1
|
Liu B, Li C, He S, Li Z, Wang H, Feng C, Xiong Z, Tu C, Song D, Li Z. Ubiquitin-conjugating enzyme E2S (UBE2S) as a prognostic biomarker and regulator of tumorigenesis in osteosarcoma. Int Immunopharmacol 2025; 154:114545. [PMID: 40188527 DOI: 10.1016/j.intimp.2025.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/25/2025] [Accepted: 03/21/2025] [Indexed: 04/08/2025]
Abstract
Ubiquitin-conjugating enzyme E2S (UBE2S) is a member of ubiquitin conjugating enzymes with unclear association with osteosarcoma (OS). This study aimed to assess UBE2S's predictive value in OS using data from TCGA and GEO databases. Kaplan-Meier survival analysis and ROC curves were used for prognostic evaluation, and a nomogram was developed for prognostic prediction. Potential biological functions, pathways, and correlations with tumor immune microenvironment, immunotherapy response, and drug sensitivity were analyzed. UBE2S overexpression was linked to poor prognosis, and the nomogram effectively predicted OS survival outcomes. UBE2S was found to impact tumorigenesis pathways, immune landscape, and treatment sensitivity in OS. Transcriptome sequencing, RT-qPCR, Western Blotting, and immunohistochemistry confirmed that UBE2S is abnormally overexpressed in OS. Additionally, a series of in vitro experiments showed that UBE2S knockdown reduced OS cell proliferation and migration while promoting apoptosis. In vivo experiments also confirmed that UBE2S knockdown could inhibit OS cell growth. In summary, our research demonstrates that UBE2S is a reliable prognostic factor for OS. Its abnormal overexpression enhances OS proliferation and migration, indicating its significance for future personalized treatment strategies in OS.
Collapse
Affiliation(s)
- Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Changsha Medical University, Changsha 410219, China
| | - Deye Song
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China.
| |
Collapse
|
2
|
Cao L, Dai H, Wei S, Ba Y, Chen F, Chen Y, Yu C, Zhang S, Chen E, Zhang H. Endoplasmic reticulum stress-related prognosis signature characterizes the immune landscape and predicts the prognosis of colon adenocarcinoma. Front Genet 2025; 16:1516232. [PMID: 40236629 PMCID: PMC11996786 DOI: 10.3389/fgene.2025.1516232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Background Colon adenocarcinoma (COAD) is characterized by high mortality and poor prognosis. Endoplasmic reticulum stress-related gene (ERSG) plays an indispensable role in the progression and immunotherapy of COAD. In this study, we evaluated the prognostic value of ERSGs in COAD. Methods We constructed and validated the ERSG-related prognostic signature based on public databases using univariate Cox analysis, Kaplan-Meier survival analysis, the LASSO method, and multivariate Cox analysis. In addition, TCGA-COAD, the Human Protein Atlas, and quantitative real-time PCR (q-PCR) were used to detect the mRNA and protein expressions of ERSGs in normal and cancer tissues/cells. The immunotherapeutic cohort was used to evaluate the predictive value of the ERSG signature for immunotherapeutic sensitivity. Results The ERSG signature, consisted of HSPA1A, SERPINA1, and DAPK1, could predict the prognosis of patients with COAD. Clinicopathologic characteristics were significantly correlated with risk scores. There were significant differences in the proportion of tumor-infiltrating immune cells, the TP53 mutation rate, the expression of immune checkpoint-related genes, and IC50 of the chemotherapeutic drugs between the low- and high-risk groups. Compared with normal tissues, the mRNA and protein expressions of three ERSGs were decreased in cancer tissues. Compared with NCM460, the mRNA levels of HSPA1A and DAPK1 were decreased in the majority of COAD cell lines, whereas the mRNA level of SERPINA1 was increased in HCT116 and SW480, and reduced in SW620. The ERSG signature could be used as a predictor of immunotherapeutic outcomes. Conclusion The ERSG signature has a predictive value in the prognosis and immunotherapeutic sensitivity in COAD, helping guide the personalized treatment.
Collapse
Affiliation(s)
- Lichao Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Haoyang Dai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Medicine, Northwest University, Xi’an, China
| | - Shangqing Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Medicine, Northwest University, Xi’an, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Yingying Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Chendi Yu
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Shenrui Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- School of Medicine, Northwest University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
- Department of Research and Development, Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, China
| |
Collapse
|
3
|
Chen C, Tan P, Feng W, Lei Y, Hu S, Xie D, Liu Y, Ren C, Du S. Developing and validating a prognostic disulfidptosis-related signature for glioblastoma: predicting radioresistance and synergestic effect with immunotherapy. J Cancer Res Clin Oncol 2025; 151:112. [PMID: 40100446 PMCID: PMC11919952 DOI: 10.1007/s00432-025-06159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Programmed cell death (PCD) modulated radioresistance is one of the predominant causes of treatment failure in glioblastoma (GBM). Disulfidptosis, a newly discovered form of PCD, plays a crucial role in GBM progression. However, the association among disulfidptosis, radiosensitivity and radiotherapy (RT) in GBM remain unclear. METHODS We systematically analyzed disulfidptosis-related genes in 1075 GBM patients and constructed a disulfidptosis-related gene signature (DRS). Correlations among the DRS, patient prognosis and immune microenvironment were fully explored. The effects of DRS and EFEMP2 on radiotherapy efficacy were investigated via single cell sequencing analysis and validated via in vitro and in vivo experiments. RESULTS The DRS was identified as a robust and independent prognostic biomarker for GBM by multivariate Cox regression analysis, receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) in multiple cohorts. High DRS is characterized by radioresistance, and EFEMP2 was proven to be the key gene involved in this process by single cell sequencing analysis, CCK-8 assay and a clonogenic survival assay. In high-DRS patients, the cancer-immunity cycle is attenuated because the antitumor cytotoxicity of CD8+ T cells is inhibited by immune checkpoints. Preclinically, the overexpression of EFEMP2 induced radioresistance and enhancing the efficacy of programmed cell death ligand-1 (PD-L1) blockade in GL261-bearing mice. The combination of irradiation and anti-PD-L1 therapy had a synergistic effect on GBM murine models in which EFEMP2 was overexpressed. CONCLUSION Our study bioinformatically and experimentally reveals the molecular landscape of disulfidptosis in GBM, develops a predictive signature for predicting prognosis as well as radioresistance, and provides a synergistic treatment that combines radiotherapy with immunotherapy for radioresistant GBM patients with high DRS or EFEMP2 expression.
Collapse
Affiliation(s)
- Chen Chen
- Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Peixin Tan
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Wenqing Feng
- Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Lei
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Shushu Hu
- Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Dehuan Xie
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Yantan Liu
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Chen Ren
- Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China.
| | - Shasha Du
- Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Liu X, Song J, Zhou Z, He Y, Wu S, Yang J, Ren Z. Establishment of an alternative splicing prognostic risk model and identification of FN1 as a potential biomarker in glioblastoma multiforme. Sci Rep 2025; 15:6716. [PMID: 40000711 PMCID: PMC11862013 DOI: 10.1038/s41598-025-91038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Aberrant alternative splicing and abnormal alternative splicing events (ASEs) in glioblastoma multiforme (GBM) remain largely elusive. The prognostic-associated ASEs in GBM were identified and summarized into 123 genes using GBM and LGG datasets from ASCancer Atlas and TCGA. The eleven genes (C2, COL3A1, CTSL, EIF3L, FKBP9, FN1, HPCAL1, HSPB1, IGFBP4, MANBA, PRKAR1B) were screened to develop an alternative splicing prognostic risk score (ASRS) model through machine learning algorithms. The model was trained on the TCGA-GBM cohort and validated with four external datasets from CGGA and GEO, achieving AUC values of 0.808, 0.814, 0.763, 0.859, and 0.836 for 3-year survival rates, respectively. ASRS could be an independent prognostic factor for GBM patients (HR > 1.8 across three datasets) through multivariate Cox regression analysis. The high-risk group demonstrated poorer prognosis, elevated immune scores, increased levels of immune cell infiltration, and greater differences in drug sensitivity. We found that FN1, used for model construction, contained 4 abnormal ASEs resulting in high expression of non-canonical transcripts and the presence of premature termination codon. These abnormal ASEs may be regulated by tumour-related splicing factors according to the PPI network. Furthermore, both mRNA and protein levels of FN1 were highly expressed in GBM compared to LGG, correlating with poor prognosis in GBM. In conclusion, our findings highlight the role of ASEs in affecting the progression of GBM, and the model showed a potential application for prognostic risk of patients. FN1 may serve as a promising splicing biomarker for GBM, and mechanisms of processes of aberrant splicing need to be revealed in the future.
Collapse
Affiliation(s)
- Xi Liu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Jinming Song
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Zhiming Zhou
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Yuting He
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Shaochun Wu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Jin Yang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China.
| | - Zhonglu Ren
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China.
| |
Collapse
|
5
|
Zhao F, Chen M, Wu T, Ji M, Li F. Integration of single-cell and bulk RNA sequencing to identify a distinct tumor stem cells and construct a novel prognostic signature for evaluating prognosis and immunotherapy in LUAD. J Transl Med 2025; 23:222. [PMID: 39987127 PMCID: PMC11847374 DOI: 10.1186/s12967-025-06243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are crucial for lung adenocarcinoma (LUAD). This study investigates tumor stem cell gene signatures in LUAD using single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq), aiming to develop a prognostic tumor stem cell marker signature (TSCMS) model. METHODS LUAD scRNA-seq and RNA-seq data were analyzed. CytoTRACE software quantified the stemness score of tumor-derived epithelial cell clusters. Gene Set Variation Analysis (GSVA) identified potential biological functions in different clusters. The TSCMS model was constructed using Lasso-Cox regression, and its prognostic value was assessed through Kaplan-Meier, Cox regression, and receiver-operating characteristic (ROC) curve analyses. Immune infiltration was evaluated using the Cibersortx algorithm, and drug response prediction was performed using the pRRophetic package. TAF10 functional investigations in LUAD cells involved bioinformatics analysis, qRT-PCR, Western blot, immunohistochemistry, and assays for cell proliferation. RESULTS Seven distinct cell clusters were identified by CytoTRACE, with epithelial cell cluster 1 (Epi_C1) showing the highest stemness potential. The TSCMS model included 49 tumor stemness-related genes; high-risk patients exhibited lower immune and ESTIMATE scores and increased tumor purity. Significant differences in immune landscapes and chemotherapy sensitivity were observed between risk groups. TAF10 positively correlated with RNA expression-based stemness scores in various tumors, including LUAD. It was over-expressed in LUAD cell lines and clinical tumor tissues, with high expression linked to poor prognosis. Silencing TAF10 inhibited LUAD cell proliferation and tumor sphere formation. CONCLUSIONS This study demonstrates the TSCMS model's prognostic value in LUAD, reveals insights into immune infiltration and therapeutic response, and identifies TAF10 as a potential therapeutic target.
