1
|
Li M, Gao X, Su Y, Shan S, Qian W, Zhang Z, Zhu D. FOXM1 transcriptional regulation. Biol Cell 2024; 116:e2400012. [PMID: 38963053 DOI: 10.1111/boc.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
FOXM1 is a key transcriptional regulator involved in various biological processes in mammals, including carbohydrate and lipid metabolism, aging, immune regulation, development, and disease. Early studies have shown that FOXM1 acts as an oncogene by regulating cell proliferation, cell cycle, migration, metastasis, and apoptosis, as well as genes related to diagnosis, treatment, chemotherapy resistance, and prognosis. Researchers are increasingly focusing on FOXM1 functions in tumor microenvironment, epigenetics, and immune infiltration. However, researchers have not comprehensively described FOXM1's involvement in tumor microenvironment shaping, epigenetics, and immune cell infiltration. Here we review the role of FOXM1 in the formation and development of malignant tumors, and we will provide a comprehensive summary of the role of FOXM1 in transcriptional regulation, interacting proteins, tumor microenvironment, epigenetics, and immune infiltration, and suggest areas for further research.
Collapse
Affiliation(s)
- Mengxi Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Xuzheng Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| |
Collapse
|
2
|
Yue X, Lan F, Liu W. Serum exosomal circCCDC66 as a potential diagnostic and prognostic biomarker for pituitary adenomas. Front Oncol 2023; 13:1268778. [PMID: 38098508 PMCID: PMC10720038 DOI: 10.3389/fonc.2023.1268778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose Circular RNAs (circRNAs) play an important role in tumorigenesis, and exosomal circRNAs have the potential to be novel biomarkers for cancer diagnosis. Here, we are committed to reveal serum exosomal circCCDC66 as a noninvasive biomarker to diagnose and predict recurrence in pituitary adenoma (PA). Methods A total of 90 PA patients and 50 healthy subjects were enrolled for clinical validation. Exosomes were extracted from the serum and validated by transmission electron microscopy, nanoparticle tracking analysis, and Western blot assay. The expression of circCCDC66 in serum exosomes was assessed using quantitative real-time PCR (qRT-PCR), and correlations between circCCDC66 expression and clinicopathological factors were analyzed. The reliability of serum exosomal circCCDC66 to diagnose PA was evaluated using receiver operating characteristic (ROC) analysis. Results Initially, an obviously significantly increasing level of serum exosomal circCCDC66 was verified in the PA specimens compared with healthy controls. Importantly, serum exosomal circCCDC66, which was secreted and released by PA cells, could monitor tumor dynamics and serve as a potentially prognostic biomarker during treatment. Additionally, ROC curve analysis was performed and the corresponding area under the curve (AUC) values were used to confirm the ability of serum exosomal circCCDC66 as a potentially diagnostic and prognostic biomarker for PA patients. Importantly, the progression-free survival was much longer in the low serum exosomal circCCDC66 group than in the high serum exosomal circCCDC66 group. Conclusion Serum exosomal circCCDC66 is abnormally elevated and may serve as a promising factor for the diagnosis of and predicting prognosis in PA patients.
Collapse
Affiliation(s)
- Xiao Yue
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Fengming Lan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Zhao S, Li B, Gao H, Zhang Y. MiR-320a Acts as a Tumor Suppressor in Somatotroph Pituitary Neuroendocrine Tumors by Targeting BCAT1. Neuroendocrinology 2023; 114:14-24. [PMID: 37591221 DOI: 10.1159/000533549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Aberrant miR-320a has been reported to be involved in the tumorigenesis of several cancers. In our previous study, we identified the low expression of circulating miR-320a in patients with somatotroph pituitary neuroendocrine tumor (PitNET); however, the role of miR-320a in somatotroph PitNET proliferation is still unclear. METHODS Cell viability and colony formation assays were used to detect the effect of miR-320a and BCAT1 on GH3 cells. TargetScan was used to identify the target genes of miR-320a. Dual-luciferase reporter gene assay was used to explore the relation between miR-320a and BCAT1. Transcriptome and proteome analyses were performed between somatotroph PitNETs and healthy controls. The expression level of miR-320a in somatotroph PitNETs were detected by RT-qPCR and Western blot. RESULTS miR-320a mimics inhibit cell proliferation, while miR-320a inhibitors promote cell proliferation in GH3 cells. An overlap analysis using a Venn diagram revealed that BCAT1 is the only target gene of miR-320a overexpressed in somatotroph PitNETs compared to healthy controls, as revealed by both microarray and proteomics results. A dual-luciferase reporter gene assay showed that miR-320a may bind to the BCAT1-3'UTR. The transfection of miR-320a mimics downregulated the expression and miR-320a inhibitors and upregulated the expression of BCAT1 in GH3 cells. The interference of BCAT1 expression in GH3 cells downregulated cell proliferation and growth. Pan-cancer analyses demonstrated that high BCAT1 expression often indicates a poor prognosis. CONCLUSION Our findings illustrate that miR-320a may function as a tumor suppressor and BCAT1 may promote tumor progression. miR-320a may inhibit the growth of somatotroph PitNETs by targeting BCAT1.
