1
|
Wang J, Li X, Geng J, Wang R, Ma G, Liu P. Identification of biomarkers and mechanism exploration of ferroptosis related genes regulated by m6A in type 2 diabetes mellitus. Hereditas 2025; 162:24. [PMID: 39966875 PMCID: PMC11834627 DOI: 10.1186/s41065-025-00385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
PURPOSE This study is aims to explore the role of ferroptosis genes regulated by N6-methyladenosine (m6A) in Type 2 diabetes mellitus (T2DM). MATERIAL AND METHODS Firstly, differentially expressed m6A-FRGs (DEm6A-FRGs) were obtained by intersecting the differentially expressed genes (DEGs) and the m6A-related ferroptosis genes (m6A-FRGs). After enrichment analysis of DEm6A-FRGs, artificial neural network (ANN) and nomogram models were constructed using 4 biomarkers. Moreover, the gene set enrichment analysis of biomarkers was performed. Furthermore, the transcription factors (TF)-mRNA and competing endogenous RNAs (ceRNA) regulatory networks were constructed to reveal the potential regulation of biomarkers at molecular level. In addition, the targeted drugs of biomarkers were predicted, and the molecular docking was used to study the inter-molecular interactions between biomarkers and targeted drugs by "AutoDockvina". RESULTS Totals of 10 DEm6A-FRGs were obtained by intersecting the 402 DEGs and 299 m6A-FRGs. Moreover, the ANN model and nomogram model were constructed with 4 biomarkers including CDKN1A, MIOX, MYCN and CD82, among them, CDKN1A was the most important biomarker for forecasting T2DM. Notably, the function of extracellular matrix structural constituent was low expression in CD82 and MIOX, the function of mitochondrial protein-containing complex was high expression in CD82 and CDKN1A. Furthermore, TP63 could regulate CD82, CDKN1A and MIOX, GATA3 could regulate CD82, CDKN1A and MYCN at the same time. The ceRNA network was constructed with 4 mRNAs, 51 miRNAs and 37 lncRNAs, among them, XIST was a key lncRNA that associated with 12 miRNAs, which could influence CDKN1A. In addition, bisphenol A was associated with CD82 and MYCN, CGP 25608 was associated with CDKN1A and MIOX. CONCLUSION This study revealed the potential molecular mechanisms of m6A-related ferroptosis genes in T2DM, which could provide novel insights for the clinical diagnosis and treatment of T2DM.
Collapse
Affiliation(s)
- Jing Wang
- Department of Anaesthesiology, Northwest Women's and Children's Hospital, Yanxiang Road, Yanta District, Xi'an, 710000, Shanxi Province, China
| | - Xuying Li
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Juan Geng
- Department of Anaesthesiology, Northwest Women's and Children's Hospital, Yanxiang Road, Yanta District, Xi'an, 710000, Shanxi Province, China
| | - Ruiduo Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an, 710119, China
| | - Gang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China 704 Shengli Street, Yinchuan, 750004, Ningxia, China.
| | - Pan Liu
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Maojian District, No. 39, Chaoyang Middle Road, Shiyan, Hubei, 442000, People's Republic of China.
| |
Collapse
|
2
|
Yuan Q, Wang Y, Hu S, Cai Z, Jiang L, Huang Y. Role of microRNA in Diabetic Osteoporosis. Mol Biotechnol 2024:10.1007/s12033-024-01316-1. [PMID: 39609335 DOI: 10.1007/s12033-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Diabetic osteoporosis (DOP), a complication associated with diabetes mellitus (DM), is a metabolic bone disorder characterized by a reduction in bone mass per unit volume, impaired bone tissue microarchitecture, heightened bone fragility, and increased susceptibility to fractures. Individuals with diabetes exhibit a significantly greater incidence of osteoporosis and related fractures than those without diabetes. These fractures present a significant challenge in terms of the healing process and can result in severe consequences, including fatalities. MicroRNAs (miRNAs), a class of noncoding RNAs, play a pivotal role in numerous human diseases and are implicated in the pathogenesis of DOP. This review initially elucidates the essential role of miRNAs in the pathogenesis of DOP. Next, we emphasize the potential significance of miRNAs as valuable biomarkers for diagnosing DOP and predicting DOP-related fractures. Furthermore, we explore the involvement of miRNAs in managing DOP through various pathways, including conventional pharmaceutical interventions and exercise therapy. Importantly, miRNAs exhibit potential as targeted therapeutic agents for effectively treating DOP. Finally, we highlight the use of novel materials and exosomes for miRNA delivery, which has significant advantages in the treatment of DOP and overcomes the limitations associated with miRNA delivery.
Collapse
Affiliation(s)
- Qiong Yuan
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
- Department of Transfusion, Zigong First People's Hospital, Zigong, 643000, China
| | - Yuhan Wang
- Department of Clinical Laboratory, Luzhou Longmatan District People's Hospital, Luzhou, 646000, China
| | - Shan Hu
- Department of Transfusion, Guanghan People's Hospital, Deyang, 618300, China
| | - Zhi Cai
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
| | - Ling Jiang
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital, Southwest Medical University, Taiping Road 25#, Jiang Yang District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Yu X, Zhang C, Ma Q, Gao X, Sun H, Sun Y, Wang Y, Zhang H, Shi Y, Meng X, He X. SCD2 Regulation Targeted by miR-200c-3p on Lipogenesis Alleviates Mesenchymal Stromal Cell Senescence. Int J Mol Sci 2024; 25:8538. [PMID: 39126105 PMCID: PMC11313047 DOI: 10.3390/ijms25158538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The senescence of bone marrow mesenchymal stromal cells (MSCs) leads to the impairment of stemness and osteogenic differentiation capacity. In a previous study, we screened out stearoyl-CoA desaturase 2 (SCD2), the most evidently changed differential gene in lipid metabolism, using combined transcriptomic and metabolomic analyses, and verified that SCD2 could mitigate MSC senescence. However, the underlying molecular mechanism by which the rate-limiting enzyme of lipogenesis SCD2 manipulates MSC senescence has not been completely understood. In this study, we demonstrate that SCD2 over-expression alleviates MSC replicative senescence and ameliorates their osteogenic differentiation through the regulation of lipogenesis. Furthermore, SCD2 expression is reduced, whereas miR-200c-3p expression is elevated in replicative senescent MSCs. SCD2 is the direct target gene of miR-200c-3p, which can bind to the 3'-UTR of SCD2. MiR-200c-3p replenishment in young MSCs is able to diminish SCD2 expression levels due to epigenetic modulation. In addition, SCD2-rescued MSC senescence and enhanced osteogenic differentiation can be attenuated by miR-200c-3p repletion via suppressing lipogenesis. Taken together, we reveal the potential mechanism of SCD2 influencing MSC senescence from the perspective of lipid metabolism and epigenetics, which provides both an experimental basis for elucidating the mechanism of stem cell senescence and a novel target for delaying stem cell senescence.
Collapse
Affiliation(s)
- Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (X.Y.); (C.Z.); (Q.M.); (X.G.); (H.S.); (Y.S.); (Y.W.); (H.Z.); (Y.S.)
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (X.Y.); (C.Z.); (Q.M.); (X.G.); (H.S.); (Y.S.); (Y.W.); (H.Z.); (Y.S.)
| | - Qianhui Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (X.Y.); (C.Z.); (Q.M.); (X.G.); (H.S.); (Y.S.); (Y.W.); (H.Z.); (Y.S.)
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (X.Y.); (C.Z.); (Q.M.); (X.G.); (H.S.); (Y.S.); (Y.W.); (H.Z.); (Y.S.)
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (X.Y.); (C.Z.); (Q.M.); (X.G.); (H.S.); (Y.S.); (Y.W.); (H.Z.); (Y.S.)
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (X.Y.); (C.Z.); (Q.M.); (X.G.); (H.S.); (Y.S.); (Y.W.); (H.Z.); (Y.S.)
| | - Yuezeng Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (X.Y.); (C.Z.); (Q.M.); (X.G.); (H.S.); (Y.S.); (Y.W.); (H.Z.); (Y.S.)
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (X.Y.); (C.Z.); (Q.M.); (X.G.); (H.S.); (Y.S.); (Y.W.); (H.Z.); (Y.S.)