Collapse
Affiliation(s)
- Fengyun Zhao
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China.
| | - Mengting Chen
- South China Normal University, Guangzhou, 510630, Guangdong, China
| | - Tianjiao Wu
- Guangdong Medical University, Zhanjiang, 523000, Guangdong, China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, 528403, Guangdong, China.
| |
Collapse
|
6
|
Zhang X, Zou J, Ning J, Zhao Y, Qu R, Zhang Y. Identification of potential diagnostic targets and therapeutic strategies for anoikis-related biomarkers in lung squamous cell carcinoma using machine learning and computational virtual screening. Front Pharmacol 2025; 16:1500968. [PMID: 40028162 PMCID: PMC11868076 DOI: 10.3389/fphar.2025.1500968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Objective Lung squamous cell carcinoma (LUSC) is a common subtype of non-small cell lung cancer (NSCLC) characterized by high invasiveness, high metastatic potential, and drug resistance, resulting in poor patient prognosis. Anoikis, a specific form of apoptosis triggered by cell detachment from the extracellular matrix (ECM), plays a crucial role in tumor metastasis. Resistance to anoikis is a key mechanism by which cancer cells acquire metastatic potential. Although several studies have identified biomarkers related to LUSC, the role of anoikis-related genes (ARGs) remains largely unexplored. Methods Anoikis-related genes were obtained from the Harmonizome and GeneCards databases, and 222 differentially expressed genes (DEGs) in LUSC were identified via differential expression analysis. Univariate Cox regression analysis identified 74 ARGs significantly associated with survival, and a prognostic model comprising 8 ARGs was developed using LASSO and multivariate Cox regression analyses. The model was internally validated using receiver operating characteristic (ROC) curves and Kaplan-Meier (K-M) survival curves. Differences in immune cell infiltration and gene expression between high- and low-risk groups were analyzed. Virtual drug screening and molecular dynamics simulations were performed to evaluate the therapeutic potential of CSNK2A1, a key gene in the model. Finally, in vitro experiments were conducted to validate the therapeutic effects of the identified drug on LUSC. Results The 8-gene prognostic model demonstrated excellent predictive performance and stability. Significant differences in immune cell infiltration and immune microenvironment characteristics were observed between the high- and low-risk groups, suggesting the critical role of ARGs in shaping the immune landscape of LUSC. Virtual drug screening identified Dihydroergotamine as having the highest binding affinity for CSNK2A1. Molecular dynamics simulations confirmed that the CSNK2A1-Dihydroergotamine complex exhibited strong binding stability. Further in vitro experiments demonstrated that Dihydroergotamine significantly inhibited LUSC cell viability, migration, and invasion, and downregulated CSNK2A1 expression. Conclusion This study is the first to construct an anoikis-related prognostic model for LUSC, highlighting its role in the tumor immune microenvironment and providing insights into personalized therapy. Dihydroergotamine exhibited significant anti-LUSC activity and holds promise as a potential therapeutic agent. CSNK2A1 emerged as a robust candidate for early diagnosis and a therapeutic target in LUSC.
Collapse
Affiliation(s)
- Xin Zhang
- College of Basic Medical sciences, Dali University, Dali, China
| | - Jing Zou
- Department of Respiratory Medicine, First Affiliated Hospital of Dali University, Dali, China
| | - Jinghua Ning
- College of Basic Medical sciences, Dali University, Dali, China
| | - Yanhong Zhao
- College of Basic Medical sciences, Dali University, Dali, China
| | - Run Qu
- College of Basic Medical sciences, Dali University, Dali, China
| | - Yuzhe Zhang
- College of Basic Medical sciences, Dali University, Dali, China
- Key Laboratory of Insect Biomedicine, Dali, Yunnan, China
- Key Laboratory of Anti-Pathogen Medicinal Plants Screening, Dali, Yunnan, China
| |
Collapse
|
7
|
Zhao X, Yang L, Pan J, Zeng Z, Zhang T, Yang Y, Zhang J, Chen T, Xiao Z, Pan W. CXCL8 modulates M0 macrophage proliferation and polarization to influence tumor progression in cervical cancer. Sci Rep 2025; 15:790. [PMID: 39755693 PMCID: PMC11700176 DOI: 10.1038/s41598-024-81726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME. A nine-gene prognostic model constructed from immune gene signatures highlighted CXCL8 as a key regulator of M0 macrophage behavior. Functional experiments demonstrated that CXCL8 knockdown in M0 macrophages inhibited their proliferation, shifted polarization toward an M1-dominant phenotype, and reduced tumor-promoting M2 polarization. Co-culture experiments with CXCL8-deficient M0 macrophages further revealed a suppression of HeLa cell proliferation, migration, and invasion. These findings position M0 macrophages as central regulators within the TME and suggest that targeting pathways like CXCL8 could provide novel therapeutic strategies for improving outcomes in CESC patients.
Collapse
Affiliation(s)
- Xiyan Zhao
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Li Yang
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Department of Medical Laboratory science, Guizhou Medical University, Guizhou, Guiyang, 550004, China
| | - Jigang Pan
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Zhirui Zeng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Tuo Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Yushi Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Jingjing Zhang
- Affiliated Children's Hospital, Nanjing Medical University School of Pediatrics, Nanjing, Jiangsu, 210008, China
| | - Tengxiang Chen
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China.
| | - Ziwen Xiao
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
| |
Collapse
|
8
|
Mu H, Yang B, Wang Y, Wang S, Yu W, Jia M, Dong W, Wang X, Xu X, Dong Z, Yang B, Li X, Wang J. Inhibition of fibulin-3 ameliorates periodontal inflammation through reducing M1 macrophage polarization via EGFR/PI3K/AKT pathway. J Periodontol 2024. [PMID: 39692480 DOI: 10.1002/jper.24-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND This study aimed to evaluate the role of fibulin-3 (FBLN3) in macrophage polarization, its mechanism, and its effect on periodontitis. METHODS We conducted studies on periodontitis using both clinical samples and ligature-induced mouse periodontitis model. The inflammatory state was assessed using microcomputed tomography, hematoxylin and eosin staining, immunohistochemical staining, and immunofluorescence staining. In vitro, bone marrow-derived macrophages, and RAW 264.7 macrophages were treated with lipopolysaccharide (LPS) and interleukin (IL)-4 to induce polarization. The role of FBLN3 in macrophage polarization was investigated using overexpression plasmids or siRNAs. Furthermore, local injection of adeno-associated virus was employed to suppress FBLN3 expression in periodontal tissues. RESULTS FBLN3 levels were greater in periodontitis tissues. FBLN3 promoted M1 polarization and suppressed M2 polarization in macrophages. The overexpression of FBLN3 promoted M1 polarization via the EGFR/PI3K/AKT signaling pathway, an effect that the epidermal growth factor receptor (EGFR) inhibitor PD153035 reversed. Suppressing FBLN3 expression improved periodontal inflammation and reduced alveolar bone loss in periodontitis. CONCLUSIONS FBLN3 suppression can mitigate periodontitis by decreasing the M1 macrophage ratio. FBLN3 regulates M1 macrophage polarization through the EGFR/PI3K/AKT signaling pathway. PLAIN LANGUAGE SUMMARY Disruption in the collaboration between extracellular matrix (ECM) and immune system is a significant pathology in periodontitis. Macrophages are a crucial part of the immune system and have unique functions, such as polarization. Fibulin-3, an ECM protein, may play a vital role in this dynamic interplay. Fibulin-3 expression is elevated in periodontitis and is closely related to immune cell function. Inhibiting fibulin-3 can alleviate periodontitis by reducing infiltration of immune cells and M1 macrophage ratio. Furthermore, fibulin-3 promoted macrophage M1 polarization by activating the PI3K/AKT signaling pathway through EGFR binding. Our findings offer a clinically relevant rationale for immune response modulation through fibulin-3.
Collapse
Affiliation(s)
- Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Beining Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wenqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Meie Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xinyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xiaoxiao Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhipeng Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Baochen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xuemei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Zhang H, Liu A, Bo W, Zhang M, Wang H, Feng X, Wu Y. Upregulation of HSD11B1 promotes cortisol production and inhibits NK cell activation in pancreatic adenocarcinoma. Mol Immunol 2024; 175:10-19. [PMID: 39276709 DOI: 10.1016/j.molimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Cortisol is a glucocorticoid hormone that has immunosuppressive function. Elevated basal cortisol levels are present in patients with some kinds of cancers, but its role in the microenvironment of pancreatic adenocarcinoma (PAAD) remains unclear. This study analyzed the expression of genes involved in cortisol generation by using high-throughput sequencing data from TCGA portal and found HSD11B1 was significantly upregulated in patients with PAAD. The correlations between HSD11B1 level and the expression of 23 immunosuppressive receptors were analyzed by Spearman's correlation analysis. The function of HSD11B1 was examined in primary NK cells and PAAD cell lines. The levels of cortisol in medium and cell lysates were detected by ELISA. In vitro killing assay was used to evaluate the cytotoxicity of NK cells. Cell surface levels of CD96, Tim-3, PD-1, TIGIT, CTLA-4, NKp46, NKp30, NKD2G and LFA-1A, and intracellular levels of CD107a and IFN-γ were examined by flow cytometry. We observed that patients with higher HSD11B1 level had shorter survival time. HSD11B1 is positively correlated with the mRNA levels of 11 immunosuppressive receptors in PAAD. Higher HSD11B1 level relates to reduced abundance of activated NK cells in the tumors. HSD11B1 overexpressed NK cells exhibit exhausted phenotype with increased cortisol production, reduced viability, and reduced cytotoxicity against cancer cells. Overexpression of HSD11B1 did not change the viability of tumor cells but upregulated cortisol production. Targeting HSD11B1 by a specific inhibitor improved the NK cells responsiveness. In conclusion, HSD11B1 is upregulated in patients with PAAD, and higher HSD11B1 level is related to poor prognosis. Upregulation of HSD11B1 in NK and tumor cells increased the production and secretion of cortisol and induces NK cell exhaustion.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Aixiang Liu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyi Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Medical Oncology, Daytime Medical Treatment Area, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
10
|
Cui S, Yang Y, Lou S, Huang R, Wang J, Chen Z, Xie J. Establish a novel immune-related gene prognostic risk index (IRGPRI) associated with CD8+ cytotoxic T lymphocytes in non-small-cell lung cancer (NSCLC). Heliyon 2024; 10:e38324. [PMID: 39397989 PMCID: PMC11466668 DOI: 10.1016/j.heliyon.2024.e38324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background The aim of this study is to create an index called IRGPRI (immune-related gene prognostic risk index) that can be utilized for predicting the prognosis and assessing the efficacy of immune checkpoint inhibitors (ICIs) therapy in patients with non-small-cell lung cancer (NSCLC). Methods Distinguishing gene expression patterns (DEGs) were detected in CD8+ cytotoxic T lymphocytes (CTLs) compared to other cellular types such as CD4 T cells, B cells, plasma cells, and CD8 Tex using the advanced technology of Single-cell RNA Sequencing (scRNA-seq). The construction of IRGPRI was accomplished by employing LASSO Cox regression analysis. We conducted a comparative analysis on clinical characteristics and molecular features, such as pathway enrichment and gene mutation, among the distinct subgroups of IRGPRI. Furthermore, we explored the correlation between immunological characteristics and IRGPRI subgroups to comprehensively assess the effectiveness of ICIs in NSCLC patients. Results A total of 109 genes were identified by intersecting immune-related genes with DEGs obtained from single-cell RNA sequencing data (GSE131907), specifically comparing CTLs to other cell types. From these, we selected 7 prognosis-related genes, namely TRBC1, HLA-DMA, CTSH, RAC1, CTSL, ANXA2, and CEBPB. These genes were used to construct the IRGPRI. The prognosis of patients diagnosed with NSCLC was found to be significantly better in the low-risk group compared to the high-risk group, as demonstrated by Kaplan-Meier (K-M) survival analysis. This observation was further confirmed through the utilization of data from the GEO cohort. The low-risk group demonstrated an increase in pathways linked with immune response, whereas the high-risk group exhibited a higher prevalence of pathways related to cancer. Furthermore, it was noted in the TCGA cohort that there existed a significant rise in the mutation frequency of every gene within the high-risk group as opposed to the low-risk group. Missense variation emerged as the most prevalent form of mutation. According to the analysis of immune cell infiltration and function, the comprehensive findings suggest that the group with a low risk is characterized by an increased presence of plasma cells, CTLs, T cells follicular helper, Tregs, and Dendritic cell resting. Additionally, they exhibit a higher score in terms of immune function for B cells, CD8+ T cells, checkpoint activity, T cell inhibition and stimulation. Moreover, this low-risk group demonstrates greater efficacy when treated with ICIs therapy compared to the high-risk group. Conclusions Our research effectively developed and verified a unique IRGPRI, showcasing its association with immune-related characteristics. As a result, the potential of IRGPRI as a valuable biomarker for predicting prognosis and evaluating the effectiveness of ICIs treatment in cancer is evident.
