1
|
Sang H, Liu J, Chen X, Zeng Y. METTL16-dependent miR-146b-5p m6A modification remodeling sensitize NSCLC to osimertinib via activating PI3K/AKT signaling. BMC Cancer 2025; 25:641. [PMID: 40200229 PMCID: PMC11980268 DOI: 10.1186/s12885-025-14041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is one of the most common malignant tumors, with poor prognosis and increasing osimertinib therapy resistance. Revealing mechanisms of NSCLC progression and therapy resistance remains critical. The aim of this study was to elucidate the molecular mechanism of miR-146b-5b-5p m6A modification and underlying function in regulating the proliferation and osimertinib resistance of NSCLC. METHODS TCGA, GEO datasets were used to analyze the differential expression of miR-146b-5p in NSCLC and adjacent tissues, and its impact on prognosis. Then the effects of miR-146b-5p on the proliferation and osimertinib of A549 and HCC827 cells were investigated through proliferation experiments, colony formation assay and IC50 assay. The regulatory mechanism of miR-146b-5p on the PI3K/AKT signaling pathway and its interaction in cancer progression were investigated through Western blots, dual-luciferase reporter assay, and rescue experiments. RESULTS miR-146b-5p was significantly upregulated in NSCLC tissue and represented worse prognosis. miR-146b-5p mimic significantly enhanced proliferation and osimertinib resistance, while miR-146b-5p inhibitor inhibited above phenotype. Through bioinformatic analysis and experimental results, miR-146b-5p interacted directly with PTEN mRNA and activated subsequent signaling pathway activation. PI3K/AKT inhibitor could eliminate the tumorigenic effects of miR-146b-5p mimic on the progression of NSCLC, while PI3K/AKT agonist could rescue the inhibition effect of miR-146b-5p inhibitor group cells. Further, methyltransferase METTL16 is responsible for miR-146b m6A modification. Modified miR-146b-5p promotes osimertinib resistance through downstream PI3K/AKT activation. CONCLUSIONS In summary, we found that METTL16 mediated miR-146b-5p m6A modification promoted the proliferation and osimertinib resistance of NSLCL by activating PI3K/AKT signaling pathway. Our study is expected to provide a novel insight and potential therapeutic target for NSCLC osimertinib resistance.
Collapse
Affiliation(s)
- Hongyang Sang
- Department of Cardiothoracic Surgery, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Liu
- Department of Graduate School, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Thoracic Surgery, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xifang Chen
- Department of Nursing, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingou Zeng
- Department of Thoracic Surgery, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.
| |
Collapse
|
2
|
Sane S, Ebrahimi V, Shirvani Farsani Z, Ghafouri-Fard S. Assessment of Expression of lncRNAs in Autistic Patients. J Mol Neurosci 2024; 74:81. [PMID: 39186094 DOI: 10.1007/s12031-024-02258-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
Autism is a severe neurodevelopmental condition with unknown pathobiology. Nevertheless, multiple pieces of evidence suggest long non-coding RNA (lncRNA) dysregulation may be a contributing factor to this disorder. We investigated the association between the expression of five specific lncRNAs and autism. Peripheral blood was collected from 30 children with autism and 41 healthy children. The expression levels of PCAT-29, lincRNA-ROR, LINC-PINT, lincRNA-p21, and PCAT-1 were calculated. Then, their significance as biomarkers was also evaluated. The expression of LincRNA-ROR (27 times), LINC-PINT (5.26 times), LincRNA-p21 (4.54 times), PCAT-29 (16.66 times), and PCAT-1 (25 times) genes was significantly decreased in patients compared to the control group (p values < 0.05). According to the ROC curve analysis for each lncRNA, LincRNA-ROR, LINC-PINT, LincRNA-p21, PCAT-29, and PCAT-1 lncRNAs with diagnostic power of 0.85, 0.67, 0.64, 0.74, and 0.84, respectively, could be used as diagnostic biomarkers for autism. Additionally, significant positive correlations were reported between expression levels of PCAT-1 and PCAT-29 genes. Moreover, a positive correlation was detected between expression levels of lincRNA-ROR and patients' age. The current study shows further pieces of evidence for deregulation of lncRNAs in autistic patients that show these lncRNAs may play an important part in the pathogenesis of ASD. However, the role of lncRNA in the neurobiology of autism needs to be investigated further.
