced aluminum deposition in the brains of AD mice. In cellular experiments, RMF promoted the M1-M2 polarization transition and enhanced amyloid phagocytosis in cultured BV2 cells while inhibiting the TLR4/NF-кB/MAPK pathway. Collectively, these results demonstrate that RMF improves memory and cognitive impairments in a sporadic AD model, potentially by promoting the M1 to M2 transition of microglial polarization through inhibition of the NF-кB/MAPK signaling pathway. These findings suggest the promising therapeutic applications of RMF in the clinical treatment of AD.
Collapse
Affiliation(s)
- Mengqing Li
- Shenzhen University School of Basic Medical Sciences, Shenzhen, 518055, Guangdong, China
| | - Qinyao Yu
- Shenzhen University College of Medicine, Shenzhen, 518055, Guangdong, China
| | - Umer Anayyat
- Shenzhen University School of Basic Medical Sciences, Shenzhen, 518055, Guangdong, China
| | - Hua Yang
- Shenzhen University School of Basic Medical Sciences, Shenzhen, 518055, Guangdong, China
| | - Yunpeng Wei
- Shenzhen University School of Basic Medical Sciences, Shenzhen, 518055, Guangdong, China.
| | - Xiaomei Wang
- Shenzhen University School of Basic Medical Sciences, Shenzhen, 518055, Guangdong, China.
- Shenzhen University International Cancer Center, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
3
|
Yu Q, Li M, Anayyat U, Zhou C, Nie S, Yang H, Chen F, Xu S, Wei Y, Wang X. Forskolin improves experimental autoimmune encephalomyelitis in mice probably by inhibiting the calcium and the IL-17-STEAP4 signaling pathway. Heliyon 2024; 10:e36063. [PMID: 39229522 PMCID: PMC11369507 DOI: 10.1016/j.heliyon.2024.e36063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease in the central nervous system. Forskolin (FSK) is a plant-derived diterpene with excellent immunomodulatory properties and has not been systematically reported for treating MS. This study investigated the therapeutic effects of FSK on cellular and animal MS models and preliminarily explored related mechanisms. The results showed that FSK suppressed the inflammatory response, reduced the expression of STEAP4, and relieved iron deposition in BV-2 cells pretreated by LPS at the cellular level. Meanwhile, at the animal level, FSK treatment halted the progression of experimental autoimmune encephalomyelitis (EAE), alleviated the damage at the lesion sites, reduced the concentration of proinflammatory factors in peripheral blood, and inhibited the immune response of peripheral immune organs in EAE mice. Besides, FSK treatment decreased the expression of STEAP4 in the spinal cord and effectively restored the iron balance in the brain, spinal cord, and serum of EAE mice. Further investigation showed that FSK can reduce IL-17 expression, prevent the differentiation of TH17 cells, and inhibit the calcium signaling pathway. Thus, these results demonstrate that FSK may have the potential to treat MS clinically.
Collapse
Affiliation(s)
- Qinyao Yu
- School of Pharmacy, Shenzhen University, Shenzhen, Guangdong, 518061, China
| | - Mengqing Li
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518061, China
| | - Umer Anayyat
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518061, China
| | - Cai Zhou
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518061, China
| | - Shenglan Nie
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518061, China
| | - Hua Yang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518061, China
| | - Fengyi Chen
- School of Pharmacy, Shenzhen University, Shenzhen, Guangdong, 518061, China
| | - Shuling Xu
- School of Pharmacy, Shenzhen University, Shenzhen, Guangdong, 518061, China
| | - Yunpeng Wei
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518061, China
| | - Xiaomei Wang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518061, China
- International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong, 518061, China
| |
Collapse
|
4
|
Yang H, Zhou C, Nie S, Xu S, Li M, Yu Q, Wei Y, Wang X. Anti-ulcerative colitis effect of rotating magnetic field on DSS-induced mice by modulating colonic inflammatory deterioration. Mol Immunol 2024; 172:23-37. [PMID: 38865801 DOI: 10.1016/j.molimm.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Ulcerative colitis (UC) is a prevalent inflammatory disorder that emerges in the colon and rectum, exhibiting a rising global prevalence and seriously impacting the physical and mental health of patients. Significant challenges remain in UC treatment, highlighting the need for safe and effective long-term therapeutic approaches. Heralded as a promising physical treatment, the rotating magnetic field (RMF) demonstrates safety, stability, manageability, and efficiency. This study delves into RMF's potential in mitigating DSS-induced UC in mice, assessing disease activity indices (DAI) and pathological alterations such as daily body weight, fecal occult blood, colon length, and morphological changes. Besides, several indexes have been detected, including serum concentrations of pro-inflammatory cytokines (IL6, IL-17A, TNF-α, IFN-γ) and anti-inflammatory cytokines (TGF-β, IL-4, IL-10), the ratio of splenic CD3+, CD4+, and CD8+ T cells, the rate of apoptotic colonic cells, the expression of colonic inflammatory and tight junction-associated proteins. The results showed that RMF had beneficial effects on the decrease of intestinal permeability, the restoration of tight junctions, and the mitigation of mitochondrial respiratory complexes (MRCs) by attenuating inflammatory dysfunction in colons of DSS-induced UC model of mice. In conclusion, this study demonstrates that RMF attenuates colonic inflammation, enhances colonic tight junction, and alleviates MRCs impairment by regulating the equilibrium of pro-inflammatory and anti-inflammatory cytokines in UC mice, suggesting the potential application of RMF in the clinical treatment of UC.
Collapse
Affiliation(s)
- Hua Yang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Cai Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shenglan Nie
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shuling Xu
- School of Pharmacy, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Mengqing Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qinyao Yu
- School of Pharmacy, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yunpeng Wei
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China; School of Pharmacy, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Yang H, Han Y, Zhou C, Nie S, Li M, Yu Q, Wei Y, Wang X. Safety of Exposure to 0.2 T and 4 Hz Rotating Magnetic Field: A Ten-Month Study on C57BL/6 Mice. Curr Issues Mol Biol 2024; 46:6390-6406. [PMID: 39057024 PMCID: PMC11275342 DOI: 10.3390/cimb46070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/08/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Amidst the burgeoning interest in rotating magnetic fields (RMF) within biological research, there remains a notable gap in the scientific evidence concerning the long-term safety of RMF. Thus, this study aimed to investigate the safety of protracted exposure to a 0.2 T, 4 Hz RMF over 10 months in mice. Two-month-old female C57BL/6 mice were randomly allocated to either the RMF group (exposed to 0.2 T, 4 Hz real RMF) or the SHAM group (exposed to 0 T, 4 Hz sham RMF). Throughout the experiment, the murine weekly body weights were recorded, and their behavioral traits were assessed via open field tests. In the final month, a comprehensive evaluation of the murine overall health was conducted, encompassing analyses of blood parameters, histomorphological examination of major organs, and skeletal assessments using X-ray and micro-CT imaging. The murine immune system and lipid metabolism were evaluated through immunochip analysis and metabolomics. Notably, no discernible adverse effects with RMF exposure were observed. Murine body weight, locomotor behavior, organ histomorphology, and skeletal health remained unaffected by RMF. Blood analysis revealed subtle changes in hormone and lipid levels between the SHAM and RMF groups, yet these differences did not reach statistical significance. Moreover, RMF led to elevated serum interleukin-28 (IL-28) levels, albeit within the normal range, and modest alterations in serum lipid metabolites. Conclusively, mice exposed to the 0.2 T, 4 Hz RMF for 10 months displayed no significant signs of chronic toxicity, indicating its potential clinical application as a physical therapy.
Collapse
Affiliation(s)
- Hua Yang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yu Han
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Cai Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shenglan Nie
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Mengqing Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qinyao Yu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yunpeng Wei
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
6
|
Guan W, Gao H, Liu Y, Sun S, Li G. Application of magnetism in tissue regeneration: recent progress and future prospects. Regen Biomater 2024; 11:rbae048. [PMID: 38939044 PMCID: PMC11208728 DOI: 10.1093/rb/rbae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
Tissue regeneration is a hot topic in the field of biomedical research in this century. Material composition, surface topology, light, ultrasonic, electric field and magnetic fields (MFs) all have important effects on the regeneration process. Among them, MFs can provide nearly non-invasive signal transmission within biological tissues, and magnetic materials can convert MFs into a series of signals related to biological processes, such as mechanical force, magnetic heat, drug release, etc. By adjusting the MFs and magnetic materials, desired cellular or molecular-level responses can be achieved to promote better tissue regeneration. This review summarizes the definition, classification and latest progress of MFs and magnetic materials in tissue engineering. It also explores the differences and potential applications of MFs in different tissue cells, aiming to connect the applications of magnetism in various subfields of tissue engineering and provide new insights for the use of magnetism in tissue regeneration.
