1
|
Chen J, Zhang X. An Integrated Approach of Network Pharmacology, Bioinformatics, Molecular Docking, and Experimental Verification Uncovers Prunellae Spica as the Potential Medicine of Prognosis Improvement for Oral Squamous Cell Carcinoma. Curr Pharm Des 2025; 31:391-412. [PMID: 39289945 DOI: 10.2174/0113816128328547240827045955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Prunellae Spica (PS), the spike from Prunella vulgaris L., is a traditional Chinese medicine that can treat Oral Squamous Cell Carcinoma (OSCC), whereas its molecular mechanisms and effects on the prognosis of patients remain unclear. METHODS Our study aimed to identify the potential anti-OSCC targets of PS and explore its mechanisms and effects on prognosis through network pharmacology, bioinformatics analysis, molecular docking, and in-vitro cell assays. RESULTS Sixty-two potential targets of 11 active anti-OSCC ingredients of PS were identified, with Quercetin, the core ingredient of PS, exhibiting the most significant number of OSCC-related targets. GO analysis indicated that the primary biological processes involved in OSCC treatment by PS were the cellular response to nitrogen compound, response to xenobiotic stimulus, and cellular response to organonitrogen compound. KEGG analysis revealed that pathways in cancer were the top highly enriched signaling pathway in the treatment of OSCC by PS. DisGeNET analysis is mainly about Lip and Oral Cavity Carcinoma. More importantly, 6 of the 62 targets were markedly related to prognosis. Molecular docking revealed high affinities between the key component and the prognosis-related target proteins. Treatment of OSCC cell line SCC-25 with Quercetin could inhibit malignant biological behaviors, such as cell proliferation, colony formation, invasion, and migration, as well as affect the targets related to prognosis and promote autophagy. CONCLUSION Overall, these results suggest that PS plays a significant role in treating and improving the prognosis of OSCC by directly influencing various processes in OSCC.
Collapse
MESH Headings
- Humans
- Molecular Docking Simulation
- Network Pharmacology
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/pathology
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/metabolism
- Computational Biology
- Prunella/chemistry
- Cell Proliferation/drug effects
- Prognosis
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Drug Screening Assays, Antitumor
Collapse
Affiliation(s)
- Jiahui Chen
- Beijing Stomatological Hospital and School of Stomatology, Beijing Institute of Dental Research, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| | - Xinyan Zhang
- Beijing Stomatological Hospital and School of Stomatology, Beijing Institute of Dental Research, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| |
Collapse
|
2
|
Necula BR, Necula RD, Petric PS, Ifteni PI, Irimie M, Dima L. EGb761 Trials for Mild-to-Moderate Dementia-What Have We Learned in the Past 18 years? Am J Ther 2024; 31:e645-e651. [PMID: 39792490 DOI: 10.1097/mjt.0000000000001849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
BACKGROUND Dementia leads to cognitive decline affecting memory, thinking, and behavior. Current pharmaceutical treatments are symptomatic, with limited efficacy and significant drawbacks. Ginkgo biloba extract (EGb761) is being explored as an adjuvant therapy for dementia because of its potential neuroprotective effects.Areas of Uncertainty:Despite decades of study, EGb761 has not been incorporated into treatment guidelines for these conditions. This review evaluates research futility in EGb761 trials for dementia, analyzing efficacy and methodological challenges to inform future research directions. DATA SOURCES In this review, we investigate the efficacy and adverse reactions of Ginkgo biloba extract (EGb761) as a treatment for Alzheimer disease or vascular dementia. We searched the randomized controlled trials published between 2006 and 2023 on PubMed and ScienceDirect. RESULTS The 7 selected studies have shown that the degree of improvement in standard cognitive assessment scores [Mini-Mental State Examination (MMSE), short cognitive performance test (SKT), neuropsychiatric inventory (NPI)] was not significant enough for a substantial proportion of patients. Improvements of the SKT score with at least 3 points in the Alzheimer disease/vascular dementia groups were found only in 2 out of 7 studies, changes of less than 2 points in MMSE score were found in 2 of the studies, while an improvement of at least 4 points in NPI scores was reported in 4 out of 7 studies. We aim to understand why this extract has not reached the level of evidence to be included in guideline recommendation despite extensive research and what have we learned from systematic reviews performed since 2010? Studies included in this review have shown some improvement in outcome scores with EGb761 treatment compared with placebo, but these improvements did not reach the threshold for clinically significant enhancement in MMSE/SKT/NPI scores. Limitations such as small sample sizes, minimal score changes, predominantly placebo comparisons, and short follow-up durations make it challenging to determine the usefulness of EGb761 in dementia treatment. The changes observed and methodological constraints underscore the uncertainty surrounding the efficacy of EGb761. CONCLUSION The findings do not consistently demonstrate the clinical utility of EGb761, and improved scores on cognitive and neuropsychiatric assessments may not necessarily translate into meaningful clinical outcomes for patients with dementia. Starting from the question "What have we learned in the past 18 years?", the answer would be: not much. Consequently, the question raised is: how long should we go on with the same conclusion, continuing to spend time and financial resources to replicate these results? Research strategies should be refined to optimize decision making and advance evidence-based care for neurocognitive disorders.