Collapse
Affiliation(s)
- Saba Sane
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vera Ebrahimi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Butler T, Davey MG, Kerin MJ. Molecular Morbidity Score-Can MicroRNAs Assess the Burden of Disease? Int J Mol Sci 2024; 25:8042. [PMID: 39125612 PMCID: PMC11312210 DOI: 10.3390/ijms25158042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Multimorbidity refers to the presence of two or more chronic diseases and is associated with adverse outcomes for patients. Factors such as an ageing population have contributed to a rise in prevalence of multimorbidity globally; however, multimorbidity is often neglected in clinical guidelines. This is largely because patients with multimorbidity are systematically excluded from clinical trials. Accordingly, there is an urgent need to develop novel biomarkers and methods of prognostication for this cohort of patients. The hallmarks of ageing are now thought to potentiate the pathogenesis of multimorbidity. MicroRNAs are small, regulatory, noncoding RNAs which have been implicated in the pathogenesis and prognostication of numerous chronic diseases; there is a substantial body of evidence now implicating microRNA dysregulation with the different hallmarks of ageing in the aetiology of chronic diseases. This article proposes using the hallmarks of ageing as a framework to develop a panel of microRNAs to assess the prognostic burden of multimorbidity. This putative molecular morbidity score would have many potential applications, including assessing the efficacy of clinical interventions, informing clinical decision making and facilitating wider inclusion of patients with multimorbidity in clinical trials.
Collapse
Affiliation(s)
- Thomas Butler
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Matthew G. Davey
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
| | - Michael J. Kerin
- Department of Surgery, Lambe Institute for Translational Research, University of Galway, H91 TK33 Galway, Ireland; (M.G.D.); (M.J.K.)
- Department of Surgery, University Hospital Galway, Newcastle Road, H91 YR71 Galway, Ireland
| |
Collapse
|
4
|
Joshi G, Basu A. Epigenetic control of cell signalling in cancer stem cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:67-88. [PMID: 38359971 DOI: 10.1016/bs.ircmb.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The self-renewing cancer stem cells (CSCs) represent one of the distinct cell populations occurring in a tumour that can differentiate into multiple lineages. This group of sparsely abundant cells play a vital role in tumour survival and resistance to different treatments during cancer. The lack of exclusive markers associated with CSCs makes diagnosis and prognosis in cancer patients extremely difficult. This calls for the identification of unique regulators and markers for CSCs. Various signalling pathways like the Wnt/β-catenin pathway, Hedgehog pathway, Notch pathway, and TGFβ/BMP play a major role in the regulation and maintenance of CSCs. Epigenetic regulatory mechanisms add another layer of complexity to control these signalling pathways. In this chapter, we discuss about the role of epigenetic mechanisms in regulating the cellular signalling pathways in CSCs. The epigenetic regulatory mechanisms such as DNA methylation, histone modification and microRNAs can modulate the diverse effectors of signalling pathways and consequently the growth, differentiation and tumorigenicity of CSCs. In the end, we briefly discuss the therapeutic potential of targeting these epigenetic regulators and their target genes in CSCs.
Collapse
Affiliation(s)
- Gaurav Joshi
- Institute of Molecular Biology (IMB), Mainz, Germany.
| | - Amitava Basu
- Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
5
|
Bure IV, Nemtsova MV. Mutual Regulation of ncRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24097848. [PMID: 37175555 PMCID: PMC10178202 DOI: 10.3390/ijms24097848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
Affiliation(s)
- Irina V Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
6
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Geng Q, Zhao H, Zhou Z, Chen X, Zhao H, Chen N, Li Y, Guo C, Yang A, Beer DG, Chen G. CircSMARCA5 silencing impairs cell proliferation and invasion via the miR-17-3p-EGFR signaling in lung adenocarcinoma. Life Sci 2023; 320:121560. [PMID: 36893940 DOI: 10.1016/j.lfs.2023.121560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