Collapse
Affiliation(s)
- Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hongxia Gao
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Zhen C, Zhang G, Wang S, Wang J, Fang Y, Shang P. Electromagnetic fields regulate iron metabolism in living organisms: A review of effects and mechanism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:43-54. [PMID: 38447710 DOI: 10.1016/j.pbiomolbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
The emergence, evolution, and spread of life on Earth have all occurred in the geomagnetic field, and its extensive biological effects on living organisms have been documented. The charged characteristics of metal ions in biological fluids determine that they are affected by electromagnetic field forces, thus affecting life activities. Iron metabolism, as one of the important metal metabolic pathways, keeps iron absorption and excretion in a relatively balanced state, and this process is precisely and completely controlled. It is worth paying attention to how the iron metabolism process of living organisms is changed when exposed to electromagnetic fields. In this paper, the processes of iron absorption, storage and excretion in animals (mammals, fish, arthropods), plants and microorganisms exposed to electromagnetic field were summarized in detail as far as possible, in order to discover the regulation of iron metabolism by electromagnetic field. Studies and data on the effects of electromagnetic field exposure on iron metabolism in organisms show that exposure profiles vary widely across species and cell lines. This process involves a variety of factors, and the complexity of the results is not only related to the magnetic flux density/operating frequency/exposure time and the heterogeneity of the observed object. A systematic review of the biological regulation of iron metabolism by electromagnetic field exposure will not only contributes to a more comprehensive understanding of its biological effects and mechanism, but also is necessary to improve human awareness of the health related risks of electromagnetic field exposure.
Collapse
Affiliation(s)
- Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shenghang Wang
- Department of Spine Surgery, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd, Huzhou, 313300, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
8
|
Wei Y, Wang X. Biological effects of rotating magnetic field: A review from 1969 to 2021. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:103-115. [PMID: 36574882 DOI: 10.1016/j.pbiomolbio.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
As one of the common variable magnetic fields, rotating magnetic field (RMF) plays a crucial role in modern human society. The biological effects of RMF have been studied for over half a century, and various results have been discovered. Several reports have shown that RMF can inhibit the growth of various types of cancer cells in vitro and in vivo and improve clinical symptoms of patients with advanced cancer. It can also affect endogenous opioid systems and rhythm in central nerve systems, promote nerve regeneration and regulate neural electrophysiological activity in the human brain. In addition, RMF can influence the growth and metabolic activity of some microorganisms, alter the properties of fermentation products, inhibit the growth of some harmful bacteria and increase the susceptibility of antibiotic-resistant bacteria to common antibiotics. Besides, there are other biological effects of RMF on blood, bone, prenatal exposure, enzyme activity, immune function, aging, parasite, endocrine, wound healing, and plants. These discoveries demonstrate that RMF have great application potential in health care, medical treatment, fermentation engineering, and even agriculture. However, in some cases like pregnancy, RMF exposure may need to be avoided. Finally, the specific mechanisms of RMF's biological effects remain unrevealed, despite various hypotheses and theories. It does not prevent us from using it for our good.
Collapse
Affiliation(s)
- Yunpeng Wei
- Department of Physiology, School of Medical Science, Shenzhen University, Shenzhen, Guangdong, 518061, China
| | - Xiaomei Wang
- Department of Physiology, School of Medical Science, Shenzhen University, Shenzhen, Guangdong, 518061, China.