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (X.Y.); (C.Z.); (Q.M.); (X.G.); (H.S.); (Y.S.); (Y.W.); (H.Z.); (Y.S.)
| | - Xiaoting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (X.Y.); (C.Z.); (Q.M.); (X.G.); (H.S.); (Y.S.); (Y.W.); (H.Z.); (Y.S.)
| |
Collapse
|
4
|
Han D, Fan Z, Chen YS, Xue Z, Yang Z, Liu D, Zhou R, Yuan H. Retrospective study: risk assessment model for osteoporosis-a detailed exploration involving 4,552 Shanghai dwellers. PeerJ 2023; 11:e16017. [PMID: 37701834 PMCID: PMC10494836 DOI: 10.7717/peerj.16017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
Background Osteoporosis, a prevalent orthopedic issue, significantly influences patients' quality of life and results in considerable financial burden. The objective of this study was to develop and validate a clinical prediction model for osteoporosis risk, utilizing computer algorithms and demographic data. Method In this research, a total of 4,552 residents from Shanghai were retrospectively included. LASSO regression analysis was executed on the sample's basic characteristics, and logistic regression was employed for analyzing clinical characteristics and building a predictive model. The model's diagnostic capacity for predicting osteoporosis risk was assessed using R software and computer algorithms. Results The predictive nomogram model for bone loss risk, derived from the LASSO analysis, comprised factors including BMI, TC, TG, HDL, Gender, Age, Education, Income, Sleep, Alcohol Consumption, and Diabetes. The nomogram prediction model demonstrated impressive discriminative capability, with a C-index of 0.908 (training set), 0.908 (validation set), and 0.910 (entire cohort). The area under the ROC curve (AUC) of the model was 0.909 (training set), 0.903 (validation set), and applicable to the entire cohort. The decision curve analysis further corroborated that the model could efficiently predict the risk of bone loss in patients. Conclusion The nomogram, based on essential demographic and health factors (Body Mass Index, Total Cholesterol, Triglycerides, High-Density Lipoprotein, Gender, Age, Education, Income, Sleep, Alcohol Consumption, and Diabetes), offered accurate predictions for the risk of bone loss within the studied population.
Collapse
Affiliation(s)
- Dan Han
- Department of Emergency Medicine and Intensive Care, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, Shanghai, China
| | - Zhongcheng Fan
- Department of Orthopaedics, Hainan Province Clinical Medical Center, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People’s Hospital, Haikou, China
| | - Yi-sheng Chen
- Department of Sports medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zichao Xue
- Department of Orthopaedics, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Zhenwei Yang
- Department of Orthopaedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Danping Liu
- Department of Orthopaedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Rong Zhou
- Department Two of Medical Administration, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Yuan
- Department Two of Medical Administration, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Marino S, Akel N, Li S, Cregor M, Jones M, Perez B, Troncoso G, Meeks J, Stewart S, Sato AY, Nookaew I, Bellido T. Reversal of the diabetic bone signature with anabolic therapies in mice. Bone Res 2023; 11:19. [PMID: 37076478 PMCID: PMC10115794 DOI: 10.1038/s41413-023-00261-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
The mechanisms underlying the bone disease induced by diabetes are complex and not fully understood; and antiresorptive agents, the current standard of care, do not restore the weakened bone architecture. Herein, we reveal the diabetic bone signature in mice at the tissue, cell, and transcriptome levels and demonstrate that three FDA-approved bone-anabolic agents correct it. Diabetes decreased bone mineral density (BMD) and bone formation, damaged microarchitecture, increased porosity of cortical bone, and compromised bone strength. Teriparatide (PTH), abaloparatide (ABL), and romosozumab/anti-sclerostin antibody (Scl-Ab) all restored BMD and corrected the deteriorated bone architecture. Mechanistically, PTH and more potently ABL induced similar responses at the tissue and gene signature levels, increasing both formation and resorption with positive balance towards bone gain. In contrast, Scl-Ab increased formation but decreased resorption. All agents restored bone architecture, corrected cortical porosity, and improved mechanical properties of diabetic bone; and ABL and Scl-Ab increased toughness, a fracture resistance index. Remarkably, all agents increased bone strength over the healthy controls even in the presence of severe hyperglycemia. These findings demonstrate the therapeutic value of bone anabolic agents to treat diabetes-induced bone disease and suggest the need for revisiting the approaches for the treatment of bone fragility in diabetes.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Nisreen Akel
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Shenyang Li
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Meloney Cregor
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Meghan Jones
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Betiana Perez
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gaston Troncoso
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jomeeka Meeks
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Scott Stewart
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Amy Y Sato
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
6
|
Extracellular Vesicles Secreted by TGF-β1-Treated Mesenchymal Stem Cells Promote Fracture Healing by SCD1-Regulated Transference of LRP5. Stem Cells Int 2023; 2023:4980871. [PMID: 36970598 PMCID: PMC10033213 DOI: 10.1155/2023/4980871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/26/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023] Open
Abstract
Bone fracture repair is a multiphased regenerative process requiring paracrine intervention throughout the healing process. Mesenchymal stem cells (MSCs) play a crucial role in cell-to-cell communication and the regeneration of tissue, but their transplantation is difficult to regulate. The paracrine processes that occur in MSC-derived extracellular vesicles (MSC-EVs) have been exploited for this study. The primary goal was to determine whether EVs secreted by TGF-β1-stimulated MSCs (MSCTGF-β1-EVs) exhibit greater effects on bone fracture healing than EVs secreted by PBS-treated MSCs (MSCPBS-EVs). Our research was conducted using an in vivo bone fracture model and in vitro experiments, which included assays to measure cell proliferation, migration, and angiogenesis, as well as in vivo and in vitro gain/loss of function studies. In this study, we were able to confirm that SCD1 expression and MSC-EVs can be induced by TGF-β1. After MSCTGF-β1-EVs are transplanted in mice, bone fracture repair is accelerated. MSCTGF-β1-EV administration stimulates human umbilical vein endothelial cell (HUVEC) angiogenesis, proliferation, and migration in vitro. Furthermore, we were able to demonstrate that SCD1 plays a functional role in the process of MSCTGF-β1-EV-mediated bone fracture healing and HUVEC angiogenesis, proliferation, and migration. Additionally, using a luciferase reporter assay and chromatin immunoprecipitation studies, we discovered that SREBP-1 targets the promoter of the SCD1 gene specifically. We also discovered that the EV-SCD1 protein could stimulate proliferation, angiogenesis, and migration in HUVECs through interactions with LRP5. Our findings provide evidence of a mechanism whereby MSCTGF-β1-EVs enhance bone fracture repair by regulating the expression of SCD1. The use of TGF-β1 preconditioning has the potential to maximize the therapeutic effects of MSC-EVs in the treatment of bone fractures.
Collapse
|
7
|
Niu H, Lei A, Tian H, Yao W, Liu Y, Li C, An X, Chen X, Zhang Z, Wu J, Yang M, Huang J, Cheng F, Zhao J, Hua J, Liu S, Luo J. Scd1 Deficiency in Early Embryos Affects Blastocyst ICM Formation through RPs-Mdm2-p53 Pathway. Int J Mol Sci 2023; 24:ijms24021750. [PMID: 36675264 PMCID: PMC9864350 DOI: 10.3390/ijms24021750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Embryos contain a large number of lipid droplets, and lipid metabolism is gradually activated during embryonic development to provide energy. However, the regulatory mechanisms remain to be investigated. Stearoyl-CoA desaturase 1 (Scd1) is a fatty acid desaturase gene that is mainly involved in intracellular monounsaturated fatty acid production, which takes part in many physiological processes. Analysis of transcripts at key stages of embryo development revealed that Scd1 was important and expressed at an increased level during the cleavage and blastocyst stages. Knockout Scd1 gene by CRISPR/Cas9 from zygotes revealed a decrease in lipid droplets (LDs) and damage in the inner cell mass (ICM) formation of blastocyst. Comparative analysis of normal and knockout embryo transcripts showed a suppression of ribosome protein (RPs) genes, leading to the arrest of ribosome biogenesis at the 2-cell stage. Notably, the P53-related pathway was further activated at the blastocyst stage, which eventually caused embryonic development arrest and apoptosis. In summary, Scd1 helps in providing energy for embryonic development by regulating intra-embryonic lipid droplet formation. Moreover, deficiency activates the RPs-Mdm2-P53 pathway due to ribosomal stress and ultimately leads to embryonic development arrest. The present results suggested that Scd1 gene is essential to maintain healthy development of embryos by regulating energy support.
