1
|
Ma Y, Zhang W, Gao M, Li J, Wang Q, Chen M, Gu L. Combined analysis of temporal metabolomics and transcriptomics reveals the metabolic patterns in goat oocytes during maturation. Theriogenology 2024; 218:69-78. [PMID: 38301509 DOI: 10.1016/j.theriogenology.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/26/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Well-balanced and orderly metabolism is a crucial prerequisite for promoting oogenesis. Involvement of single metabolites in oocyte development has been widely reported; however, the comprehensive metabolic framework controlling oocyte maturation is still lacking. In the present study, we employed an integrated temporal metabolomic and transcriptomic method to analyze metabolism in goat oocytes at GV, GVBD, and MII stages (GV, fully-grown immature oocyte; GVBD, stage of meiotic resumption; MII, mature oocyte) during in vitro maturation, revealing the global picture of the metabolic patterns during maturation. In particular, several significantly altered metabolic pathways during goat oocyte meiosis have been identified, including active serine metabolism, increased utilization of tryptophan, and marked accumulation of purine nucleotide. In summary, the current study provides transcriptomic and metabolomic datasets for goat oocyte development that can be applied in cross-species comparative studies.
Collapse
Affiliation(s)
- Yixin Ma
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Ming Gao
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiashuo Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Minjian Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Ling Gu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Wang X, Jiang Y, Zhou P, Lin L, Yang Y, Yang Q, Zhang J, Zhu D. Effective natural inhibitors targeting granzyme B in rheumatoid arthritis by computational study. Front Med (Lausanne) 2022; 9:1052792. [PMID: 36582296 PMCID: PMC9792495 DOI: 10.3389/fmed.2022.1052792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by erosive arthritis, and current treatments for RA fall short of the outcomes expected by clinicians and patients. Objectives This study aimed to identify novel therapeutic and prognostic targets in RA at the genomic level and to screen desirable compounds with potential inhibitory effects on GZMB. Methods We performed differential gene analysis on GSE55235 and GSE55457 from Gene Expression Omnibus (GEO) and then obtained the intersection of the two differentially expressed genes (DEGs) lists by drawing Venn diagrams. Then we performed protein-protein interaction (PPI) network analysis, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on the DEGs of the intersection. Next, we downloaded the crystal structure of Granzyme B (GZMB). Molecular docking technology was used to screen potential inhibitors of GZMB in subsequent experiments, and we then analyzed the toxicity and water solubility of these potential inhibitors for future drug experiments. Finally, whether the docking of these small molecules with GZMB is stable is tested by molecular dynamics. Results A total of 352 mutual DEGs were identified. Twenty hub genes were obtained according to PPI network analysis, among which the GZMB gene attracted the attention of our research. Three potent natural compounds, ZINC000004557101, ZINC000012495776, and ZINC000038143593, bound to GZMB, show better binding affinity. Furthermore, they are predicted to own low Ames mutagenicity, developmental toxicity potential, rodent carcinogenicity, and high tolerance to cytochrome P4502D6. Molecular dynamics simulations show that ZINC000004557101 and GZMB have more advantageous potential energy and can exist stably in a natural environment. Moreover, we finally verified the inhibitory effect of ZINC000004557101 on granzyme B by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western blotting experiment. Conclusion RA patients showed increased GZMB expression. ZINC000004557101 is a potential drug targeting GZMB for treating RA.
