1
|
Sarvary I, Vestergaard M, Moretti L, Andersson J, Peiró Cadahía J, Cowland S, Flagstad T, Franch T, Gouliaev A, Husemoen G, Jacso T, Kronborg T, Kuropatnicka A, Nadali A, Madsen M, Nielsen S, Pii D, Ryborg S, Soede C, Allen JR, Bourbeau M, Li K, Liu Q, Lo MC, Madoux F, Mardirossian N, Moriguchi J, Ngo R, Peng CC, Pettus L, Tamayo N, Wang P, Kapoor R, Belmontes B, Caenepeel S, Hughes P, Liu S, Slemmons KK, Yang Y, Xie F, Ghimire-Rijal S, Mukund S, Glad S. From DNA-Encoded Library Screening to AM-9747: An MTA-Cooperative PRMT5 Inhibitor with Potent Oral In Vivo Efficacy. J Med Chem 2025; 68:6534-6557. [PMID: 40102181 PMCID: PMC11956014 DOI: 10.1021/acs.jmedchem.4c03101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Inhibition of the methyltransferase enzyme PRMT5 by MTA accumulation is a vulnerability of MTAP-deleted cancers. Herein, we report the discovery and optimization of a quinolin-2-amine DEL hit that cooperatively binds PRMT5:MEP50 and MTA to generate a catalytically inhibited ternary complex. X-ray crystallography confirms quinolin-2-amine binding of PRMT5 glutamate-444, while simultaneously exhibiting a hydrophobic interaction with MTA. Lead optimization produced AM-9747, which selectively inhibits PRMT5-directed symmetric dimethylation of arginine residues of proteins, leading to a potent reduction of cell viability in MTAP-del cells compared to MTAP-WT cells. Once-daily oral dosing of AM-9747 in mouse xenografts is well tolerated, displaying a robust and dose-dependent inhibition of symmetric dimethylation of arginine in MTAP-del tumor-xenografts and significant concomitant tumor growth inhibition without any significant effect on MTAP-WT tumor xenografts.
Collapse
Affiliation(s)
- Ian Sarvary
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | | | - Loris Moretti
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Jan Andersson
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | | | - Sanne Cowland
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Thomas Flagstad
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Thomas Franch
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Alex Gouliaev
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Gitte Husemoen
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Tomas Jacso
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Titi Kronborg
- Amgen
Research, Amgen Inc, Fruebjergvej 3, DK-2100 Copenhagen, Denmark
| | | | - Anna Nadali
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Mads Madsen
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - So̷ren Nielsen
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - David Pii
- Amgen
Research, Amgen Inc, Fruebjergvej 3, DK-2100 Copenhagen, Denmark
| | - So̷ren Ryborg
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| | - Camillia Soede
- Amgen
Research, Amgen Inc, Fruebjergvej 3, DK-2100 Copenhagen, Denmark
| | - Jennifer R. Allen
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Matthew Bourbeau
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Kexue Li
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Qingyian Liu
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Mei-Chu Lo
- Amgen
Research, Amgen Inc, 750 Gateway Blvd, South San Francisco, California 94080, United States
| | - Franck Madoux
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Narbe Mardirossian
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jodi Moriguchi
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Rachel Ngo
- Amgen
Research, Amgen Inc, 750 Gateway Blvd, South San Francisco, California 94080, United States
| | - Chi-Chi Peng
- Amgen
Research, Amgen Inc, 750 Gateway Blvd, South San Francisco, California 94080, United States
| | - Liping Pettus
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Nuria Tamayo
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Paul Wang
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Rajiv Kapoor
- Amgen
Research, Syngene-Amgen Research and Development
Center, Biocon Park, Bangalore 560099, India
| | - Brian Belmontes
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Sean Caenepeel
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Paul Hughes
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Siyuan Liu
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Katherine K. Slemmons
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Yajing Yang
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Fang Xie
- Amgen
Research, Amgen Inc, 750 Gateway Blvd, South San Francisco, California 94080, United States
| | - Sudipa Ghimire-Rijal
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Susmith Mukund
- Amgen
Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Sanne Glad
- Amgen
Research, Amgen Inc, Ro̷nnegade 8, DK-2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Jiao Z, Huang Y, Gong K, Liu Y, Sun J, Yu S, Zhao G. Medicinal chemistry insights into PRMT5 inhibitors. Bioorg Chem 2024; 153:107859. [PMID: 39378783 DOI: 10.1016/j.bioorg.2024.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a type II PRMT enzyme that plays an important role in protein formation. PRMT5 is widely distributed in the nucleus and is involved in regulating a variety of biological processes, including gene transcription, signaling, and cell proliferation. PRMT5 regulates the function and stability of histones through methylation, affecting important cellular activities such as cell cycle regulation, DNA repair, and RNA processing. Studies have shown that PRMT5 is overexpressed in a variety of tumors and is closely related to the occurrence and development of tumors. In recent years, several PRMT5 inhibitors have entered clinical trials for the treatment of various cancers. In view of their importance, this paper reviews the first generation of PRMT5 inhibitors obtained by high-throughput screening, virtual screening, lead compound optimization and substitution modification, as well as novel PRMT5 inhibitors obtained by PROTAC technology and by synthetic lethal principle. Finally, by comparing the differences between the first generation and the second generation, the challenges and future development directions of PRMT5 inhibitors are discussed.
