1
|
Li MJ, Lan MN, Du YX, Liu Y, Zhang HY, Guo M, Liu SW, Xia HY, Wu ZJ, Zheng HJ. EPRCN exerts neuroprotective function by regulating gut microbiota and restoring gut immune homeostasis in Alzheimer's disease model mice. J Alzheimers Dis 2025:13872877251339762. [PMID: 40325871 DOI: 10.1177/13872877251339762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
BackgroundNo effective drug treatment is currently available for Alzheimer's disease (AD), highlighting the urgent need to develop efficient therapeutic options. We have developed a formula based on medicine and food homology (MFH) consisting of egg yolk oil, perilla seed oil, raphani seed oil, cinnamon oil, and noni puree (EPRCN), and demonstrated that it can treat AD by alleviating neuroinflammation and oxidative stress. However, whether EPRCN can improve AD by regulating gut microbiota remains unknown.ObjectiveThe current study aimed to evaluate the effect of EPRCN on regulating gut microbiota and neuroprotection.Methods16S rRNA sequencing was used to assess the structure of gut microbiota. Hematoxylin-eosin (HE) staining, qRT-PCR, and ELISA were used to evaluate gut inflammation. Detected indexes associated with cholinergic dysfunction and neuronal damage to investigate the neuroprotective effects of EPRCN.Results16S rRNA gene analysis revealed that EPRCN remodeled the gut microbiota, inhibited gut metabolic disorders, and promoted CoA biosynthesis in scopolamine-induced mice. EPRCN can ameliorates gut inflammation by activating the cholinergic anti-inflammatory pathway. The results further indicated that EPRCN improved cholinergic dysfunction by inhibiting the activity of acetylcholinesterase and restoring cholinergic receptors. Additionally, EPRCN administration suppressed the neuronal loss and elevated brain derived neurotrophic factor expression in hippocampus. Correlation analysis found that alteration of several gut microbes was associated with indexes improved by EPRCN.ConclusionsThese findings suggest that EPRCN may serve as a promising dietary intervention for treating AD by regulating the microbiota-gut-brain axis and exerting neuroprotective function.
Collapse
Affiliation(s)
- Ming-Jie Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Meng-Ning Lan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yao-Xuan Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yue Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Hua-Yue Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Shi-Wei Liu
- Shanghai Xizuo Biotechnology Co., Ltd, Shanghai, China
| | - Hai-Yang Xia
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zheng-Jun Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| |
Collapse
|
2
|
Ji B, Deng F, Zhou B, Zhao C, Lei J, Xu T, Qiu J, Zhang M, Zhang Y, Wei M, Gao Q. Maternal high glucose and fat diet exposure impaired vascular constriction via miR-325-3P/SHIP2/NOX2 pathway axis in offspring vessels. Cell Mol Life Sci 2024; 82:12. [PMID: 39719480 DOI: 10.1007/s00018-024-05549-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND AND OBJECTIVES Maternal western-style diets that are high in glucose and fat have well-known cardiovascular effects on offspring, yet the combined influence of such diets during pregnancy is relatively less comprehended. This study investigates the impact of maternal high glucose and fat diet (HGF) on vascular constriction in offspring and the underlying mechanisms. METHODS AND RESULTS Pregnant Sprague-Dawley rats were provided with either HGF or control diets. The assessment of fetal and postnatal vascular function disclosed an enhanced sensitivity to angiotensin II-induced vascular constriction in the offspring exposed to HGF. This was ascribed to increased oxidative stress via upregulated NOX2 expression, which was due to downregulated SHIP2 expression that was influenced by upregulated miR-325-3p. The maternal HGF diet elevated miR-325-3p, suppressed SHIP2 and enhanced NOX2 expression in fetal vascular tissues, thereby resulting in vascular dysfunction. These alterations persist into adulthood, heightening the risk of vascular diseases. CONCLUSION The present study is the first to demonstrate that maternal HGF diet impairs vascular constriction function in offspring through the miR-325-3p/SHIP2/NOX2 pathway. These novel findings indicate that the detrimental effects of maternal HGF diet on fetal vascular function can persist into adulthood, advancing our knowledge on the impact of maternal diet on offspring vascular health and the early stages of fetal-origin vascular diseases.