Collapse
|
3
|
Ma L, Li R, Yao Z, Wang B, Liu Y, Liu C, Wang H, Chen S, Sun D. Computational study on new natural compound inhibitors of Traf2 and Nck-interacting kinase (TNIK). Aging (Albany NY) 2022; 14:8394-8410. [DOI: 10.18632/aging.204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Lushun Ma
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Li
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhiwei Yao
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Wang
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Liu
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxiang Liu
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Wang
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gastrointestinal Surgery/Pediatric Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shuxian Chen
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Daqing Sun
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Zhong S, Hou Y, Zhang Z, Guo Z, Yang W, Dou G, Lv X, Wang X, Ge J, Wu B, Pan X, Wang H, Yang Q, Mou Y. Identification of novel natural inhibitors targeting AKT Serine/Threonine Kinase 1 (AKT1) by computational study. Bioengineered 2022; 13:12003-12020. [PMID: 35603567 PMCID: PMC9275969 DOI: 10.1080/21655979.2021.2011631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Despite great progress, the current cancer treatments often have obvious toxicity and side effects. and a poor prognosis (some patients). One of the reasons for the poor prognosis is that certain enzymes prevent anticancer drugs from killing tumor cells. AKT1 is involved in regulating PI3K/AKT/mTOR, a tumor-generating pathway. Ipatasertib, a highly selective inhibitor of AKT1, is widely used in the treatment of tumors. In this study, many structural and biochemical methodswere used to find better AKT1(Threonine Kinase 1) inhibitors, which laid a foundation for the further development of AKT1 inhibitors and provided new drugs for the treatment of tumors. ZINC15 database and Discovery Studio 4.5, a computer-aided drug screening software with many modules (LibDock for virtual screening, ADME (Absorption, Distribution, Metabolism, Excretion) and TOPKAT (toxicity prediction module) for the toxicity and properties analysis, and MD simulation for stability prediction), were employed. CCK8 assay, ELISA assay genicity and higher tolerance to cytochrome P4502D6. MD simulations indicated they could bind with AKT1 stably in the natural environment. The cell experiment and specific assay for AKT1 inhibition showed they could inhibit the proliferation and AKT1 expression of MG63 cells (Osteosarcoma cells). Moreover, these novel compounds with structural modifications can be potential contributors that lead to further rational drug design for targeting AKT1.AbbreviationAKT1, AKT Serine/Threonine Kinase 1; ADME, absorption, distribution, metabolism, excretion; TOPKAT, toxicity prediction by Computer assisted technology; CCK8, Cell Counting Kit 8; ELISA, Enzyme-linked immunosorbent assay; CYP2D6, cytochrome P4502D6 inhibition; GBM, Glioblastoma; AGC kinase, protein kinase A, G, and C families (PKA, PKC, PKG); PKB, protein kinase B; PAM pathway, PI3K/AKT/mTOR pathway; OS, overall survival; PFS, progression-free survival; LD50, lethal dose half in rats; LOAEL, lowest observed adverse effect level; NPT, normal pressure and temperature; PME, particle mesh Ewald; LINCS, linear constraint solver; RMSD, root-mean-square deviation; BBB, blood-brain barrier; DS, Discovery Studio; DTP, Developmental toxicity potential; PPB, Plasma protein binding; MTD, Maximum Tolerated Dosage; AB, Aerobic Biodegradability; NTP, US. National Toxicology Program; DTP, developmental toxicity potential.
Collapse
Affiliation(s)
- Sheng Zhong
- Neurosurgery and Neuro-Oncology Department, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuanyuan Hou
- Clinical College, Jilin University, Changchun, China
| | - Zhiyun Zhang
- Clinical College, Jilin University, Changchun, China
| | - Zhen Guo
- Clinical College, Jilin University, Changchun, China
| | - Wenzhuo Yang
- Clinical College, Jilin University, Changchun, China
| | - Gaojing Dou
- Department of Breast surgery, the First Bethune Hospital of Jilin University, Changchun, China
| | - Xiaye Lv
- Department of Hematology, the First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Xinhui Wang
- Department of Oncology, the First Hospital of Jilin University, Changchun, China
| | - Junliang Ge
- Clinical College, Jilin University, Changchun, China
| | - Bo Wu
- Department of Orthopaedics, the First Bethune Hospital of Jilin University, Changchun, China
| | - Xuefeng Pan
- Department of Obstetrics, the First Bethune Hospital of Jilin University, Changchun, China
| | - Hongyu Wang
- Clinical College, Jilin University, Changchun, China
| | - Qunying Yang
- Neurosurgery and Neuro-Oncology Department, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yonggao Mou
- Neurosurgery and Neuro-Oncology Department, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
5
|
Avinash Patil N, Macchindra Gore P, Shanmugrajan D, Patil H, Kudav M, Kandasubramanian B. Functionalized non-woven surfaces for combating the spread of the COVID-19 pandemic. Interface Focus 2022; 12:20210040. [PMID: 34956609 PMCID: PMC8662388 DOI: 10.1098/rsfs.2021.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
The worldwide outbreak of SARS-CoV-2 infection has necessitated mandatory use of face masks, personal protective equipment and intake of a healthy diet for immunity boosting. As per WHO's recommendation, continuous use of masks has been proven effective in decreasing the SARS-CoV-2 infection rate. The present study reports on the bacterial filtration efficacy (BFE) of a novel 4-ply functionalized non-woven face mask. We synthesized a polypropylene-based fabric with inner layers of melt-blown fine fibres coated with polylactic acid and immune-boosting herbal phytochemicals. Experimental studies on the synthesized face mask demonstrated a BFE of greater than 99% against Staphylococcus aureus (a bacterium species frequently found in mammalian respiratory tract). A thorough computational analysis using LibDock algorithm demonstrated an effective docking performance of herbal phytochemicals against harmful virus structures. More importantly, the face mask also showed sufficient and stable breathability as per regulatory standards. A breathing resistance of 30 Pa at an aerosol flow rate of 30 l h−1 was reported under standard temperature and pressure conditions, indicating a high potential for real-world applications.