Collapse
Affiliation(s)
- Zhihao Jiao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Yongmi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Kexin Gong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Yiru Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Jinxiao Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Shangzhe Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China.
| |
Collapse
|
3
|
Guo Y, Li Y, Zhou Z, Hou L, Liu W, Ren W, Mi D, Sun J, Dai X, Wu Y, Cheng Z, Wu T, Luo Q, Tian C, Li F, Yu Z, Chen Y, Chen C. Targeting PRMT5 through PROTAC for the treatment of triple-negative breast cancer. J Exp Clin Cancer Res 2024; 43:314. [PMID: 39614393 DOI: 10.1186/s13046-024-03237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is currently the most aggressive subtype of breast cancer, characterized by high heterogeneity and strong invasiveness, and currently lacks effective therapies. PRMT5, a type II protein arginine methyltransferase, is upregulated in numerous cancers, including TNBC, and plays a critical role, marked it as an attractive therapeutic target. PROTAC (Proteolysis Targeting Chimeras) is an innovative drug development technology that utilizes the ubiquitin-proteasome system (UPS) to degrade target proteins, which is characterized by higher activity, enhanced safety, lower resistance, and reduced toxicity, offering significant value for clinical translation. METHODS This study utilizes the PROTAC technology to develop potential degraders targeting PRMT5 in vitro and in vivo. RESULTS Through the design, synthesis and screening of a series of targeted compounds, we identified YZ-836P as an effective compound that exerted cytotoxic effects and reduced the protein levels of PRMT5 and its key downstream target protein KLF5 in TNBC after 48 h. Its efficacy was significantly superior to the PRMT5 PROTAC degraders that had been reported. YZ-836P induced G1 phase cell cycle arrest and significantly induced apoptosis in TNBC cells. Additionally, we demonstrated that YZ-836P promoted the ubiquitination and degradation of PRMT5 in a cereblon (CRBN)-dependent manner. Notably, YZ-836P exhibited pronounced efficacy in inhibiting the growth of TNBC patient-derived organoids and xenografts in nude mice. CONCLUSIONS These findings position YZ-836P as a promising candidate for advancing treatment modalities for TNBC. TRIAL REGISTRATION Ethics Committee of Yunnan Cancer Hospital, KYCS2023-078. Registered 7 June 2023.
Collapse
Affiliation(s)
- Yaxun Guo
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yuzhan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhongmei Zhou
- The School of Continuing Education, Kunming Medical University, Kunming, 650500, China
| | - Lei Hou
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Wenjing Liu
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, China
| | - Wenlong Ren
- School of Life Science, University of Science & Technology of China, Hefei, 230027, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dazhao Mi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian Sun
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, China
| | - Xueqin Dai
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China
| | - Yingying Wu
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhuo Cheng
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Tingyue Wu
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qianmei Luo
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cong Tian
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Fubing Li
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, 250033, China.
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, 250033, China.
- Shandong Provincial Engineering Laboratory of Translational Research on Prevention and Treatment of Breast Disease, Jinan, 250033, China.
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
- Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| | - Ceshi Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, China.