Collapse
Affiliation(s)
- Sida Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bin Li
- Department of Neurosurgery, Peking University People's Hospital, Beijing, China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| |
Collapse
|
5
|
Zhang S, Wang J, Hu W, He L, Tang Q, Li J, Jie M, Li X, Liu C, Ouyang Q, Yang S, Hu C. RNF112-mediated FOXM1 ubiquitination suppresses the proliferation and invasion of gastric cancer. JCI Insight 2023; 8:166698. [PMID: 37288663 DOI: 10.1172/jci.insight.166698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Forkhead box M1 (FOXM1) plays a critical role in development physiologically and tumorigenesis pathologically. However, insufficient efforts have been dedicated to exploring the regulation, in particular the degradation of FOXM1. Here, the ON-TARGETplus siRNA library targeting E3 ligases was used to screen potential candidates to repress FOXM1. Of note, mechanism study revealed that RNF112 directly ubiquitinates FOXM1 in gastric cancer, resulting in a decreased FOXM1 transcriptional network and suppressing the proliferation and invasion of gastric cancer. Interestingly, the well-established small-molecule compound RCM-1 significantly enhanced the interaction between RNF112 and FOXM1, which further promoted FOXM1 ubiquitination and subsequently exerted promising anticancer effects in vitro and in vivo. Altogether, we demonstrate that RNF112 suppresses gastric cancer progression by ubiquitinating FOXM1 and highlight the RNF112/FOXM1 axis serves as both prognosis biomarker and therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Shengwei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jing Wang
- Medical Research Institute, Southwest University, Chongqing, China
| | - Weichao Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lijiao He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qingyun Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jie Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Mengmeng Jie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xinzhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qin Ouyang
- Department of Pharmaceutical Chemistry, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, China
| | - Changjiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Chongqing, China
| |
Collapse
|
6
|
Wang X, Zhang C, Song H, Yuan J, Zhang L, He J. CircCCDC66: Emerging roles and potential clinical values in malignant tumors. Front Oncol 2023; 12:1061007. [PMID: 36698408 PMCID: PMC9869039 DOI: 10.3389/fonc.2022.1061007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Circular RNAs (circRNAs) are endogenous non-coding RNAs (ncRNAs) with a closed-loop structure. In recent years, circRNAs have become the focus of much research into RNA. CircCCDC66 has been identified as a novel oncogenic circRNA and is up-regulated in a variety of malignant tumors including thyroid cancer, non-small cell carcinoma, gastric cancer, colorectal cancer, renal cancer, cervical cancer, glioma, and osteosarcoma. It mediates cancer progression by regulating epigenetic modifications, variable splicing, transcription, and protein translation. The oncogenicity of circCCDC66 suppresses or promotes the expression of related genes mainly through direct or indirect pathways. This finding suggests that circCCDC66 is a biomarker for cancer diagnosis, prognosis assessment and treatment. However, there is no review on the relationship between circCCDC66 and cancers. Thus, the expression, biological functions, and regulatory mechanisms of circCCDC66 in malignant tumor and non-tumor diseases are summarized. The clinical value and prognostic significance of circCCDC66 are also evaluated, which can provide insights helpful to those exploring new strategies for the early diagnosis and targeted treatment of malignancies.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chao Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Huangqin Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Junlong Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefeng He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Jiefeng He,
