1
|
Haghi M, Masoudi R, Ataellahi F, Yousefi R, Najibi SM. Role of Tau and Amyloid-beta in autophagy gene dysregulation through oxidative stress. Tissue Cell 2025; 93:102765. [PMID: 39923646 DOI: 10.1016/j.tice.2025.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/18/2025] [Accepted: 01/25/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by memory impairment and cognitive decline. Our previous research has demonstrated that pathological Tau and Amyloid-beta (Aβ) disrupt autophagy gene expression, independently. Other studies have shown that these pathological aggregates create a vicious cycle with oxidative stress. METHODS In the current research, the effect of Tau and Amyloid-beta was compared on behavioral function, autophagy gene dysfunction, and oxidative stress in the Drosophila model for AD. Thymoquinone (TQ), an antioxidant agent, was then tested to examine if it could ameliorate the adverse effects of Tau and Amyloid-beta. In addition, the impact of TQ on Tau aggregation was investigated in vitro. RESULTS Our data showed that Tau and Amyloid-beta induced behavioral disability, autophagy gene dysregulation, and oxidative stress. TQ treatment significantly improved conditions in both types of transgenic flies, with a more profound alleviation in Tau transgenic flies, despite tau having a greater impact on autophagy gene dysregulation. Furthermore, TQ prevented the aggregation of Tau in vitro. CONCLUSION To sum up, Tau may exert its toxic effect on autophagy and behavioral dysfunctions significantly through oxidative stress while Amyloid-beta may confer its toxicity through multiple pathways, including oxidative stress. Moreover, since TQ ameliorates the adverse effect of tau and amyloid beta, it could be considered a promising approach for treating AD, probably in combination with other medications against Aβ or Tau.
Collapse
Affiliation(s)
- Mehrnaz Haghi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Raheleh Masoudi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Fatemeh Ataellahi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Seyed Morteza Najibi
- Department of Biochemistry and Structural Biology, Lund University, Box 124, Lund 22100, Sweden.
| |
Collapse
|
2
|
Fu Y, Zhang J, Qin R, Ren Y, Zhou T, Han B, Liu B. Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases. Pharmacol Rev 2025; 77:100053. [PMID: 40187044 DOI: 10.1016/j.pharmr.2025.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/05/2024] [Indexed: 04/07/2025] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of "chasing and escaping" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.
Collapse
Affiliation(s)
- Yuqi Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueting Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Brain Science, Faculty of Medicine, Imperial College, London, UK
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Vrechi TAM, Guarache GC, Oliveira RB, Guedes EDC, Erustes AG, Leão AHFF, Abílio VC, Zuardi AW, Hallak JEC, Crippa JA, Bincoletto C, Ureshino RP, Smaili SS, Pereira GJS. Cannabidiol-Induced Autophagy Ameliorates Tau Protein Clearance. Neurotox Res 2025; 43:8. [PMID: 39900844 PMCID: PMC11790692 DOI: 10.1007/s12640-025-00729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
Tau is a neuronal protein that confers stability to microtubules; however, its hyperphosphorylation and accumulation can lead to an impairment of protein degradation pathways, such as autophagy. Autophagy is a lysosomal catabolic process responsible for degrading cytosolic components, being essential for cellular homeostasis and survival. In this context, autophagy modulation has been postulated as a possible therapeutic target for the treatment of neurodegenerative diseases. Studies point to the modulatory and neuroprotective role of the cannabinoid system in neurodegenerative models and here it was investigated the effects of cannabidiol (CBD) on autophagy in a human neuroblastoma strain (SH-SY5Y) that overexpresses the EGFP-Tau WT (Wild Type) protein in an inducible Tet-On system way. The results demonstrated that CBD (100 nM and 10 µM) decreased the expression of AT8 and total tau proteins, activating autophagy, evidenced by increased expression of light chain 3-II (LC3-II) protein and formation of autophagosomes. Furthermore, the cannabinoid compounds CBD, ACEA (CB1 agonist) and GW-405,833 (CB2 agonist) decreased the fluorescence intensity of EGFP-Tau WT; and when chloroquine, an autophagic blocker, was used, there was a reversal in the fluorescence intensity of EGFP-Tau WT with CBD (1 and 10 µM) and GW-405,833 (2 µM), demonstrating the possible participation of autophagy in these groups. Thus, it was possible to conclude that CBD induced autophagy in EGFP-Tau WT cells which increased tau degradation, showing its possible neuroprotective role. Hence, this study may contribute to a better understanding of how cannabinoids can modulate autophagy and present a potential therapeutic target in a neurodegeneration model.
Collapse
Affiliation(s)
- Talita A M Vrechi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Gabriel C Guarache
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Rafaela Brito Oliveira
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema Campus, Diadema, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Erika da Cruz Guedes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Adolfo G Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Anderson H F F Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Antonio W Zuardi
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Jaime Eduardo C Hallak
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Rodrigo P Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema Campus, Diadema, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Soraya S Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, CEP: 04044-020, Brazil.
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
4
|
Wang M, Guo S, Yi L, Li Z, Shi X, Fan Y, Luo M, He Y, Song W, Du Y, Dong Z. KIF9 Ameliorates Neuropathology and Cognitive Dysfunction by Promoting Macroautophagy in a Mouse Model of Alzheimer's Disease. Aging Cell 2025:e14490. [PMID: 39829171 DOI: 10.1111/acel.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the elderly. The imbalance of protein production and degradation processes leads to the accumulation of misfolded and abnormally aggregated amyloid-beta (Aβ) in the extracellular space and forms senile plaques, which constitute one of the most critical pathological hallmarks of AD. KIF9, a member of the kinesin protein superfamily, mediates the anterograde transport of intracellular cargo along microtubules. However, the exact role of KIF9 in AD pathogenesis remains largely elusive. In this study, we reported that the expression of kinesin family member 9 (KIF9) in the hippocampus of APP23/PS45 double-transgenic AD model mice declined in an age-dependent manner, concurrent with macroautophagy dysfunction. Furthermore, we found that KIF9 mediated the transport of lysosomes through kinesin light chain 1 (KLC1), thereby participating in the degradation of amyloidogenic pathway-related proteins of Aβ precursor protein (APP) in AD model cells through promoting the macroautophagy pathway. Importantly, genetic upregulation of KIF9 via adeno-associated virus (AAV) diminished Aβ deposition and alleviated cognitive impairments in AD model mice by enhancing macroautophagy function. Collectively, our findings underscore the ability of KIF9 to promote macroautophagy through KLC1-mediated anterograde transport of lysosomes, effectively ameliorating cognitive dysfunction in AD model mice. These discoveries suggest that KIF9 may represent a novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Maoju Wang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Song Guo
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lilin Yi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaolun Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuyu Shi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - YePeng Fan
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Man Luo
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan He
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Zhou X, Du K, Mao T, Wang N, Zhang L, Tian Y, Liu T, Wang L, Wang X. BMAL1 upregulates STX17 levels to promote autophagosome-lysosome fusion in hippocampal neurons to ameliorate Alzheimer's disease. iScience 2024; 27:111413. [PMID: 39687016 PMCID: PMC11647228 DOI: 10.1016/j.isci.2024.111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
We aim to investigate muscle ARNT-like protein 1 (BMAL1) regulation of syntaxin17 (STX17) in mouse hippocampal neurons, focusing on autophagy and amyloid-β (Aβ) deposition. Autophagosome-lysosome fusion in APP/PS1 hippocampal tissues was observed using transmission electron microscopy, while mRNA levels of LC3II and P62 were measured via reverse-transcription PCR (RT-PCR) after Amyloid precursor protein (APP) overexpression. STX17, linked to autophagy and differentially expressed in Alzheimer's disease (AD) brains, was knocked down or overexpressed to assess its effects. The results showed that reduced STX17 impairs autophagosome-lysosome fusion, leading to abnormal Aβ deposition. Coimmunoprecipitation (Co-IP) and immunofluorescence confirmed STX17 interaction with SNAP29 and VAMP8 to form SNARE complexes. Furthermore, BMAL1 binding to STX17 was examined using luciferase assays. Circadian rhythm disturbances and decreased BMAL1 expression in APP/PS1 mice were noted, while BMAL1 overexpression upregulated STX17 expression and promoted autophagy to reduce Aβ deposition. Thus, the BMAL1 protein can promote STX17 transcription to induce STX17-SNAP29-VAMP8 complex formation to clear intracellular Aβ through autophagy.