Collapse
Affiliation(s)
- Nikhil Avinash Patil
- Nanofibre and Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Girinagar, Pune, Maharashtra 411025, India
| | - Prakash Macchindra Gore
- Nanofibre and Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Girinagar, Pune, Maharashtra 411025, India.,Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3216, Victoria, Australia
| | - Dhivya Shanmugrajan
- Department of Life Sciences, Altem Technologies, Platinum Partner of Dassault Systemes, Bangalore 560095, Karnataka, India
| | - Harshal Patil
- Venus Safety and Health Pvt Ltd, New Mumbai 410208, Maharashtra, India
| | - Mahesh Kudav
- Venus Safety and Health Pvt Ltd, New Mumbai 410208, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Nanofibre and Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Girinagar, Pune, Maharashtra 411025, India.,Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3216, Victoria, Australia
| |
Collapse
|
6
|
Patil NA, Gore PM, Jaya Prakash N, Govindaraj P, Yadav R, Verma V, Shanmugarajan D, Patil S, Kore A, Kandasubramanian B. Needleless electrospun phytochemicals encapsulated nanofibre based 3-ply biodegradable mask for combating COVID-19 pandemic. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 416:129152. [PMID: 33654455 PMCID: PMC7907737 DOI: 10.1016/j.cej.2021.129152] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 05/09/2023]
Abstract
The emergence of COVID-19 pandemic has severely affected human health and world economies. According to WHO guidelines, continuous use of face mask is mandatory for personal protection for restricting the spread of bacteria and virus. Here, we report a 3-ply cotton-PLA-cotton layered biodegradable face-mask containing encapsulated phytochemicals in the inner-filtration layer. The nano-fibrous PLA filtration layer was fabricated using needleless electrospinning of PLA & phytochemical-based herbal-extracts. This 3-layred face mask exhibits enhanced air permeability with a differential pressure of 35.78 Pa/cm2 and superior bacterial filtration efficiency of 97.9% compared to conventional face masks. Close-packed mesh structure of the nano-fibrous mat results in effective adsorption of particulate matter, aerosol particles, and bacterial targets deep inside the filtration layer. The outer hydrophobic layer of mask exhibited effective blood splash resistance up to a distance of 30 cm, ensuring its utilization for medical practices. Computational analysis of constituent phytochemicals using the LibDock algorithm predicted inhibitory activity of chemicals against the protein structured bacterial sites. The computational analysis projected superior performance of phytochemicals considering the presence of stearic acid, oleic acid, linoleic acid, and Arachidic acid exhibiting structural complementarity to inhibit targeted bacterial interface. Natural cotton fibers and PLA bio-polymer demonstrated promising biodegradable characteristics in the presence of in-house cow-dung based biodegradation slurry. Addition of jaggery to the slurry elevated the biodegradation performance, resulting in increment of change of weight from 07% to 12%. The improved performance was attributed to the increased sucrose content in biodegradation slurry, elevating the bacterial growth in the slurry. An innovative face mask has shown promising results for utilization in day-to-day life and medical frontline workers, considering the post-pandemic environmental impacts.