Collapse
Affiliation(s)
- Shenjing Cui
- Department of Clinical Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yikun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Shuang Lou
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Rong Huang
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing Wang
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhongbiao Chen
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingjing Xie
- Department of Medical Administration, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
11
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2024:S2090-1232(24)00315-1. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
12
|
Cho JY, Kim JW, Kim DG, Kim YS, Kim WJ, Kim YO, Kong HJ. The extracellular matrix protein EFEMP2 is involved in the response to VHSV infection in the olive flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109681. [PMID: 38871142 DOI: 10.1016/j.fsi.2024.109681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
The EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) is involved in connective tissue development, elastic fiber formation, and tumor growth. In this study, we characterized the cDNA of EFEMP2 (PoEFEMP2), a member of the fibulin family of ECM proteins, in the olive flounder Paralichthys olivaceus. The coding region of PoEFEMP2 encodes a protein that contains six calcium-binding EGF-like (EGF-CA) domains and four complement Clr-like EGF-like (cEGF) domains. PoEFEMP2 shows 67.51-96.77 % similarities to orthologs in a variety of fish species. PoEFEMP2 mRNA was detected in all tissues examined; the highest levels of PoEFEMP2 mRNA expression were observed in the heart, testis, ovary and muscle. The PoEFEMP2 mRNA level increases during early development. In addition, the PoEFEMP2 mRNA level increased at 3 h post-infection (hpi) and decreased from 6 to 48 hpi in flounder Hirame natural embryo (HINAE) cells infected with viral hemorrhagic septicemia virus (VHSV). Disruption of PoEFEMP2 using the clustered regularly interspaced short palindromic repeats/CRISPR-associated-9 (CRISPR/Cas9) system resulted in a significant upregulation of VHSV G mRNA levels and immune-related genes expression in knockout cells. These findings implicate PoEFEMP2 in antiviral responses in P. olivaceus.
Collapse
Affiliation(s)
- Ja Young Cho
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Sam Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Woo-Jin Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea.
| |
Collapse
|
13
|
Kaynar A, Ozcan M, Li X, Turkez H, Zhang C, Uhlén M, Shoaie S, Mardinoglu A. Discovery of a Therapeutic Agent for Glioblastoma Using a Systems Biology-Based Drug Repositioning Approach. Int J Mol Sci 2024; 25:7868. [PMID: 39063109 PMCID: PMC11277330 DOI: 10.3390/ijms25147868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma (GBM), a highly malignant tumour of the central nervous system, presents with a dire prognosis and low survival rates. The heterogeneous and recurrent nature of GBM renders current treatments relatively ineffective. In our study, we utilized an integrative systems biology approach to uncover the molecular mechanisms driving GBM progression and identify viable therapeutic drug targets for developing more effective GBM treatment strategies. Our integrative analysis revealed an elevated expression of CHST2 in GBM tumours, designating it as an unfavourable prognostic gene in GBM, as supported by data from two independent GBM cohorts. Further, we pinpointed WZ-4002 as a potential drug candidate to modulate CHST2 through computational drug repositioning. WZ-4002 directly targeted EGFR (ERBB1) and ERBB2, affecting their dimerization and influencing the activity of adjacent genes, including CHST2. We validated our findings by treating U-138 MG cells with WZ-4002, observing a decrease in CHST2 protein levels and a reduction in cell viability. In summary, our research suggests that the WZ-4002 drug candidate may effectively modulate CHST2 and adjacent genes, offering a promising avenue for developing efficient treatment strategies for GBM patients.
Collapse
Affiliation(s)
- Ali Kaynar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
| | - Mehmet Ozcan
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bülent Ecevit University, Zongudak TR-67100, Turkey
| | - Xiangyu Li
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Hasan Turkez
- Medical Biology Department, Faculty of Medicine, Atatürk University, Erzurum TR-25240, Turkey;
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| |
Collapse
|
14
|
Pan T, Xie DK, Li J, Qiang YJ, Fan SY, Wang TT, Han YY, Zang J, Yang Y, Zhao JL, Li SZ, Wu S. Glioma-Stem-Cell-Derived Exosomes Remodeled Glioma-Associated Macrophage via NEAT1/miR-125a/STAT3 Pathway. Cancers (Basel) 2024; 16:2500. [PMID: 39061140 PMCID: PMC11274466 DOI: 10.3390/cancers16142500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma (GBM), as the most common primary brain tumor, usually results in an extremely poor prognosis, in which glioma stem cells (GSCs) and their immunosuppressive microenvironment prominently intervene in the resistance to radiotherapy and chemotherapy that directly leads to tumor recurrence and shortened survival time. The specific mechanism through which exosomes generated from GSCs support the creation of an immunosuppressive microenvironment remains unknown, while it is acknowledged to be engaged in intercellular communication and the regulation of the glioma immunosuppressive microenvironment. The elevated expression of LncRNA-NEAT1 was found in glioma cells after radiotherapy, chemotherapy, and DNA damage stimulation, and NEAT1 could promote the malignant biological activities of GSCs. Emerging evidence suggests that lncRNAs may reply to external stimuli or DNA damage by playing a role in modulating different aspects of tumor biology. Our study demonstrated a promotive role of the carried NEAT1 by GSC-derived exosomes in the polarization of M2-like macrophages. Further experiments demonstrated the mediative role of miR-125a and its target gene STAT3 in NEAT1-induced polarization of M2-like macrophages that promote glioma progression. Our findings elucidate the mechanism by which GSCs influence the polarization of M2-like macrophages through exosomes, which may contribute to the formation of immunosuppressive microenvironments. Taken together, our study reveals the miR-125a-STAT3 pathway through which exosomal NEAT1 from treatment-resistant GSCs contributes to M2-like macrophage polarization, indicating the potential of exosomal NEAT1 for treating glioma.
Collapse
Affiliation(s)
- Tong Pan
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi’an 710032, China
| | - Dong-Kun Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi’an 710069, China; (D.-K.X.); (Y.Y.)
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi’an 710032, China;
| | - Juan Li
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
| | - Yu-Jie Qiang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
| | - Song-Yuan Fan
- Department of Neurosurgery, The Air Force Hospital of Central Theater of PLA, Datong 037000, China;
| | - Ting-Ting Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
| | - Yuan-Yuan Han
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
| | - Jian Zang
- Department of Radiotherapy, Xijing Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi’an 710069, China; (D.-K.X.); (Y.Y.)
| | - Jun-Long Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi’an 710032, China;
| | - San-Zhong Li
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
| | - Shuang Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (T.P.); (J.L.); (Y.-J.Q.); (T.-T.W.); (Y.-Y.H.)
- Department of Neurosurgery, The Air Force Hospital of Central Theater of PLA, Datong 037000, China;
| |
Collapse
|
15
|
Xin S, Su J, Li R, Cao Q, Wang H, Wei Z, Wang C, Zhang C. Identification of a risk model for prognostic and therapeutic prediction in renal cell carcinoma based on infiltrating M0 cells. Sci Rep 2024; 14:13390. [PMID: 38862642 PMCID: PMC11166996 DOI: 10.1038/s41598-024-64207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
The tumor microenvironment (TME) comprises immune-infiltrating cells that are closely linked to tumor development. By screening and analyzing genes associated with tumor-infiltrating M0 cells, we developed a risk model to provide therapeutic and prognostic guidance in clear cell renal cell carcinoma (ccRCC). First, the infiltration abundance of each immune cell type and its correlation with patient prognosis were analyzed. After assessing the potential link between the depth of immune cell infiltration and prognosis, we screened the infiltrating M0 cells to establish a risk model centered on three key genes (TMEN174, LRRC19, and SAA1). The correlation analysis indicated a positive correlation between the risk score and various stages of the tumor immune cycle, including B-cell recruitment. Furthermore, the risk score was positively correlated with CD8 expression and several popular immune checkpoints (ICs) (TIGIT, CTLA4, CD274, LAG3, and PDCD1). Additionally, the high-risk group (HRG) had higher scores for tumor immune dysfunction and exclusion (TIDE) and exclusion than the low-risk group (LRG). Importantly, the risk score was negatively correlated with the immunotherapy-related pathway enrichment scores, and the LRG showed a greater therapeutic benefit than the HRG. Differences in sensitivity to targeted drugs between the HRG and LRG were analyzed. For commonly used targeted drugs in RCC, including axitinib, pazopanib, temsirolimus, and sunitinib, LRG had lower IC50 values, indicating increased sensitivity. Finally, immunohistochemistry results of 66 paraffin-embedded specimens indicated that SAA1 was strongly expressed in the tumor samples and was associated with tumor metastasis, stage, and grade. SAA1 was found to have a significant pro-tumorigenic effect by experimental validation. In summary, these data confirmed that tumor-infiltrating M0 cells play a key role in the prognosis and treatment of patients with ccRCC. This discovery offers new insights and directions for the prognostic prediction and treatment of ccRCC.
Collapse
Affiliation(s)
- Shiyong Xin
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Rd, Luo-long District, Luoyang, China.