Collapse
Affiliation(s)
- Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Anmin Lei
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ying Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xuetong An
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhifei Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Min Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiangtao Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fei Cheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianqing Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jinlian Hua
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6018, Australia
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence:
| |
Collapse
|
8
|
Pan L, Yang F, Cao X, Zhao H, Li J, Zhang J, Guo J, Jin Z, Guan Z, Zhou F. Identification of five hub immune genes and characterization of two immune subtypes of osteoarthritis. Front Endocrinol (Lausanne) 2023; 14:1144258. [PMID: 37008941 PMCID: PMC10060864 DOI: 10.3389/fendo.2023.1144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most prevalent chronic diseases, leading to degeneration of joints, chronic pain, and disability in the elderly. Little is known about the role of immune-related genes (IRGs) and immune cells in OA. METHOD Hub IRGs of OA were identified by differential expression analysis and filtered by three machine learning strategies, including random forest (RF), least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM). A diagnostic nomogram model was then constructed by using these hub IRGs, with receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and clinical impact curve analysis (CICA) estimating its performance and clinical impact. Hierarchical clustering analysis was then conducted by setting the hub IRGs as input information. Differences in immune cell infiltration and activities of immune pathways were revealed between different immune subtypes. RESULT Five hub IRGs of OA were identified, including TNFSF11, SCD1, PGF, EDNRB, and IL1R1. Of them, TNFSF11 and SCD1 contributed the most to the diagnostic nomogram model with area under the curve (AUC) values of 0.904 and 0.864, respectively. Two immune subtypes were characterized. The immune over-activated subtype showed excessively activated cellular immunity with a higher proportion of activated B cells and activated CD8 T cells. The two phenotypes were also seen in two validation cohorts. CONCLUSION The present study comprehensively investigated the role of immune genes and immune cells in OA. Five hub IRGs and two immune subtypes were identified. These findings will provide novel insights into the diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Lifeng Pan
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Feng Yang
- Community Health Service Center, Hangzhou, Zhejiang, China
| | - Xianhua Cao
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Hongchang Zhao
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Jian Li
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Jinxi Zhang
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Jiandong Guo
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
| | - Zhijiang Jin
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Zhijiang Jin, ; Zhongning Guan, ; Feng Zhou,
| | - Zhongning Guan
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Zhijiang Jin, ; Zhongning Guan, ; Feng Zhou,
| | - Feng Zhou
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Zhijiang Jin, ; Zhongning Guan, ; Feng Zhou,
| |
Collapse
|
9
|
Tian T, Sun W, Du J, Sun Y. Analysis of co-expression gene network associated with intracranial aneurysm and type 2 diabetes mellitus. Front Neurol 2022; 13:1032038. [PMID: 36561297 PMCID: PMC9763588 DOI: 10.3389/fneur.2022.1032038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
To screen for common target genes in intracranial aneurysms (IA) and type 2 diabetes mellitus (T2DM), construct a common transcriptional regulatory network to predict clusters of candidate genes involved in the pathogenesis of T2DM and IA, and identify the common neurovascular markers and pathways in T2DM causing IA. Microarray datasets (GSE55650, GSE25462, GSE26969, GSE75436, and GSE13353) from the GEO database were analyzed in this research. Screening of the IA and the T2DM datasets yielded a total of 126 DEGs, among which 78 were upregulated and 138 were downregulated. Functional enrichment analysis revealed that these DEGs were enriched for a total of 68 GO pathways, including extracellular matrix composition, coagulation regulation, hemostasis regulation, and collagen fiber composition pathways. We also constructed transcriptional regulatory networks, and identified key transcription factors involved in both the conditions. Univariate logistic regression analysis showed that ARNTL2 and STAT1 were significantly associated with the development of T2DM and IA, acting as the common neurovascular markers for both the diseases. In cellular experiments, hyperglycemic microenvironments exhibited upregulated STAT1 expression. STAT1 may be involved in the pathogenesis of IA in T2DM patients. Being the common neurovascular markers, STAT1 may acts as novel therapeutic targets for the treatment of IA and T2DM.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurological Surgery, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Wenhao Sun
- Department of Neurological Surgery, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Jia Du
- Department of Neurological Surgery, Cangzhou Center Hospital, Cangzhou, China
| | - Yafei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China,*Correspondence: Yafei Sun
| |
Collapse
|
10
|
Chen Y, Luo Z, Lin J, Qi B, Sun Y, Li F, Guo C, Lin W, Kang X, He X, Wang Q, Chen S, Chen J. Exploring the Potential Mechanisms of Melilotus officinalis (L.) Pall. in Chronic Muscle Repair Patterns Using Single Cell Receptor-Ligand Marker Analysis and Molecular Dynamics Simulations. DISEASE MARKERS 2022; 2022:9082576. [PMID: 35692879 PMCID: PMC9177293 DOI: 10.1155/2022/9082576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/28/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Information regarding the function of Melilotus officinalis (L.) Pall. in skeletal muscles is still unknown. In this study, we explored the possible regulatory targets of M. (L.) Pall. that affects the repair patterns in chronic muscle injury. We analyzed the potential target genes and chemical composition of M. (L.) Pall. and constructed a "drug-component-disease target genes" network analysis. Five active ingredients and 87 corresponding targets were obtained. Muscle-tendon junction (MTJ) cells were used to perform receptor-ligand marker analysis using the CellphoneDB algorithm. Targets of M. (L.) Pall. were screened further for the cellular ligand-receptor protein action on MTJs. Enrichment analysis suggests that those protein-associated ligand receptors may be associated with a range of intercellular signaling pathways. Molecular docking validation was then performed. Five proteins (CCL2, VEGFA, MMP2, MET, and EGFR) may be regulated by the active ingredient luteolin and scoparone. Finally, molecular dynamics simulations revealed that luteolin can stably target binding to MMP2. M. (L.) Pall. influences skeletal muscle repair patterns by affecting the fibroblast interactions in the muscle-tendon junctions through the active ingredients luteolin and scoparone.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangqi Li
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Weiwei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009 Zhejiang, China
| | - Xueran Kang
- Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xinyi He
- State Key Laboratory of Genetics Engineering, Collaborative Innovation Center for Genetics and Development, School Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The incidence of diabetes is increasing worldwide. Diabetes mellitus is characterized by hyperglycemia, which in the long-term damages the function of many organs including the eyes, the vasculature, the nervous system, and the kidneys, thereby imposing an important cause of morbidity for affected individuals. More recently, increased bone fragility was also noted in patients with diabetes. While patients with type 1 diabetes mellitus (T1DM) have low bone mass and a 6-fold risk for hip fractures, patients with type 2 diabetes mellitus (T2DM) have an increased bone mass, yet still display a 2-fold elevated risk for hip fractures. Although the underlying mechanisms are just beginning to be unraveled, it is clear that diagnostic tools are lacking to identify patients at risk for fracture, especially in the case of T2DM, in which classical tools to diagnose osteoporosis such as dual X-ray absorptiometry have limitations. Thus, new biomarkers are urgently needed to help identify patients with diabetes who are at risk to fracture. RECENT FINDINGS Previously, microRNAs have received great attention not only for being involved in the pathogenesis of various chronic diseases, including osteoporosis, but also for their value as biomarkers. Here, we summarize the current knowledge on microRNAs and their role in diabetic bone disease and highlight recent studies on miRNAs as biomarkers to predict bone fragility in T1DM and T2DM. Finally, we discuss future directions and challenges for their use as prognostic markers.