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
4
|
Zheng J, Li B, Wu Y, Wu X, Wang Y. Targeting Arginine Methyltransferase PRMT5 for Cancer Therapy: Updated Progress and Novel Strategies. J Med Chem 2023. [PMID: 37366223 DOI: 10.1021/acs.jmedchem.3c00250] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
As a predominant type II protein arginine methyltransferase, PRMT5 plays critical roles in various normal cellular processes by catalyzing the mono- and symmetrical dimethylation of a wide range of histone and nonhistone substrates. Clinical studies have revealed that high expression of PRMT5 is observed in different solid tumors and hematological malignancies and is closely associated with cancer initiation and progression. Accordingly, PRMT5 is becoming a promising anticancer target and has received great attention in both the pharmaceutical industry and the academic community. In this Perspective, we comprehensively summarize recent advances in the development of first-generation PRMT5 enzymatic inhibitors and highlight novel strategies targeting PRMT5 in the past 5 years. We also discuss the challenges and opportunities of PRMT5 inhibition, with the aim of shedding light on future PRMT5 drug discovery.
Collapse
Affiliation(s)
- Jiahong Zheng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bang Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yingqi Wu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoshuang Wu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Araki S, Ohori M, Yugami M. Targeting pre-mRNA splicing in cancers: roles, inhibitors, and therapeutic opportunities. Front Oncol 2023; 13:1152087. [PMID: 37342192 PMCID: PMC10277747 DOI: 10.3389/fonc.2023.1152087] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulating evidence has indicated that pre-mRNA splicing plays critical roles in a variety of physiological processes, including development of multiple diseases. In particular, alternative splicing is profoundly involved in cancer progression through abnormal expression or mutation of splicing factors. Small-molecule splicing modulators have recently attracted considerable attention as a novel class of cancer therapeutics, and several splicing modulators are currently being developed for the treatment of patients with various cancers and are in the clinical trial stage. Novel molecular mechanisms modulating alternative splicing have proven to be effective for treating cancer cells resistant to conventional anticancer drugs. Furthermore, molecular mechanism-based combination strategies and patient stratification strategies for cancer treatment targeting pre-mRNA splicing must be considered for cancer therapy in the future. This review summarizes recent progress in the relationship between druggable splicing-related molecules and cancer, highlights small-molecule splicing modulators, and discusses future perspectives of splicing modulation for personalized and combination therapies in cancer treatment.
Collapse
|
6
|
Wen C, Tian Z, Li L, Chen T, Chen H, Dai J, Liang Z, Ma S, Liu X. SRSF3 and HNRNPH1 Regulate Radiation-Induced Alternative Splicing of Protein Arginine Methyltransferase 5 in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232314832. [PMID: 36499164 PMCID: PMC9738276 DOI: 10.3390/ijms232314832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is an epigenetic regulator which has been proven to be a potential target for cancer therapy. We observed that PRMT5 underwent alternative splicing (AS) and generated a spliced isoform PRMT5-ISO5 in hepatocellular carcinoma (HCC) patients after radiotherapy. However, the regulatory mechanism and the clinical implications of IR-induced PRMT5 AS are unclear. This work revealed that serine and arginine rich splicing factor 3 (SRSF3) silencing increased PRMT5-ISO5 level, whereas heterogeneous nuclear ribonucleoprotein H 1 (HNRNPH1) silencing reduced it. Then, we found that SRSF3 and HNRNPH1 competitively combined with PRMT5 pre-mRNA located at the region around the 3'- splicing site on intron 2 and the alternative 3'- splicing site on exon 4. IR-induced SRSF3 downregulation led to an elevated level of PRMT5-ISO5, and exogenous expression of PRMT5-ISO5 enhanced cell radiosensitivity. Finally, we confirmed in vivo that IR induced the increased level of PRMT5-ISO5 which in turn enhanced tumor killing and regression, and liver-specific Prmt5 depletion reduced hepatic steatosis and delayed tumor progression of spontaneous HCC. In conclusion, our data uncover the competitive antagonistic interaction of SRSF3 and HNRNPH1 in regulating PRMT5 splicing induced by IR, providing potentially effective radiotherapy by modulating PRMT5 splicing against HCC.