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Rd, Luo-long District, Luoyang, China
| | - Ruixin Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guan-lin Rd, Luo-long District, Luoyang, China
| | - Qiong Cao
- Department of Pathology, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Haojie Wang
- Department of Central Laboratory, Zhengzhou University, Luoyang Central Hospital, Luoyang, 471003, China
| | - Zhihao Wei
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, 471023, China
| | - Chengliang Wang
- Department of Urology, Shangcheng County People's Hospital, Xinyang, 464000, China
| | - Chengdong Zhang
- Department of Urology, Xinxiang First People's Hospital, Xinxiang, 453000, China
| |
Collapse
|
16
|
Hu H, Xu Y, Zhang Q, Ai X, Wang T, Li H, Jin C, Ouyang C, Wu Z. Exploring prognostic and immunological characteristics of pancreatic ductal adenocarcinoma through comprehensive genomic analysis of tertiary lymphoid structures and CD8 + T-cells. J Cancer Res Clin Oncol 2024; 150:300. [PMID: 38850373 PMCID: PMC11162401 DOI: 10.1007/s00432-024-05824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE Tertiary lymphoid structures (TLSs) and CD8 + T-cells are potential prognostic indicators for pancreatic ductal adenocarcinoma (PDAC). We established a novel scoring system for evaluating the risk for PDAC based on TLS- and CD8 + T-cell-related genes. METHODS We analyzed single-cell sequence data from PDAC patients in the Genome Sequence Archive. Bioinformatics and machine algorithms established and validated a scoring method (T-C score) based on PDAC survival-related genes highly expressed in TLSs and CD8 + T-cells. Patients were stratified into the low- and high-T-C score groups. Differences in survival, pathway enrichment, mutation status, immune cell infiltration, expression of immune checkpoint-associated genes, tumor stemness, and response to antitumor therapy were compared through computer simulation methods. RESULTS Overall survival differed significantly between the training and validation cohorts' low- and high-T-C score groups. The low-T-C score group correlated with lower tumor mutation burden and lower levels of tumor stemness compared with the high-T-C score group. Patients with lower T-C scores exhibited advantages in immunotherapeutic responses and might be more sensitive to the chemotherapeutic regimen and multi-kinase inhibitors. CONCLUSION The T-C score could serve as an effective model for predicting the survival and therapeutic responses of patients with PDAC.
Collapse
Affiliation(s)
- Hao Hu
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Yang Xu
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Qiang Zhang
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Xiangnan Ai
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Tengfei Wang
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Huixing Li
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Changguo Jin
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Caiguo Ouyang
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Zhenyu Wu
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, No. 15, Yuquan Road, Haidian District, Beijing, 100049, China.
| |
Collapse
|
17
|
Guo Z, Xie Y, Zhang L, Liu S, Jiang W. A novel disulfidptosis-related lncRNAs signature for predicting survival and immune response in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:267-284. [PMID: 38180745 PMCID: PMC10817373 DOI: 10.18632/aging.205367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024]
Abstract
The accumulation of intracellular disulfides induces a novel and unique form of metabolic-related cell death known as disulfidptosis. A previous study revealed the prognostic value of a risk model of disulfidptosis-related genes in hepatocellular carcinoma (HCC). However, to date, no studies have investigated the relationship between disulfidptosis-related long non-coding RNAs (DRLs) and HCC. In this study, we collected and analyzed RNA sequencing data from 370 HCC samples to explore the DRLs in the tumorigenesis and development of HCC. By employing Lasso Cox regression and multivariate Cox regression analyses, we identified five prognostic DRLs, which were used to construct a prognostic signature. The signature was subsequently validated using receiver operating characteristic (ROC) curves, Kaplan-Meier analysis, Cox regression analyses, nomograms, and calibration curves. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were performed, revealing that the DRLs signature was associated with HCC and several cancer-related pathways. Furthermore, the DRLs signature showed correlations with the infiltration of M0 and M1 macrophages, immune-related functions, and multiple immune checkpoints, including PDCD1, LAG3, CTLA4, TIGIT, CD47, and others. Analysis using the tumor immune dysfunction and exclusion (TIDE) approach demonstrated that the DRLs signature could predict the response to immunotherapy. Finally, we screened potential chemotherapy drugs that could sensitize HCC. In conclusion, our novel DRLs signature provides valuable insights into predicting patient survival and immunotherapy responses.
Collapse
Affiliation(s)
- Zhoubo Guo
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin Medical University, Key Laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin Key Laboratory for Organ Transplantation, Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin, China
| | - Yan Xie
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin Medical University, Key Laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin Key Laboratory for Organ Transplantation, Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin, China
| | - Li Zhang
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin Medical University, Key Laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin Key Laboratory for Organ Transplantation, Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin, China
| | - Shuaichen Liu
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin Medical University, Key Laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin Key Laboratory for Organ Transplantation, Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin, China
| | - Wentao Jiang
- Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin Medical University, Key Laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin Key Laboratory for Organ Transplantation, Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin, China
| |
Collapse
|
18
|
Huang L, Wang Z, Liao C, Zhao Z, Gao H, Huang R, Chen J, Wu F, Zeng F, Zhang Y, Jiang T, Hu H. PVT1 promotes proliferation and macrophage immunosuppressive polarization through STAT1 and CX3CL1 regulation in glioblastoma multiforme. CNS Neurosci Ther 2024; 30:e14566. [PMID: 38287522 PMCID: PMC10805395 DOI: 10.1111/cns.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024] Open
Abstract
AIMS This study aimed to investigate the role of plasmacytoma variant translocation 1 (PVT1), a long non-coding RNA, in glioblastoma multiforme (GBM) and its impact on the tumor microenvironment (TME). METHODS We assessed aberrant PVT1 expression in glioma tissues and its impact on GBM cell growth in vitro and in vivo. Additionally, we investigated PVT1's role in influencing glioma-associated macrophages. To understand PVT1's role in cell growth and the immunosuppressive TME, we performed a series of comprehensive experiments. RESULTS PVT1 was overexpressed in GBM due to copy number amplification, correlating with poor prognosis. Elevated PVT1 promoted GBM cell proliferation, while its downregulation inhibited growth in vitro and in vivo. PVT1 inhibited type I interferon-stimulated genes (ISGs), with STAT1 as the central hub. PVT1 correlated with macrophage enrichment and regulated CX3CL1 expression, promoting recruitment and M2 phenotype polarization of macrophages. PVT1 localized to the cell nucleus and bound to DHX9, enriching at the promoter regions of STAT1 and CX3CL1, modulating ISGs and CX3CL1 expression. CONCLUSION PVT1 plays a significant role in GBM, correlating with poor prognosis, promoting cell growth, and shaping an immunosuppressive TME via STAT1 and CX3CL1 regulation. Targeting PVT1 may hold therapeutic promise for GBM patients.
Collapse
Affiliation(s)
- Lijie Huang
- Department of Pathophysiology, Beijing Neurosurgical InstituteCapital Medical UniversityChina
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chihyi Liao
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Hua Gao
- Department of Cell Biology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jing Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Center of Brain TumorBeijing Institute for Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas NetworkBeijingChina
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
19
|
Wang W, Zhang Z, Li W, Wei D, Xu J, Qian Y, Cao S, Lei D. Characterization of the immune cell function landscape in head and neck squamous carcinoma to assist in prognosis prediction and immunotherapy. Aging (Albany NY) 2023; 15:12588-12617. [PMID: 37955651 PMCID: PMC10683602 DOI: 10.18632/aging.205201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The malignant characteristics of cancer depend not only on intrinsic properties of cancer cells but also on the functions of infiltrating immune cells. In this study, we aimed to investigate the functional landscape of immune cells in head and neck squamous cell carcinoma (HNSCC). METHODS We employed single-sample gene set enrichment analysis to examine the immunophenotypes of HNSCC based on 29 immune cell functions (ICFs) in TCGA and GSE65858 datasets. We analyzed the clinical features, immune microenvironment, molecular profiles, and biological processes. Additionally, we developed and validated an ICF-based risk score for personalized prognosis prediction. We confirmed the value of the ICF score in our cohort using qRT-PCR and immunohistochemistry. Molecular docking was used to predict potential compounds for immunotherapy. RESULTS Three immunophenotypes (Immune-L, Immune-M, and Immune-H) were identified in 769 HNSCC samples. The characteristics of Immune-H were consistent with a "Hot" tumor, Immune-L was similar to a "Cold" tumor, and Immune-M exhibited intermediate features. The ICF risk score was associated with immune checkpoints, infiltrating immune cells, tumor mutation burden, and sensitivities to targeted/chemotherapeutic agents. Gene set variation analysis implicated the involvement of metabolic reprogramming pathways in the high-risk group. The combination of "Tumor Immune Dysfunction and Exclusion" and "Immunophenoscore" algorithms indicated that the low-risk group had a higher likelihood of benefiting from immunotherapy. Finally, we identified Eltrombopag and other compounds that may be beneficial for HNSCC immunotherapy. CONCLUSION Our study provides a novel perspective on the tumor microenvironment of HNSCC, aiding in the understanding of HNSCC heterogeneity and the development of personalized/precision medicine.
Collapse
Affiliation(s)
- Wenlun Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, P.R. China
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Zhouyi Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, P.R. China
| | - Wenming Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, P.R. China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, P.R. China
| | - Jianing Xu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, P.R. China
| | - Ye Qian
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, P.R. China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, P.R. China
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
- NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
20
|
Mi K, Zeng L, Chen Y, Yang S. Integrative Analysis of Single-Cell and Bulk RNA Sequencing Reveals Prognostic Characteristics of Macrophage Polarization-Related Genes in Lung Adenocarcinoma. Int J Gen Med 2023; 16:5031-5050. [PMID: 37942473 PMCID: PMC10629586 DOI: 10.2147/ijgm.s430408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a group of cancers with poor prognosis. The combination of single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) can identify important genes involved in cancer development and progression from a broader perspective. Methods The scRNA-seq data and bulk RNA-seq data of LUAD were downloaded from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Analyzing scRNA-seq for core cells in the GSE131907 dataset, and the uniform manifold approximation and projection (UMAP) was used for dimensionality reduction and cluster identification. Macrophage polarization-associated subtypes were acquired from the TCGA-LUAD dataset after analysis, followed by further identification of differentially expressed genes (DEGs) in the TCGA-LUAD dataset (normal/LUAD tissue samples, two subtypes). Venn diagrams were utilized to visualize differentially expressed and highly variable macrophage polarization-related genes. Subsequently, a prognostic risk model for LUAD patients was constructed by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO), and the model was investigated for stability in the external data GSE72094. After analyzing the correlation between the trait genes and significantly mutated genes, the immune infiltration between the high/low-risk groups was then examined. The Monocle package was applied to analyze the pseudo-temporal trajectory analysis of different cell clusters in macrophage clusters. Subsequently, cell clusters of data macrophages were selected as key cell clusters to explore the role of characteristic genes in different cell populations and to identify transcription factors (TFs) that affect signature genes. Finally, qPCR were employed to validate the expression levels of prognosis signature genes in LUAD. Results 424 macrophage highly variable genes, 3920 DEGs, and 9561 DEGs were obtained from macrophage clusters, the macrophage polarization-related subtypes, and normal/LUAD tissue samples, respectively. Twenty-eight differentially expressed and highly mutated MPRGs were obtained. A prognostic risk model with 7 DE-MPRGs (RGS13, ADRB2, DDIT4, MS4A2, ALDH2, CTSH, and PKM) was constructed. This prognostic model still has a good prediction effect in the GSE72094 dataset. ZNF536 and DNAH9 were mutated in the low-risk group, while COL11A1 was mutated in the high-risk group, and they were highly correlated with the characteristic genes. A total of 11 immune cells were significantly different in the high/low-risk groups. Five cell types were again identified in the macrophage cluster, and then NK cells: CD56hiCD62L+ differentiated earlier and were present mainly on 2 branches. While macrophages were present on 2 branches and differentiated later. It was found that the expression levels of BCLAF1 and MAX were higher in cluster 1, which might be the TFs affecting the expression of the characteristic genes. Moreover, qPCR confirmed that the expression of the prognosis genes was generally consistent with the results of the bioinformatic analysis. Conclusion Seven MPRGs (RGS13, ADRB2, DDIT4, MS4A2, ALDH2, CTSH, and PKM) were identified as prognostic genes for LUAD and revealed the mechanisms of MPRGs at the single-cell level.