Collapse
Affiliation(s)
- Souad Daamouch
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Lejla Emini
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
12
|
Heilmeier U, Hackl M, Schroeder F, Torabi S, Kapoor P, Vierlinger K, Eiriksdottir G, Gudmundsson EF, Harris TB, Gudnason V, Link TM, Grillari J, Schwartz AV. Circulating serum microRNAs including senescent miR-31-5p are associated with incident fragility fractures in older postmenopausal women with type 2 diabetes mellitus. Bone 2022; 158:116308. [PMID: 35066213 DOI: 10.1016/j.bone.2021.116308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Fragility fractures are an important hallmark of aging and an increasingly recognized complication of Type 2 diabetes (T2D). T2D individuals have been found to exhibit an increased fracture risk despite elevated bone mineral density (BMD) by dual x-ray absorptiometry (DXA). However, BMD and FRAX-scores tend to underestimate fracture risk in T2D. New, reliable biomarkers are therefore needed. MicroRNAs (miRNAs) are secreted into the circulation from cells of various tissues proportional to local disease severity. Serum miRNA-classifiers were recently found to discriminate T2D women with and without prevalent fragility fractures with high specificity and sensitivity (AUC > 0.90). However, the association of circulating miRNAs with incident fractures in T2D has not been examined yet. In 168 T2D postmenopausal women in the AGES-Reykjavik cohort, miRNAs were extracted from baseline serum and a panel of 10 circulating miRNAs known to be involved in diabetic bone disease and aging was quantified by qPCR and Ct-values extracted. Unadjusted and adjusted Cox proportional hazard models assessed the associations between serum miRNAs and incident fragility fracture. Additionally, Receiver operating curve (ROC) analyses were performed. Of the included 168 T2D postmenopausal women who were on average 77.2 ± 5.6 years old, 70 experienced at least one incident fragility fracture during the mean follow-up of 5.8 ± 2.7 years. We found that 3 serum miRNAs were significantly associated with incident diabetic fragility fracture: while low expression of miR-19b-1-5p was associated with significantly lower risk of incident fragility fracture (HR 0.84 (95% CI: 0.71-0.99, p = 0.0323)), low expression of miR-203a and miR-31-5p was each significantly associated with a higher risk of incident fragility fracture per unit increase in Ct-value (miR-203a: HR 1.29 (95% CI: 1.12-1.49), p = 0.0004, miR-31-5p HR 1.27 (95% CI: 1.06-1.52), p = 0.009). Hazard ratios of the latter two miRNAs remained significant after adjustments for age, body mass index (BMI), areal bone mineral density (aBMD), clinical FRAX or FRAXaBMD. Women with miR-203a and miR-31-5p serum levels in the lowest expression quartiles exhibited a 2.4-3.4-fold larger fracture risk than women with miR-31-5p and miR-203a serum expressions in the highest expression quartile (0.002 ≤ p ≤ 0.039). Women with both miR-203a and miR-31-5p serum levels below the median had a significantly increased fracture risk (Unadjusted HR 3.26 (95% CI: 1.57-6.78, p = 0.001) compared to those with both expression levels above the median, stable to adjustments. We next built a diabetic fragility signature consisting of the 3 miRNAs that showed the largest associations with incident fracture (miR-203a, miR-31-5p, miR-19b-1-5p). This 3-miRNA signature showed with an AUC of 0.722 comparable diagnostic accuracy in identifying incident fractures to any of the clinical parameters such as aBMD, Clinical FRAX or FRAXaBMD alone. When the 3 miRNAs were combined with aBMD, this combined 4-feature signature performed with an AUC of 0.756 (95% CI: 0.680, 0.823) significantly better than aBMD alone (AUC 0.666, 95% CI: 0.585, 0.741) (p = 0.009). Our data indicate that specific serum microRNAs including senescent miR-31-5p are associated with incident fragility fracture in older diabetic women and can significantly improve fracture risk prediction in diabetics when combined with aBMD measurements of the femoral neck.
Collapse
Affiliation(s)
- Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA; Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | | - Fabian Schroeder
- Department of Molecular Diagnostics, Austrian Institute of Technology, AIT, Vienna, Austria
| | - Soheyla Torabi
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Puneet Kapoor
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Klemens Vierlinger
- Department of Molecular Diagnostics, Austrian Institute of Technology, AIT, Vienna, Austria
| | | | | | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, USA
| | - Vilmundur Gudnason
- The Icelandic Heart Association, Kopavogur, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Thomas M Link
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Christian Doppler Laboratory of Biotechnology of Skin Aging, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Shen J, Wu Y, Ruan W, Zhu F, Duan S. miR-1908 Dysregulation in Human Cancers. Front Oncol 2022; 12:857743. [PMID: 35463352 PMCID: PMC9021824 DOI: 10.3389/fonc.2022.857743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 01/19/2023] Open
Abstract
MiR-1908 is a miRNA located in the intron of the fatty acid desaturase 1 (FADS1) gene. The expression level of miR-1908 is abnormal in many diseases such as cancer. miR-1908 can inhibit the expression of at least 27 target genes by binding to the 3’ untranslated region (3’ UTR) of target genes. miR-1908 is involved in the biological processes of cell proliferation, cell differentiation, cell apoptosis, cancer cell invasion, and metastasis. The expression of miR-1908 is regulated by 11 factors, including lncRNA HOTTIP, adipokines (TNF-α, leptin, and resistin), NF-κB, free fatty acid (FFA), cholesterol, stearoyl-CoA desaturase (SCD1), immune-related transcription factors (STAT1, RB1, and IRF1). The expression of miR-1908 is also affected by the anticancer drug OSW-1, growth hormone (GH), and the anticonvulsant drug sodium valproate. In addition, the aberrant expression of miR-1908 is also related to the prognosis of a variety of cancers, including non-small cell lung cancer (NSCLC), ovarian cancer (OC), breast cancer, cervical cancer, glioma, high-grade serous ovarian carcinoma (HGSOC), osteosarcoma, etc. This article summarizes the abnormal expression pattern of miR-1908 in various diseases and its molecular regulation mechanisms. Our work will provide potential hints and direction for future miR-1908-related research.
Collapse
Affiliation(s)
- Jinze Shen
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wenjing Ruan
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Martínez-Montoro JI, García-Fontana B, García-Fontana C, Muñoz-Torres M. Evaluation of Quality and Bone Microstructure Alterations in Patients with Type 2 Diabetes: A Narrative Review. J Clin Med 2022; 11:2206. [PMID: 35456299 PMCID: PMC9024806 DOI: 10.3390/jcm11082206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023] Open
Abstract
Bone fragility is a common complication in subjects with type 2 diabetes mellitus (T2DM). However, traditional techniques for the evaluation of bone fragility, such as dual-energy X-ray absorptiometry (DXA), do not perform well in this population. Moreover, the Fracture Risk Assessment Tool (FRAX) usually underestimates fracture risk in T2DM. Importantly, novel technologies for the assessment of one microarchitecture in patients with T2DM, such as the trabecular bone score (TBS), high-resolution peripheral quantitative computed tomography (HR-pQCT), and microindentation, are emerging. Furthermore, different serum and urine bone biomarkers may also be useful for the evaluation of bone quality in T2DM. Hence, in this article, we summarize the limitations of conventional tools for the evaluation of bone fragility and review the current evidence on novel approaches for the assessment of quality and bone microstructure alterations in patients with T2DM.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Malaga, 29010 Malaga, Spain;
| | - Beatriz García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
15
|
Yu X, Sun H, Gao X, Zhang C, Sun Y, Wang H, Zhang H, Shi Y, He X. A comprehensive analysis of age-related metabolomics and transcriptomics reveals metabolic alterations in rat bone marrow mesenchymal stem cells. Aging (Albany NY) 2022; 14:1014-1032. [PMID: 35122680 PMCID: PMC8833123 DOI: 10.18632/aging.203857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
The functions of stem cells decline progressively with aging, and some metabolic changes occur during the process. However, the molecular mechanisms of stem cell aging remain unclear. In this study, the combined application of metabolomics and transcriptomics technologies can effectively describe the possible molecular mechanisms of rat bone marrow mesenchymal stem cell (BMSC) senescence. Metabolomic profiles revealed 23 differential metabolites which were abundant in “glycerophospholipid metabolism”, “linoleic acid metabolism” and “biosynthesis of unsaturated fatty acids”. In addition, transcriptomics analysis identified 590 genes with enormously differential expressions in young and old BMSCs. KEGG enrichment analyses showed that metabolism-related pathways in BMSC senescence had stronger responses. Furthermore, the integrated analysis of the interactions between the differentially expressed genes (DEGs) and metabolites indicated the differential genes related to lipid metabolism of Scd, Scd2, Dgat2, Fads2, Lpin1, Gpat3, Acaa2, Lpcat3, Pcyt2 and Pla2g4a may be closely associated with the aging of BMSCs. Finally, Scd2 was identified as the most significant DEG, and Scd2 over-expression could alleviate cellular senescence in aged BMSCs. In conclusion, this work provides a validated understanding that the DEGs and metabolites related to lipid metabolism present more apparent changes in the senescence of rat BMSCs.