Collapse
Affiliation(s)
| | - Radu Dan Necula
- Faculty of Medicine, "Transilvania" University, Brasov, Romania; and
| | - Paula Simina Petric
- Faculty of Medicine, "Transilvania" University, Brasov, Romania; and
- Psychiatry and Neurology Hospital, Brasov, Romania
| | - Petru Iulian Ifteni
- Faculty of Medicine, "Transilvania" University, Brasov, Romania; and
- Psychiatry and Neurology Hospital, Brasov, Romania
| | - Marius Irimie
- Faculty of Medicine, "Transilvania" University, Brasov, Romania; and
| | - Lorena Dima
- Faculty of Medicine, "Transilvania" University, Brasov, Romania; and
| |
Collapse
|
3
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
4
|
Wang L, Xie Y, Myrzagali S, Pu W, Liu E. Metal ions as effectual tools for cancer with traditional Chinese medicine. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:296-308. [DOI: 10.1097/hm9.0000000000000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Malignant tumor has become a major threat affecting human health, and is one of the main causes of human death. Recent studies have shown that many traditional Chinese medicines (TCM) have good anti-tumor activity, which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity. However, the efficacy of TCM alone for the treatment of tumors is limited. Metal ions are essential substances for maintaining normal physiological activities. This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Sandugash Myrzagali
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Kumar R, Madhavan T, Ponnusamy K, Sohn H, Haider S. Computational study of the motor neuron protein KIF5A to identify nsSNPs, bioactive compounds, and its key regulators. Front Genet 2023; 14:1282234. [PMID: 38028604 PMCID: PMC10667939 DOI: 10.3389/fgene.2023.1282234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Kinesin family member 5A (KIF5A) is a motor neuron protein expressed in neurons and involved in anterograde transportation of organelles, proteins, and RNA. Variations in the KIF5A gene that interfere with axonal transport have emerged as a distinguishing feature in several neurodegenerative disorders, including hereditary spastic paraplegia (HSP10), Charcot-Marie-Tooth disease type 2 (CMT2), and Amyotrophic Lateral Sclerosis (ALS). Methods: In this study, we implemented a computational structural and systems biology approach to uncover the role of KIF5A in ALS. Using the computational structural biology method, we explored the role of non-synonymous Single Nucleotide Polymorphism (nsSNPs) in KIF5A. Further, to identify the potential inhibitory molecule against the highly destabilizing structure variant, we docked 24 plant-derived phytochemicals involved in ALS. Results: We found KIF5AS291F variant showed the most structure destabilizing behavior and the phytocompound "epigallocatechin gallate" showed the highest binding affinity (-9.0 Kcal/mol) as compared to wild KIF5A (-8.4 Kcal/mol). Further, with the systems biology approach, we constructed the KIF5A protein-protein interaction (PPI) network to identify the associated Kinesin Families (KIFs) proteins, modules, and their function. We also constructed a transcriptional and post-transcriptional regulatory network of KIF5A. With the network topological parameters of PPIN (Degree, Bottleneck, Closeness, and MNC) using CytoHubba and computational knock-out experiment using Network Analyzer, we found KIF1A, 5B, and 5C were the significant proteins. The functional modules were highly enriched with microtubule motor activity, chemical synaptic transmission in neurons, GTP binding, and GABA receptor activity. In regulatory network analysis, we found KIF5A post-transcriptionally down-regulated by miR-107 which is further transcriptionally up-regulated by four TFs (HIF1A, PPARA, SREBF1, and TP53) and down-regulated by three TFs (ZEB1, ZEB2, and LIN28A). Discussion: We concluded our study by finding a crucial variant of KIF5A and its potential therapeutic target (epigallocatechin gallate) and KIF5A associated significant genes with important regulators which could decrypt the novel therapeutics in ALS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Thirumurthy Madhavan
- Department of Genetic Engineering, Computational Biology Lab, SRM Institute of Science and Technology, Chennai, India
| | | | - Honglae Sohn
- Department of Chemistry and Department of Carbon Materials, Chosun University, Gwangju, Republic of Korea
| | - Shazia Haider
- Department of Biosciences, Jamia Millia University, New Delhi, India
| |
Collapse
|
6
|
Xie R, Chen F, Ma Y, Hu W, Zheng Q, Cao J, Wu Y. Network pharmacology‒based analysis of marine cyanobacteria derived bioactive compounds for application to Alzheimer's disease. Front Pharmacol 2023; 14:1249632. [PMID: 37927608 PMCID: PMC10620974 DOI: 10.3389/fphar.2023.1249632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