AIMS Circular RNAs are widely expressed in various cancers and play important roles in tumorigenesis and tumor progression. The function and mechanism of circSMARCA5 in lung adenocarcinoma however remains unclear. MAIN METHODS QRT-PCR analysis was applied for determining circSMARCA5 expression in lung adenocarcinoma patient tumor tissues and cells. Molecular biological assays were used for investigating the role of circSMARCA5 in lung adenocarcinoma progression. Luciferase reporter and bioinformatics assays were used for identifying the underlying mechanism. KEY FINDINGS In this study, we observed that circSMARCA5 expression was decreased in lung adenocarcinoma tissues but silencing of circSMARCA5 in lung adenocarcinoma cells inhibited cell proliferation, colony formation, migration and invasion. Mechanistically, we found EGFR, c-MYC and p21 were down-regulated upon circSMARCA5 knockdown. MiR-17-3p efficiently down- regulated EGFR expression via directly binding to EGFR mRNA. SIGNIFICANCE These studies suggest that circSMARCA5 functions as an oncogene via targeting miR-17-3p-EGFR axis and may represent a promising therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Qianqian Geng
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Surgery, University of Michigan, Ann Arbor, USA
| | - Huijie Zhao
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiqing Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiuyuan Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Honglin Zhao
- Department of Thoracic Surgery, Tianjin Medical University, Tianjin, China
| | - Nanzheng Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chunfang Guo
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - Aimin Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - David G Beer
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
8
|
Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. Int J Mol Sci 2023; 24:3521. [PMID: 36834933 PMCID: PMC9965735 DOI: 10.3390/ijms24043521] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common, malignant, poorly promising primary brain tumor. GBM is characterized by an infiltrating growth nature, abundant vascularization, and a rapid and aggressive clinical course. For many years, the standard treatment of gliomas has invariably been surgical treatment supported by radio- and chemotherapy. Due to the location and significant resistance of gliomas to conventional therapies, the prognosis of glioblastoma patients is very poor and the cure rate is low. The search for new therapy targets and effective therapeutic tools for cancer treatment is a current challenge for medicine and science. microRNAs (miRNAs) play a key role in many cellular processes, such as growth, differentiation, cell division, apoptosis, and cell signaling. Their discovery was a breakthrough in the diagnosis and prognosis of many diseases. Understanding the structure of miRNAs may contribute to the understanding of the mechanisms of cellular regulation dependent on miRNA and the pathogenesis of diseases underlying these short non-coding RNAs, including glial brain tumors. This paper provides a detailed review of the latest reports on the relationship between changes in the expression of individual microRNAs and the formation and development of gliomas. The use of miRNAs in the treatment of this cancer is also discussed.
Collapse
Affiliation(s)
- Marianna Makowska
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
9
|
Liu M, Zhang L, Hu J, Yan C, Zhang Y, Yan Z. LINC01311 exerts an inhibitory effect in thyroid cancer progression by targeting the miR-146b-5p/IMPA2 axis. Transl Oncol 2023; 27:101588. [PMID: 36423383 PMCID: PMC9685481 DOI: 10.1016/j.tranon.2022.101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/08/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A growing body of research suggests that long non-coding RNA (lncRNA) play an important role during the tumorigenesis and progression of cancers, including thyroid cancer (TC). Herein, we intended to uncover the role and mechanisms of LINC01311 in TC. METHODS The relative LINC01311, miR-146b-5p, and IMPA2 expressions were quantified by subjecting TC cells and tissues to western blotting and RT-qPCR. CCK-8 and scratch-wound healing assays were carried out for the evaluation of the proliferation and migration of TC cells. The apoptosis was evaluated by flow cytometry assay and western blotting of Bax and Bcl-2 proteins. Xenograft tumor model was also used to study how LINC01311 functions during TC cell growth. Luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to ascertain miR-146b-5p's interactions with LINC01311 and IMPA2 3'UTR. RESULTS The TC cells and tissues exhibited a downregulation of LINC01311 and IMPA2 and an upregulation of miR-146b-5p. LINC01311 overexpression retarded TC cell growth in vitro as well as in vivo. The luciferase reporter and RIP assays verified that miR-146b-5p recognizes LINC01311 and IMPA2 3'UTR by base pairing. LINC01311 overexpression could counteract the oncogenic effect of miR-146b-5p in vitro. Moreover, IMPA2 upregulation could offset the tumor-promoting effect of miR-146b-5p. CONCLUSION LINC01311-mediated inhibition of TC cell growth was achieved by targeting the miR-146b-5p/IMPA2 axis. These findings support that targeting the LINC01311/miR-146b-5p/IMPA2 axis may be a promising approach against TC progression.