Collapse
Affiliation(s)
- Bingyu Ji
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, 215100, People's Republic of China
| | - Fengying Deng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bingqing Zhou
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chenxuan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jiahui Lei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, 215100, People's Republic of China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, People's Republic of China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, 250014, Shandong, China
| | - Yueming Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, 215100, People's Republic of China
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, 250014, Shandong, China.
| |
Collapse
|
3
|
Mitra S, Munni YA, Dash R, Sadhu T, Barua L, Islam MA, Chowdhury D, Bhattacharjee D, Mazumder K, Moon IS. Gut Microbiota in Autophagy Regulation: New Therapeutic Perspective in Neurodegeneration. Life (Basel) 2023; 13:life13040957. [PMID: 37109487 PMCID: PMC10144697 DOI: 10.3390/life13040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Gut microbiota and the brain are related via a complex bidirectional interconnective network. Thus, intestinal homeostasis is a crucial factor for the brain, as it can control the environment of the central nervous system and play a significant role in disease progression. The link between neuropsychological behavior or neurodegeneration and gut dysbiosis is well established, but many involved pathways remain unknown. Accumulating studies showed that metabolites derived from gut microbiota are involved in the autophagy activation of various organs, including the brain, one of the major pathways of the protein clearance system that is essential for protein aggregate clearance. On the other hand, some metabolites are evidenced to disrupt the autophagy process, which can be a modulator of neurodegeneration. However, the detailed mechanism of autophagy regulation by gut microbiota remains elusive, and little research only focused on that. Here we tried to evaluate the crosstalk between gut microbiota metabolites and impaired autophagy of the central nervous system in neurodegeneration and the key to future research regarding gut dysbiosis and compromised autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Toma Sadhu
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chittagong 4000, Bangladesh
| | - Largess Barua
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Md. Ariful Islam
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Dipannita Chowdhury
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Debpriya Bhattacharjee
- Faculty of Environment and Natural Sciences, Brandenburg Technical University Cottbus Senftenberg, D-03013 Cottbus, Germany
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
4
|
Witek K, Wydra K, Filip M. A High-Sugar Diet Consumption, Metabolism and Health Impacts with a Focus on the Development of Substance Use Disorder: A Narrative Review. Nutrients 2022; 14:2940. [PMID: 35889898 PMCID: PMC9323357 DOI: 10.3390/nu14142940] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/01/2023] Open
Abstract
Carbohydrates are important macronutrients in human and rodent diet patterns that play a key role in crucial metabolic pathways and provide the necessary energy for proper body functioning. Sugar homeostasis and intake require complex hormonal and nervous control to proper body energy balance. Added sugar in processed food results in metabolic, cardiovascular, and nervous disorders. Epidemiological reports have shown enhanced consumption of sweet products in children and adults, especially in reproductive age and in pregnant women, which can lead to the susceptibility of offspring's health to diseases in early life or in adulthood and proneness to mental disorders. In this review, we discuss the impacts of high-sugar diet (HSD) or sugar intake during the perinatal and/or postnatal periods on neural and behavioural disturbances as well as on the development of substance use disorder (SUD). Since several emotional behavioural disturbances are recognized as predictors of SUD, we also present how HSD enhances impulsive behaviour, stress, anxiety and depression. Apart from the influence of HSD on these mood disturbances, added sugar can render food addiction. Both food and addictive substances change the sensitivity of the brain rewarding neurotransmission signalling. The results of the collected studies could be important in assessing sugar intake, especially via maternal dietary patterns, from the clinical perspective of SUD prevention or pre-existing emotional disorders. Methodology: This narrative review focuses on the roles of a high-sugar diet (HSD) and added sugar in foods and on the impacts of glucose and fructose on the development of substance use disorder (SUD) and on the behavioural predictors of drugs abuse. The literature was reviewed by two authors independently according to the topic of the review. We searched the PubMed and Scopus databases and Multidisciplinary Digital Publishing Institute open access scientific journals using the following keyword search strategy depending on the theme of the chapter: "high-sugar diet" OR "high-carbohydrate diet" OR "sugar" OR "glucose" OR "fructose" OR "added sugar" AND keywords. We excluded inaccessible or pay-walled articles, abstracts, conference papers, editorials, letters, commentary, and short notes. Reviews, experimental studies, and epidemiological data, published since 1990s, were searched and collected depending on the chapter structure. After the search, all duplicates are thrown out and full texts were read, and findings were rescreened. After the selection process, appropriate papers were included to present in this review.
Collapse
Affiliation(s)
| | | | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (K.W.); (K.W.)
| |
Collapse
|
5
|
Chakrabarti A, Geurts L, Hoyles L, Iozzo P, Kraneveld AD, La Fata G, Miani M, Patterson E, Pot B, Shortt C, Vauzour D. The microbiota-gut-brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell Mol Life Sci 2022; 79:80. [PMID: 35044528 PMCID: PMC8770392 DOI: 10.1007/s00018-021-04060-w] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
The gut and brain link via various metabolic and signalling pathways, each with the potential to influence mental, brain and cognitive health. Over the past decade, the involvement of the gut microbiota in gut-brain communication has become the focus of increased scientific interest, establishing the microbiota-gut-brain axis as a field of research. There is a growing number of association studies exploring the gut microbiota's possible role in memory, learning, anxiety, stress, neurodevelopmental and neurodegenerative disorders. Consequently, attention is now turning to how the microbiota can become the target of nutritional and therapeutic strategies for improved brain health and well-being. However, while such strategies that target the gut microbiota to influence brain health and function are currently under development with varying levels of success, still very little is yet known about the triggers and mechanisms underlying the gut microbiota's apparent influence on cognitive or brain function and most evidence comes from pre-clinical studies rather than well controlled clinical trials/investigations. Filling the knowledge gaps requires establishing a standardised methodology for human studies, including strong guidance for specific focus areas of the microbiota-gut-brain axis, the need for more extensive biological sample analyses, and identification of relevant biomarkers. Other urgent requirements are new advanced models for in vitro and in vivo studies of relevant mechanisms, and a greater focus on omics technologies with supporting bioinformatics resources (training, tools) to efficiently translate study findings, as well as the identification of relevant targets in study populations. The key to building a validated evidence base rely on increasing knowledge sharing and multi-disciplinary collaborations, along with continued public-private funding support. This will allow microbiota-gut-brain axis research to move to its next phase so we can identify realistic opportunities to modulate the microbiota for better brain health.