Collapse
Affiliation(s)
- Xiuya Zhou
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Kaili Du
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Tian Mao
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Ning Wang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Lifei Zhang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Yuan Tian
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Ting Liu
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Tao L, Liu Z, Li X, Wang H, Wang Y, Zhou D, Zhang H. Oleanonic acid ameliorates mutant Aβ precursor protein-induced oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in vitro. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167459. [PMID: 39134286 DOI: 10.1016/j.bbadis.2024.167459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Accumulation in the brain of amyloid-β (Aβ), derived from cleavage of Aβ precursor protein (APP), is a hallmark of Alzheimer's disease (AD). Oleanonic acid (OA), a phytochemical from several plants, has proven anti-inflammatory effects, but its role in AD remains unknown. Here we found that OA reduced APP expression and inhibited oxidative stress via Nrf2/HO-1 signaling in SH-SY5Y neuroblastoma cells stably overexpressing APP. OA suppressed phosphorylated mTOR but increased autophagy markers ATG5 and LC3-II. Moreover, OA rescued ferroptosis-related factors GPX4, NCOA, and COX2 and ER stress markers GRP78, CHOP, and three main induction pathways of ER stress including IRE1/XBP1s, PERK/EIF2α, and ATF6. OA alleviated mitochondrial damage through MFN1, MFN2, OPA1, FIS1, and DRP1. Furthermore, OA upregulated GDF11 expression and downregulated phosphorylation of ErbB4 and TrkB without affecting BDNF levels. Thus, OA might protect neurons from APP-induced neurotoxicity by inhibiting oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in AD, providing a new promising therapeutic strategy in patients with AD.
Collapse
Affiliation(s)
- Liqing Tao
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China; Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Zewang Liu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Zhang
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China; Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
7
|
Kose S, Cinar E, Akyel H, Cakir-Aktas C, Tel BC, Karatas H, Kelicen-Ugur P. Cerliponase alfa decreases Aβ load and alters autophagy- related pathways in mouse hippocampal neurons exposed to fAβ 1-42. Life Sci 2024; 357:123105. [PMID: 39362589 DOI: 10.1016/j.lfs.2024.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Extracellular aggregation of amyloid-beta (Aβ) in the brain plays a central role in the onset and progression of Alzheimer's disease (AD). Moreover, intraneuronal accumulation of Aβ via oligomer internalization might play an important role in the progression of AD. Deficient autophagy, which is a lysosomal degradation process, occurs during the early stages of AD. Tripeptidyl peptidase-1 (TPP1) functions as a lysosomal enzyme, and TPP1 gene mutations are associated with type 2 late infantile neuronal ceroid lipofuscinosis (LINCL). Nevertheless, there is little information about the role of TPP1 in the pathogenesis of AD; therefore, the present study aimed to measure the decrease in intraneuronal Aβ accumulation by a recombinant analog of the TPP1 enzyme, cerliponase alfa (CER) (Brineura®), and to determine whether autophagy pathways play a role in this decrease. In this study, endogenous Aβ accumulation was induced by fAβ1-42 (a toxic fragment of full-length Aβ) exposure, and mouse hippocampal neuronal cells (HT-22) were treated with CER (human recombinant rhTPP1 1 mg mL-1). Soluble Aβ, TPP1, and the proteins involved in autophagy, including mammalian target of rapamycin (p-mTOR/mTOR), p62/sequestosome-1 (p62/SQSTM1), and microtubule-associated protein 1 A/1B-light chain 3 (LC3), were evaluated using western blotting. The sirtuin-1, beclin-1, and Atg5 genes were also studied using RT-PCR. Aβ and TPP1 localizations were observed via immunocytochemistry. CER reduced the Aβ load in HT-22 cells by inducing TPP1 expression and converting pro-TPP1 into the mature form. Furthermore, exposure to CER and fAβ1-42 induced the autophagy-regulatory/related pathways in HT-22 cells and exposure to CER alone increased sirtuin-1 activity. Based on the present findings, we suggest that augmentation of TPP1 with enzyme replacement therapy may be a potential therapeutic option for the treatment of AD.
Collapse
Affiliation(s)
- Selma Kose
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye
| | - Elif Cinar
- Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkiye.
| | - Hilal Akyel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye; Baskent University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkiye
| | - Canan Cakir-Aktas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Sihhiye, Ankara, Turkiye.
| | - Banu Cahide Tel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye.
| | - Hulya Karatas
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Sihhiye, Ankara, Turkiye.
| | - Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sihhiye, Ankara, Turkiye.
| |
Collapse
|
8
|
Sweeney N, Kim TY, Morrison CT, Li L, Acosta D, Liang J, Datla NV, Fitzgerald JA, Huang H, Liu X, Tan GH, Wu M, Karelina K, Bray CE, Weil ZM, Scharre DW, Serrano GE, Saito T, Saido TC, Beach TG, Kokiko-Cochran ON, Godbout JP, Johnson GVW, Fu H. Neuronal BAG3 attenuates tau hyperphosphorylation, synaptic dysfunction, and cognitive deficits induced by traumatic brain injury via the regulation of autophagy-lysosome pathway. Acta Neuropathol 2024; 148:52. [PMID: 39394356 PMCID: PMC11469979 DOI: 10.1007/s00401-024-02810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
Growing evidence supports that early- or middle-life traumatic brain injury (TBI) is a risk factor for developing Alzheimer's disease (AD) and AD-related dementia (ADRD). Nevertheless, the molecular mechanisms underlying TBI-induced AD-like pathology and cognitive deficits remain unclear. In this study, we found that a single TBI (induced by controlled cortical impact) reduced the expression of BCL2-associated athanogene 3 (BAG3) in neurons and oligodendrocytes, which is associated with decreased proteins related to the autophagy-lysosome pathway (ALP) and increased hyperphosphorylated tau (ptau) accumulation in excitatory neurons and oligodendrocytes, gliosis, synaptic dysfunction, and cognitive deficits in wild-type (WT) and human tau knock-in (hTKI) mice. These pathological changes were also found in human cases with a TBI history and exaggerated in human AD cases with TBI. The knockdown of BAG3 significantly inhibited autophagic flux, while overexpression of BAG3 significantly increased it in vitro. Specific overexpression of neuronal BAG3 in the hippocampus attenuated AD-like pathology and cognitive deficits induced by TBI in hTKI mice, which is associated with increased ALP-related proteins. Our data suggest that targeting neuronal BAG3 may be a therapeutic strategy for preventing or reducing AD-like pathology and cognitive deficits induced by TBI.
Collapse
Affiliation(s)
- Nicholas Sweeney
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Tae Yeon Kim
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Cody T Morrison
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Liangping Li
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Diana Acosta
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Jiawen Liang
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Nithin V Datla
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Julie A Fitzgerald
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Haoran Huang
- Medical Scientist Training Program, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Xianglan Liu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Gregory Huang Tan
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Min Wu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kate Karelina
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Chelsea E Bray
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Zachary M Weil
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Douglas W Scharre
- Department of Neurology, College of Medicine, Ohio State University, Columbus, OH, USA
| | | | - Takashi Saito
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama, 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama, 351-0198, Japan
| | | | - Olga N Kokiko-Cochran
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester, Rochester, NY, USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA.
| |
Collapse
|
9
|
Johansson L, Sandberg A, Nyström S, Hammarström P, Hallbeck M. Amyloid beta 1-40 and 1-42 fibril ratios and maturation level cause conformational differences with minimal impact on autophagy and cytotoxicity. J Neurochem 2024; 168:3308-3322. [PMID: 39133499 DOI: 10.1111/jnc.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
The amyloid β (Aβ) peptide has a central role in Alzheimer's disease (AD) pathology. The peptide length can vary between 37 and 49 amino acids, with Aβ1-42 being considered the most disease-related length. However, Aβ1-40 is also found in Aβ plaques and has shown to form intertwined fibrils with Aβ1-42. The peptides have previously also shown to form different fibril conformations, proposed to be related to disease phenotype. To conduct more representative in vitro experiments, it is vital to uncover the impact of different fibril conformations on neurons. Hence, we fibrillized different Aβ1-40:42 ratios in concentrations of 100:0, 90:10, 75:25, 50:50, 25:75, 10:90 and 0:100 for either 24 h (early fibrils) or 7 days (aged fibrils). These were then characterized based on fibril width, LCO-staining and antibody-staining. We further challenged differentiated neuronal-like SH-SY5Y human cells with the different fibrils and measured Aβ content, cytotoxicity and autophagy function at three different time-points: 3, 24, and 72 h. Our results revealed that both Aβ1-40:42 ratio and fibril maturation affect conformation of fibrils. We further show the impact of these conformation changes on the affinity to commonly used Aβ antibodies, primarily affecting Aβ1-40 rich aggregates. In addition, we demonstrate uptake of the aggregates by neuronally differentiated human cells, where aggregates with higher Aβ1-42 ratios generally caused higher cellular levels of Aβ. These differences in Aβ abundance did not cause changes in cytotoxicity nor in autophagy activation. Our results show the importance to consider conformational differences of Aβ fibrils, as this can have fundamental impact on Aβ antibody detection. Overall, these insights underline the need for further exploration of the impact of conformationally different fibrils and the need to reliably produce disease relevant Aβ aggregates.