In recent years, the Alzheimer's disease (AD) epidemic has become one of the largest global healthcare crises. Besides, the available systemic therapies for AD are still inadequate. Due to the insufficient therapeutic options, new treatment strategies are urgently needed to achieve a satisfactory therapeutic effect. Marine bio-resources have been accepted as one of the most economically viable and sustainable sources with potential applications for drug discovery and development. In this study, a marine cyanobacteria-Synechococcus sp. XM-24 was selected as the object of research, to systematically investigate its therapeutic potential mechanisms for AD. The major active compounds derived from the Synechococcus sp. biomass were identified via pyrolysis-gas chromatography-mass spectrometry (GC-MS), and 22 compounds were identified in this strain. The most abundant chemical compounds was (E)-octadec-11-enoic acid, with the peak area of 30.6%. Follow by tridecanoic acid, 12-methyl- and hexadecanoic acid, with a peak area of 23.26% and 18.23%, respectively. GC-MS analysis also identified indolizine, isoquinoline, 3,4-dihydro- and Phthalazine, 1-methyl-, as well as alkene and alkane from the strain. After the chemical toxicity test, 10 compounds were finally collected to do the further analysis. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Based on the analysis, the 10 Synechococcus-derived active compounds could interact with 128 related anti-AD targets. Among them, epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA) and mitogen-activated protein kinase 3 (MAPK3) were the major targets. Furthermore, the compounds N-capric acid isopropyl ester, (E)-octadec-11-enoic acid, and 2H-Pyran-2,4(3H)-dione, dihydro-6-methyl- obtained higher degrees in the compounds-intersection targets network analysis, indicating these compounds may play more important role in the process of anti-AD. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these active compounds exert the anti-AD effects mainly through PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction and ras signaling pathway. Our study identified Synechococcus-derived bioactive compounds have the potential for application to AD by targeting multiple targets and related pathways, which will provide a foundation for future research on applications of marine cyanobacteria in the functional drug industry.
Collapse
Affiliation(s)
- Rui Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Feng Chen
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jinguo Cao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
El Menyiy N, Aboulaghras S, Bakrim S, Moubachir R, Taha D, Khalid A, Abdalla AN, Algarni AS, Hermansyah A, Ming LC, Rusu ME, Bouyahya A. Genkwanin: An emerging natural compound with multifaceted pharmacological effects. Biomed Pharmacother 2023; 165:115159. [PMID: 37481929 DOI: 10.1016/j.biopha.2023.115159] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Plant bioactive molecules could play key preventive and therapeutic roles in chronological aging and the pathogenesis of many chronic diseases, often accompanied by increased oxidative stress and low-grade inflammation. Dietary antioxidants, including genkwanin, could decrease oxidative stress and the expression of pro-inflammatory cytokines or pathways. The present study is the first comprehensive review of genkwanin, a methoxyflavone found in several plant species. Indeed, natural sources, and pharmacokinetics of genkwanin, the biological properties were discussed and highlighted in detail. This review analyzed and considered all original studies related to identification, isolation, quantification, investigation of the biological and pharmacological properties of genkwanin. We consulted all published papers in peer-reviewed journals in the English language from the inception of each database to 12 May 2023. Different phytochemical demonstrated that genkwanin is a non-glycosylated flavone found and isolated from several medicinal plants such as Genkwa Flos, Rosmarinus officinalis, Salvia officinalis, and Leonurus sibiricus. In vitro and in vivo biological and pharmacological investigations showed that Genkwanin exhibits remarkable antioxidant and anti-inflammatory activities, genkwanin, via activation of glucokinase, has shown antihyperglycemic activity with a potential role against metabolic syndrome and diabetes. Additionally, it revealed cardioprotective and neuroprotective properties, thus reducing the risk of cardiovascular diseases and assisting against neurodegenerative diseases. Furthermore, genkwanin showed other biological properties like antitumor capability, antibacterial, antiviral, and dermato-protective effects. The involved mechanisms include sub-cellular, cellular and molecular actions at different levels such as inducing apoptosis and inhibiting the growth and proliferation of cancer cells. Despite the findings from preclinical studies that have demonstrated the effects of genkwanin and its diverse mechanisms of action, additional research is required to comprehensively explore its therapeutic potential. Primarily, extensive studies should be carried out to enhance our understanding of the molecule's pharmacodynamic actions and pharmacokinetic pathways. Moreover, toxicological and clinical investigations should be undertaken to assess the safety and clinical efficacy of genkwanin. These forthcoming studies are of utmost importance in fully unlocking the potential of this molecule in the realm of therapeutic applications.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco.