Collapse
Affiliation(s)
- Ke Mi
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
21
|
Chen X, Wang Z, Wu Y, Lan Y, Li Y. Typing and modeling of hepatocellular carcinoma based on disulfidptosis-related amino acid metabolism genes for predicting prognosis and guiding individualized treatment. Front Oncol 2023; 13:1204335. [PMID: 37637055 PMCID: PMC10454915 DOI: 10.3389/fonc.2023.1204335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is the most common type of cancer worldwide and is a major public health problem in the 21st century. Disulfidopathy, a novel cystine-associated programmed cell death, plays complex roles in various tumors. However, the relationship between disulfidoptosis and prognosis in patients with HCC remains unclear. This study aimed to explore the relationship between disulfideptosis and the prognosis of liver cancer and to develop a prognostic model based on amino acid metabolism and disulfideptosis genes. Methods We downloaded the clinicopathological information and gene expression data of patients with HCC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and classified them into different molecular subtypes based on the expression patterns of disulfidoptosis-associated amino acid metabolism genes (DRAGs). Patients were then classified into different gene subtypes using the differential genes between the molecular subtypes, and the predictive value of staging was assessed using survival and clinicopathological analyses. Subsequently, risk prognosis models were constructed based on Cox regression analysis to assess patient prognosis, receiver operating characteristic (ROC) curves, somatic mutations, microsatellite instability, tumor microenvironment, and sensitivity to antitumor therapeutic agents. Results Patients were classified into two subtypes based on differential DRAGs gene expression, with cluster B having a better survival outcome than cluster A. Three gene subtypes were identified based on the differential genes between the two DRAGs molecular subtypes. The patients in cluster B had the best prognosis, whereas those in cluster C had the worst prognosis. The heat map showed better consistency in the patient subtypes obtained using both typing methods. We screened six valuable genes and constructed a prognostic signature. By scoring, we found that patients in the low-risk group had a better prognosis, higher immune scores, and more abundant immune-related pathways compared to the high-risk group, which was consistent with the tumor subtype results. Discussion In conclusion, we developed a prognostic signature of disulfidptosis-related amino acid metabolism genes to assist clinicians in predicting the survival of patients with HCC and provide a reference value for targeted therapy and immunotherapy for HCC.
Collapse
Affiliation(s)
- Xuenuo Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhijian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yilin Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinghua Lan
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongguo Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Shen X, Jin X, Fang S, Chen J. EFEMP2 upregulates PD-L1 expression via EGFR/ERK1/2/c-Jun signaling to promote the invasion of ovarian cancer cells. Cell Mol Biol Lett 2023; 28:53. [PMID: 37420173 DOI: 10.1186/s11658-023-00471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Fibulin-like extracellular matrix protein 2 (EFEMP2) has been reported to be related to the progression of various cancers. We have previously reported that EFEMP2 was highly expressed in ovarian cancer and was strongly associated with poor prognosis in patients. This study intends to further explore its interacting proteins and possible downstream signaling pathways. METHOD The expression of EFEMP2 was detected by RT-qPCR, ICC and western blot in 4 kinds of ovarian cancer cells with different migration and invasion ability. Cell models with strong or weak EFEMP2 expression were constructed by lentivirus transfection. The effects of the down-regulation and up-regulation of EFEMP2 on the biological behavior of ovarian cancer cells were studied through in-vitro and in-vivo functional tests. The phosphorylation pathway profiling array and KEGG database analyses identified the downstream EGFR/ERK1/2/c-Jun signaling pathway and the programmed death-1 (PD-L1) pathway enrichment. Additionally, the protein interaction between EFEMP2 and EGFR was detected by immunoprecipitation. RESULT EFEMP2 was positively correlated with the invasion ability of ovarian cancer cells, its down-regulation inhibited the migrative, invasive and cloning capacity of cancer cells in vitro and suppressed the tumor proliferation and intraperitoneal diffusion in vivo, while its up-regulation did the opposite. Moreover, EFEMP2 could bind to EGFR to induce PD-L1 regulation in ovarian cancer, which was caused by the activation of EGFR/ERK1/2/c-Jun signaling. Similar to EFEMP2, PD-L1 was also highly expressed in aggressive cells and had the ability to promote the invasion and metastasis of ovarian cancer cells both in vitro and in vivo, and PD-L1 upregulation was partly caused by EFEMP2 activation. Afatinib combined with trametinib had an obvious effect of inhibiting the intraperitoneal diffusion of ovarian cancer cells, especially in the group with low expression of EFEMP2, while overexpression of PD-L1 could reverse this phenomenon. CONCLUSION EFEMP2 could bind to EGFR to activate ERK1/2/c-Jun pathway and regulate PD-L1 expression, furthermore PD-L1 was extremely essential for EFEMP2 to promote ovarian cancer cells invasion and dissemination in vitro and in vivo. Targeted therapy against the source gene EFEMP2 is our future research direction, which may better inhibit the invasion and metastasis of ovarian cancer cells.
Collapse
Affiliation(s)
- Xin Shen
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xuli Jin
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shuang Fang
- Jinan Medical Center Management Committee, Jinan, 250000, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
23
|
Wang Y, Zhao Y, Zhang Z, Zhang J, Xu Q, Zhou X, Mao L. High Expression of CDCA7 in the Prognosis of Glioma and Its Relationship with Ferroptosis and Immunity. Genes (Basel) 2023; 14:1406. [PMID: 37510310 PMCID: PMC10380011 DOI: 10.3390/genes14071406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
CDCA7 is a copy number amplification gene that promotes tumorigenesis. However, the clinical relevance and potential mechanisms of CDCA7 in glioma are unclear. CDCA7 expression level data were obtained from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases, and the enriched genes and related signaling pathways were explored. Data on genes in CDCA7-related signaling pathways and nine marker genes of ferroptosis were retrieved and a protein-protein interaction (PPI) network analysis was performed. The correlation of CDCA7 to ferroptosis and tumor infiltration of 22 kinds of human immune cells and the association between CDCA7 and immune checkpoint molecules were analyzed. CDCA7 was significantly increased in gliomas in comparison to healthy tissues. Gene Ontology (GO) and gene set enrichment analysis (GSEA) revealed the impact of CDCA7 expression on multiple biological processes and signaling pathways. CDCA7 may affect ferroptosis by interacting with genes in the cell cycle pathway and P53 pathway. The increase in CDCA7 was positively correlated with multiple ferroptosis suppressor genes and genes involved in tumor-infiltrating immune cells and immune checkpoint molecules in glioma. CDCA7 can be a new prognostic factor for glioma, which is closely related to ferroptosis, tumor immune cell infiltration, and immune checkpoint.
Collapse
Affiliation(s)
- Yunhan Wang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yu Zhao
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Zongying Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
24
|
Lei J, Guo G, Liang D, Gong L, Zhang L, Wang X. Identification of A novel anoikis-related genes-based signature for non-small cell lung cancer. Biochem Biophys Res Commun 2023; 673:137-144. [PMID: 37385008 DOI: 10.1016/j.bbrc.2023.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/20/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
The prognostic value of anoikis in NSCLC and its mechanism in tumorigenesis and progress have not been fully elucidated. This study aimed to reveal the correlation between anoikis-related genes (ARGs) and tumor prognosis, to reveal molecular and immune features, and to evaluate the anticancer drug sensitivity and the efficacy of immunotherapy of NSCLC. ARGs were selected from both the GeneCards and Harmonizome databases and then were intersected with the Cancer Genome Atlas (TCGA) database by differential expression analysis, followed by functional analysis of the target ARGs. An ARGs-based prognostic signature was constructed using LASSO (least absolute shrinkage and selection operator) Cox regression analysis; Kaplan-Meier analysis, univariant and multivariant Cox analysis were used to validate the value of this model in NSCLC prognosis. Differential analyses on molecular and immune landscapes were applied in the model. Anticancer drug sensitivity and efficacy in immune-checkpoint inhibitors (ICI) therapy were analyzed. A total of 509 ARGs and 168 differentially expressed ARGs in NSCLC were generated. Functional analysis revealed enrichment in extracolonic apoptotic signaling pathway, collagen-containing ECM, and integrin binding, and indicated an association with the PI3K-Akt signaling pathway. Subsequently, a 14-genes signature was generated. The high-risk group had a worse prognosis, with higherM0 and M2 macrophage infiltration, and fewer CD8 T-cells and T follicular helper (TFH) cells. The high-risk group had higher expression of immune checkpoint genes, HLA-I genes, and higher TIDE scores than the low-risk group, leading to less benefit of ICI therapy. Additionally, an Immunohistochemical staining comparison revealed that FADD was highly expressed in tumor tissue, compared to normal tissue, consistent with the previous results.
Collapse
Affiliation(s)
- Jinsong Lei
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Lung Cancer Institute, Sun Yat-sen University, Guangzhou, China.
| | - Guangran Guo
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dachuan Liang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Li Gong
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Linjie Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Zhu W, Luo N, Li Q, Chen X, Li X, Fu M, Yang F, Chen Z, Zhang Y, Zhang Y, Peng X, Hu G. Development and validation of an inflammatory response-related prognostic model and immune infiltration analysis in glioblastoma. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:69. [PMID: 36819551 PMCID: PMC9929762 DOI: 10.21037/atm-22-6271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Background Despite receiving standard treatment, the prognosis of glioblastoma (GBM) patients is still poor. Considering the heterogeneity of each patient, it is imperative to identify reliable risk model that can effectively predict the prognosis of each GBM patient to guide the personalized treatment. Methods Transcriptomic gene expression profiles and corresponding clinical data of GBM patients were downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Inflammatory response-related genes were extracted from Gene Set Enrichment Analysis (GSEA) website. Univariate Cox regression analysis was used for prognosis-related inflammatory genes (P<0.05). A polygenic prognostic risk model was constructed using least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Validation was performed through CGGA cohort. Overall survival (OS) was compared by Kaplan-Meier analysis. A nomogram was plotted to accurately predict the prognosis for each patient. GSEA was used for the pathway enrichment analysis. The single sample GSEA (ssGSEA) algorithm was implemented to conduct the immune infiltration analysis. The potential role of oncostatin M receptor (OSMR) in GBM was investigated through the in vitro experiment. Results A prognostic risk model consisting of 4 genes (PTPRN, OSMR, MYD88, and EFEMP2) was developed. GBM patients in the high-risk group had worse OS. The time-dependent ROC curves showed an area under the curve (AUC) of 0.782, 0.765, and 0.784 for 1-, 2-, and 3-year survival in TCGA cohort, while the AUC in the CGGA cohort was 0.589, 0.684, and 0.785 at 1, 2, and 3 years, respectively. The risk score, primary-recurrent-secondary (PRS) type, and isocitrate dehydrogenase (IDH) mutation could predict the prognosis of GBM patients well. The nomogram accurately predicted the 1-, 2-, and 3-year OS for each patient. Immune cell infiltration was associated with the risk score and the model could predict immunotherapy responsiveness. The expression of the prognostic gene was correlated with the sensitivity to antitumor drugs. Interference of OSMR inhibited proliferation and migration and promoted apoptosis of GBM cells. Conclusions The prognostic model based on 4 inflammatory response-related genes had reliable predictive power to effectively predict clinical outcome in GBM patients and provided the guide for the personalized treatment.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Dong J, Wang F, Gao X, Zhao H, Zhang J, Wang N, Liu Z, Yan X, Jin J, Ba Y, Ma S, Du J, Ji H, Hu S. Integrated analysis of genome-wide DNA methylation and cancer-associated fibroblasts identified prognostic biomarkers and immune checkpoint blockade in lower grade gliomas. Front Oncol 2023; 12:977251. [PMID: 36727078 PMCID: PMC9885112 DOI: 10.3389/fonc.2022.977251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are vital components of prominent cellular components in lower-grade gliomas (LGGs) that contribute to LGGs' progression, treatment resistance, and immunosuppression. Epigenetic modification and immunity have significant implications for tumorigenesis and development. Methods We combined aberrant methylation and CAFs abundances to build a prognostic model and the impact on the biological properties of LGGs. Grouping based on the median CAFs abundances score of samples in the TCGA-LGGs dataset, differentially expressed genes and aberrantly methylated genes were combined for subsequent analysis. Results We identified five differentially methylated and expressed genes (LAT32, SWAP70, GSAP, EMP3, and SLC2A10) and established a prognostic gene signature validated in the CGGA-LGGs dataset. Immunohistochemistry (IHC) and in vitro tests were performed to verify these expressions. The high-risk group increased in tumor-promoting immune cells and tumor mutational burden. Notably, risk stratification had different ICB sensitivities in LGGs, and there were also significant sensitivity differences for temozolomide and the other three novel chemotherapeutic agents. Conclusion Our study reveals characteristics of CAFs in LGGs, refines the direct link between epigenetics and tumor stroma, and might provide clinical implications for guiding tailored anti-CAFs therapy in combination with immunotherapy for LGGs patients.