Collapse
Affiliation(s)
- Lovisa Johansson
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Alexander Sandberg
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Sun F, Wang J, Meng L, Zhou Z, Xu Y, Yang M, Li Y, Jiang T, Liu B, Yan H. AdipoRon promotes amyloid-β clearance through enhancing autophagy via nuclear GAPDH-induced sirtuin 1 activation in Alzheimer's disease. Br J Pharmacol 2024; 181:3039-3063. [PMID: 38679474 DOI: 10.1111/bph.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Amyloid-β (Aβ) peptide is one of the more important pathological markers in Alzheimer's disease (AD). The development of AD impairs autophagy, which results in an imbalanced clearance of Aβ. Our previous research demonstrated that AdipoRon, an agonist of adiponectin receptors, decreased the deposition of Aβ and enhanced cognitive function in AD. However, the exact mechanisms by which AdipoRon affects Aβ clearance remain unclear. EXPERIMENTAL APPROACH We studied how AdipoRon affects autophagy in HT22 cells and APP/PS1 transgenic mice. We also investigated the signalling pathway involved and used pharmacological inhibitors to examine the role of autophagy in this process. KEY RESULTS AdipoRon promotes Aβ clearance by activating neuronal autophagy in the APP/PS1 transgenic mice. Interestingly, we found that AdipoRon induces the nuclear translocation of GAPDH, where it interacts with the SIRT1/DBC1 complex. This interaction then leads to the release of DBC1 and the activation of SIRT1, which in turn activates autophagy. Importantly, we found that inhibiting either GAPDH or SIRT1 to suppress the activity of SIRT1 counteracts the elevated autophagy and decreased Aβ deposition caused by AdipoRon. This suggests that SIRT1 plays a critical role in the effect of AdipoRon on autophagic induction in AD. CONCLUSION AND IMPLICATIONS AdipoRon promotes the clearance of Aβ by enhancing autophagy through the AdipoR1/AMPK-dependent nuclear translocation of GAPDH and subsequent activation of SIRT1. This novel molecular pathway sheds light on the modulation of autophagy in AD and may lead to the development of new therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Jiangong Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Lingbin Meng
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Zhenyu Zhou
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yong Xu
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yixin Li
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Tianrui Jiang
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Bin Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
- Department of Pharmacology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
11
|
Kim S, Chun H, Kim Y, Kim Y, Park U, Chu J, Bhalla M, Choi SH, Yousefian-Jazi A, Kim S, Hyeon SJ, Kim S, Kim Y, Ju YH, Lee SE, Lee H, Lee K, Oh SJ, Hwang EM, Lee J, Lee CJ, Ryu H. Astrocytic autophagy plasticity modulates Aβ clearance and cognitive function in Alzheimer's disease. Mol Neurodegener 2024; 19:55. [PMID: 39044253 PMCID: PMC11267931 DOI: 10.1186/s13024-024-00740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Astrocytes, one of the most resilient cells in the brain, transform into reactive astrocytes in response to toxic proteins such as amyloid beta (Aβ) in Alzheimer's disease (AD). However, reactive astrocyte-mediated non-cell autonomous neuropathological mechanism is not fully understood yet. We aimed our study to find out whether Aβ-induced proteotoxic stress affects the expression of autophagy genes and the modulation of autophagic flux in astrocytes, and if yes, how Aβ-induced autophagy-associated genes are involved Aβ clearance in astrocytes of animal model of AD. METHODS Whole RNA sequencing (RNA-seq) was performed to detect gene expression patterns in Aβ-treated human astrocytes in a time-dependent manner. To verify the role of astrocytic autophagy in an AD mouse model, we developed AAVs expressing shRNAs for MAP1LC3B/LC3B (LC3B) and Sequestosome1 (SQSTM1) based on AAV-R-CREon vector, which is a Cre recombinase-dependent gene-silencing system. Also, the effect of astrocyte-specific overexpression of LC3B on the neuropathology in AD (APP/PS1) mice was determined. Neuropathological alterations of AD mice with astrocytic autophagy dysfunction were observed by confocal microscopy and transmission electron microscope (TEM). Behavioral changes of mice were examined through novel object recognition test (NOR) and novel object place recognition test (NOPR). RESULTS Here, we show that astrocytes, unlike neurons, undergo plastic changes in autophagic processes to remove Aβ. Aβ transiently induces expression of LC3B gene and turns on a prolonged transcription of SQSTM1 gene. The Aβ-induced astrocytic autophagy accelerates urea cycle and putrescine degradation pathway. Pharmacological inhibition of autophagy exacerbates mitochondrial dysfunction and oxidative stress in astrocytes. Astrocyte-specific knockdown of LC3B and SQSTM1 significantly increases Aβ plaque formation and GFAP-positive astrocytes in APP/PS1 mice, along with a significant reduction of neuronal marker and cognitive function. In contrast, astrocyte-specific overexpression of LC3B reduced Aβ aggregates in the brain of APP/PS1 mice. An increase of LC3B and SQSTM1 protein is found in astrocytes of the hippocampus in AD patients. CONCLUSIONS Taken together, our data indicates that Aβ-induced astrocytic autophagic plasticity is an important cellular event to modulate Aβ clearance and maintain cognitive function in AD mice.
Collapse
Affiliation(s)
- Suhyun Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heejung Chun
- College of Pharmacy, Yonsei-SL Bigen Institute (YSLI), Yonsei University, Incheon, 21983, Republic of Korea
| | - Yunha Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeyun Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Uiyeol Park
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Deaprtment of Medicine, Hanyang University Medical School, Seoul, 04763, Republic of Korea
| | - Jiyeon Chu
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung-Hye Choi
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ali Yousefian-Jazi
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sojung Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Jae Hyeon
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seungchan Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeonseo Kim
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yeon Ha Ju
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyunbeom Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyungeun Lee
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun Mi Hwang
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- VA Boston Healthcare System, Boston, MA, 02130, USA.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hoon Ryu
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of Converging Science and Technology, KHU-KIST, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
12
|
Yang Q, Yang C, Lv H, Zheng X, Mao S, Liu N, Mo S, Liao B, Yang M, Lu Z, Tang L, Huang X, Jian C, Shang J. Autophagy Regulation Attenuates Neuroinflammation and Cognitive Decline in an Alzheimer's Disease Mouse Model with Chronic Cerebral Hypoperfusion. Inflammation 2024:10.1007/s10753-024-02043-0. [PMID: 38951357 DOI: 10.1007/s10753-024-02043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 07/03/2024]
Abstract
This study investigates the role of autophagy regulation in modulating neuroinflammation and cognitive function in an Alzheimer's disease (AD) mouse model with chronic cerebral hypoperfusion (CCH). Using the APP23/PS1 mice plus CCH model, we examined the impact of autophagy regulation on cognitive function, neuroinflammation, and autophagic activity. Our results demonstrate significant cognitive impairments in AD mice, exacerbated by CCH, but mitigated by treatment with the autophagy inhibitor 3-methyladenine (3-MA). Dysregulation of autophagy-related proteins, accentuated by CCH, underscores the intricate relationship between cerebral blood flow and autophagy dysfunction in AD pathology. While 3-MA restored autophagic balance, rapamycin (RAPA) treatment did not induce significant changes, suggesting alternative therapeutic approaches are necessary. Dysregulated microglial polarization and neuroinflammation in AD+CCH were linked to cognitive decline, with 3-MA attenuating neuroinflammation. Furthermore, alterations in M2 microglial polarization and the levels of inflammatory markers NLRP3 and MCP1 were observed, with 3-MA treatment exhibiting potential anti-inflammatory effects. Our findings shed light on the crosstalk between autophagy and neuroinflammation in AD+CCH and suggest targeting autophagy as a promising strategy for mitigating neuroinflammation and cognitive decline in AD+CCH.