Collapse
Affiliation(s)
- Chaowei Wen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhujun Tian
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Lan Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Tongke Chen
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Huajian Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jichen Dai
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenzhen Liang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325014, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325014, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035, China
- Correspondence:
| |
Collapse
|
7
|
Vlummens P, Verhulst S, De Veirman K, Maes A, Menu E, Moreaux J, De Boussac H, Robert N, De Bruyne E, Hose D, Offner F, Vanderkerken K, Maes K. Inhibition of the Protein Arginine Methyltransferase PRMT5 in High-Risk Multiple Myeloma as a Novel Treatment Approach. Front Cell Dev Biol 2022; 10:879057. [PMID: 35757005 PMCID: PMC9213887 DOI: 10.3389/fcell.2022.879057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is an incurable clonal plasma cell malignancy. Subsets of patients have high-risk features linked with dismal outcome. Therefore, the need for effective therapeutic options remains high. Here, we used bio-informatic tools to identify novel targets involved in DNA repair and epigenetics and which are associated with high-risk myeloma. The prognostic significance of the target genes was analyzed using publicly available gene expression data of MM patients (TT2/3 and HM cohorts). Hence, protein arginine methyltransferase 5 (PRMT5) was identified as a promising target. Druggability was assessed in OPM2, JJN3, AMO1 and XG7 human myeloma cell lines using the PRMT5-inhibitor EPZ015938. EPZ015938 strongly reduced the total symmetric-dimethyl arginine levels in all cell lines and lead to decreased cellular growth, supported by cell line dependent changes in cell cycle distribution. At later time points, apoptosis occurred, as evidenced by increased AnnexinV-positivity and cleavage of PARP and caspases. Transcriptome analysis revealed a role for PRMT5 in regulating alternative splicing, nonsense-mediated decay, DNA repair and PI3K/mTOR-signaling, irrespective of the cell line type. PRMT5 inhibition reduced the expression of upstream DNA repair kinases ATM and ATR, which may in part explain our observation that EPZ015938 and the DNA-alkylating agent, melphalan, have combinatory effects. Of interest, using a low-dose of mTOR-inhibitor, we observed that cell viability was partially rescued from the effects of EPZ015938, indicating a role for mTOR-related pathways in the anti-myeloma activity of EPZ015938. Moreover, PRMT5 was shown to be involved in splicing regulation of MMSET and SLAMF7, known genes of importance in MM disease. As such, we broaden the understanding of the exact role of PRMT5 in MM disease and further underline its use as a possible therapeutic target.
Collapse
Affiliation(s)
- Philip Vlummens
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Clinical Hematology, Ghent University Hospital, Ghent, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Lab, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Anke Maes
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jérome Moreaux
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France.,Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institut Universitaire de France, IUF, Paris, France
| | - Hugues De Boussac
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France
| | - Nicolas Robert
- CHU Montpellier, Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Montpellier, France
| | - Elke De Bruyne
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Fritz Offner
- Department of Clinical Hematology, Ghent University Hospital, Ghent, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Center for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ), Brussels, Belgium
| |
Collapse
|
8
|
Zhang L, Shao G, Shao J, Zhao J. PRMT5-activated c-Myc promote bladder cancer proliferation and invasion through up-regulating NF-κB pathway. Tissue Cell 2022; 76:101788. [PMID: 35339800 DOI: 10.1016/j.tice.2022.101788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022]
Abstract
AIM PRMT5 and c-Myc were considered as oncogene of bladder cancer. Nevertheless, whether the interaction between of PRMT5 and c-Myc affect bladder cancer progress is unknown. Herein, we explore the above points and discuss deeply its' potential mechanism. METHOD 5637 and T24 cells were study subjects in vitro. Western blot was used to examined the protein expression. CCK8 and transwell assay were used to analyze proliferation and invasion ability. Additionally, xenograft tumor model was established. Mice imaging experiment, Immunochemistry assay and western blot were carried out. RESULT Western blot result showed successful transfection of PRMT5-siRNA and c-Myc-siRNA. PRMT5-siRNA could inhibit c-Myc expression, and decrease the proliferation and invasion of bladder cells. And c-Myc overexpression could reverse inhibitory action caused by PRMT5 silence. And in vitro studies found low-expression of c-Myc reduced proliferation and invasion of tumor cells and make the NF-κB pathway inactivation. In vivo studies also demonstrated that inhibiting PRMT5 could downregulate c-Myc expression and inhibit the bladder cancer progress, and the potential mechanism was likely to be related to NF-κB signaling pathway. CONCLUSION In a word, low-expression of PRMT5 suppressed c-Myc, and thus inhibited proliferation and invasion ability of 5637 and T24 cells through NF-κB pathway.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Guangfeng Shao
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jianhui Shao
- Spine Surgery, Weifang City People's Hospital, Weifang, Shandong, PR China
| | - Jie Zhao
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
9
|