Collapse
Affiliation(s)
- Jiawei Dong
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiuwei Yan
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yixu Ba
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Ma
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianyang Du
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hang Ji
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Shaoshan Hu, ; Hang Ji,
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Shaoshan Hu, ; Hang Ji,
| |
Collapse
|
27
|
Liu C, Wu S, Lai L, Liu J, Guo Z, Ye Z, Chen X. Comprehensive analysis of cuproptosis-related lncRNAs in immune infiltration and prognosis in hepatocellular carcinoma. BMC Bioinformatics 2023; 24:4. [PMID: 36597032 PMCID: PMC9811804 DOI: 10.1186/s12859-022-05091-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Being among the most common malignancies worldwide, hepatocellular carcinoma (HCC) accounting for the third cause of cancer mortality. The regulation of cell death is the most crucial step in tumor progression and has become a crucial target for nearly all therapeutic options. Cuproptosis, a copper-induced cell death, was recently reported in Science. However, its primary function in carcinogenesis is still unclear. METHODS Cuproptosis-related lncRNAs significantly associated with overall survival (OS) were screened by stepwise univariate Cox regression. The signature of cuproptosis-related lncRNAs for HCC prognosis was constructed by the LASSO algorithm and multivariate Cox regression. Further Kaplan-Meier analysis, proportional hazards model, and ROC analysis were performed. Functional annotation was performed using gene set enrichment analysis (GSEA). The relationship between prognostic cuproptosis-related lncRNAs and HCC prognosis was further explored by GEPIA( http://gepia.cancer-pku.cn/ ) online analysis tool. Finally, we used the ESTIMATE and XCELL algorithms to estimate stromal and immune cells in tumor tissue and cast each sample to infer the underlying mechanism of cuproptosis-related lncRNAs in the tumor immune microenvironment (TIME) of HCC patients. RESULTS Four cuproptosis-related lncRNAs were used to construct a prognostic lncRNA signature, which was an independent factor in predicting OS in HCC patients. Kaplan-Meier curves showed significant differences in survival rates between risk subgroups (p = 0.002). At the same time, we found that the expression levels of most immune checkpoint genes increased with increasing risk scores. Tumorigenesis and immunological-related pathways were primarily enhanced in the high-risk group, as determined by GSEA. The results of drug sensitivity analysis showed that compared with patients in the high-risk group, the IC50 values of erlotinib and lapatinib were lower in patients in the low-risk group, while the opposite was true for sunitinib, paclitaxel, gemcitabine, and imatinib. We also found that elevated AL133243.2 expression was significantly associated with worse OS and disease-free survival (DFS), more advanced T stage and higher tumor grade, and reduced immune cell infiltration, suggesting that HCC patients with low AL133243.2 expression in tumor tissues may have a better response to immunotherapy. CONCLUSION Collectively, the cuproptosis-associated lncRNA signature can serve as an independent predictor to guide individual treatment strategies. Furthermore, AL133243.2 is a promising marker for predicting immunotherapy response in HCC patients. This data may facilitate further exploration of more effective immunotherapy strategies for HCC.
Collapse
Affiliation(s)
- Chunhua Liu
- grid.417384.d0000 0004 1764 2632Rehabilitation Center, The Second Affiliated Hospital of Wenzhou Medical University, 108 Xueyuan West Road, Wenzhou, Zhejiang China
| | - Simin Wu
- grid.417384.d0000 0004 1764 2632Rehabilitation Center, The Second Affiliated Hospital of Wenzhou Medical University, 108 Xueyuan West Road, Wenzhou, Zhejiang China
| | - Liying Lai
- grid.13402.340000 0004 1759 700XDepartment of Cancer Rehabilitation, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine, Lishui, Zhejiang China
| | - Jinyu Liu
- grid.13402.340000 0004 1759 700XDepartment of Cancer Rehabilitation, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine, Lishui, Zhejiang China
| | - Zhaofu Guo
- grid.13402.340000 0004 1759 700XDepartment of Cancer Rehabilitation, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine, Lishui, Zhejiang China
| | - Zegen Ye
- grid.13402.340000 0004 1759 700XDepartment of Cancer Rehabilitation, Lishui Hospital of Traditional Chinese Medicine Affiliated to the Zhejiang University of Chinese Medicine, Lishui, Zhejiang China
| | - Xiang Chen
- Rehabilitation Center, The Second Affiliated Hospital of Wenzhou Medical University, 108 Xueyuan West Road, Wenzhou, Zhejiang, China.
| |
Collapse
|
28
|
Xu K, Wu Y, Chi H, Li Y, She Y, Yin X, Liu X, He B, Li X, Du H. SLC22A8: An indicator for tumor immune microenvironment and prognosis of ccRCC from a comprehensive analysis of bioinformatics. Medicine (Baltimore) 2022; 101:e30270. [PMID: 36123895 PMCID: PMC9478252 DOI: 10.1097/md.0000000000030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common renal malignancies worldwide. SLC22A8 plays a key role in renal excretion of organic anions. However, its role in ccRCC remains unclear; therefore, this study aimed to elucidate the relationship between SLC22A8 and ccRCC. The The Cancer Genome Atlas-kidney renal clear cell carcinoma cohort was included in this study. The Wilcoxon signed-rank test and logistic regression were used to analyze the relationship between SLC22A8 expression and clinicopathological characteristics. Multifactorial analysis and Kaplan-Meier survival curves were adopted for correlation between SLC22A8 expression and clinicopathological parameters and overall survival. Utilizing the UALCAN database, the correlation of the expression levels of SLC22A8 DNA methylation in ccRCC was explored. Immunological characterization of SLC22A8 regarding the ccRCC tumor microenvironment was carried out by the single sample Gene Set Enrichment Analysis algorithm and the CIBERSORT algorithm. With the CellMiner database, the analysis of the association between SLC22A8 gene expression and drug sensitivity was further performed. Eventually, gene ontology and Kyoto Encyclopedia of Gene and Genome enrichment analyses were applied to identify the functional and signaling pathways involved in SLC22A8. SLC22A8 expression is associated with age, grade, stage, and tumor status. SLC22A8 protein expression levels, phosphorylated protein levels, and DNA methylation expression levels were lower in ccRCC tissues than in normal tissues, and low methylation levels predicted poor overall survival. Comprehensive analysis of tumor immune infiltration and the tumor microenvironment indicated a higher level of overall immunity in the SLC22A8 low expression group. Gene Enrichment Analysis results showed that low expression of SLC22A8 was associated with immune pathways, such as phagocytosis recognition and humoral immune response. SLC22A8 expression was significantly correlated with survival and immune infiltration in ccRCC and can be used as a prognostic biomarker for ccRCC.
Collapse
Affiliation(s)
- Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Yuni Wu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Yunyue Li
- Queen Mary College, Medical School of Nanchang University, Nanchang, Jiangxi, China
| | - Yuchen She
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Xisheng Yin
- Clinical Medical College, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bingsheng He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Du
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
29
|
Meng D, Liu T. A lipid metabolism-related risk signature for patients with gliomas constructed with TCGA and CGGA data. Medicine (Baltimore) 2022; 101:e30501. [PMID: 36086728 PMCID: PMC9937104 DOI: 10.1097/md.0000000000030501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Lipid metabolism affects cell proliferation, differentiation, membrane homeostasis and drug resistance. An in-depth exploration of lipid metabolism in gliomas might provide a novel direction for gliomas treatment. A lipid metabolism-related risk signature was constructed in our study to assess the prognosis of patients with gliomas. Lipid metabolism-related genes were extracted. Differentially expressed genes (DEGs) were screened, and a risk signature was built. The ability of the risk signature to predict the outcomes of patients with gliomas was assessed using the log-rank test and Cox regression analysis. The relationships between immunological characteristics, drug sensitivity and the risk score were evaluated, and the risk-related mechanisms were also estimated. Twenty lipid metabolism-related DEGs associated with the patient prognosis were included in the risk signature. The survival rate of high-risk patients was worse than that of low-risk patients. The risk score independently predicted the outcomes of patients. Immunological parameters, drug sensitivity, immunotherapy benefits, and numerous molecular mechanisms were significantly associated with the risk score. A lipid metabolism-related risk signature might effectively assess the prognosis of patients with gliomas. The risk score might guide individualized treatment and further clinical decision-making for patients with gliomas.
Collapse
Affiliation(s)
- Dingqiang Meng
- Department of Neurology, Traditional Chinese Medicine Hospital, ChongQing, China
| | - Ting Liu
- Department of Neurology, Traditional Chinese Medicine Hospital, ChongQing, China
| |
Collapse
|
30
|
Xu M, Chang J, Wang W, Wang X, Wang X, Weng W, Tan C, Zhang M, Ni S, Wang L, Huang Z, Deng Z, Li W, Huang D, Sheng W. Classification of colon adenocarcinoma based on immunological characterizations: Implications for prognosis and immunotherapy. Front Immunol 2022; 13:934083. [PMID: 35967414 PMCID: PMC9363576 DOI: 10.3389/fimmu.2022.934083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
Accurate immune molecular typing is pivotal for screening out patients with colon adenocarcinoma (COAD) who may benefit from immunotherapy and whose tumor microenvironment (TME) was needed for reprogramming to beneficial immune-mediated responses. However, little is known about the immune characteristic of COAD. Here, by calculating the enrichment score of immune characteristics in three online COAD datasets (TCGA-COAD, GSE39582, and GSE17538), we identified 17 prognostic-related immune characteristics that overlapped in at least two datasets. We determined that COADs could be stratified into three immune subtypes (IS1-IS3), based on consensus clustering of these 17 immune characteristics. Each of the three ISs was associated with distinct clinicopathological characteristics, genetic aberrations, tumor-infiltrating immune cell composition, immunophenotyping (immune "hot" and immune "cold"), and cytokine profiles, as well as different clinical outcomes and immunotherapy/therapeutic response. Patients with the IS1 tumor had high immune infiltration but immunosuppressive phenotype, IS3 tumor is an immune "hot" phenotype, whereas those with the IS2 tumor had an immune "cold" phenotype. We further verified the distinct immune phenotype of IS1 and IS3 by an in-house COAD cohort. We propose that the immune subtyping can be utilized to identify COAD patients who will be affected by the tumor immune microenvironment. Furthermore, the ISs may provide a guide for personalized cancer immunotherapy and for tumor prognosis.