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco.
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.
| | - Doaue Taha
- Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory, CERNE2D, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
8
|
Arias-Sánchez RA, Torner L, Fenton Navarro B. Polyphenols and Neurodegenerative Diseases: Potential Effects and Mechanisms of Neuroprotection. Molecules 2023; 28:5415. [PMID: 37513286 PMCID: PMC10385962 DOI: 10.3390/molecules28145415] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The increase in people's longevity has, consequently, led to more brain involvement and neurodegenerative diseases, which can become complicated and lead to chronic degenerative diseases, thereby presenting greater public health problems. Medicinal plants have been used since ancient times and contain high concentrations of molecules, including polyphenols. It has been proven that polyphenols, which are present in various natural sources can provide curative effects against various diseases and brain disorders through neuroprotective effects. These neuroprotective effects are mainly attributed to their ability to cross the blood-brain barrier, eliminate reactive oxygen species, and cause the chelation of metal ions. Polyphenols increase the concentration of neurotrophic factors and bind directly to the membrane receptors of these neurotrophic factors, to modulate and activate the signaling cascades that allow the plasticity, survival, proliferation, and growth of neuronal cells, thereby allowing for better learning, memory, and cognition. Moreover, polyphenols have no serious adverse side effects resulting from their consumption.
Collapse
Affiliation(s)
- Raziel Alejandro Arias-Sánchez
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| | - Luz Torner
- Centro de Investigaciones Biomédicas de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Mexico
| | - Bertha Fenton Navarro
- Laboratorio de Glicobiología y Farmacognosia, División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58020, Mexico
| |
Collapse
|
9
|
Li S, Wang Z, Zhou Z, Gao Z, Liu Y, Li J, Gao X, Liu J, Liu H, Xu Q. Molecular Mechanism of the Role of Apigenin in the Treatment of Hyperlipidemia: A Network Pharmacology Approach. Chem Biodivers 2023; 20:e202200308. [PMID: 36621947 DOI: 10.1002/cbdv.202200308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
The therapeutic effect of apigenin (APG) on hyperlipidemia was investigated using network pharmacology combined with molecular docking strategy, and the potential targets of APG in the treatment of hyperlipidemia were explored. Genetic Ontology Biological Process (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis of common targets were performed. Then, molecular docking was used to predict the binding mode of APG to the target. Finally, Sprague Dawley rats were used to establish a hyperlipidemia model. The expression levels of insulin (INS) and vascular endothelial growth factor A (VEGFA) mRNA in each group were detected by quantitative reverse transcription-polymerase chain reaction. Network pharmacological studies revealed that the role of APG in the treatment of hyperlipidemia was through the regulation of INS, VEGFA, tumor necrosis factor, epidermal growth factor receptor, matrix metalloprotein 9, and other targets, as well as through the regulation of the hypoxia-inducible factor 1 (HIF-1) signaling pathway, fluid shear stress, and atherosclerosis signaling pathways, vascular permeability; APG also participated in the regulation of glucose metabolism and lipid metabolism, and acted on vascular endothelial cells, and regulated vascular tone. Molecular docking showed that APG binds to the target with good efficiency. Experiments showed that after APG treatment, the expression levels of INS and VEGFA mRNA in the model group were significantly decreased (p<0.01). In conclusion, APG has multiple targets and affects pathways involved in the treatment of hyperlipidemia by regulating the HIF-1 signaling pathway, fluid shear stress, and the atherosclerosis pathway.