Collapse
Affiliation(s)
- Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Huan Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
16
|
A Hyperglycemic Microenvironment Inhibits Tendon-to-Bone Healing through the let-7b-5p/CFTR Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8268067. [PMID: 35126637 PMCID: PMC8813224 DOI: 10.1155/2022/8268067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
Background Tendon-to-bone healing is a difficult process in treatment of rotator cuff tear (RCT). In addition, diabetes is an important risk factor for poor tendon-to-bone healing. Therefore, we investigated the specific mechanisms through which diabetes affects tendon-to-bone healing by regulating the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Methods Tendon-derived stem cells (TDSCs) were extracted from rats after which their proliferative capacities were evaluated by the MTT assay. The expression levels of CFTR and tendon-related markers were determined by qRT-PCR. Then, bioinformatics analyses and dual luciferase reporter gene assays were used to identify miRNAs with the ability to bind CFTR mRNA. Finally, CFTR was overexpressed in TDSCs to validate the specific mechanisms through which the high glucose microenvironment inhibits tendon-to-bone healing. Results The high glucose microenvironment downregulated mRNA expression levels of tendon-related markers and CFTR in TDSCs cultured with different glucose concentrations. Additionally, bioinformatics analyses revealed that let-7b-5p may be regulated by the high glucose microenvironment and can regulate CFTR levels. Moreover, a dual luciferase reporter gene assay was used to confirm that let-7b-5p targets and binds CFTR mRNA. Additional experiments also confirmed that overexpressed CFTR effectively reversed the negative effects of the hyperglycaemic microenvironment and upregulation of let-7b-5p on TDSC proliferation and differentiation. These findings imply that the hyperglycemic microenvironment inhibits CFTR transcription and, consequently, proliferation and differentiation of TDSCs in vitro by upregulating let-7b-5p. Conclusions A hyperglycemic microenvironment inhibits TDSC proliferation in vitro via the let-7b-5p/CFTR pathway, and this is a potential mechanism in diabetes-induced poor tendon-to-bone healing.
Collapse
|
17
|
Role of Calcium Signaling Pathway-Related Gene Regulatory Networks in Ischemic Stroke Based on Multiple WGCNA and Single-Cell Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:8060477. [PMID: 34987704 PMCID: PMC8720592 DOI: 10.1155/2021/8060477] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 01/28/2023]
Abstract
Background This study is aimed at investigating the changes in relevant pathways and the differential expression of related gene expression after ischemic stroke (IS) at the single-cell level using multiple weighted gene coexpression network analysis (WGCNA) and single-cell analysis. Methods The transcriptome expression datasets of IS samples and single-cell RNA sequencing (scRNA-seq) profiles of cerebrovascular tissues were obtained by searching the Gene Expression Omnibus (GEO) database. First, gene pathway scoring was calculated via gene set variation analysis (GSVA) and was imported into multiple WGCNA to acquire key pathways and pathway-related hub genes. Furthermore, SCENIC was used to identify transcription factors (TFs) regulating these core genes using scRNA-seq data. Finally, the pseudotemporal trajectory analysis was used to analyse the role of these TFs on various cell types under hypoxic and normoxic conditions. Results The scores of 186 KEGG pathways were obtained via GSVA using microarray expression profiles of 40 specimens. WGCNA of the KEGG pathways revealed the two following pathways: calcium signaling pathway and neuroactive ligand-receptor interaction pathways. Subsequently, WGCNA of the gene expression matrix of the samples revealed the calcium signaling pathway-related genes (AC079305.10, BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG, and PTGS2) that were identified as core genes via correlation analysis. Furthermore, SCENIC and pseudotemporal analysis revealed JUN, IRF9, ETV5, and PPARA score gene-related TFs. Jun was found to be associated with hypoxia in endothelial cells, whereas Irf9 and Etv5 were identified as astrocyte-specific TFs associated with oxygen concentration in the mouse cerebral cortex. Conclusions Calcium signaling pathway-related genes (AC079305.10, BCL10, BCL2A1, BRE-AS1, DYNLL2, EREG, and PTGS2) and TFs (JUN, IRF9, ETV5, and PPARA) were identified to play a key role in IS. This study provides a new perspective and basis for investigating the pathogenesis of IS and developing new therapeutic approaches.
Collapse
|
18
|
Identification of KLF6/PSGs and NPY-Related USF2/CEACAM Transcriptional Regulatory Networks via Spinal Cord Bulk and Single-Cell RNA-Seq Analysis. DISEASE MARKERS 2021; 2021:2826609. [PMID: 34880956 PMCID: PMC8648463 DOI: 10.1155/2021/2826609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022]
Abstract
Background To further understand the development of the spinal cord, an exploration of the patterns and transcriptional features of spinal cord development in newborn mice at the cellular transcriptome level was carried out. Methods The mouse single-cell sequencing (scRNA-seq) dataset was downloaded from the GSE108788 dataset. Single-cell RNA-Seq (scRNA-Seq) was conducted on cervical and lumbar spinal V2a interneurons from 2 P0 neonates. Single-cell analysis using the Seurat package was completed, and marker mRNAs were identified for each cluster. Then, pseudotemporal analysis was used to analyze the transcription changes of marker mRNAs in different clusters over time. Finally, the functions of these marker mRNAs were assessed by enrichment analysis and protein-protein interaction (PPI) networks. A transcriptional regulatory network was then constructed using the TRRUST dataset. Results A total of 949 cells were screened. Single-cell analysis was conducted based on marker mRNAs of each cluster, which revealed the heterogeneity of neonatal mouse spinal cord neuronal cells. Functional analysis of pseudotemporal trajectory-related marker mRNAs suggested that pregnancy-specific glycoproteins (PSGs) and carcinoembryonic antigen cell adhesion molecules (CEACAMs) were the core mRNAs in cluster 3. GSVA analysis then demonstrated that the different clusters had differences in pathway activity. By constructing a transcriptional regulatory network, USF2 was identified to be a transcriptional regulator of CEACAM1 and CEACAM5, while KLF6 was identified to be a transcriptional regulator of PSG3 and PSG5. This conclusion was then validated using the Genotype-Tissue Expression (GTEx) spinal cord transcriptome dataset. Conclusions This study completed an integrated analysis of a single-cell dataset with the utilization of marker mRNAs. USF2/CEACAM1&5 and KLF6/PSG3&5 transcriptional regulatory networks were identified by spinal cord single-cell analysis.
Collapse
|
19
|
Wang S, Wang Z, Su H, Chen F, Ma M, Yu W, Ye G, Cen S, Mi R, Wu X, Deng W, Feng P, Zeng C, Shen H, Wu Y. Effects of long-term culture on the biological characteristics and RNA profiles of human bone-marrow-derived mesenchymal stem cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:557-574. [PMID: 34631285 PMCID: PMC8479280 DOI: 10.1016/j.omtn.2021.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Expansion in vitro prior to mesenchymal stem cells (MSCs) application is a necessary process. Functional and genomic stability has a crucial role in stem-cell-based therapies. However, the exact expression and co-expressed profiles of coding and non-coding RNAs in human bone marrow (BM)-MSCs in vitro aging are still lacking. In the present studies, the change of morphology, immunophenotype, and capacity of proliferation, differentiation, and immunoregulation of MSCs at passage (P) 4, P6, P8, P10, and P12 were investigated. RNA sequencing identified that 439 mRNAs, 65 long noncoding RNAs (lncRNAs), 59 microRNAs (miRNAs), and 229 circular RNAs (circRNAs) were differentially expressed (DE) in P12 compared with P4, with a similar trend in P6. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) identified several significant biological processes and pathways, including binding, ossification, and Wnt and PPAR signaling pathways. Interaction and co-expression/localization analyses were performed for DE mRNAs and lncRNAs, and several key lncRNAs, circRNAs, and important pathways like autophagy and mitophagy were identified in the competing endogenous RNA (ceRNA) network. Some key RNAs found in the bioinformatics analysis were validated. Our studies indicate that replicative senescence of MSCs is a continuous process, including widespread alterations in biological characteristics and global gene expression patterns that need to be considered before therapeutic applications of MSCs.