Rong D, Zhou K, Fang W, Yang H, Zhang Y, Shi Q, Huang Y, Li J, Dong H, Li L, Ding J, Huang X, Wang Y. Structure-Aided Design, Synthesis, and Biological Evaluation of Potent and Selective Non-Nucleoside Inhibitors Targeting Protein Arginine Methyltransferase 5. J Med Chem 2022; 65:7854-7875. [PMID: 35612488 DOI: 10.1021/acs.jmedchem.2c00398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PRMT5 is a major type II protein arginine methyltransferase and plays important roles in diverse cellular processes. Overexpression of PRMT5 is implicated in various types of cancer. Many efforts have been made to develop potent and selective PRMT5 inhibitors, the most potent of which is usually derived from nucleoside structures. Here, we designed a novel series of non-nucleoside PRMT5 inhibitors through the structure-aided drug design approach. SAR exploration and metabolic stability optimization led to the discovery of compound 41 as a potent PRMT5 inhibitor with good selectivity. Additionally, compound 41 exerted antiproliferative effects against A375 cells by inducing apoptosis and potently inhibited the methyltransferase activity of PRMT5 in cells. Moreover, it showed attractive pharmacokinetic properties and markedly suppressed the tumor growth in an A375 tumor xenograft model. These results clearly indicate that 41 is a highly potent and selective non-nucleoside PRMT5 inhibitor.
Collapse
Affiliation(s)
- Deqin Rong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kaixin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Wei Fang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hong Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yi Zhang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiongyu Shi
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yuting Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Jiayi Li
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Hui Dong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lanlan Li
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Jian Ding
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Xun Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China.,Lingang Laboratory, Shanghai 200031, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Dai W, Zhang J, Li S, He F, Liu Q, Gong J, Yang Z, Gong Y, Tang F, Wang Z, Xie C. Protein Arginine Methylation: An Emerging Modification in Cancer Immunity and Immunotherapy. Front Immunol 2022; 13:865964. [PMID: 35493527 PMCID: PMC9046588 DOI: 10.3389/fimmu.2022.865964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, protein arginine methyltransferases (PRMTs) have emerged as new members of a gene expression regulator family in eukaryotes, and are associated with cancer pathogenesis and progression. Cancer immunotherapy has significantly improved cancer treatment in terms of overall survival and quality of life. Protein arginine methylation is an epigenetic modification function not only in transcription, RNA processing, and signal transduction cascades, but also in many cancer-immunity cycle processes. Arginine methylation is involved in the activation of anti-cancer immunity and the regulation of immunotherapy efficacy. In this review, we summarize the most up-to-date information on regulatory molecular mechanisms and different underlying arginine methylation signaling pathways in innate and adaptive immune responses during cancer. We also outline the potential of PRMT-inhibitors as effective combinatorial treatments with immunotherapy.
Collapse
Affiliation(s)
- Weijing Dai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianguo Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siqi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fajian He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiao Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zetian Yang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| |
Collapse
|
11
|
PRMT5: An Emerging Target for Pancreatic Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13205136. [PMID: 34680285 PMCID: PMC8534199 DOI: 10.3390/cancers13205136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The burden of pancreatic ductal adenocarcinoma (PDAC) increases with rising incidence, yet 5-year overall survival remains poor at 17%. Routine comprehensive genomic profiling of PDAC only finds 2.5% of patients who may benefit and receive matched targeted therapy. Protein arginine methyltransferase 5 (PRMT5) as an anti-cancer target has gained significant interest in recent years and high levels of PRMT5 protein are associated with worse survival outcomes across multiple cancer types. Inhibition of PRMT5 in pre-clinical models can lead to cancer growth inhibition. However, PRMT5 is involved in multiple cellular processes, thus determining its mechanism of action is challenging. While past reviews on PRMT5 have focused on its role in diverse cellular processes and past research studies have focused mainly on haematological malignancies and glioblastoma, this review provides an overview of the possible biological mechanisms of action of PRMT5 inhibition and its potential as a treatment in pancreatic cancer. Abstract The overall survival of pancreatic ductal adenocarcinoma (PDAC) remains poor and its incidence is rising. Targetable mutations in PDAC are rare, thus novel therapeutic approaches are needed. Protein arginine methyltransferase 5 (PRMT5) overexpression is associated with worse survival and inhibition of PRMT5 results in decreased cancer growth across multiple cancers, including PDAC. Emerging evidence also suggests that altered RNA processing is a driver in PDAC tumorigenesis and creates a partial dependency on this process. PRMT5 inhibition induces altered splicing and this vulnerability can be exploited as a novel therapeutic approach. Three possible biological pathways underpinning the action of PRMT5 inhibitors are discussed; c-Myc regulation appears central to its action in the PDAC setting. Whilst homozygous MTAP deletion and symmetrical dimethylation levels are associated with increased sensitivity to PRMT5 inhibition, neither measure robustly predicts its growth inhibitory response. The immunomodulatory effect of PRMT5 inhibitors on the tumour microenvironment will also be discussed, based on emerging evidence that PDAC stroma has a significant bearing on disease behaviour and response to therapy. Lastly, with the above caveats in mind, current knowledge gaps and the implications and rationales for PRMT5 inhibitor development in PDAC will be explored.