Collapse
Affiliation(s)
- Nikhil Avinash Patil
- Nanofibre & Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Prakash Macchindra Gore
- Nanofibre & Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3216, Victoria, Australia
| | - Niranjana Jaya Prakash
- Nanofibre & Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Premika Govindaraj
- Materials Science and Engineering at the Factory of Future - Swinburne University of Technology, Hawthorn 3122, Victoria, Australia
| | - Ramdayal Yadav
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3216, Victoria, Australia
| | - Vivek Verma
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| | - Dhivya Shanmugarajan
- Department of Life Sciences, Altem Technologies, Platinum Partner of Dassault Systemes, Bangalore 560095, Karnataka, India
| | - Shivanand Patil
- Siddheshwar Techtessile Pvt. Ltd., Kolhapur 416012, Maharashtra, India
| | - Abhay Kore
- Siddheshwar Techtessile Pvt. Ltd., Kolhapur 416012, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Nanofibre & Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| |
Collapse
|
7
|
Li H, Yang W, Xi J, Wang Z, Lu H, Du Z, Li W, Wu B, Jiang S, Peng Y, liu J, liu L, Zhang X, Feng J. Computational study on new natural compound agonists of dopamine receptor. Aging (Albany NY) 2021; 13:16620-16636. [PMID: 34170848 PMCID: PMC8266345 DOI: 10.18632/aging.203180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/29/2021] [Indexed: 04/20/2023]
Abstract
Dopamine receptor, a polypeptide chain composed of 7 hydrophobic transmembrane regions, is a new and vital drug target, especially Dopamine receptor 2(D2). Targeting dopamine receptors, Dopamine receptor agonists are a class of drugs similar in function and structure to dopamine and can directly act on dopamine receptors and activate it. Clinically, Dopamine receptor agonist drugs have achieved significant therapeutic effects on prolactinoma and Parkinson's Disease. In the study, we virtually screened a series of potential effective agonists of Dopamine receptor by computer techniques. Firstly, we used the Molecular Docking (LibDock) step to screen out some molecules that can dock well with the protein. Then, analysis of toxicity prediction and ADME (adsorption, distribution, metabolism and excretion) were carried out. More precise molecular docking (CDOCKER) and 3-Dimensional Quantitative Structure-Activity Relationship Modeling Study(3D-QSAR) pharmacophore generation were implemented to research and explore these compounds' binding mechanism with Dopamine receptor. Last but not least, to assess compound's binding stabilities, we carried out a molecular dynamic analysis. As the results show, two compounds (ZINC000008860530 and ZINC000004096987) from the small molecule database (ZINC database) were potential effective agonists of Dopamine receptor. These two compounds can combine with Dopamine receptor with higher affinity and proved to be no toxic. The cell experiment showed that two compounds could inhibit the proliferation and PRL secretion of MMQ cells (pituitary tumor cells). Thus, this study provided valuable information about Dopamine receptor agonist-based drug discovery. So, this study will benefit patients with prolactinoma and Parkinson's disease a lot.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Wenzhuo Yang
- Clinical College, Jilin University, Changchun, China
| | - Jianxin Xi
- Clinical College, Jilin University, Changchun, China
| | - Zhenhua Wang
- Clinical College, Jilin University, Changchun, China
| | - Han Lu
- Clinical College, Jilin University, Changchun, China
| | - Zhishan Du
- Clinical College, Jilin University, Changchun, China
| | - Weihang Li
- Department of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Wu
- Department of Orthopaedic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Jiang
- Chinese Academy of Sciences, Research Group of Evolution and Population Genomics, Institute of Zoology, Beijing, China
| | - Yida Peng
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Jingyi liu
- Department of Biomedical Informatics, Harvard Medical School, Cambridge, MA 02115, USA
| | - Luwei liu
- Department of Biomedical Informatics, Harvard Medical School, Cambridge, MA 02115, USA
| | - Xiangheng Zhang
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Singh R, Salunke DB. Diverse chemical space of indoleamine-2,3-dioxygenase 1 (Ido1) inhibitors. Eur J Med Chem 2020; 211:113071. [PMID: 33341650 DOI: 10.1016/j.ejmech.2020.113071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) catalyses the first and rate limiting step of kynurenine pathway accounting for the major contributor of L-Tryptophan degradation. The Kynurenine metabolites are identified as essential cofactors, antagonists, neurotoxins, immunomodulators, antioxidants as well as carcinogens. The catalytic active site of IDO1 enzyme consists of hydrophobic Pocket-A positioned in the distal heme site and remains connected to a second hydrophobic Pocket-B towards the entrance of the active site. IDO1 enzyme also relates directly to the modulation of the innate and adaptive immune system. Various studies proved that the over expression of IDO1 enzyme play a predominant role in the escape of immunity during cancer progression. Recently, there has been considerable interest in evaluating the potential of IDO1 inhibitors to mobilize the body's immune system against solid tumours. In the last two decades, enormous attempts to advance new IDO1 inhibitors are on-going both in pharmaceutical industries and in academia which resulted in the discovery of a diverse range of selective and potent IDO1 inhibitors. The IDO1 inhibitors have therapeutic utility in various diseases and in the near future, it may have utility in the treatment of COVID-19. Despite various reviews on IDO1 inhibitors in last five years, none of the reviews provide a complete overview of diverse chemical space including naturally occurring and synthetic IDO1 inhibitors with detailed structure activity relationship studies. The present work provides a complete overview on the IDO1 inhibitors known in the literature so far along with the Structure-Activity Relationship (SAR) in each class of compounds.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|