| |
Collapse
|
7
|
Lei D, Xiao W, Zhang B. CircYIPF6 regulates glioma cell proliferation, apoptosis, and glycolysis through targeting miR-760 to modulate PTBP1 expression. Transl Neurosci 2023; 14:20220271. [PMID: 37588107 PMCID: PMC10425986 DOI: 10.1515/tnsci-2022-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 08/18/2023] Open
Abstract
Background Recent studies have highlighted that circular RNAs regulate cancer-related genes' expression by functioning as microRNA sponges in cancers. Herein, we investigated the function and molecular mechanism of circYIPF6 in glioma. Methods 5-Ethynyl-2'-deoxyuridine assay, colony formation, and flow cytometry were performed to assess the proliferation and apoptosis of glioma cells. The levels of glycolytic metabolism were evaluated by measuring the glucose uptake and lactate production. The protein levels of Bax, Bcl2, GLUT1, LDHA, and PTBP1 were examined by western blot. The interplay between miR-760 and circYIPF6 or PTBP1 was confirmed by a dual-luciferase reporter. The effect of circYIPF6 silencing on the growth of glioma in vivo was determined by a xenograft experiment. Results circYIPF6 was significantly upregulated in glioma. Knockdown of circYIPF6 suppressed glioma cell proliferation and glycolysis while promoting cell apoptosis. Mechanistic studies revealed that circYIPF6 targeted miR-760 and could abundantly sponge miR-760 to inhibit the expression of its downstream target gene PTBP1. Functional rescue experiments showed that both miR-760 inhibition and PTBP1 overexpression could attenuate the regulatory effect of circYIPF6 silencing on glioma cells. Furthermore, circYIPF6 knocking down effectively impeded glioma growth in vivo. Conclusion These findings suggested that circYIPF6 participated in the proliferation, apoptosis, and glycolysis of glioma through the miR-760/PTBP1 axis.
Collapse
Affiliation(s)
- Dan Lei
- Department of Neurosurgery, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, 430050, China
| | - Wenyong Xiao
- Department of Neurosurgery, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, 430050, China
| | - Bo Zhang
- Department of Oncology, The Central Hospital of Huangshi, No. 141, Tianjin Road, Huangshigang District, Huangshi City, Hubei, China
| |
Collapse
|
8
|
Nie L, Zou H, Ma C, Wang X. miR-223-3p Regulates NLRP3 to Inhibit Proliferation and Promote Apoptosis of ONG Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2805645. [PMID: 36238473 PMCID: PMC9553338 DOI: 10.1155/2022/2805645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
Objective Optic nerve glioma (ONG) is a rare disease, defined as a WHO grade I tumor, which affects the visual pathway. The objective of this study was to investigate the expression of miR-223-3p in ONG as well as its function and regulation in ONG cell lines. Methods qRT-PCR assays were used to measure miR-223-3p expression in ONG tissues and cell lines. After overexpression of miR-223-3p in Hs683 and WERI-Rb-1 cell lines, CCK-8 and EdU assays were performed to examine cell proliferation, and flow cytometry was used to assess apoptosis. Dual luciferase assays were utilized to identify the target binding to miR-223-3p and NLRP3. Rescue assays were carried out to investigate the regulatory mechanism of miR-223-3p acting through NLRP3. Nude mouse tumorigenesis assays were established to verify the effect of miR-223-3p on ONG growth. Results miR-223-3p was weakly expressed in both ONG tissues and cell lines. miR-223-3p inhibited the proliferative ability of Hs683 and WERI-Rb-1 cell lines and promoted apoptosis. In addition, there was binding between miR-223-3p and NLRP3. Simultaneous overexpression of NLRP3 and miR-223-3p partially counteracted the role of miR-223-3p in the cell lines. Lastly, miR-223-3p inhibited ONG growth. Conclusion miR-223-3p plays an inhibitory role in ONG development by regulating NLRP3 to inhibit the proliferation of ONG cells and promote apoptosis.