Collapse
Affiliation(s)
- Qin Yang
- Medical School, Jinan University, Guangzhou, Guangdong, China
- Department of Neurology, Baise People's Hospital, Baise, Guangxi, China
| | - Chengmin Yang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Hui Lv
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xingwu Zheng
- Department of Geriatrics, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Sanyin Mao
- Department of Neurology, The First People's Hospital of Jiande, Hangzhou, China
| | - Ning Liu
- School of Basic Medical Sciences, Beihua University, Jilin, China
| | - Shenglong Mo
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Bao Liao
- Department of Neurology, Baise People's Hospital, Baise, Guangxi, China
| | - Meiling Yang
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Zhicheng Lu
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Lina Tang
- Graduate School of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Xiaorui Huang
- Department of Psychiatry and Psychology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chongdong Jian
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Jingwei Shang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
13
|
Wang Z, Wang R, Niu L, Zhou X, Han J, Li K. EPB41L4A-AS1 is required to maintain basal autophagy to modulates Aβ clearance. NPJ AGING 2024; 10:24. [PMID: 38704365 PMCID: PMC11069514 DOI: 10.1038/s41514-024-00152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) plaques. Aβ is generated from the cleavage of the amyloid precursor protein by β and γ-secretases and cleared by neuroglial cells mediated autophagy. The imbalance of the intracellular Aβ generation and clearance is the causative factor for AD pathogenesis. However, the exact underlying molecular mechanisms remain unclear. Our previous study reported that EPB41L4A-AS1 is an aging-related long non-coding RNA (lncRNA) that is repressed in patients with AD. In this study, we found that downregulated EPB41L4A-AS1 in AD inhibited neuroglial cells mediated-Aβ clearance by decreasing the expression levels of multiple autophagy-related genes. We found that EPB41L4A-AS1 regulates the expression of general control of amino acid synthesis 5-like 2, an important histone acetyltransferase, thus affecting histone acetylation, crotonylation, and lactylation near the transcription start site of autophagy-related genes, ultimately influencing their transcription. Collectively, this study reveals EPB41L4A-AS1 as an AD-related lncRNA via mediating Aβ clearance and provides insights into the epigenetic regulatory mechanism of EPB41L4A-AS1 in gene expression and AD pathogenesis.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| | - Ruomei Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Lixin Niu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xiaoyan Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jinxiang Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| | - Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
14
|
Wang X, Song Y, Cong P, Wang Z, Liu Y, Xu J, Xue C. Docosahexaenoic Acid-Acylated Astaxanthin Monoester Ameliorates Amyloid-β Pathology and Neuronal Damage by Restoring Autophagy in Alzheimer's Disease Models. Mol Nutr Food Res 2024; 68:e2300414. [PMID: 37991232 DOI: 10.1002/mnfr.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Indexed: 11/23/2023]
Abstract
SCOPE Astaxanthin (AST) is ubiquitous in aquatic foods and microorganisms. The study previously finds that docosahexaenoic acid-acylated AST monoester (AST-DHA) improves cognitive function in Alzheimer's disease (AD), although the underlying mechanism remains unclear. Moreover, autophagy is reportedly involved in amyloid-β (Aβ) clearance and AD pathogenesis. Therefore, this study aims to evaluate the preventive effect of AST-DHA and elucidates the mechanism of autophagy modulation in Aβ pathology. METHODS AND RESULTS In the cellular AD model, AST-DHA significantly reduces toxic Aβ1-42 levels and alleviated the accumulation of autophagic markers (LC3II/I and p62) in Aβ25-35 -induced SH-SY5Y cells. Notably, AST-DHA restores the autophagic flux in SH-SY5YmRFP-GFP-LC3 cells. In APP/PS1 mice, a 3-month dietary supplementation of AST-DHA exceeded free-astaxanthin (F-AST) capacity to increase hippocampal and cortical autophagy. Mechanistically, AST-DHA restores autophagy by activating the ULK1 signaling pathway and restoring autophagy-lysosome fusion. Moreover, AST-DHA relieves ROS production and mitochondrial stress affecting autophagy in AD. As a favorable outcome of restored autophagy, AST-DHA mitigates cerebral Aβ and p-Tau deposition, ultimately improving neuronal function. CONCLUSION The findings demonstrate that AST-DHA can rectify autophagic impairment in AD, and confer neuroprotection in Aβ-related pathology, which supports the future application of AST as an autophagic inducer for maintaining brain health.
Collapse
Affiliation(s)
- Xiaoxu Wang
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, 266003, China
| | - Yu Song
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Peixu Cong
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Zhigao Wang
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Yanjun Liu
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, China
| | - Jie Xu
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Changhu Xue
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, 266235, China
| |
Collapse
|
15
|
Baek H, Sanjay, Park M, Lee HJ. Cyanidin-3-O-glucoside protects the brain and improves cognitive function in APPswe/PS1ΔE9 transgenic mice model. J Neuroinflammation 2023; 20:268. [PMID: 37978414 PMCID: PMC10655395 DOI: 10.1186/s12974-023-02950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is a natural anthocyanin with antioxidant, anti-inflammatory, and antitumor properties. However, as the effects of C3G on the amyloidogenic pathway, autophagy, tau phosphorylation, neuronal cell death, and synaptic plasticity in Alzheimer's disease models have not been reported, we attempted to investigate the same in the brains of APPswe/PS1ΔE9 mice were analyzed. After oral administration of C3G (30 mg/kg/day) for 16 weeks, the cortical and hippocampal regions in the brains of APPswe/PS1ΔE9 mice were analyzed. C3G treatment reduced the levels of soluble and insoluble Aβ (Aβ40 and Aβ42) peptides and reduced the protein expression of the amyloid precursor protein, presenilin-1, and β-secretase in the cortical and hippocampal regions. And C3G treatment upregulated the expression of autophagy-related markers, LC3B-II, LAMP-1, TFEB, and PPAR-α and downregulated that of SQSTM1/p62, improving the autophagy of Aβ plaques and neurofibrillary tangles. In addition, C3G increased the protein expression of phosphorylated-AMPK/AMPK and Sirtuin 1 and decreased that of mitogen-activated protein kinases, such as phosphorylated-Akt/Akt and phosphorylated-ERK/ERK, thus demonstrating its neuroprotective effects. Furthermore, C3G regulated the PI3K/Akt/GSK3β signaling by upregulating phosphorylated-Akt/Akt and phosphorylated-GSK3β/GSK3β expression. C3G administration mitigated tau phosphorylation and improved synaptic function and plasticity by upregulating the expression of synapse-associated proteins synaptophysin and postsynaptic density protein-95. Although the potential of C3G in the APPswe/PS1ΔE9 mouse models has not yet been reported, oral administration of the C3G is shown to protect the brain and improve cognitive behavior.
Collapse
Affiliation(s)
- Hana Baek
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Sanjay
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
16
|
Chandrasekaran V, Hediyal TA, Anand N, Kendaganna PH, Gorantla VR, Mahalakshmi AM, Ghanekar RK, Yang J, Sakharkar MK, Chidambaram SB. Polyphenols, Autophagy and Neurodegenerative Diseases: A Review. Biomolecules 2023; 13:1196. [PMID: 37627261 PMCID: PMC10452370 DOI: 10.3390/biom13081196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Polyphenols are secondary metabolites from plant origin and are shown to possess a wide range of therapeutic benefits. They are also reported as regulators of autophagy, inflammation and neurodegeneration. The autophagy pathway is vital in degrading outdated organelles, proteins and other cellular wastes. The dysregulation of autophagy causes proteinopathies, mitochondrial dysfunction and neuroinflammation thereby contributing to neurodegeneration. Evidence reveals that polyphenols improve autophagy by clearing misfolded proteins in the neurons, suppress neuroinflammation and oxidative stress and also protect from neurodegeneration. This review is an attempt to summarize the mechanism of action of polyphenols in modulating autophagy and their involvement in pathways such as mTOR, AMPK, SIRT-1 and ERK. It is evident that polyphenols cause an increase in the levels of autophagic proteins such as beclin-1, microtubule-associated protein light chain (LC3 I and II), sirtuin 1 (SIRT1), etc. Although it is apparent that polyphenols regulate autophagy, the exact interaction of polyphenols with autophagy markers is not known. These data require further research and will be beneficial in supporting polyphenol supplementation as a potential alternative treatment for regulating autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Vichitra Chandrasekaran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Nikhilesh Anand
- Department of Pharmacology, College of Medicine, American University of Antigua, Saint John’s P.O. Box W-1451, Antigua and Barbuda;
| | - Pavan Heggadadevanakote Kendaganna
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | | | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Ruchika Kaul Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Symbiosis International (Deemed University), Pune 412115, India;
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| |
Collapse
|
17
|
Suelves N, Saleki S, Ibrahim T, Palomares D, Moonen S, Koper MJ, Vrancx C, Vadukul DM, Papadopoulos N, Viceconte N, Claude E, Vandenberghe R, von Arnim CAF, Constantinescu SN, Thal DR, Decottignies A, Kienlen-Campard P. Senescence-related impairment of autophagy induces toxic intraneuronal amyloid-β accumulation in a mouse model of amyloid pathology. Acta Neuropathol Commun 2023; 11:82. [PMID: 37198698 DOI: 10.1186/s40478-023-01578-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is the main risk factor for Alzheimer's disease (AD) and other neurodegenerative pathologies, but the molecular and cellular changes underlying pathological aging of the nervous system are poorly understood. AD pathology seems to correlate with the appearance of cells that become senescent due to the progressive accumulation of cellular insults causing DNA damage. Senescence has also been shown to reduce the autophagic flux, a mechanism involved in clearing damaged proteins from the cell, and such impairment has been linked to AD pathogenesis. In this study, we investigated the role of cellular senescence on AD pathology by crossing a mouse model of AD-like amyloid-β (Aβ) pathology (5xFAD) with a mouse model of senescence that is genetically deficient for the RNA component of the telomerase (Terc-/-). We studied changes in amyloid pathology, neurodegeneration, and the autophagy process in brain tissue samples and primary cultures derived from these mice by complementary biochemical and immunostaining approaches. Postmortem human brain samples were also processed to evaluate autophagy defects in AD patients. Our results show that accelerated senescence produces an early accumulation of intraneuronal Aβ in the subiculum and cortical layer V of 5xFAD mice. This correlates with a reduction in amyloid plaques and Aβ levels in connecting brain regions at a later disease stage. Neuronal loss was specifically observed in brain regions presenting intraneuronal Aβ and was linked to telomere attrition. Our results indicate that senescence affects intraneuronal Aβ accumulation by impairing autophagy function and that early autophagy defects can be found in the brains of AD patients. Together, these findings demonstrate the instrumental role of senescence in intraneuronal Aβ accumulation, which represents a key event in AD pathophysiology, and emphasize the correlation between the initial stages of amyloid pathology and defects in the autophagy flux.