| |
Collapse
|
9
|
Intermittent ELF-MF Induce an Amplitude-Window Effect on Umbilical Cord Blood Lymphocytes. Int J Mol Sci 2022; 23:ijms232214391. [PMID: 36430865 PMCID: PMC9699011 DOI: 10.3390/ijms232214391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
In a previous study of the effects of intermittent extremely low frequency (ELF) magnetic fields (MF) on umbilical cord blood lymphocytes (UCBL), we evaluated MF amplitudes between 6 µT and 24 µT and found an effect only for those below 13 µT. This suggested the existence of an amplitude window. In this brief communication, we further tested this hypothesis. UCBLs from healthy newborns were isolated and exposed for 72 h to an intermittent ELF-MF (triangular, 7.8 Hz, 250 s ON/250 s OFF) with 6 different amplitudes between 3 µT and 12 µT, utilizing an oblong coil. Percentage of viable, early apoptotic (EA), and late apoptotic/necrotic (LAN) cells were determined by flow cytometry. Moreover, reactive oxygen species (ROS) were determined at 1 h and 3 h of the exposure. Like in our previous work, neither EA, nor LAN, nor ROS were statistically significantly affected by the intermittent ELF-MF. However, the percentage of viable cells was decreased by exposure to the fields with intensities of 6.5 µT and 12 µT (p < 0.05; and p = 0.057 for 8.5 µT). ELF-MF decreased the percentage of viable cells for fields down to 6.5 µT, but not for 5 µT, 4 µT, or 3 µT. Combined with our previous findings, the results reported here indicate an amplitude window effect between 6 µT and 13 µT. The obtained data are in line with a notion of amplitude and frequency windows, which request scanning of both amplitude and frequency while studying the ELF-MF effects.
Collapse
|
10
|
Induction of Foxp3 and activation of Tregs by HSP gp96 for treatment of autoimmune diseases. iScience 2021; 24:103445. [PMID: 34877502 PMCID: PMC8633978 DOI: 10.1016/j.isci.2021.103445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 11/10/2021] [Indexed: 01/06/2023] Open
Abstract
Upregulation and stabilization of Foxp3 expression in Tregs are essential for regulating Treg function and immune homeostasis. In this study, gp96 immunization showed obvious therapeutic effects in a Lyn–/– mouse model of systemic lupus erythematosus. Moreover, gp96 alleviated the initiation and progression of MOG-induced experimental autoimmune encephalomyelitis. Immunization of gp96 increased Treg frequency, expansion, and suppressive function. Gene expression profiling identified the NF-κB family member p65 and c-Rel as the key transcription factors for enhanced Foxp3 expression in Treg by gp96. Mutant gp96 within its Toll-like receptor (TLR) binding domain, TLR2 knockout mice, and mice with cell-specific deletion of MyD88, were used to demonstrate that gp96 activated Tregs and induced Foxp3 expression via a TLR2-MyD88-mediated NF-κB signaling pathway. Taken together, these results show that gp96 immunization restricted antibody-induced and Th-induced autoimmune diseases by integrating Treg expansion and activation, indicating its potential clinical usefulness against autoimmune diseases. SLE symptoms in Lyn–/– mice are ameliorated by gp96 immunization Tregs expanded by gp96 provide potential in suppressing Th-mediated EAE Gp96 promotes Treg proliferation, stability, and suppressive function Gp96 binds to and activates Treg in a TLR2-MyD88-NF-кB-Foxp3 pathway
Collapse
|
11
|
Epigenetic dysregulation in various types of cells exposed to extremely low-frequency magnetic fields. Cell Tissue Res 2021; 386:1-15. [PMID: 34287715 PMCID: PMC8526474 DOI: 10.1007/s00441-021-03489-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Epigenetic mechanisms regulate gene expression, without changing the DNA sequence, and establish cell-type-specific temporal and spatial expression patterns. Alterations of epigenetic marks have been observed in several pathological conditions, including cancer and neurological disorders. Emerging evidence indicates that a variety of environmental factors may cause epigenetic alterations and eventually influence disease risks. Humans are increasingly exposed to extremely low-frequency magnetic fields (ELF-MFs), which in 2002 were classified as possible carcinogens by the International Agency for Research on Cancer. This review summarizes the current knowledge of the link between the exposure to ELF-MFs and epigenetic alterations in various cell types. In spite of the limited number of publications, available evidence indicates that ELF-MF exposure can be associated with epigenetic changes, including DNA methylation, modifications of histones and microRNA expression. Further research is needed to investigate the molecular mechanisms underlying the observed phenomena.
Collapse
|