Collapse
Affiliation(s)
- Mengjiang Liu
- Department of Endocrinology, Hubei NO.3 People's Hospital of Jianghan University, No. 26, Zhongshan Avenue, Qiaokou District, Wuhan, Hubei 430033, China
| | - Linghui Zhang
- Department of Endocrinology, Hubei NO.3 People's Hospital of Jianghan University, No. 26, Zhongshan Avenue, Qiaokou District, Wuhan, Hubei 430033, China
| | - Juping Hu
- Department of Endocrinology, Hubei NO.3 People's Hospital of Jianghan University, No. 26, Zhongshan Avenue, Qiaokou District, Wuhan, Hubei 430033, China
| | - Chong Yan
- Department of Endocrinology, Hubei NO.3 People's Hospital of Jianghan University, No. 26, Zhongshan Avenue, Qiaokou District, Wuhan, Hubei 430033, China
| | - Yi Zhang
- Department of Endocrinology, Hubei NO.3 People's Hospital of Jianghan University, No. 26, Zhongshan Avenue, Qiaokou District, Wuhan, Hubei 430033, China
| | - Zhaodan Yan
- Department of Endocrinology, Hubei NO.3 People's Hospital of Jianghan University, No. 26, Zhongshan Avenue, Qiaokou District, Wuhan, Hubei 430033, China.
| |
Collapse
|
10
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
The Emerging Roles and Clinical Potential of circSMARCA5 in Cancer. Cells 2022; 11:cells11193074. [PMID: 36231036 PMCID: PMC9562909 DOI: 10.3390/cells11193074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of endogenous non-coding RNA and a critical epigenetic regulation way that have a closed-loop structure and are highly stable, conserved, and tissue-specific, and they play an important role in the development of many diseases, including tumors, neurological diseases, and cardiovascular diseases. CircSMARCA5 is a circRNA formed by its parental gene SMARCA5 via back splicing which is dysregulated in expression in a variety of tumors and is involved in tumor development with dual functions as an oncogene or tumor suppressor. It not only serves as a competing endogenous RNA (ceRNA) by binding to various miRNAs, but it also interacts with RNA binding protein (RBP), regulating downstream gene expression; it also aids in DNA damage repair by regulating the transcription and expression of its parental gene. This review systematically summarized the expression and characteristics, dual biological functions, and molecular regulatory mechanisms of circSMARCA5 involved in carcinogenesis and tumor progression as well as the potential applications in early diagnosis and gene targeting therapy in tumors.
Collapse
|
12
|
Shi L, Su Y, Zheng Z, Qi J, Wang W, Wang C. miR-146b-5p promotes colorectal cancer progression by targeting TRAF6. Exp Ther Med 2022; 23:231. [PMID: 35222708 PMCID: PMC8815033 DOI: 10.3892/etm.2022.11155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/06/2021] [Indexed: 12/09/2022] Open
Abstract
Increasing evidence highlights the multiple roles of microRNAs (miRs) in the tumorigenesis of colorectal cancer (CRC); however, the molecular mechanism, particularly the target of miR-146b-5p in CRC has not been fully elucidated. The present study aimed to elucidate the influence of miR-146b-5p via regulating tumor necrosis factor receptor-associated factor 6 (TRAF6) in CRC. The expression levels of miR-146b-5p and TRAF6 in CRC tissue and cells were determined by reverse transcription quantitative PCR and western blotting. Binding between miR-146b-5p and TRAF6 was examined using a dual luciferase reporter gene assay. The impact of miR-146b-5p and TRAF6 on proliferation and migration of CRC cells was determined using Cell Counting Kit-8 and Transwell assays, respectively. An animal model of CRC was established to determine the carcinogenic effect of the miR-146b-5p-TRAF6 axis. The results demonstrated that miR-146b-5p was highly expressed in CRC tissue samples compared with in normal adjacent tissue samples and in CRC cells compared with in the normal NCM460 cell line, whereas TRAF6 was expressed at low levels. Overexpression of miR-146b-5p decreased TRAF6 expression in CRC HT29 and SW620 cells. miR-146b-5p targeted and inhibited TRAF6 expression in CRC cells. Furthermore, transfection with a miR-146b-5p mimic promoted the proliferation, migration and invasion of CRC cells and tumor growth; however, these effects were abolished by TRAF6 overexpression. Transfection with a miR-146b-5p inhibitor suppressed the proliferation of CRC cells. Taken together, the results from the present study demonstrated that miR-146b-5p could enhance the initiation and tumorigenesis of CRC by targeting TRAF6. These results will help elucidate the mechanisms underlying CRC development and will facilitate the development of targeted therapy for CRC.