Collapse
|
12
|
Xia T, Liu M, Zhao Q, Ouyang J, Xu P, Chen B. PRMT5 regulates cell pyroptosis by silencing CASP1 in multiple myeloma. Cell Death Dis 2021; 12:851. [PMID: 34531375 PMCID: PMC8445991 DOI: 10.1038/s41419-021-04125-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5), a histone methyltransferase responsible for the symmetric dimethylation of histone H4 on Arg 3 (H4R3me2s), is an enzyme that participates in tumor cell progression in a variety of hematological malignancies. However, the biological functions of PRMT5 in multiple myeloma (MM) and the underlying molecular mechanisms remain unclear. In this study, we conducted a bioinformatics analysis and found that PRMT5 expression was significantly upregulated in MM. In vitro and in vivo phenotypic experiments revealed that knockdown of PRMT5 expression enhanced cell pyroptosis in MM. Moreover, we found that CASP1 expression was negatively correlated with PRMT5 expression, and repressing PRMT5 expression rescued both the phenotype and expression markers (N-GSDMD, IL-1b, and IL-18). Inhibition of PRMT5 activity increased CASP1 expression and promoted MM cell pyroptosis. Finally, high expression of PRMT5 or low expression of CASP1 was correlated with poor overall survival in MM. Collectively, our results provide a mechanism by which PRMT5 regulates cell pyroptosis by silencing CASP1 in MM.
Collapse
Affiliation(s)
- Tian Xia
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Jian Ouyang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, People's Republic of China.
| | - Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, People's Republic of China.
- Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, People's Republic of China.
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Liang Z, Wen C, Jiang H, Ma S, Liu X. Protein Arginine Methyltransferase 5 Functions via Interacting Proteins. Front Cell Dev Biol 2021; 9:725301. [PMID: 34513846 PMCID: PMC8432624 DOI: 10.3389/fcell.2021.725301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
The protein arginine methyltransferases (PRMTs) are involved in such biological processes as transcription regulation, DNA repair, RNA splicing, and signal transduction, etc. In this study, we mainly focused on PRMT5, a member of the type II PRMTs, which functions mainly alongside other interacting proteins. PRMT5 has been shown to be overexpressed in a wide variety of cancers and other diseases, and is involved in the regulation of Epstein-Barr virus infection, viral carcinogenesis, spliceosome, hepatitis B, cell cycles, and various signaling pathways. We analyzed the regulatory roles of PRMT5 and interacting proteins in various biological processes above-mentioned, to elucidate for the first time the interaction between PRMT5 and its interacting proteins. This systemic analysis will enrich the biological theory and contribute to the development of novel therapies.