Collapse
Affiliation(s)
- Nuria Suelves
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Shirine Saleki
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Tasha Ibrahim
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Debora Palomares
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Vlaams Instituut Voor Biotechnologie (VIB) Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Vlaams Instituut Voor Biotechnologie (VIB) Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Céline Vrancx
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Laboratory for Membrane Trafficking, Department of Neurosciences, Vlaams Instituut Voor Biotechnologie (VIB) Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Devkee M Vadukul
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Nicolas Papadopoulos
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nikenza Viceconte
- Genetic and Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium
- CENTOGENE GmbH, 18055, Rostock, Germany
| | - Eloïse Claude
- Genetic and Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Unit, de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford University, Oxford, UK
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium.
| |
Collapse
|
18
|
Gong C, Bonfili L, Zheng Y, Cecarini V, Cuccioloni M, Angeletti M, Dematteis G, Tapella L, Genazzani AA, Lim D, Eleuteri AM. Immortalized Alzheimer's Disease Astrocytes: Characterization of Their Proteolytic Systems. Mol Neurobiol 2023; 60:2787-2800. [PMID: 36729287 PMCID: PMC10039838 DOI: 10.1007/s12035-023-03231-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegeneration with dysfunctions in both the ubiquitin-proteasome system (UPS) and autophagy. Astroglia participation in AD is an attractive topic of research, but molecular patterns are partially defined and available in vitro models have technical limitations. Immortalized astrocytes from the hippocampus of 3xTg-AD and wild-type mice (3Tg-iAstro and WT-iAstro, respectively) have been obtained as an attempt to overcome primary cell line limitations and this study aims at characterizing their proteolytic systems, focusing on UPS and autophagy. Both 26S and 20S proteasomal activities were downregulated in 3Tg-iAstro, in which a shift in catalytic subunits from constitutive 20S proteasome to immunoproteasome occurred, with consequences on immune functions. In fact, immunoproteasome is the specific complex in charge of clearing damaged proteins under inflammatory conditions. Parallelly, augmented expression and activity of the lysosomal cathepsin B, enhanced levels of lysosomal-associated membrane protein 1, beclin1, and LC3-II, together with an increased uptake of monodansylcadaverine in autophagic vacuoles, suggested autophagy activation in 3Tg-iAstro. The two proteolytic pathways were linked by p62 that accumulated in 3Tg-iAstro due to both increased synthesis and decreased degradation in the UPS defective astrocytes. Treatment with 4-phenylbutyric acid, a neuroprotective small chemical chaperone, partially restored proteasome and autophagy-mediated proteolysis in 3Tg-iAstro. Our data shed light on the impaired proteostasis in 3Tg-iAstro with proteasome inhibition and autophagic compensatory activation, providing additional validation of this AD in vitro model, and propose a new mechanism of action of 4-phenylbutyric acid in neurodegenerative disorders.
Collapse
Affiliation(s)
- Chunmei Gong
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy.
| | - Yadong Zheng
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy.
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy.
| |
Collapse
|
19
|
Cheng X, Wei Y, Qian Z, Han L. Autophagy Balances Neuroinflammation in Alzheimer's Disease. Cell Mol Neurobiol 2023; 43:1537-1549. [PMID: 35960407 PMCID: PMC11412430 DOI: 10.1007/s10571-022-01269-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/29/2022] [Indexed: 01/20/2023]
Abstract
Autophagy is a highly evolutionary conserved process that degrades cytosolic macromolecules or damaged organelles (e.g., mitochondria), as well as intracellular pathogens for energy and survival. Dysfunction of autophagy has been associated with the pathologies of Alzheimer's disease (AD), including Aβ plaques and neurofibrillary tangles. Recently, the presence of sustained immune response in the brain has been considered a new core pathology in AD. Accumulating evidence suggests that autophagy activation may suppress inflammation response through degrading inflammasomes or pro-inflammatory cytokines and improving immune system function in both clinical trials and preclinical studies. This review provides an overview of updated information on autophagy and inflammation and their potential mediators in AD. In summary, we believe that understanding the relationship between autophagy and inflammation will provide insightful knowledge for future therapeutic implications in AD.
Collapse
Affiliation(s)
- Xuehua Cheng
- Department of TCM Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yong Wei
- GeneScience Pharmaceuticals CoLtd., Changchun, 130012, People's Republic of China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Li Han
- Department of TCM Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
20
|
Xie ZS, Zhao JP, Wu LM, Chu S, Cui ZH, Sun YR, Wang H, Ma HF, Ma DR, Wang P, Zhang XW, Zhang ZQ. Hederagenin improves Alzheimer's disease through PPARα/TFEB-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154711. [PMID: 36809694 DOI: 10.1016/j.phymed.2023.154711] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Autophagic flux is coordinated by a network of master regulatory genes, which centered on transcription factor EB (TFEB). The disorders of autophagic flux are closely associated with Alzheimer's disease (AD), and thus restoring autophagic flux to degrade pathogenic proteins has become a hot therapeutic strategy. Hederagenin (HD), a triterpene compound, isolated from a variety food such as Matoa (Pometia pinnata) Fruit, Medicago sativa, Medicago polymorpha L. Previous studies have shown that HD has the neuroprotective effect. However, the effect of HD on AD and underlying mechanisms are unclear. PURPOSE To determine the effect of HD on AD and whether it promotes autophagy to reduce AD symptoms. STUDY DESIGN BV2 cells, C. elegans and APP/PS1 transgenic mice were used to explore the alleviative effect of HD on AD and the molecular mechanism in vivo and in vitro. METHODS The APP/PS1 transgenic mice at 10 months were randomized into 5 groups (n = 10 in each group) and orally administrated with either vehicle (0.5% CMCNa), WY14643 (10 mg/kg/d), low-dose of HD (25 mg/kg/d), high-dose of HD (50 mg/kg/d) or MK-886 (10 mg/kg/d) + HD (50 mg/kg/d) for consecutive 2 months. The behavioral experiments including morris water maze test, object recognition test and Y maze test were performed. The effects of HD on Aβ deposition and alleviates Aβ pathology in transgenic C. elegans were operated using paralysis assay and fluorescence staining assay. The roles of HD in promoting PPARα/TFEB-dependent autophagy were investigated using the BV2 cells via western blot analysis, real-time quantitative PCR (RT-qPCR), molecular docking, molecular dynamic (MD) simulation, electron microscope assay and immunofluorescence. RESULTS In this study, we found that HD upregulated mRNA and protein level of TFEB and increased the distribution of TFEB in the nucleus, and the expressions of its target genes. HD also promoted the expressions of LC3BII/LC3BI, LAMP2, etc., and promoted autophagy and the degradation of Aβ. HD reduced Aβ deposition in the head area of C. elegans and Aβ-induced paralysis. HD improved cognitive impairment and pathological changes in APP/PS1 mice by promoting autophagy and activating TFEB. And our results also showed that HD could strongly target PPARα. More importantly, these effects were reversed by treatment of MK-886, a selective PPARα antagonist. CONCLUSION Our present findings demonstrated that HD attenuated the pathology of AD through inducing autophagy and the underlying mechanism associated with PPARα/TFEB pathway.
Collapse
Affiliation(s)
- Zhi-Shen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Jian-Ping Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Li-Min Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Shuang Chu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Zheng-Hao Cui
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Yi-Ran Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Hui Wang
- College of Pharmacy, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Hui-Fen Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China
| | - Dong-Rui Ma
- Department of Neurology, Singapore General Hospital, 20 College Road, Singapore 169856; Duke-Nus Medical School, 8 College Road, Singapore 169857
| | - Pan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China.
| | - Xiao-Wei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China.
| | - Zhen-Qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, PR China.