Collapse
Affiliation(s)
- Lili Nie
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000 Jilin, China
| | - Hui Zou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000 Jilin, China
| | - Chi Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Xiaoke Wang
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, 130000 Jilin, China
| |
Collapse
|
9
|
Chalcone 9X Contributed to Repressing Glioma Cell Growth and Migration and Inducing Cell Apoptosis by Reducing FOXM1 Expression In Vitro and Repressing Tumor Growth In Vivo. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8638085. [PMID: 35978634 PMCID: PMC9377910 DOI: 10.1155/2022/8638085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Objective. Natural and synthetic chalcones played roles in inflammation and cancers. Chalcone 9X was an aromatic ketone that was found to inhibit cell growth of hepatic cancer and lung cancer cells. In this study, we wanted to investigate the functions of Chalcone 9X in glioma. Materials and Methods. Chemical Chalcone 9X was added in human glioma cell lines (U87 and T98G cells) and normal astrocyte cell lines (HA1800) with various concentrations (0 μmol/L, 20 μmol/L, 50 μmol/L, and 100 μmol/L). CCK-8 assay was used to measure cell viability. Flow cytometric assay was used to measure cell apoptotic rates. Wound healing assay and transwell assay were used to measure cell invasion. RT-PCR was used to detect relative mRNA expressions, and the protein expressions were detected by western blot (WB) and immunohistochemical staining (IHC). Finally, nude mouse xenograft assay was performed to prove the effects of Chalcone 9X in vivo. Results. Results revealed that Chalcone 9X treatment suppressed cell viability and cell migration capacity; it could also induce cell apoptosis in U87 and T98G cells with dose dependence. However, it had little cytotoxicity to normal astrocyte HA1800 cells. Moreover, Chalcone 9X treatment could repress the mRNA and protein expressions of FOXM1 in human glioma cell lines, which was an oncogene that could promote the progression and malignancy of glioma. In addition, FOXM1 overexpression dismissed the Chalcone 9X effects on cell proliferation, apoptosis, and migration in human glioma cell lines. Finally, in vivo assay showed that Chalcone 9X treatment repressed the expression of FOXM1, which inhibited the tumor growth of a xenograft model injected with U87 in nude mice. Conclusions. In all, we found that Chalcone 9X could suppress cell proliferation and migration and induce cell apoptosis in human glioma cells, while it has little cytotoxicity to normal astrocyte cells. Therefore, we uncovered a novel way that Chalcone 9X could inhibit FOXM1 expression and repress the progression and biofunctions of glioma cells, which might be a potential therapeutic drug for treating human glioma.
Collapse
|
10
|
Zhou J, Wang Y, Zhang L, Chen Q, Zhu X, Jiang P, Jiang N, Zhao W, Li B. Engineered Exosomes-Mediated Transfer of hsa-miR-320a Overcomes Chemoresistance in Cervical Cancer Cells via Targeting MCL1. Front Pharmacol 2022; 13:883445. [PMID: 35444548 PMCID: PMC9013939 DOI: 10.3389/fphar.2022.883445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
In cervical cancer (CC), cisplatin resistance greatly restricts the application in clinical. Here, we report that engineered exosomes-mediated transfer of hsa-miR-320a overcomes chemoresistance in cervical cancer cells via targeting Myeloid Cell Leukemia Sequence 1 (MCL1). In DDP resistant CC tissues, as well as cell lines, it was found that miR-320a expression is lower, engineered miR-320a exosomes were used to attenuate DDP resistance in Hela/DDP and Caski/DDP cells. Mechanistically, we find that MCL1, which is a target of miR-320a, overcomes DDP resistance in Hela/DDP cells and in mice. In conclusion, we report that the engineered miR-320a exosomes is proved to be effective and safe.