Collapse
Affiliation(s)
| | - Lucie Geurts
- International Life Sciences Institute, European Branch, Brussels, Belgium.
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Michela Miani
- International Life Sciences Institute, European Branch, Brussels, Belgium
| | | | - Bruno Pot
- Yakult Europe BV, Almere, The Netherlands
| | | | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
6
|
Lapaquette P, Bizeau JB, Acar N, Bringer MA. Reciprocal interactions between gut microbiota and autophagy. World J Gastroenterol 2021; 27:8283-8301. [PMID: 35068870 PMCID: PMC8717019 DOI: 10.3748/wjg.v27.i48.8283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
A symbiotic relationship has set up between the gut microbiota and its host in the course of evolution, forming an interkingdom consortium. The gut offers a favorable ecological niche for microbial communities, with the whole body and external factors (e.g., diet or medications) contributing to modulating this microenvironment. Reciprocally, the gut microbiota is important for maintaining health by acting not only on the gut mucosa but also on other organs. However, failure in one or another of these two partners can lead to the breakdown in their symbiotic equilibrium and contribute to disease onset and/or progression. Several microbial and host processes are devoted to facing up the stress that could alter the symbiosis, ensuring the resilience of the ecosystem. Among these processes, autophagy is a host catabolic process integrating a wide range of stress in order to maintain cell survival and homeostasis. This cytoprotective mechanism, which is ubiquitous and operates at basal level in all tissues, can be rapidly down- or up-regulated at the transcriptional, post-transcriptional, or post-translational levels, to respond to various stress conditions. Because of its sensitivity to all, metabolic-, immune-, and microbial-derived stimuli, autophagy is at the crossroad of the dialogue between changes occurring in the gut microbiota and the host responses. In this review, we first delineate the modulation of host autophagy by the gut microbiota locally in the gut and in peripheral organs. Then, we describe the autophagy-related mechanisms affecting the gut microbiota. We conclude this review with the current challenges and an outlook toward the future interventions aiming at modulating host autophagy by targeting the gut microbiota.
Collapse
Affiliation(s)
- Pierre Lapaquette
- UMR PAM A 02.102, University Bourgogne Franche-Comté, Agrosup Dijon, Dijon 21000, France
| | - Jean-Baptiste Bizeau
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Marie-Agnès Bringer
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|
7
|
Ji J, Yi X, Zhu Y, Yu H, Huang S, Liu Z, Zhang X, Xia G, Shen X. Tilapia Head Protein Hydrolysate Attenuates Scopolamine-Induced Cognitive Impairment through the Gut-Brain Axis in Mice. Foods 2021; 10:foods10123129. [PMID: 34945680 PMCID: PMC8701847 DOI: 10.3390/foods10123129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
The destruction of the homeostasis in the gut-brain axis can lead to cognitive impairment and memory decline. Dietary intervention with bioactive peptides from aquatic products is an innovative strategy to prevent cognitive deficits. The present study aimed to determine the neuroprotective effect of tilapia head protein hydrolysate (THPH) on scopolamine-induced cognitive impairment in mice, and to further explore its mechanism through the microbiota–gut-brain axis. The results showed that THPH administration significantly improved the cognitive behavior of mice, and normalized the cholinergic system and oxidative stress system of the mice brain. The histopathological observation showed that THPH administration significantly reduced the pathological damage of hippocampal neurons, increased the number of mature neurons marked by NeuN and delayed the activation of astrocytes in the hippocampus of mice. In addition, THPH administration maintained the stability of cholinergic system, alleviated oxidative stress and further improved the cognitive impairment by reshaping the gut microbiota structure of scopolamine-induced mice and alleviating the disorder of lipid metabolism and amino acid metabolism in serum. In conclusion, our research shows that THPH supplementation is a nutritional strategy to alleviate cognitive impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Jun Ji
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Yujie Zhu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Hui Yu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Shuqi Huang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
- Correspondence: ; Tel./Fax: +86-0898-66193581
| |
Collapse
|