| |
Collapse
|
21
|
Zhang H, Knight C, Chen SRW, Bezprozvanny I. A Gating Mutation in Ryanodine Receptor Type 2 Rescues Phenotypes of Alzheimer's Disease Mouse Models by Upregulating Neuronal Autophagy. J Neurosci 2023; 43:1441-1454. [PMID: 36627208 PMCID: PMC9987572 DOI: 10.1523/jneurosci.1820-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
It is well established that ryanodine receptors (RyanRs) are overactive in Alzheimer's disease (AD), and it has been suggested that inhibition of RyanR is potentially beneficial for AD treatment. In the present study, we explored a potential connection between basal RyanR activity and autophagy in neurons. Autophagy plays an important role in clearing damaged organelles and long-lived protein aggregates, and autophagy dysregulation occurs in both AD patients and AD animal models. Autophagy is known to be regulated by intracellular calcium (Ca2+) signals, and our results indicated that basal RyanR2 activity in hippocampal neurons inhibited autophagy through activation of calcineurin and the resulting inhibition of the AMPK (AMP-activated protein kinase)-ULK1 (unc-51-like autophagy-activating kinase 1) pathway. Thus, we hypothesized that increased basal RyanR2 activity in AD may lead to the inhibition of neuronal autophagy and accumulation of β-amyloid. To test this hypothesis, we took advantage of the RyanR2-E4872Q knock-in mouse model (EQ) in which basal RyanR2 activity is reduced because of shortened channel open time. We discovered that crossing EQ mice with the APPKI and APPPS1 mouse models of AD (both males and females) rescued amyloid accumulation and LTP impairment in these mice. Our results revealed that reduced basal activity of RyanR2-EQ channels disinhibited the autophagic pathway and led to increased amyloid clearance in these models. These data indicated a potential pathogenic outcome of RyanR2 overactivation in AD and also provided additional targets for therapeutic intervention in AD. Basal activity of ryanodine receptors controls neuronal autophagy and contributes to development of the AD phenotype.SIGNIFICANCE STATEMENT It is well established that neuronal autophagy is impaired in Alzheimer's disease (AD). Our results suggest that supranormal calcium (Ca2+) release from endoplasmic reticulum contributes to the inhibition of autophagy in AD and that reduction in basal activity of type 2 ryanodine receptors disinhibits the neuronal autophagic pathway and leads to increased amyloid clearance in AD models. Our findings directly link neuronal Ca2+ dysregulation with autophagy dysfunction in AD and point to additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Caitlynn Knight
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas 75390
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas 75390
- Laboratory of Molecular Neurodegeneration, St. Petersburg State Polytechnical Universty, St. Petersburg 195251, Russian Federation
| |
Collapse
|
22
|
Liu X, Ye M, Ma L. The emerging role of autophagy and mitophagy in tauopathies: From pathogenesis to translational implications in Alzheimer's disease. Front Aging Neurosci 2022; 14:1022821. [PMID: 36325189 PMCID: PMC9618726 DOI: 10.3389/fnagi.2022.1022821] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, affecting more than 55 million individuals worldwide in 2021. In addition to the "amyloid hypothesis," an increasing number of studies have demonstrated that phosphorylated tau plays an important role in AD pathogenesis. Both soluble tau oligomers and insoluble tau aggregates in the brain can induce structural and functional neuronal damage through multiple pathways, eventually leading to memory deficits and neurodegeneration. Autophagy is an important cellular response to various stress stimuli and can generally be categorized into non-selective and selective autophagy. Recent studies have indicated that both types of autophagy are involved in AD pathology. Among the several subtypes of selective autophagy, mitophagy, which mediates the selective removal of mitochondria, has attracted increasing attention because dysfunctional mitochondria have been suggested to contribute to tauopathies. In this review, we summarize the latest findings on the bidirectional association between abnormal tau proteins and defective autophagy, as well as mitophagy, which might constitute a vicious cycle in the induction of neurodegeneration. Neuroinflammation, another important feature in the pathogenesis and progression of AD, has been shown to crosstalk with autophagy and mitophagy. Additionally, we comprehensively discuss the relationship between neuroinflammation, autophagy, and mitophagy. By elucidating the underlying molecular mechanisms governing these pathologies, we highlight novel therapeutic strategies targeting autophagy, mitophagy and neuroinflammation, such as those using rapamycin, urolithin, spermidine, curcumin, nicotinamide, and actinonin, for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Xiaolan Liu
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Meng Ye
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Liang Ma
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| |
Collapse
|
23
|
Blasiak J, Kaarniranta K. Secretory autophagy: a turn key for understanding AMD pathology and developing new therapeutic targets? Expert Opin Ther Targets 2022; 26:883-895. [PMID: 36529978 DOI: 10.1080/14728222.2022.2157260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is an eye disease leading to vision loss with poorly known pathogenesis and limited therapeutic options. Degradative autophagy (DA) is impaired in AMD, but emerging evidence points to secretary autophagy (SA) as a key element in AMD pathogenesis. AREAS COVERED SA may cause the release of proteins and protein aggregates, lipofuscin, beta amyloid, faulty mitochondria, pro-inflammatory and pro-angiogenic factors from the retinal pigment epithelium (RPE) that may contribute to drusen formation and choroidal neovascularization. SA may replace DA, when formation of autolysosome is impaired, and then a harmful cargo, instead of being degraded, is extruded from the RPE contributing to drusen and/or angiogenic environment. Therefore, the interplay between DA and SA may be critical for drusen formation and choroidal neovascularization, so it can be a turn key to understand AMD pathogenesis. EXPERT OPINION Although SA fulfills some beneficial functions, it is detrimental for the retina in many cases. Therefore, inhibiting SA may be a therapeutic strategy in AMD, but it is challenged by the development of selective SA inhibitors that would not affect DA. The TRIM16, SEC22B and RAB8A proteins, specific for secretory autophagosome, may be primary candidates as therapeutic targets, but their action is not limited to autophagy and therefore requires further studies.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
24
|
Around-the-Clock Noise Induces AD-like Neuropathology by Disrupting Autophagy Flux Homeostasis. Cells 2022; 11:cells11172742. [PMID: 36078149 PMCID: PMC9454913 DOI: 10.3390/cells11172742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
Environmental noise is a common hazard in military operations. Military service members during long operations are often exposed to around-the-clock noise and suffer massive emotional and cognitive dysfunction related to an Alzheimer’s disease (AD)-like neuropathology. It is essential to clarify the mechanisms underlying the effects of around-the-clock noise exposure on the central nervous system. Here, Wistar rats were continuously exposed to white noise (95 dB during the on-duty phase [8:00–16:00] and 75 dB during the off-duty phase (16:00–8:00 the next day)) for 40 days. The levels of phosphorylated tau, amyloid-β (Aβ), and neuroinflammation in the cortex and hippocampus were assessed and autophagosome (AP) aggregation was observed by transmission electron microscopy. Dyshomeostasis of autophagic flux resulting from around-the-clock noise exposure was assessed at different stages to investigate the potential pathological mechanisms. Around-the-clock noise significantly increased Aβ peptide, tau phosphorylation at Ser396 and Ser404, and neuroinflammation. Moreover, the AMPK-mTOR signaling pathway was depressed in the cortex and the hippocampus of rats exposed to around-the-clock noise. Consequently, autophagosome–lysosome fusion was deterred and resulted in AP accumulation. Our results indicate that around-the-clock noise exposure has detrimental influences on autophagic flux homeostasis and may be associated with AD-like neuropathology in the cortex and the hippocampus.
Collapse
|
25
|
Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M, Van Praag H, Ziaei M, Sando SB, Wisløff U, Tari AR. Can exercise training teach us how to treat Alzheimer's disease? Ageing Res Rev 2022; 75:101559. [PMID: 34999248 DOI: 10.1016/j.arr.2022.101559] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and there is currently no cure. Novel approaches to treat AD and curb the rapidly increasing worldwide prevalence and costs of dementia are needed. Physical inactivity is a significant modifiable risk factor for AD, estimated to contribute to 12.7% of AD cases worldwide. Exercise interventions in humans and animals have shown beneficial effects of exercise on brain plasticity and cognitive functions. In animal studies, exercise also improved AD pathology. The mechanisms underlying these effects of exercise seem to be associated mainly with exercise performance or cardiorespiratory fitness. In addition, exercise-induced molecules of peripheral origin seem to play an important role. Since exercise affects the whole body, there likely is no single therapeutic target that could mimic all the benefits of exercise. However, systemic strategies may be a viable means to convey broad therapeutic effects in AD patients. Here, we review the potential of physical activity and exercise training in AD prevention and treatment, shining light on recently discovered underlying mechanisms and concluding with a view on future development of exercise-free treatment strategies for AD.
Collapse
Affiliation(s)
- Aleksi M Huuha
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cecilie S Norevik
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - José Bianco N Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; K.G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan Scrimgeour
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miia Kivipelto
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Stockholm, Sweden; Karolinska University Hospital, Theme Aging and Inflammation, Stockholm, Sweden
| | - Henriette Van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Maryam Ziaei
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Atefe R Tari
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
26
|
LC3/FtMt Colocalization Patterns Reveal the Progression of FtMt Accumulation in Nigral Neurons of Patients with Progressive Supranuclear Palsy. Int J Mol Sci 2022; 23:ijms23010537. [PMID: 35008961 PMCID: PMC8745681 DOI: 10.3390/ijms23010537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial ferritin (FtMt) is a mitochondrial iron storage protein associated with neurodegenerative diseases. In patients with progressive supranuclear palsy (PSP), FtMt was shown to accumulate in nigral neurons. Here, we investigated FtMt and LC3 in the post-mortem midbrain of PSP patients to reveal novel aspects of the pathology. Immunohistochemistry was used to assess the distribution and abnormal changes in FtMt and LC3 immunoreactivities. Colocalization analysis using double immunofluorescence was performed, and subcellular patterns were examined using 3D imaging and modeling. In the substantia nigra pars compacta (SNc), strong FtMt-IR and LC3-IR were observed in the neurons of PSP patients. In other midbrain regions, such as the superior colliculus, the FtMt-IR and LC3-IR remained unchanged. In the SNc, nigral neurons were categorized into four patterns based on subcellular LC3/FtMt immunofluorescence intensities, degree of colocalization, and subcellular overlapping. This categorization suggested that concomitant accumulation of LC3/FtMt is related to mitophagy processes. Using the LC3-IR to stage neuronal damage, we retraced LC3/FtMt patterns and revealed the progression of FtMt accumulation in nigral neurons. Informed by these findings, we proposed a hypothesis to explain the function of FtMt during PSP progression.