Collapse
Affiliation(s)
- Jinling Zhou
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanhe Wang
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhu Zhang
- Institute of Nanjing Nanxin Pharmaceutical Technology Research, Nanjing, China
| | - Qin Chen
- Department of Pathology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Zhu
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyue Jiang
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Jiang
- Department of Clinical Laboratory, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhao
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Baohua Li
- Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Li P, Chen J, Zou J, Zhu W, Zang Y, Li H. Circular RNA coiled-coil domain containing 66 regulates malignant development of papillary thyroid carcinoma by upregulating La ribonucleoprotein 1 via the sponge effect on miR-129-5p. Bioengineered 2022; 13:7181-7196. [PMID: 35264065 PMCID: PMC8973727 DOI: 10.1080/21655979.2022.2036304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Circular RNAs (circRNAs) play vital roles in the development and progression of various diseases. CircRNA coiled-coil domain containing 66 (circ-CCDC66) has been reported to be involved in several cancers, but its biological function and underlying mechanism in papillary thyroid carcinoma (PTC) remain unclear. We detected the relative expression level of circ-CCDC66 in PTC specimens and cell lines using real-time reverse transcription PCR. In addition, EdU assay, transwell assay, and xenograft analysis were performed to measure the effect of circ-CCDC66 on the proliferative, migratory, and invasive capacities of PTC cells. We also investigated the potential mechanism of circ-CCDC66 by bioinformatics analysis, RNA immunoprecipitation, and dual-luciferase reporter assay. We observed that circ-CCDC66 expression was upregulated in PTC specimens and cell lines and was correlated with poor clinical characteristics of PTC patients. Moreover, in vitro experiments demonstrated that knockdown of circ-CCDC66 markedly suppressed the proliferative, migratory, and invasive capacities of PTC cells. Mechanistically, miR-129-5p was a target gene of circ-CCDC66 and was downregulated in PTC tissues. LARP1, a downstream target of miR-129-5p, was upregulated in PTC tissues. In addition, we confirmed that inhibition of circ-CCDC66 could repress xenograft tumor growth. Circ-CCDC66 promoted PTC proliferation, migration, invasion, and tumor growth by sponging miR-129-5p and promoting LARP1 expression.
Collapse
Affiliation(s)
- Peipei Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Neurosurgery, Wuxi Clinical Medical School of Anhui Medical University, 904th Hospital of PLA(Wuxi Taihu Hospital), Wuxi, China
| | - Junhui Chen
- Department of Neurosurgery, Wuxi Clinical Medical School of Anhui Medical University, 904th Hospital of PLA(Wuxi Taihu Hospital), Wuxi, China
| | - Jun Zou
- Department of Otolaryngology, Wuxi No. 5 People's Hospital, Wuxi, China
| | - Wei Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Zang
- Department of Otorhinolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongwu Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Deng G, Wang F, Song Y. Circular RNA SET domain protein 3 promotes nasopharyngeal carcinoma proliferation, cisplatin resistance, and protein kinase B / mammalian target of rapamycin pathway activation by modulating microRNA-147a expression. Bioengineered 2022; 13:5843-5854. [PMID: 35196205 PMCID: PMC8973767 DOI: 10.1080/21655979.2022.2036907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Circular RNA (circRNA) plays a crucial role in the establishment and progression of nasopharyngeal carcinoma (NPC). Understanding the role of circRNA in NPC is helpful to find new therapeutic targets for NPC. The purpose of this study was to explore the effects of circRNA SET domain protein 3 (circSETD3) on protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) signaling pathway and cisplatin (DDP) resistance to NPC and explore its downstream mechanism. The results showed that circSETD3 was upregulated in NPC tissues and was related to DDP resistance to NPC. Functional experiments revealed that circSETD3 knockdown inhibited NPC proliferation and increased DDP sensitivity and apoptosis rate. The promotion effect of circSETD3 overexpression on NPC proliferation and DDP resistance and inhibition effect on apoptosis was reversed by elevated miR-147a. CircSETD3 knockdown or miR-147a overexpression prevented Akt/mTOR pathway's activation. In terms of the mechanism, circSETD3 acted as a sponge for miR-147a. Xenotransplantation experiments showed that knockdown circSETD3 or DDP treatment could restrain tumor growth, and the effect of DDP was enhanced by knockdown of circSETD3. In conclusion, the results of this study confirm that circSETD3 promotes NPC proliferation and DDP resistance by regulating miR-147a, and circSETD3/miR-147a axis may serve as a potential therapeutic target for NPC in the future.
Collapse
Affiliation(s)
- Gang Deng
- Department of Otorhinolaryngology, Wuhan No. 1 Hospital of Hubei Province, Wuhan City, HuBei Province, China
| | - Fei Wang
- Department of Otorhinolaryngology, People's Hospital of Qinghai Province, Xining City, QingHai Province, China
| | - YiSa Song
- Department of Otorhinolaryngology, People's Hospital of Qinghai Province, Xining City, QingHai Province, China
| |
Collapse
|