Collapse
Affiliation(s)
- Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Hongjun Su
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Mengjun Ma
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Wenhui Yu
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Guiwen Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Shuizhong Cen
- Department of Orthopedics, Zhujiang Hospital of Southern Medical Universuty, Guangzhou 510280, P.R. China
| | - Rujia Mi
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Xiaohua Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Wen Deng
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Pei Feng
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| |
Collapse
|
20
|
Wang B, Liu Y, Sun J, Zhang N, Zheng X, Liu Q. Exploring the Potential Mechanism of Xiaokui Jiedu Decoction for Ulcerative Colitis Based on Network Pharmacology and Molecular Docking. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1536337. [PMID: 34733451 PMCID: PMC8560263 DOI: 10.1155/2021/1536337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/08/2021] [Accepted: 10/09/2021] [Indexed: 12/30/2022]
Abstract
Introduction Network pharmacology is in line with the holistic characteristics of TCM and can be used to elucidate the complex network of interactions between disease-specific genes and compounds in TCM herbal medicines. Here, we investigate the pharmacological mechanism of Xiaokui Jiedu decoction (XJD) for the treatment of ulcerative colitis (UC). Methods The Computational Systems Biology Laboratory Platform (TCMSP) database was searched and screened for the active ingredients of all drugs in XJD. The Uniport database was used to retrieve possible gene targets for the therapeutic effects of XJD. GeneCards, PharmGKB, TTD, and OMIM databases were used to retrieve XJD-related gene targets. A herb-compound-protein network and a protein-protein interaction (PPI) network were constructed, and hub genes were screened for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking was performed to validate the interrelationship between disease target proteins and active drug components. Results A total of 135 XJD potential action targets, 5097 UC-related gene targets, and 103 XJD-UC intersection gene targets were screened. The hub gene targets of XJD that exert therapeutic effects on UC are RB1, MAPK1, TP53, JUN, NR3C1, MAPK3, and ESR1. GO enrichment analysis showed 741 biofunctional enrichments, and KEGG enrichment analysis showed 124 related pathway enrichments. Molecular docking showed that the active components of XJD (β-sitosterol, kaempferol, formononetin, quercetin, and luteolin) showed good binding activities to five of the six hub gene targets. Discussion. The active ingredients of XJD (β-sitosterol, kaempferol, formononetin, quercetin, and luteolin) may regulate the inflammatory and oxidative stress-related pathways of colon cells during the course of UC by binding to the hub gene targets. This may be a potential mechanism of XJD in the treatment of UC.
Collapse
Affiliation(s)
- Bin Wang
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Hebei College of Traditional Chinese Medicine, Shijiazhuang, China
| | - Yang Liu
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Hebei College of Traditional Chinese Medicine, Shijiazhuang, China
| | - Jianhui Sun
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Hebei College of Traditional Chinese Medicine, Shijiazhuang, China
| | - Nailin Zhang
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Hebei College of Traditional Chinese Medicine, Shijiazhuang, China
| | - Xiaojia Zheng
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Hebei College of Traditional Chinese Medicine, Shijiazhuang, China
| | - Qiquan Liu
- Department of Spleen and Stomach Diseases, The First Affiliated Hospital of Hebei College of Traditional Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
21
|
Li C, Qi Y, Zhou Q, Huang X, Deng X, Yu Y, Shi LE. Betulinic acid promotes the osteogenic differentiation of human periodontal ligament stem cells by upregulating EGR1. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1266-1276. [PMID: 34519779 DOI: 10.1093/abbs/gmab111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is one of the most common chronic inflammations of the oral cavity, which eventually leads to tooth loss. Betulinic acid (BetA) is an organic acid that has anti-inflammatory effects and is derived from fruits and plants, but its effect on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is still unclear. This study aimed to explore the effect of BetA on the osteogenic differentiation of hPDLSCs and its mechanism. Our results revealed that BetA not only promoted the viability of hPDLSCs but also induced their osteogenic differentiation in a dose-dependent manner. In addition, RNA sequencing was used to screen the differentially expressed genes (DEGs) after hPDLSCs were treated with BetA, and 127 upregulated and 138 downregulated genes were identified. Gene Ontology enrichment analysis showed that DEGs were mainly involved in the response to lithium ions and the positive regulation of macrophage-derived foam cell differentiation. The Kyoto Encyclopedia of Genes and Genomes analysis results revealed that DEGs were enriched in the nuclear factor-κB and interleukin-17 signaling pathways. More importantly, we confirmed that early growth response gene 1 (EGR1), one of the three DEGs involved in bone formation, significantly promoted the expression of osteogenic markers and the mineralization of hPDLSCs. Knockdown of EGR1 obviously limited the effect of BetA on the osteogenic differentiation of hPDLSCs. In conclusion, BetA promoted the osteogenic differentiation of hPDLSCs through upregulating EGR1, and BetA might be a promising candidate in the clinical application of periodontal tissue regeneration.
Collapse
Affiliation(s)
- Cheng Li
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Yuesun Qi
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Stomatology, Jinshan Hospital, Fudan University, Shanghai 200540, China
| | - Qin Zhou
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Xin Huang
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Xiaolin Deng
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - L e Shi
- Department of Stomatology, Jing’an District Institute of Dantal Diseases, Shanghai 200040, China
| |
Collapse
|
22
|
Wu J, Chen X. Acupuncture therapy protects PCOS patients with diabetes by regulating miR-32-3p/PLA2G4A pathway. Am J Transl Res 2021; 13:8819-8832. [PMID: 34539997 PMCID: PMC8430091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the potential miRNA-mRNA network co-expressed in polycystic ovary syndrome (PCOS) and diabetes, and explore the molecular mechanism of traditional acupuncture treatment of PCOS. METHODS Patients with PCOS and diabetes who had undergone acupuncture treatment from January 2019 to June 2020 were recruited in this study. The potential miRNA-mRNA network co-expressed in PCOS and diabetes was obtained through bioinformatics analysis. The expression levels of candidate gen es were determined using quantitative qRT-PCR to study the effectiveness of acupuncture approach. Further, the mechanism of action of acupuncture method was determined using luciferase assay. RESULTS A total of 44 patients were included in this study. The miRNA-mRNA network for PCOS was then constructed based on the results of the bioinformatics analysis. Acupuncture treatment could significantly down-regulate miR-32-3p levels and up-regulate expression of PLA2G4A. Luciferase experiments showed that miR-32-3p could affect glucose metabolism in PCOS patients through down-regulating PLA2G4A expression. Functional and pathway enrichment analysis further suported this finding. CONCLUSIONS MiR-32-3p regulates PLA2G4A protein expression, which is vital in the pathogenesis of PCOS and diabetes. Further, this research proved that the potential mechanism of traditional acupuncture treatment may be the downregulation of miR-32-3p, thus inhibiting PCOS and diabetes progression.
Collapse
Affiliation(s)
- Jia Wu
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhou, Guangdong Province, China
- Department of TCM Gynecology, Shunde Women and Children’s Hospital of Guangdong Medical UniversityFoshan, Guangdong Province, China
| | - Xinghua Chen
- Rehabilitation Care Center, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou, Guangdong Province, China
| |
Collapse
|
23
|
Kang X, Chen Y, Yi B, Yan X, Jiang C, Chen B, Lu L, Sun Y, Shi R. An integrative microenvironment approach for laryngeal carcinoma: the role of immune/methylation/autophagy signatures on disease clinical prognosis and single-cell genotypes. J Cancer 2021; 12:4148-4171. [PMID: 34093817 PMCID: PMC8176413 DOI: 10.7150/jca.58076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
The effects of methylation/autophagy-related genes (MARGs) and immune infiltration in the tumor microenvironment on the prognosis of laryngeal cancer were comprehensively explored in this study. Survival analysis screened out 126 MARGs and 10 immune cells potentially associated with the prognosis of laryngeal carcinoma. Cox and lasso regression analyses were then used to select 8 MARGs (CAPN10, DAPK2, MBTPS2, ST13, CFLAR, FADD, PEX14 and TSC2) and 2 immune cells (Eosinophil and Mast cell) to obtain the prognostic risk scoring system (pRS). The pRS was used to establish a risk prediction model for the prognosis of laryngeal cancer. The predictive ability of the prediction model was evaluated by GEO datasets and our clinical samples. Further analysis revealed that pRS is highly associated with single nucleotide polymorphism (SNP), copy number variation (CNV), immune checkpoint blockade (ICB) therapy and tumor microenvironment. Moreover, the screened pRS-related ceRNA network and circ_0002951/miR-548k/HAS2 pathway provide potential therapeutic targets and biomarkers of laryngocarcinoma. Based on the clustering results of pRS-related genes, single cells were then genotyped and revealed by integrated scRNA-seq in laryngeal cancer samples. Fibroblasts were found enriched in high risk cell clusters at the scRNA-seq level. Fibroblast-related ligand-receptor interactions were then exposed and a neural network-based deep learning model based on these pRS-related hub gene signatures was also established with a high accuracy in cell type prediction. In conclusion, the combination of single-cell and transcriptome laryngeal carcinoma landscape analyses can investigate the link between the tumor microenvironmental and prognostic characteristics.