Collapse
|
27
|
Mahapatra KK, Mishra SR, Behera BP, Patil S, Gewirtz DA, Bhutia SK. The lysosome as an imperative regulator of autophagy and cell death. Cell Mol Life Sci 2021; 78:7435-7449. [PMID: 34716768 PMCID: PMC11071813 DOI: 10.1007/s00018-021-03988-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Lysosomes are single membrane-bound organelles containing acid hydrolases responsible for the degradation of cellular cargo and maintenance of cellular homeostasis. Lysosomes could originate from pre-existing endolysosomes or autolysosomes, acting as a critical juncture between autophagy and endocytosis. Stress that triggers lysosomal membrane permeabilization can be altered by ESCRT complexes; however, irreparable damage to the membrane results in the induction of a selective lysosomal degradation pathway, specifically lysophagy. Lysosomes play an indispensable role in different types of autophagy, including microautophagy, macroautophagy, and chaperone-mediated autophagy, and various cell death pathways such as lysosomal cell death, apoptotic cell death, and autophagic cell death. In this review, we discuss lysosomal reformation, maintenance, and degradation pathways following the involvement of the lysosome in autophagy and cell death, which are related to several pathophysiological conditions observed in humans.
Collapse
Affiliation(s)
- Kewal Kumar Mahapatra
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Soumya Ranjan Mishra
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Bishnu Prasad Behera
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, USA
| | - Sujit Kumar Bhutia
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
28
|
Potjewyd FM, Axtman AD. Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Front Cell Neurosci 2021; 15:768655. [PMID: 34867205 PMCID: PMC8637409 DOI: 10.3389/fncel.2021.768655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) is responsible for the degradation of misfolded or aggregated proteins via a multistep ATP-dependent proteolytic mechanism. This process involves a cascade of ubiquitin (Ub) transfer steps from E1 to E2 to E3 ligase. The E3 ligase transfers Ub to a targeted protein that is brought to the proteasome for degradation. The inability of the UPS to remove misfolded or aggregated proteins due to UPS dysfunction is commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD). UPS dysfunction in AD drives disease pathology and is associated with the common hallmarks such as amyloid-β (Aβ) accumulation and tau hyperphosphorylation, among others. E3 ligases are key members of the UPS machinery and dysfunction or changes in their expression can propagate other aberrant processes that accelerate AD pathology. The upregulation or downregulation of expression or activity of E3 ligases responsible for these processes results in changes in protein levels of E3 ligase substrates, many of which represent key proteins that propagate AD. A powerful way to better characterize UPS dysfunction in AD and the role of individual E3 ligases is via the use of high-quality chemical tools that bind and modulate specific E3 ligases. Furthermore, through combining gene editing with recent advances in 3D cell culture, in vitro modeling of AD in a dish has become more relevant and possible. These cell-based models of AD allow for study of specific pathways and mechanisms as well as characterization of the role E3 ligases play in driving AD. In this review, we outline the key mechanisms of UPS dysregulation linked to E3 ligases in AD and highlight the currently available chemical modulators. We present several key approaches for E3 ligase ligand discovery being employed with respect to distinct classes of E3 ligases. Where possible, specific examples of the use of cultured neurons to delineate E3 ligase biology have been captured. Finally, utilizing the available ligands for E3 ligases in the design of proteolysis targeting chimeras (PROTACs) to degrade aberrant proteins is a novel strategy for AD, and we explore the prospects of PROTACs as AD therapeutics.
Collapse
|
29
|
Sohn HY, Kim SI, Park JY, Park SH, Koh YH, Kim J, Jo C. ApoE4 attenuates autophagy via FoxO3a repression in the brain. Sci Rep 2021; 11:17604. [PMID: 34475505 PMCID: PMC8413297 DOI: 10.1038/s41598-021-97117-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein E (ApoE) plays multiple roles in lipid transport, neuronal signaling, glucose metabolism, mitochondrial function, and inflammation in the brain. It is also associated with neurodegenerative diseases, and its influence differs depending on the isoform. In particular, the ε4 allele of APOE is the highest genetic risk factor for developing late-onset Alzheimer's disease (AD). However, the mechanism by which ApoE4 contributes to the pathogenesis of AD remains unclear. We investigated the effect of ApoE4 on autophagy in the human brains of ApoE4 carriers. Compared to non-carriers, the expression of FoxO3a regulating autophagy-related genes was significantly reduced in ApoE4 carriers, and the phosphorylation level of FoxO3a at Ser253 increased in ApoE4 carriers, indicating that FoxO3a is considerably repressed in ApoE4 carriers. As a result, the protein expression of FoxO3a downstream genes, such as Atg12, Beclin-1, BNIP3, and PINK1, was significantly decreased, likely leading to dysfunction of both autophagy and mitophagy in ApoE4 carriers. In addition, phosphorylated tau accumulated more in ApoE4 carriers than in non-carriers. Taken together, our results suggest that ApoE4 might attenuate autophagy via the repression of FoxO3a in AD pathogenesis. The regulation of the ApoE4-FoxO3a axis may provide a novel therapeutic target for the prevention and treatment of AD with the APOE4 allele.
Collapse
Affiliation(s)
- Hee-Young Sohn
- grid.415482.e0000 0004 0647 4899Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea ,grid.222754.40000 0001 0840 2678Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841 Republic of Korea
| | - Seong-Ik Kim
- grid.31501.360000 0004 0470 5905Department of Pathology, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Jee-Yun Park
- grid.415482.e0000 0004 0647 4899Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - Sung-Hye Park
- grid.31501.360000 0004 0470 5905Department of Pathology, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Young Ho Koh
- grid.415482.e0000 0004 0647 4899Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - Joon Kim
- grid.222754.40000 0001 0840 2678Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841 Republic of Korea
| | - Chulman Jo
- grid.415482.e0000 0004 0647 4899Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| |
Collapse
|
30
|
Gaitán JM, Moon HY, Stremlau M, Dubal DB, Cook DB, Okonkwo OC, van Praag H. Effects of Aerobic Exercise Training on Systemic Biomarkers and Cognition in Late Middle-Aged Adults at Risk for Alzheimer's Disease. Front Endocrinol (Lausanne) 2021; 12:660181. [PMID: 34093436 PMCID: PMC8173166 DOI: 10.3389/fendo.2021.660181] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that physical activity and exercise training may delay or prevent the onset of Alzheimer's disease (AD). However, systemic biomarkers that can measure exercise effects on brain function and that link to relevant metabolic responses are lacking. To begin to address this issue, we utilized blood samples of 23 asymptomatic late middle-aged adults, with familial and genetic risk for AD (mean age 65 years old, 50% female) who underwent 26 weeks of supervised treadmill training. Systemic biomarkers implicated in learning and memory, including the myokine Cathepsin B (CTSB), brain-derived neurotrophic factor (BDNF), and klotho, as well as metabolomics were evaluated. Here we show that aerobic exercise training increases plasma CTSB and that changes in CTSB, but not BDNF or klotho, correlate with cognitive performance. BDNF levels decreased with exercise training. Klotho levels were unchanged by training, but closely associated with change in VO2peak. Metabolomic analysis revealed increased levels of polyunsaturated free fatty acids (PUFAs), reductions in ceramides, sphingo- and phospholipids, as well as changes in gut microbiome metabolites and redox homeostasis, with exercise. Multiple metabolites (~30%) correlated with changes in BDNF, but not CSTB or klotho. The positive association between CTSB and cognition, and the modulation of lipid metabolites implicated in dementia, support the beneficial effects of exercise training on brain function. Overall, our analyses indicate metabolic regulation of exercise-induced plasma BDNF changes and provide evidence that CTSB is a marker of cognitive changes in late middle-aged adults at risk for dementia.
Collapse
Affiliation(s)
- Julian M. Gaitán
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Hyo Youl Moon
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
- Department of Education, Seoul National University, Seoul, South Korea
- Institute of Sport Science, Seoul National University, Seoul, South Korea
- Institute on Aging, Seoul National University, Seoul, South Korea
| | - Matthew Stremlau
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, United States
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Henriette van Praag
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
31
|
Leucyl-tRNA synthetase deficiency systemically induces excessive autophagy in zebrafish. Sci Rep 2021; 11:8392. [PMID: 33863987 PMCID: PMC8052342 DOI: 10.1038/s41598-021-87879-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/05/2021] [Indexed: 01/23/2023] Open
Abstract
Leucyl-tRNA synthetase (LARS) is an enzyme that catalyses the ligation of leucine with leucine tRNA. LARS is also essential to sensitize the intracellular leucine concentration to the mammalian target of rapamycin complex 1 (mTORC1) activation. Biallelic mutation in the LARS gene causes infantile liver failure syndrome type 1 (ILFS1), which is characterized by acute liver failure, anaemia, and neurological disorders, including microcephaly and seizures. However, the molecular mechanism underlying ILFS1 under LARS deficiency has been elusive. Here, we generated Lars deficient (larsb−/−) zebrafish that showed progressive liver failure and anaemia, resulting in early lethality within 12 days post fertilization. The atg5-morpholino knockdown and bafilomycin treatment partially improved the size of the liver and survival rate in larsb−/− zebrafish. These findings indicate the involvement of autophagy in the pathogenesis of larsb−/− zebrafish. Indeed, excessive autophagy activation was observed in larsb−/− zebrafish. Therefore, our data clarify a mechanistic link between LARS and autophagy in vivo. Furthermore, autophagy regulation by LARS could lead to development of new therapeutics for IFLS1.