Collapse
Affiliation(s)
- Liangpan Shi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yibin Su
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zhihua Zheng
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jinyu Qi
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Weidong Wang
- Department of Gastrointestinal Surgery, The First Hospital of Quanzhou Affiliated of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
13
|
Wang FJ, Jing YH, Cheng CS, Cao ZQ, Jiao JY, Chen Z. HELLS serves as a poor prognostic biomarker and its downregulation reserves the malignant phenotype in pancreatic cancer. BMC Med Genomics 2021; 14:189. [PMID: 34315468 PMCID: PMC8314468 DOI: 10.1186/s12920-021-01043-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND SMARCAs, belonged to SWI/SNF2 subfamilies, are critical to cellular processes due to their modulation of chromatin remodeling processes. Although SMARCAs are implicated in the tumor progression of various cancer types, our understanding of how those members affect pancreatic carcinogenesis is quite limited and improving this requires bioinformatics analysis and biology approaches. METHODS To address this issue, we investigated the transcriptional and survival data of SMARCAs in patients with pancreatic cancer using ONCOMINE, GEPIA, Human Protein Atlas, and Kaplan-Meier plotter. We further verified the effect of significant biomarker on pancreatic cancer in vitro through functional experiment. RESULTS The Kaplan-Meier curve and log-rank test analyses showed a positive correlation between SMARCA1/2/3/SMARCAD1 and patients' overall survival (OS). On the other hand, mRNA expression of SMARCA6 (also known as HELLS) showed a negative correlation with OS. Meanwhile, no significant correlation was found between SMARCA4/5/SMARCAL1 and tumor stages and OS. The knockdown of HELLS impaired the colony formation ability, and inhibited pancreatic cancer cell proliferation by arresting cells at S phase. CONCLUSIONS Data mining analysis and cell function research demonstrated that HELLS played oncogenic roles in the development and progression of pancreatic cancer, and serve as a poor prognostic biomarker for pancreatic cancer. Our work laid a foundation for further clinical applications of HELLS in pancreatic cancer.
Collapse
Affiliation(s)
- Feng-Jiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yan-Hua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhang-Qi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Ju-Ying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
14
|
Studies on the Regulatory Roles and Related Mechanisms of lncRNAs in the Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6657944. [PMID: 33791072 PMCID: PMC7984887 DOI: 10.1155/2021/6657944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
Long noncoding RNAs (lncRNAs) have attracted extensive attention due to their regulatory role in various cellular processes. Emerging studies have indicated that lncRNAs are expressed to varying degrees after the growth and development of the nervous system as well as injury and degeneration, thus affecting various physiological processes of the nervous system. In this review, we have compiled various reported lncRNAs related to the growth and development of central and peripheral nerves and pathophysiology (including advanced nerve centers, spinal cord, and peripheral nervous system) and explained how these lncRNAs play regulatory roles through their interactions with target-coding genes. We believe that a full understanding of the regulatory function of lncRNAs in the nervous system will contribute to understand the molecular mechanism of changes after nerve injury and will contribute to discover new diagnostic markers and therapeutic targets for nerve injury diseases.
Collapse
|
15
|
Liu L, Li X, Shi Y, Chen H. The long noncoding RNA FTX promotes a malignant phenotype in bone marrow mesenchymal stem cells via the miR-186/c-Met axis. Biomed Pharmacother 2020; 131:110666. [PMID: 32853911 DOI: 10.1016/j.biopha.2020.110666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Gliomas are the most common and aggressive primary tumours of the central nervous system in adults. Bone marrow-derived mesenchymal stem cells (BMSCs) are an important component of the glioma microenvironment. Our previous study indicated that BMSCs in the glioma microenvironment could be induced to malignantly transform by glioma stem cells (GSCs). The malignant transformation of BMSCs is closely related to glioma progression; however, the underlying mechanism of this transformation has not been fully clarified. In this study, we found that compared with the levels in normal BMSCs, the levels of the long noncoding RNA FTX transcript XIST regulator (lncRNA-FTX) were increased in malignantly transformed BMSCs (tBMSCs), which was associated with the proliferation, migration and invasion of tBMSCs. Next, by using a luciferase reporter assay and an RNA pull-down assay, we found that lncRNA-FTX acted as a sponge for miR-186 in tBMSCs. Further research revealed that miR-186 could bind to the 3'-UTR (untranslated region) of c-Met, which acts as an oncogene in gliomas. Through functional assays, we showed that lncRNA-FTX could regulate c-Met expression in tBMSCs in a miR-186-dependent manner. Based on these data, we concluded that lncRNA-FTX plays a key role in the GSC-mediated malignant transformation of BMSCs in the glioma microenvironment, which is of great significance for further understanding the pathogenesis of glioma.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaojian Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|