Collapse
Affiliation(s)
- Xueran Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Yi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Xiaojun Yan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Chenyan Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Bin Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Lixing Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Yuxing Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Runjie Shi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| |
Collapse
|
24
|
You WL, Xu ZL. Curculigoside promotes osteogenic differentiation of ADSCs to prevent ovariectomized-induced osteoporosis. J Orthop Surg Res 2021; 16:279. [PMID: 33902663 PMCID: PMC8074499 DOI: 10.1186/s13018-021-02389-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Curculigoside is a natural phenolic glycoside compound produced by Curculigo orchioides Gaertn. This study aimed to explore the effects of curculigoside in promoting the osteogenic differentiation of adipose-derived stem cells (ADSCs) as well as the underlying mechanism. METHODS ADSCs were treated with curculigoside at different concentrations (0 μmol/L, 1 μmol/L, 2.5 μmol/L, 5 μmol/L, 10 μmol/L, and 20 μmol/L), and cell viability was assessed by CCK-8 assay. Then, the alkaline phosphatase (ALP) activity was determined, and alizarin red S (ARS) staining was performed to measure the extracellular mineralization of curculigoside. Information about protein-chemical interactions is provided by the search tool for interactions of chemicals (STITCH) database. Then, LY294002 was administered to explore the mechanism by which curculigoside promotes the osteogenic differentiation of ADSCs. Western blot assays were performed to assess changes in the expression of osteogenic-related markers and the phosphorylation of PI3K and AKT. Finally, we established an ovariectomized (OVX)-induced osteoporosis mouse model and administered curculigoside to explore the effects of curculigoside in preventing bone loss in vivo. RESULTS The CCK-8 assay indicated that curculigoside did not induce cytotoxicity at a concentration of 5 μmol/L after 48 h. The ALP and ARS results revealed that the induced group had higher ALP activity and calcium deposition than the control group. Moreover, the curculigoside group exhibited increased biomineralization, ALP activity, and ARS staining compared to the induced and control groups, and these effects were partially inhibited by LY294002. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the target genes of curculigoside were mainly involved in the PI3K-Akt signaling pathway. PCR and western blot analysis showed that the expression of RUNX2, ALP, and Osterix was upregulated in curculigoside-treated ADSCs, but this effect was partially reversed by the PI3K inhibitor LY294002. Moreover, the curculigoside-treated group exhibited significantly increased phosphorylation of AKT to P-AKT compared with the osteogenic induction group. After treatment with curculigoside, the mice had a higher bone volume than the OVX mice, suggesting partial protection from cancellous bone loss. In addition, when LY294002 was added, the protective effects of curculigoside could be neutralized. CONCLUSIONS Curculigoside could induce the osteogenic differentiation of ADSCs and prevent bone loss in an OVX model through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Wei-Li You
- Department of Pharmacy, The First People's Hospital of Lianyungang, No. 128, Tongguanbei Road, Haizhou District, Lianyungang, 222002, Jiangsu Province, China.
| | - Zheng-Long Xu
- Department of Pharmacy, Xinghua City People's Hospital, Xinghua City, Jiangsu Province, China
| |
Collapse
|
25
|
Du Y, Wang XZ, Wu WD, Shi HP, Yang XJ, Wu WJ, Chen SX. Predicting the Risk of Acute Kidney Injury in Patients After Percutaneous Coronary Intervention (PCI) or Cardiopulmonary Bypass (CPB) Surgery: Development and Assessment of a Nomogram Prediction Model. Med Sci Monit 2021; 27:e929791. [PMID: 33895770 PMCID: PMC8083792 DOI: 10.12659/msm.929791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background We sought to create a model that incorporated ultrasound examinations to predict the risk of acute kidney injury (AKI) after percutaneous coronary intervention (PCI) or cardiopulmonary bypass (CPB) surgery. Material/Methods A total of 292 patients with AKI after PCI or CPB surgery were enrolled for the study. Afterwards, treatment-related information, including data pertaining to ultrasound examination, was collected. A random forest model and multivariate logistic regression analysis were then used to establish a predictive model for the risk of AKI. Finally, the predictive quality and clinical utility of the model were assessed using calibration plots, receiver-operating characteristic curve, C-index, and decision curve analysis. Results Predictive factors were screened and the model was established with a C-index of 0.955 in the overall sample set. Additionally, an area under the curve of 0.967 was obtained in the training group. Moreover, decision curve analysis also revealed that the prediction model had good clinical applicability. Conclusions The prediction model was efficient in predicting the risk of AKI by incorporating ultrasound examinations and a number of factors. Such included operation methods, age, congestive heart failure, body mass index, heart rate, white blood cell count, platelet count, hemoglobin, uric acid, and peak intensity (kidney cortex as well as kidney medulla).
Collapse
Affiliation(s)
- Yi Du
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China (mainland)
| | - Xiu-Zhe Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China (mainland)
| | - Wei-Dong Wu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China (mainland)
| | - Hai-Peng Shi
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China (mainland)
| | - Xiao-Jing Yang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China (mainland)
| | - Wen-Jing Wu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China (mainland)
| | - Shu-Xian Chen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
26
|
Yin M, Zhang Y, Yu H, Li X. Role of Hyperglycemia in the Senescence of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:665412. [PMID: 33968939 PMCID: PMC8099107 DOI: 10.3389/fcell.2021.665412] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
The regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs) have laid a sound foundation for their clinical application in various diseases. However, the clinical efficiency of MSC treatments varies depending on certain cell characteristics. Among these, the roles of cell aging or senescence cannot be excluded. Despite their stemness, evidence of senescence in MSCs has recently gained attention. Many factors may contribute to the senescence of MSCs, including MSC origin (biological niche), donor conditions (age, obesity, diseases, or unknown factors), and culture conditions in vitro. With the rapidly increasing prevalence of diabetes mellitus (DM) and gestational diabetes mellitus (GDM), the effects of hyperglycemia on the senescence of MSCs should be evaluated to improve the application of autologous MSCs. This review aims to present the available data on the senescence of MSCs, its relationship with hyperglycemia, and the strategies to suppress the senescence of MSCs in a hyperglycemic environment.
Collapse
Affiliation(s)
- Min Yin
- Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Pancancer Analysis of Neurovascular-Related NRP Family Genes as Potential Prognostic Biomarkers of Bladder Urothelial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5546612. [PMID: 33937395 PMCID: PMC8062179 DOI: 10.1155/2021/5546612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
Background Neurovascular-related genes have been implicated in the development of cancer. Studies have shown that a high expression of neuropilins (NRPs) promotes tumourigenesis and tumour malignancy. Method A multidimensional bioinformatics analysis was performed to examine the relationship between NRP genes and prognostic and pathological features, tumour mutational burden (TMB), microsatellite instability (MSI), and immunological features based on public databases and find the potential prognostic value of NRPs in pancancer. Results Survival analysis revealed that a low NRP1 expression in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), low-grade glioma (LGG), and stomach adenocarcinoma (STAD) was associated with poor prognosis. A high NRP2 expression in bladder urothelial carcinoma (BLCA), kidney renal papillary cell carcinoma (KIRP), and mesothelioma (MESO) was associated with poor prognosis. Moreover, NRP1 and NRP2 were associated with TMB and MSI. Subsequent analyses showed that NRP1 and NRP2 were correlated with immune infiltration and immune checkpoints. Genome-wide association analysis revealed that the NRP1 expression was strongly associated with kidney renal clear cell carcinoma (KIRC), whereas the NRP2 expression was closely associated with BLCA. Ultimately, NRP2 was found to be involved in the development of BLCA. Conclusions Neurovascular-related NRP family genes are significantly correlated with cancer prognosis, TME, and immune infiltration, particularly in BLCA.