Collapse
Affiliation(s)
- Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Jinjia Chang
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenfeng Wang
- Shanghai Urological Cancer Institute, Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Shujuan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhenzhong Deng
- Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenhua Li
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Xiao J, Liu T, Liu Z, Xiao C, Du J, Zuo S, Li H, Gu H. A Differentiation-Related Gene Prognostic Index Contributes to Prognosis and Immunotherapy Evaluation in Patients with Hepatocellular Carcinoma. Cells 2022; 11:cells11152302. [PMID: 35892599 PMCID: PMC9367442 DOI: 10.3390/cells11152302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common gastrointestinal tumor with a poor prognosis, which is associated with poor differentiation of tumor cells. However, the potential value of cell differentiation-related molecules in predicting the benefit and prognosis of immune checkpoint inhibitors (ICI) therapy remains unknown. Herein, to investigate the differentiation trajectory of HCC cells and their clinical significance, a differentiation-related gene prognostic index (DRGPI) based on HCC differentiation-related genes (HDRGs) was constructed to elucidate the immune characteristics and therapeutic benefits of ICI in the HCC subgroup defined by DRGPI. Single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data from four HCC samples were integrated for bioinformatics analysis. Then, PON1, ADH4, SQSTM1, HSP90AA1, and STMN1 were screened out to construct a DRGPI. More intriguingly, RT-qPCR validation of the expression of these genes yielded consistent results with the TCGA database. Next, the risk scoring (RS) constructed based on DRGPI suggested that the overall survival (OS) of the DRGPI-high patients was significantly worse than that of the DRGPI-low patients. A nomogram was constructed based on DRGPI-RS and clinical characteristics, which showed strong predictive performance and high accuracy. The comprehensive results indicated that a low DRGPI score was associated with low TP53 mutation rates, high CD8 T cell infiltration, and more benefit from ICI therapy. Homoplastically, the high DRGPI score reflected the opposite results. Taken together, our study highlights the significance of HCC cell differentiation in predicting prognosis, indicating immune characteristics, and understanding the therapeutic benefits of ICI, and suggests that DRGPI is a valuable prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Jingjing Xiao
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, China;
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Tao Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Hepatobiliary Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Zhenhua Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, China;
| | - Chuan Xiao
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
| | - Jun Du
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Shi Zuo
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Haiyang Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Huajian Gu
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550000, China; (J.X.); (T.L.); (C.X.); (J.D.); (S.Z.); (H.L.)
- Department of Pediatric Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
- Correspondence: ; Tel.: +86-851-8677-2723
| |
Collapse
|
32
|
Zhang Y, Zou J, Chen R. An M0 macrophage-related prognostic model for hepatocellular carcinoma. BMC Cancer 2022; 22:791. [PMID: 35854246 PMCID: PMC9294844 DOI: 10.1186/s12885-022-09872-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of M0 macrophages and their related genes in the prognosis of hepatocellular carcinoma (HCC) remains poorly characterized. METHODS Multidimensional bioinformatic methods were used to construct a risk score model using M0 macrophage-related genes (M0RGs). RESULTS Infiltration of M0 macrophages was significantly higher in HCC tissues than in normal liver tissues (P = 2.299e-07). Further analysis revealed 35 M0RGs that were associated with HCC prognosis; two M0RGs (OLA1 and ATIC) were constructed and validated as a prognostic signature for overall survival of patients with HCC. Survival analysis revealed the positive relationship between the M0RG signature and unfavorable prognosis. Correlation analysis showed that this risk model had positive associations with clinicopathological characteristics, somatic gene mutations, immune cell infiltration, immune checkpoint inhibitor targets, and efficacy of common drugs. CONCLUSIONS The constructed M0RG-based risk model may be promising for the clinical prediction of prognoses and therapeutic responses in patients with HCC.
Collapse
Affiliation(s)
- Yiya Zhang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
33
|
Zheng H, Liu H, Li H, Dou W, Wang J, Zhang J, Liu T, Wu Y, Liu Y, Wang X. Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in colorectal cancer. Stem Cell Res Ther 2022; 13:244. [PMID: 35681225 PMCID: PMC9185878 DOI: 10.1186/s13287-022-02913-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 02/08/2023] Open
Abstract
Background It is generally accepted that colorectal cancer (CRC) originates from cancer stem cells (CSCs), which are responsible for CRC progression, metastasis and therapy resistance. The high heterogeneity of CSCs has precluded clinical application of CSC-targeting therapy. Here, we aimed to characterize the stemness landscapes and screen for certain patients more responsive to immunotherapy. Methods Twenty-six stem cell gene sets were acquired from StemChecker database. Consensus clustering algorithm was applied for stemness subtypes identification on 1,467 CRC samples from TCGA and GEO databases. The differences in prognosis, tumor microenvironment (TME) components, therapy responses were evaluated among subtypes. Then, the stemness-risk model was constructed by weighted gene correlation network analysis (WGCNA), Cox regression and random survival forest analyses, and the most important marker was experimentally verified. Results Based on single-sample gene set enrichment analysis (ssGSEA) enrichments scores, CRC patients were classified into three subtypes (C1, C2 and C3). C3 subtype exhibited the worst prognosis, highest macrophages M0 and M2 infiltrations, immune and stromal scores, and minimum sensitivity to immunotherapies, but was more sensitive to drugs like Bosutinib, Docetaxel, Elesclomol, Gefitinib, Lenalidomide, Methotrexate and Sunitinib. The turquoise module was identified by WGCNA that it was most positively correlated with C3 but most negatively with C2, and five hub genes in turquoise module were identified for stemness model construction. CRC patients with higher stemness scores exhibited worse prognosis, more immunosuppressive components in TME and lower immunotherapeutic responses. Additionally, the model’s immunotherapeutic prediction efficacy was further confirmed from two immunotherapy cohorts (anti-PD-L1 in IMvigor210 cohort and anti-PD-1 in GSE78220 cohort). Mechanistically, Gene Set Enrichment Analysis (GSEA) results revealed high stemness score group was enriched in interferon gamma response, interferon alpha response, P53 pathway, coagulation, apoptosis, KRAS signaling upregulation, complement, epithelial–mesenchymal transition (EMT) and IL6-mediated JAK-STAT signaling gene sets. Conclusions Our study characterized three stemness-related subtypes with distinct prognosis and TME patterns in CRC patients, and a 5-gene stemness-risk model was constructed by comprehensive bioinformatic analyses. We suggest our stemness model has prospective clinical implications for prognosis evaluation and might facilitate physicians selecting prospective responders for preferential use of current immune checkpoint inhibitors. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02913-0.
Collapse
Affiliation(s)
- Hang Zheng
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Heshu Liu
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Huayu Li
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Weidong Dou
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Jingui Wang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Junling Zhang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Tao Liu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yingchao Wu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yucun Liu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
34
|
Zhou Y, Li X, Guan A, Zhou H, Zhu Y, Wang R, Li R. EPHX2 Inhibits Colon Cancer Progression by Promoting Fatty Acid Degradation. Front Oncol 2022; 12:870721. [PMID: 35433439 PMCID: PMC9005964 DOI: 10.3389/fonc.2022.870721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells use metabolic reprogramming to keep up with the need for bioenergy, biosynthesis, and oxidation balance needed for rapid tumor division. This phenomenon is considered a marker of tumors, including colon cancer (CRC). As an important pathway of cellular energy metabolism, fatty acid metabolism plays an important role in cellular energy supply and oxidation balance, but presently, our understanding of the exact role of fatty acid metabolism in CRC is limited. Currently, no lipid metabolism therapy is available for the treatment of CRC. The establishment of a lipidmetabolism model regulated by oncogenes/tumor suppressor genes and associated with the clinical characteristics of CRC is necessary to further understand the mechanism of fatty acid metabolism in CRC. In this study, through multi-data combined with bioinformatic analysis and basic experiments, we introduced a tumor suppressor gene, EPHX2, which is rarely reported in CRC, and confirmed that its inhibitory effect on CRC is related to fatty acid degradation.
Collapse
Affiliation(s)
- Yiran Zhou
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Yan'an Hospital of Kunming City, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
| | - Xiao Li
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Yan'an Hospital of Kunming City, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
| | - Aoran Guan
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Yan'an Hospital of Kunming City, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
| | - Haodong Zhou
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Yan'an Hospital of Kunming City, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
| | - Yankun Zhu
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Yan'an Hospital of Kunming City, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
| | - Ruotian Wang
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Yan'an Hospital of Kunming City, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
| | - Ruhong Li
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Yan'an Hospital of Kunming City, Kunming, China.,Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
| |
Collapse
|
35
|
Dong J, Zhao H, Wang F, Jin J, Ji H, Yan X, Wang N, Zhang J, Hu S. Ferroptosis-Related Gene Contributes to Immunity, Stemness and Predicts Prognosis in Glioblastoma Multiforme. Front Neurol 2022; 13:829926. [PMID: 35359663 PMCID: PMC8960280 DOI: 10.3389/fneur.2022.829926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Ferroptosis, a recently discovered regulated programmed cell death, is associated with tumorigenesis and progression in glioblastoma. Based on widely recognized ferroptosis-related genes (FRGs), the regulation of ferroptosis patterns and corresponding characteristics of immune infiltration of 516 GBM samples with GSE13041, TCGA-GBM, and CGGA-325 were comprehensively analyzed. Here, we revealed the expression, mutations, and CNV of FRGs in GBM. We identified three distinct regulation patterns of ferroptosis and found the hub genes of immunity and stemness among DEGs in three patterns. A prognostic model was constructed based on five FRGs and verified at the mRNA and protein level. The risk score can not only predict the prognosis but also the degree of immune infiltration and ICB responsiveness by functional annotation. The overall assessment of FRGs in GBM patients will guide the direction of improved research and develop new prognostic prediction tools.
Collapse
Affiliation(s)
- Jiawei Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hongtao Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiuwei Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Nan Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaoshan Hu
| |
Collapse
|
36
|
Identification of an IL-4-Related Gene Risk Signature for Malignancy, Prognosis and Immune Phenotype Prediction in Glioma. Brain Sci 2022; 12:brainsci12020181. [PMID: 35203944 PMCID: PMC8870251 DOI: 10.3390/brainsci12020181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Emerging molecular and genetic biomarkers have been introduced to classify gliomas in the past decades. Here, we introduced a risk signature based on the cellular response to the IL-4 gene set through Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. Methods: In this study, we provide a bioinformatic profiling of our risk signature for the malignancy, prognosis and immune phenotype of glioma. A cohort of 325 patients with whole genome RNA-seq expression data from the Chinese Glioma Genome Atlas (CGGA) dataset was used as the training set, while another cohort of 667 patients from The Cancer Genome Atlas (TCGA) dataset was used as the validating set. The LASSO model identified a 10-gene signature which was considered as the optimal model. Results: The signature was confirmed to be a good predictor of clinical and molecular features involved in the malignancy of gliomas. We also identified that our risk signature could serve as an independently prognostic biomarker in patients with gliomas (p < 0.0001). Correlation analysis showed that our risk signature was strongly correlated with the Tregs, M0 macrophages and NK cells infiltrated in the microenvironment of glioma, which might be a supplement to the existing incomplete innate immune mechanism of glioma phenotypes. Conclusions: Our IL-4-related gene signature was associated with more aggressive and immunosuppressive phenotypes of gliomas. The risk score could predict prognosis independently in glioma, which might provide a new insight for understanding the IL-4 involved mechanism of gliomas.