Collapse
|
32
|
Wang J, Liu B, Xu Y, Yang M, Wang C, Song M, Liu J, Wang W, You J, Sun F, Wang D, Liu D, Yan H. Activation of CREB-mediated autophagy by thioperamide ameliorates β-amyloid pathology and cognition in Alzheimer's disease. Aging Cell 2021; 20:e13333. [PMID: 33682314 PMCID: PMC7963336 DOI: 10.1111/acel.13333] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease, and the imbalance between production and clearance of β-amyloid (Aβ) is involved in its pathogenesis. Autophagy is an intracellular degradation pathway whereby leads to removal of aggregated proteins, up-regulation of which may be a plausible therapeutic strategy for the treatment of AD. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Our previous study showed that thioperamide, as an antagonist of H3R, enhances autophagy and protects against ischemic injury. However, the effect of thioperamide on autophagic function and Aβ pathology in AD remains unknown. In this study, we found that thioperamide promoted cognitive function, ameliorated neuronal loss, and Aβ pathology in APP/PS1 transgenic (Tg) mice. Interestingly, thioperamide up-regulated autophagic level and lysosomal function both in APP/PS1 Tg mice and in primary neurons under Aβ-induced injury. The neuroprotection by thioperamide against AD was reversed by 3-MA, inhibitor of autophagy, and siRNA of Atg7, key autophagic-related gene. Furthermore, inhibition of activity of CREB, H3R downstream signaling, by H89 reversed the effect of thioperamide on promoted cell viability, activated autophagic flux, and increased autophagic-lysosomal proteins expression, including Atg7, TFEB, and LAMP1, suggesting a CREB-dependent autophagic activation by thioperamide in AD. Taken together, these results suggested that H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated autophagy and lysosomal pathway, which contributed to Aβ clearance. This study uncovered a novel mechanism involving autophagic regulating behind the therapeutic effect of thioperamide in AD.
Collapse
Affiliation(s)
- Jiangong Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yong Xu
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Meizi Yang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Chaoyun Wang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mengmeng Song
- Department of Thyroid Breast Surgery, Dongying People's Hospital, Dongying, China
| | - Jing Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Wentao Wang
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing You
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Fengjiao Sun
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Dan Wang
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Dunjiang Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
33
|
Zhou W, Xiao D, Zhao Y, Tan B, Long Z, Yu L, He G. Enhanced Autolysosomal Function Ameliorates the Inflammatory Response Mediated by the NLRP3 Inflammasome in Alzheimer's Disease. Front Aging Neurosci 2021; 13:629891. [PMID: 33708103 PMCID: PMC7940192 DOI: 10.3389/fnagi.2021.629891] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Alzheimer’s disease (AD) involves activation of many NLRP3 inflammatory bodies, which may be related to amyloid β peptide and aggregation of misfolded proteins. Autophagy is an important regulator of inflammatory bodies. However, autophagy shows dynamic changes in the development of AD, and its role in inflammation remains controversial. In this study, the key link between autophagic disorders and the NLRP3 inflammasome in AD was investigated. APP/PS1 double transgenic mice and C57 mice with Aβ25–35 injected into the lateral ventricle were used as two animal models of AD. Immunofluorescence staining and Western blot analysis showed that NLRP3 inflammasome-related proteins and inflammatory cytokines, such as IL-1α, IL-1β, IL-6, IL-12, and TNF-α, were increased and microglia were activated in the brains of both AD animal models. Endogenous overexpression of the APPswe gene and exogenous addition of Aβ25–35 increased the expression of NLRP3 inflammasome-related proteins, while exogenous Aβ25–35 intervention more significantly activated inflammation. Furthermore, LC3 was increased in the AD animal and cell models, and the level of Lamp1 decreased. After overexpression of the primary regulator of lysosomal biogenesis, TFEB, the lysosome protein Lamp1 was increased, and LC3 and inflammatory protein expression were decreased. These results suggest that the NLRP3 inflammasome-mediated inflammatory response is activated in AD animal and cell models, which may be related to the decline in autolysosome function. Overexpression of the TFEB protein can reduce the inflammatory response by improving autolysosome function in AD model cells.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Neurorehabilitation, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Deng Xiao
- Department of Neurorehabilitation, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhimin Long
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Chen Y, Zhao S, Fan Z, Li Z, Zhu Y, Shen T, Li K, Yan Y, Tian J, Liu Z, Zhang B. Metformin attenuates plaque-associated tau pathology and reduces amyloid-β burden in APP/PS1 mice. ALZHEIMERS RESEARCH & THERAPY 2021; 13:40. [PMID: 33563332 PMCID: PMC7871393 DOI: 10.1186/s13195-020-00761-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Background The neuropathological hallmarks of Alzheimer’s disease (AD) are amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs). The amyloid cascade theory is the leading hypothesis of AD pathology. Aβ deposition precedes the aggregation of tau pathology and Aβ pathology precipitates tau pathology. Evidence also indicates the reciprocal interactions between amyloid and tau pathology. However, the detailed relationship between amyloid and tau pathology in AD remains elusive. Metformin might have a positive effect on cognitive impairments. However, whether metformin can reduce AD-related pathologies is still unconclusive. Methods Brain extracts containing tau aggregates were unilaterally injected into the hippocampus and the overlying cerebral cortex of 9-month-old APPswe/PS1DE9 (APP/PS1) mice and age-matched wild-type (WT) mice. Metformin was administrated in the drinking water for 2 months. Aβ pathology, tau pathology, plaque-associated microgliosis, and autophagy marker were analyzed by immunohistochemical staining and immunofluorescence analysis 2 months after injection of proteopathic tau seeds. The effects of metformin on both pathologies were explored. Results We observed tau aggregates in dystrophic neurites surrounding Aβ plaques (NP tau) in the bilateral hippocampi and cortices of tau-injected APP/PS1 mice but not WT mice. Aβ plaques promoted the aggregation of NP tau pathology. Injection of proteopathic tau seeds exacerbated Aβ deposits and decreased the number of microglia around Aβ plaques in the hippocampus and cortex of APP/PS1 mice. Metformin ameliorated the microglial autophagy impairment, increased the number of microglia around Aβ plaques, promoted the phagocytosis of NP tau, and reduced Aβ load and NP tau pathology in APP/PS1 mice. Conclusion These findings indicate the existence of the crosstalk between amyloid and NP tau pathology. Metformin promoted the phagocytosis of pathological Aβ and tau proteins by enhancing microglial autophagy capability. It reduced Aβ deposits and limited the spreading of NP tau pathology in APP/PS1 mice, which exerts a beneficial effect on both pathologies.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ziqi Fan
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zheyu Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yueli Zhu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ting Shen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kaicheng Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
35
|
Gao LJ, Li P, Ma T, Zhong ZQ, Xu SJ. Ligustilide alleviates neurotoxicity in SH-SY5Y cells induced by Aβ 25-35 via regulating endoplasmic reticulum stress and autophagy. Phytother Res 2020; 35:1572-1584. [PMID: 33111362 DOI: 10.1002/ptr.6925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 11/11/2022]
Abstract
Ligustilide is a phenolic compound isolated from Asian plants of Umbelliferae family. This study was aimed at exploring the neuroprotective effects of Ligustilide from the perspective of endoplasmic reticulum stress (ERS) and autophagy. The Alzheimer's disease (AD) cell models were constructed by SH-SY5Y cell line, which was exposed to 20 μM Aβ25-35 . CCK-8 was used to evaluate the cell viability of Ligustilide on AD cell model. Hoechst staining and LysoTracker Red were used to test the cell apoptosis and Lysosome function, respectively. ERS in living cells were detected by Thioflavin T. The expression of autophagy-related proteins (LC3B-II/I, P62/SQSTM1, Beclin1, and Atg5), ERS marker proteins (PERK, GRP78, and CHOH), and apoptosis proteins (Bax, Bcl-2, and Caspase-12) were analyzed by Western blot analyses. Aβ25-35 could induce ERS and autophagy in a time-dependent manner in SH-SY5Y cells. We demonstrated that Ligustilide significantly decreased the rate of apoptosis, and improved the viability of cells. Simultaneously, Ligustilide effectively modulated ERS via inhibiting the over-activation of GRP78/PERK/CHOP signaling pathway. In addition, Ligustilide alleviated the accumulation of autophagy vacuoles, reduced the ratio of LC3B-II/I and the level of P62/SQSTM1. Ligustilide significantly up-regulated lysosomal acidity and the expression of Cathepsin D (CTSD). Ligustilide could rescue lysosomal function to promote autophagy flux and inhibit the over-activation of ERS. This finding may contribute to the development of new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Li-Juan Gao
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Li
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tengyun Ma
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhan-Qiong Zhong
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi-Jun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|