Collapse
Affiliation(s)
- Zhenzhen Liang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,NHC Key Lab of Radiobiology, Jilin University, Changchun, China
| | - Chaowei Wen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Heya Jiang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Chen YR, Li HN, Zhang LJ, Zhang C, He JG. Protein Arginine Methyltransferase 5 Promotes Esophageal Squamous Cell Carcinoma Proliferation and Metastasis via LKB1/AMPK/mTOR Signaling Pathway. Front Bioeng Biotechnol 2021; 9:645375. [PMID: 34124017 PMCID: PMC8193860 DOI: 10.3389/fbioe.2021.645375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is the eighth most common cancer in the world. Protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes symmetric and asymmetric methylation on arginine residues of histone and non-histone proteins, is overexpressed in many cancers. However, whether or not PRMT5 participates in the regulation of ESCC remains largely unclear. Methods: PRMT5 mRNA and protein expression in ESCC tissues and cell lines were examined by RT-PCR, western blotting, and immunohistochemistry assays. Cell proliferation was examined by RT-PCR, western blotting, immunohistochemistry assays, MTT, and EdU assays. Cell apoptosis and cell cycle were examined by RT-PCR, western blotting, immunohistochemistry assays, and flow cytometry. Cell migration and invasion were examined by RT-PCR, western blotting, immunohistochemistry assays, and wound-healing and transwell assays. Tumor volume, tumors, and mouse weight were measured in different groups. Lung tissues with metastatic foci, the number of nodules, and lung/total weight were measured in different groups. Results: In the present study, the PRMT5 expression level was dramatically upregulated in ESCC clinical tissues as well as ESCC cell lines (ECA109 and KYSE150). Furthermore, knocking down PRMT5 obviously suppressed cell migration, invasion, proliferation, and cell arrest in G1 phase and promoted cell apoptosis in ESCC cells. Meanwhile, downregulating PRMT5 also increased the expression levels of Bax, caspase-3, and caspase-9, while expression levels of Bax-2, MMP-2, MMP-9, and p21 were decreased, which are members of the cyclin-dependent kinase family. Furthermore, knocking down PRMT5 could increase the expression of LKB1 and the phosphorylation (p)-AMPK expression and decrease the p-mTOR level. Additionally, overexpression of LKB1 could reveal anti-tumor effects in ESCC cell lines by inhibiting ESCC cell, migration, invasion, and proliferation and accelerating cell apoptosis. Besides, upregulating LKB1 expression could increase the levels of Bax, caspase-3, and caspase-9 and weaken the levels of Bax-2, MMP-2, and MMP-9. Moreover, knocking down PRMT5 could weaken the tumor growth and lung metastasis in vivo with upregulating the LKB1 expression and the p-AMPK level and downregulating the p-mTOR expression. Conclusion: PRMT5 may act as a tumor-inducing agent in ESCC by modulating LKB1/AMPK/mTOR pathway signaling.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Department of Oncology, Heze Municipal Hospital, Heze, China
| | - Hua-Ni Li
- Department of Oncology, Heze Municipal Hospital, Heze, China
| | - Lian-Jun Zhang
- Department of Critical Care Medicine, Heze Municipal Hospital, Heze, China
| | - Chong Zhang
- Magnetic Resonance Room, Heze Municipal Hospital, Heze, China
| | - Jin-Guang He
- Department of Oncology, Heze Municipal Hospital, Heze, China
| |
Collapse
|
15
|
Huang J, Zheng Y, Zheng X, Qian B, Yin Q, Lu J, Lei H. PRMT5 Promotes EMT Through Regulating Akt Activity in Human Lung Cancer. Cell Transplant 2021; 30:9636897211001772. [PMID: 33829865 PMCID: PMC8040599 DOI: 10.1177/09636897211001772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The type II protein arginine methyltransferase 5 (PRMT5) has been engaged in various human cancer development and progression types. Nevertheless, few studies uncover the biological functions of PRMT5 in the epithelial-mesenchymal transition (EMT) of human lung cancer cells, and the associated molecular mechanisms and signaling cascades are entirely unknown. Here, we show that PRMT5 is the ectopic expression in human lung cancer tissues and cell lines. Further study reveals that silencing PRMT5 by lentivirus-mediated shRNA or blocking of PRMT5 by specific inhibitor GSK591 attenuates the expression levels of EMT-related markers in vivo, using the xenograft mouse model. Moreover, our results show that down-regulation of PRMT5 impairs EGFR/Akt signaling cascades in human lung cancer cells, whereas re-expression of PRMT5 recovers those changes, suggesting that PRMT5 regulates EMT probably through EGFR/Akt signaling axis. Altogether, our results demonstrate that PRMT5 serves as a critical oncogenic regulator and promotes EMT in human lung cancer cells. More importantly, our findings also suggest that PRMT5 may be a potential therapeutic candidate for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Jianhao Huang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Clinical Medical College, 66324Nanjing Medical University, Nanjing, PR China.,Department of Pulmonary and Critical Care Medicine, 66324Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yonghua Zheng