Collapse
|
28
|
Zhang W, Chao X, Wu JQ, Ma XB, Yang YL, Wu Y, Lin JC. Exploring the Potential Mechanism of Guchang Zhixie Wan for Treating Ulcerative Colitis by Comprehensive Network Pharmacological Approaches and Molecular Docking Validation as Well as Cell Experiments. Chem Biodivers 2020; 18:e2000810. [PMID: 33251769 DOI: 10.1002/cbdv.202000810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Guchang Zhixie Wan (GZW) is a commonly used Chinese medicine for the treatment of ulcerative colitis (UC). This research explored the potential pharmacological mechanism of GZW in UC. The active ingredients, potential targets, and UC-related genes of GZW were retrieved from public databases. The pharmacological mechanisms including key components, potential targets and signal pathways were determined through bioinformatics analysis. The results of this study were verified through virtual molecular docking and cell experiments. Network analysis revealed that 26 active GZW compounds and 148 potential GZW target proteins were associated with UC. Quercetin, kaempferol and β-sitosterol were identified as the core active ingredients of GZW. IFNG, IL-1A, IL-1B, JUN, RELA, and STAT1 were indicated as key targets of GZW. These key targets have a strong affinity for quercetin, kaempferol, and β-sitosterol. GO and KEGG enrichment analysis showed that GZW target proteins are highly enriched in inflammatory, immune, and oxidative stress-related pathways. This study confirmed the therapeutic effect and revealed potential molecular mechanism of GZW on UC. And the protective effects of GZW on inflammatory bowel disease pathway were also revealed through STAT3/NF-κB/IL-6 pathway. The findings of this study enhanced our understanding of GZW in the treatment of UC and provided a feasible method for discovering potential drugs from traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Xu Chao
- Department of Translational Medicine Center, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Jie-Qiong Wu
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Xiao-Bing Ma
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Yin-Li Yang
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Yang Wu
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
| | - Jun-Chao Lin
- Department of Gastroenterology, Second Affiliated Hospital of Traditional Chinese Medicine, No. 5 Weiyang West Road, Xianyang, 712000, P. R. China
- Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xincheng District, Xi'an, 710000, P. R. China
| |
Collapse
|
29
|
MiR-125b-2 knockout increases high-fat diet-induced fat accumulation and insulin resistance. Sci Rep 2020; 10:21969. [PMID: 33319811 PMCID: PMC7738482 DOI: 10.1038/s41598-020-77714-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Obese individuals are more susceptible to comorbidities than individuals of healthy weight, including cardiovascular disease and metabolic disorders. MicroRNAs are a class of small and noncoding RNAs that are implicated in the regulation of chronic human diseases. We previously reported that miR-125b plays a critical role in adipogenesis in vitro. However, the involvement of miR-125b-2 in fat metabolism in vivo remains unknown. In the present study, miR-125b-2 knockout mice were generated using CRISPR/CAS9 technology, resulting in mice with a 7 bp deletion in the seed sequence of miR-125b-2. MiR-125b-2 knockout increased the weight of liver tissue, epididymal white fat and inguinal white fat. MiR-125b-2 knockout also increased adipocyte volume in HFD-induced obese mice, while there were no significant differences in body weight and feed intake versus mice fed a normal diet. Additionally, qRT-PCR and western blot analysis revealed that the expression of the miR-125b-2 target gene SCD-1 and fat synthesis-associated genes, such as PPARγ and C/EBPα, were significantly up-regulated in miR-125b-2KO mice (P < 0.05). Moreover, miR-125b-2KO altered HFD-induced changes in glucose tolerance and insulin resistance. In conclusion, we show that miR-125b-2 is a novel potential target for regulating fat accumulation, and also a candidate target to develop novel treatment strategies for obesity and diabetes.
Collapse
|
30
|
Ren C, Li M, Sun L, Li Z, Lu Y, Wang Q, Ma T, Xue HZ, Zhang K. Serum MicroRNA Differences Between Fracture in Postmenopausal Women with and without Diabetes. Orthop Surg 2020; 13:285-295. [PMID: 33283469 PMCID: PMC7862172 DOI: 10.1111/os.12866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/21/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To screen serum microRNAs (miRNAs) which could discriminate fracture status in postmenopausal women with or without diabetes. METHODS The miRNA expression profile dataset GSE70318 was downloaded from Gene Expression Omnibus (GEO) database. This dataset composed of 74 samples, among these, 55 postmenopausal women was selected for bioinformatics analysis, including 19 osteoporotic fracture patients with type-2 diabetes, 19 osteoporotic fracture patients without type-2 diabetes, and 17 healthy control subjects. These samples were divided into two groups: fracture patients with diabetes vs healthy subjects (FH group) and fracture patients without diabetes vs healthy subjects (DFH group). Then, the differentially expressed miRNA (DEMs) in FH group and DFH group were respectively identified. The target genes of DEMs were predicted, followed by functional enrichment analysis. Furthermore, DEMs related to long non-coding RNAs (lncRNAs) were screened, and DEMs-lncRNA-target genes network was constructed. Subsequently, principal component analysis (PCA) of DEMs was performed to further explore the expression characteristics of the selected miRNAs in different types of fracture samples. Finally, the expression level of significant DEMs was calculated by quantitative real-time polymerase chain reaction (qPCR) to verify the accuracy of the results of bioinformatics analysis. RESULTS A total of 18 and 23 DEMs were identified in FH and DFH groups, respectively. Gene ontology (GO) analysis showed that genes in FH group were significantly enriched in regulation of transcription (GO: 0045449) and genes in DFH group were mainly enriched in cellular response to hormone stimulus (GO: 0032870). Meanwhile, pathway analysis indicated that genes in FH group were primarily enriched in T cell receptor signaling pathway (hsa04660) and genes in DFH group were mainly implicated in neurotrophin-signaling pathway (hsa04722). Moreover, the miRNA-lncRNA analysis revealed that miR-155-5p regulated by lncRNA MIR155HG was up-regulated in FH group; in addition, the miR-181c was significantly up-regulated and miR-375 was observably down-regulated in DFH group. Furthermore, PCA analysis suggested that the screened miRNAs were able to differentiate these two types of fractures in postmenopausal women. The miR-181c and miR-375 might be regarded as potential predictors for fracture, while miR-155-5p might be a candidate diagnostic biomarker for diabetic fracture. Finally, the results of qPCR were consistent with that of microarray data. CONCLUSIONS Overall, these three miRNAs might be regarded as potential diagnostic biomarkers to discriminate fracture status in postmenopausal women with and or without diabetes, and they served a putative role in the pathogenesis of these two diseases. However, these findings were only observed in serum samples and further clinical trials are urgently demanded to validate our results.
Collapse
Affiliation(s)
- Cheng Ren
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ming Li
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Sun
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhong Li
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yao Lu
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qian Wang
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Teng Ma
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Han-Zhong Xue
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Kun Zhang
- Department of Orthopaedic Trauma, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
31
|
Xu HK, Chen LJ, Zhou SN, Li YF, Xiang C. Multifunctional role of microRNAs in mesenchymal stem cell-derived exosomes in treatment of diseases. World J Stem Cells 2020; 12:1276-1294. [PMID: 33312398 PMCID: PMC7705472 DOI: 10.4252/wjsc.v12.i11.1276] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/23/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells can be replaced by exosomes for the treatment of inflammatory diseases, injury repair, degenerative diseases, and tumors. Exosomes are small vesicles rich in a variety of nucleic acids [including messenger RNA, Long non-coding RNA, microRNA (miRNA), and circular RNA], proteins, and lipids. Exosomes can be secreted by most cells in the human body and are known to play a key role in the communication of information and material transport between cells. Like exosomes, miRNAs were neglected before their role in various activities of organisms was discovered. Several studies have confirmed that miRNAs play a vital role within exosomes. This review focuses on the specific role of miRNAs in MSC-derived exosomes (MSC-exosomes) and the methods commonly used by researchers to study miRNAs in exosomes. Taken together, miRNAs from MSC-exosomes display immense potential and practical value, both in basic medicine and future clinical applications, in treating several diseases.
Collapse
Affiliation(s)
- Hui-Kang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Li-Jun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Si-Ning Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Fei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|