Collapse
|
37
|
Zheng X, Zhou X, Xu H, Jin D, Yang L, Shen B, Qiu S, Ai J, Wei Q. A Novel Immune-Gene Pair Signature Revealing the Tumor Microenvironment Features and Immunotherapy Prognosis of Muscle-Invasive Bladder Cancer. Front Genet 2021; 12:764184. [PMID: 34899849 PMCID: PMC8664435 DOI: 10.3389/fgene.2021.764184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy has been a milestone for muscle-invasive bladder cancer (MIBC), but only a small portion of patients can benefit from it. Therefore, it is crucial to develop a robust individualized immune-related signature of MIBC to identify patients potentially benefiting from immunotherapy. The current study identified patients from the Cancer Genome Atlas (TCGA) and immune genes from the ImmPort database, and used improved data analytical methods to build up a 45 immune-related gene pair signature, which could classify patients into high-risk and low-risk groups. The signature was then independently validated by a Gene Expression Omnibus (GEO) dataset and IMvigor210 data. The subsequent analysis confirmed the worse survival outcomes of the high-risk group in both training (p < 0.001) and validation cohorts (p = 0.018). A signature-based risk score was proven to be an independent risk factor of overall survival (p < 0.001) and could predict superior clinical net benefit compared to other clinical factors. The CIBERSORT algorithm revealed the low-risk group had increased CD8+ T cells plus memory-activated CD4+ T-cell infiltration. The low-risk group also had higher expression of PDCD1 (PD-1), CD40, and CD27, and lower expression of CD276 (B7-H3) and PDCD1LG2 (PD-L2). Importantly, IMvigor210 data indicated that the low-risk group had higher percentage of “inflamed” phenotype plus less “desert” phenotype, and the survival outcomes were significantly better for low-risk patients after immunotherapy (p = 0.014). In conclusion, we proposed a novel and promising prognostic immune-related gene pair (IRGP) signature of MIBC, which could provide us a panoramic view of the tumor immune microenvironment of MIBC and independently identify MIBC patients who might benefit from immunotherapy.
Collapse
Affiliation(s)
- Xiaonan Zheng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.,Institute of Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghong Zhou
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Di Jin
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Institute of Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Shi Qiu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.,Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
39
|
Xu F, Guan Y, Xue L, Zhang P, Li M, Gao M, Chong T. The roles of ferroptosis regulatory gene SLC7A11 in renal cell carcinoma: A multi-omics study. Cancer Med 2021; 10:9078-9096. [PMID: 34761566 PMCID: PMC8683539 DOI: 10.1002/cam4.4395] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022] Open
Abstract
Background The ferroptosis inhibitory gene Solute carrier family 7 member 11 (SLC7A11) provides a new strategy for anticancer treatment. However, its function in renal cell carcinoma (RCC) remains elusive. Methods The expression and somatic mutation information of SLC7A11 in RCC samples were determined using The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), Gene Expression Omnibus (GEO), Oncomine, and cBioPortal databases. The prognostic value of SLC7A11 was assessed through survival analysis, Receiver operating characteristic curve (ROC) analysis, independent prognostic analysis, clinical subgroup analysis, and nomogram. Its prognostic value was also validated in the ICGC and GSE29607 cohorts. Gene set enrichment analysis (GSEA) was employed to investigate the effects of SLC7A11 on multiple metabolic pathways. The CIBERSORT algorithm and single‐sample gene set enrichment analysis (ssGSEA) method were applied to evaluate the effects of SLC7A11 on the tumor immune microenvironment (TIM). SLC7A11’s therapeutic correlations were analyzed using the GSE87121, GSE67501, and GSDC datasets. Finally, the biofunctions of SLC7A11 in renal cancer cells and ferroptosis were ascertained by MTT, wound healing, transwell, and western blot assays. Results Through multiple datasets, SLC7A11 was found to be markedly upregulated in RCC. In terms of prognosis, SLC7A11 overexpression conferred a worse prognosis and was identified as an independent prognostic factor. Its prognostic value was validated in ICGC cohort. Moreover, high SL7CA11 expression could stimulate nucleotides, fatty acids, and amino acid metabolism to meet the proliferative consumption of tumor cells. As for the immune effect, SLC7A11 suppressed antitumor immunity by reducing the abundances of CD8+ T and NK cells. Regarding the therapeutic response, SLC7A11 expression was not correlated with the sensitivities of most chemotherapy and targeted drugs. Finally, SLC7A11 promoted the proliferation, migration, and invasion of renal cancer cells by enhancing GPX4 output, which in turn inhibits ferroptosis. Conclusions SLC7A11 not only deeply influences RCC prognosis and TIM, but also promotes RCC progression by inhibiting ferroptosis and inducing metabolic reprogramming. In addition, SLC7A11 weakly affects the therapeutic effect and sensitivities of multiple chemotherapy and targeted drugs.
Collapse
Affiliation(s)
- Fangshi Xu
- Department of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yibing Guan
- Department of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Peng Zhang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Mingrui Li
- Department of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Mei Gao
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
40
|
Huang K, Yue X, Zheng Y, Zhang Z, Cheng M, Li L, Chen Z, Yang Z, Bian E, Zhao B. Development and Validation of an Mesenchymal-Related Long Non-Coding RNA Prognostic Model in Glioma. Front Oncol 2021; 11:726745. [PMID: 34540695 PMCID: PMC8446619 DOI: 10.3389/fonc.2021.726745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
Glioma is well known as the most aggressive and prevalent primary malignant tumor in the central nervous system. Molecular subtypes and prognosis biomarkers remain a promising research area of gliomas. Notably, the aberrant expression of mesenchymal (MES) subtype related long non-coding RNAs (lncRNAs) is significantly associated with the prognosis of glioma patients. In this study, MES-related genes were obtained from The Cancer Genome Atlas (TCGA) and the Ivy Glioblastoma Atlas Project (Ivy GAP) data sets of glioma, and MES-related lncRNAs were acquired by performing co-expression analysis of these genes. Next, Cox regression analysis was used to establish a prognostic model, that integrated ten MES-related lncRNAs. Glioma patients in TCGA were divided into high-risk and low-risk groups based on the median risk score; compared with the low-risk groups, patients in the high-risk group had shorter survival times. Additionally, we measured the specificity and sensitivity of our model with the ROC curve. Univariate and multivariate Cox analyses showed that the prognostic model was an independent prognostic factor for glioma. To verify the predictive power of these candidate lncRNAs, the corresponding RNA-seq data were downloaded from the Chinese Glioma Genome Atlas (CGGA), and similar results were obtained. Next, we performed the immune cell infiltration profile of patients between two risk groups, and gene set enrichment analysis (GSEA) was performed to detect functional annotation. Finally, the protective factors DGCR10 and HAR1B, and risk factor SNHG18 were selected for functional verification. Knockdown of DGCR10 and HAR1B promoted, whereas knockdown of SNHG18 inhibited the migration and invasion of gliomas. Collectively, we successfully constructed a prognostic model based on a ten MES-related lncRNAs signature, which provides a novel target for predicting the prognosis for glioma patients.
Collapse
Affiliation(s)
- Kebing Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhengwei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| |
Collapse
|
41
|
Cai S, Hu X, Chen R, Zhang Y. Identification and Validation of an Immune-Related eRNA Prognostic Signature for Hepatocellular Carcinoma. Front Genet 2021; 12:657051. [PMID: 34178028 PMCID: PMC8226176 DOI: 10.3389/fgene.2021.657051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Background Enhancer RNAs (eRNAs) are intergenic long non-coding RNAs (lncRNAs) that participate in the progression of malignancies by targeting tumor-related genes and immune checkpoints. However, the potential role of eRNAs in hepatocellular carcinoma (HCC) is unclear. In this study, we aimed to construct an immune-related eRNA prognostic model that could be used to prospectively assess the prognosis of patients with HCC. Methods Gene expression profiles of patients with HCC were downloaded from The Cancer Genome Atlas (TCGA). The eRNAs co-expressed from immune genes were identified as immune-related eRNAs. Cox regression analyses were applied in a training cohort to construct an immune-related eRNA signature (IReRS), that was subsequently used to analyze a testing cohort and combination of the two cohorts. Kaplan-Meier and receiver operating characteristic (ROC) curves were used to validate the predictive effect in the three cohorts. Gene Set Enrishment Analysis (GSEA) computation was used to identify an IReRS-related signaling pathway. A web-based cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) computation was used to evaluate the relationship between the IReRS and infiltrating immune cells. Results A total of sixty-four immune-related eRNAs (IReRNAs) was identified in HCC, and 14 IReRNAs were associated with overall survival (OS). Five IReRNAs were used for constructing an immune-related eRNA signature (IReRS), which was shown to correlate with poor survival and to be an independent prognostic biomarker for HCC. The GSEA results showed that the IReRS was correlated to cancer-related and immune-related pathways. Moreover, we found that IReRS was correlated to infiltrating immune cells, including CD8+ T cells and M0 macrophages. Finally, differential expressions of the five risk IReRNAs in tumor tissues vs. adjacent normal tissues and their prognostic values were verified, in which the AL445524.1 may function as an oncogene that affects prognosis partly by regulating CD4-CLTA4 related genes. Conclusion Our results suggest that the IReRS could serve as a biomarker for predicting prognosis in patients with HCC. Additionally, it may be correlated to the tumor immune microenvironment and could also be used as a biomarker in immunotherapy for HCC.
Collapse
Affiliation(s)
- Shenglan Cai
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xingwang Hu
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
42
|
Ma J, Chen CC, Li M. Macrophages/Microglia in the Glioblastoma Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22115775. [PMID: 34071306 PMCID: PMC8198046 DOI: 10.3390/ijms22115775] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
The complex interaction between glioblastoma and its microenvironment has been recognized for decades. Among various immune profiles, the major population is tumor-associated macrophage, with microglia as its localized homolog. The present definition of such myeloid cells is based on a series of cell markers. These good sentinel cells experience significant changes, facilitating glioblastoma development and protecting it from therapeutic treatments. Huge, complicated mechanisms are involved during the overall processes. A lot of effort has been dedicated to crack the mysterious codes in macrophage/microglia recruiting, activating, reprogramming, and functioning. We have made our path. With more and more key factors identified, a lot of new therapeutic methods could be explored to break the ominous loop, to enhance tumor sensitivity to treatments, and to improve the prognosis of glioblastoma patients. However, it might be a synergistic system rather than a series of clear, stepwise events. There are still significant challenges before the light of truth can shine onto the field. Here, we summarize recent advances in this field, reviewing the path we have been on and where we are now.
Collapse
Affiliation(s)
| | | | - Ming Li
- Correspondence: (C.C.C.); (M.L.)
| |
Collapse
|