- Department of Pulmonary Medicine, Department of Respiratory Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, PR China
| | - Xiao Zheng
- Department of Pulmonary Medicine, Department of Respiratory Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, PR China
| | - Bao Qian
- Department of Pulmonary Medicine, Department of Respiratory Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, PR China
| | - Qi Yin
- Department of Pulmonary and Critical Care Medicine, 66324Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jingjing Lu
- Department of Pulmonary and Critical Care Medicine, 66324Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Han Lei
- Department of Pulmonary and Critical Care Medicine, Shanghai East Clinical Medical College, 66324Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
16
|
Liang Z, Liu L, Wen C, Jiang H, Ye T, Ma S, Liu X. Clinicopathological and Prognostic Significance of PRMT5 in Cancers: A System Review and Meta-Analysis. Cancer Control 2021; 28:10732748211050583. [PMID: 34758643 PMCID: PMC8591649 DOI: 10.1177/10732748211050583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Since protein arginine methyltransferase 5 (PRMT5) is abnormally expressed in various tumors, in this study we aim to assess the association between PRMT5 and clinicopathological and prognostic features. METHODS Electronic databases including PubMed, Web of Science, Scopus, ScienceDirect, and the Cochrane Library were searched until July 25, 2021. The critical appraisal of the eligible studies was performed using the Newcastle-Ottawa Quality Assessment Scale. Pooled hazard ratios (HR) and pooled odds ratios (OR) were calculated to assess the effect. Engauge Digitizer version 12.1, STATA version 15.1, and R version 4.0.5 were used to obtain and analysis the data. RESULTS A total of 32 original studies covering 15,583 patients were included. In our data, it indicated that high level of PRMT5 was significantly correlated with advanced tumor stage (OR = 2.12, 95% CI: 1.22-3.70, P =.008; I2 = 80.7%) and positively correlated with poor overall survival (HR = 1.59, 95% CI: 1.46-1.73, P < .001; I2 = 50%) and progression-free survival (HR = 1.53, 95% CI: 1.24-1.88, P < .001; I2 = 0%). In addition, sub-group analysis showed that high level of PRMT5 was associated with poor overall survival for such 5 kinds of cancers as hepatocellular carcinoma, pancreatic cancer, breast cancer, gastric cancer, and lung cancer. CONCLUSION For the first time we found PRMT5 was pan-cancerous as a prognostic biomarker and high level of PRMT5 was associated with poor prognosis for certain cancers.
Collapse
Affiliation(s)
- Zhenzhen Liang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lianchang Liu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Chaowei Wen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Heya Jiang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tianxia Ye
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaodong Liu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
17
|
Sapir T, Shifteh D, Pahmer M, Goel S, Maitra R. Protein Arginine Methyltransferase 5 (PRMT5) and the ERK1/2 & PI3K Pathways: A Case for PRMT5 Inhibition and Combination Therapies in Cancer. Mol Cancer Res 2020; 19:388-394. [PMID: 33288733 DOI: 10.1158/1541-7786.mcr-20-0745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
The ERK1/2 (RAS, RAF, MEK, ERK) and PI3K (PI3K, AKT, mTOR, PTEN) pathways are the chief signaling pathways for cellular proliferation, survival, and differentiation. Overactivation and hyperphosphorylation of the ERK1/2 & PI3K pathways is frequently observed in cancer and is associated with poor patient prognosis. While it is well known that genetic alterations lead to the dysregulation of the ERK1/2 & PI3K pathways, increasing evidence showcase that epigenetic alterations also play a major role in the regulation of the ERK1/2 & PI3K pathways. Protein Arginine Methyltransferase 5 (PRMT5) is a posttranslational modifier for multiple cellular processes, which is currently being tested as a therapeutic target for cancer. PRMT5 has been shown to be overexpressed in many types of cancers, as well as negatively correlated with patient survival. Numerous studies are indicating that as a posttranslational modifier, PRMT5 is extensively involved in regulating the ERK1/2 & PI3K pathways. In addition, a large number of in vitro and in vivo studies are demonstrating that PRMT5 inhibition, as well as PRMT5 and ERK1/2 & PI3K combination therapies, show significant therapeutic effects in many cancer types. In this review, we explore the vast interactions that PRMT5 has with the ERK1/2 & PI3K pathways, and we make the case for further testing of PRMT5 inhibition, as well as PRMT5 and ERK1/2 & PI3K combination therapies, for the treatment of cancer.
Collapse
Affiliation(s)
- Tzuriel Sapir
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - David Shifteh
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - Moshe Pahmer
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - Sanjay Goel
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Radhashree Maitra
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York.
| |
Collapse
|