Collapse
Affiliation(s)
- Shuhan Li
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Zizhao Wang
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Zhengnan Zhou
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Zhiyuan Gao
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Yuai Liu
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Jie Li
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Xingbang Gao
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Jing Liu
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Hanbing Liu
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Qian Xu
- Department of Biochemistry, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| |
Collapse
|
10
|
Zhu J, Liang Q, He S, Wang C, Lin X, Wu D, Lin G, Wang Z. Research trends and hotspots of neurodegenerative diseases employing network pharmacology: A bibliometric analysis. Front Pharmacol 2023; 13:1109400. [PMID: 36712694 PMCID: PMC9878685 DOI: 10.3389/fphar.2022.1109400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Employing network pharmacology in neurodegenerative diseases (NDs) has been extensively studied recently. However, no comprehensive study has conducted on this subject employing bibliometrics so far. The purpose of this study was to find out the developmental trends and hotspots, and to predict potential research directions in this filed. Methods: Relevant research were collected from the Web of Science Core Collection Bibliometrics and visual analysis were executed using CiteSpace, VOSviewer, Histcite and R-bibliometrix. Results: A total of 420 English articles on network pharmacology in NDs published in 2008-2022 were obtained from the WOSCC database. From 2008 to 2022, annual publications showed a steady growing trend, especially in 2014-2022. China, Beijing Univ Chinese Med, Frontiers in Pharmacology, and Geerts H are the most prolific country, institution, journal, and author, respectively. China, Nucleic Acids Research, and Hopkins AL are the most highly cited country, journal, and author, respectively. Moreover, network pharmacology and Alzheimer's disease are the focal areas of current researches according to analysis of co-cited references and keywords. Finally, in the detection of burst keywords, systems pharmacology and database are new approaches to disease and drug research, while traditional Chinese medicine (TCM) and Alzheimer's disease are hot research directions. The above keywords are speculated to be the research frontiers. Conclusion: Network pharmacology and Alzheimers' disease are the main topics of researches on network pharmacology in NDs. Network pharmacology and the TCM treatment of Alzheimer's disease have been the recent research hotspots. To sum up, the potential for exploring TCM treatment of AD with network pharmacology is huge.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Siyi He
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chen Wang
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiafei Lin
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Duozhi Wu
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Guanwen Lin
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China,*Correspondence: Guanwen Lin, ; Zhihua Wang,
| | - Zhihua Wang
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China,*Correspondence: Guanwen Lin, ; Zhihua Wang,
| |
Collapse
|
11
|
Gao ZD, Yan HD, Wu NH, Yao Q, Wan BB, Liu XF, Zhang ZW, Chen QJ, Huang CP. Mechanistic insights into the amelioration effects of lipopolysaccharide-induced acute lung injury by baicalein: An integrated systems pharmacology study and experimental validation. Pulm Pharmacol Ther 2022; 73-74:102121. [PMID: 35283292 DOI: 10.1016/j.pupt.2022.102121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Acute lung injury is an acute progressive respiratory failure caused by several of non-cardiogenic factors which involves in excessive amplification or uncontrolled inflammatory response. OBJECTIVES In this study, we investigated the protective effect of baicalein against acute lung injury induced by LPS and explored the underlying mechanisms. METHODS Forty-eight SPF male C57BL/6 mice were randomly divided into normal group, model group, dexamethasone group and baicalein low-dose, medium-dose and high-dose groups. After 5 days of adaptive feeding, the mice were intraperitoneally injected with LPS and dissected after 12 h. Hematoxylin-eosin staining, ELISA assay, immunofluorescence assay and Western-Blot were applied to appraise microstructural changes and protein expressions of lung tissues. Systems pharmacology study was used to evaluate the protection of baicalein on acute lung injury. FINDINGS The results showed that baicalein administration could significantly inhibit LPS-induced lung morphological changes, inhibit inflammatory response and pyroptosis. A total of forty-three potential targets of baicalein and acute lung injury were obtained. And PI3K-Akt, TNF and NF-κB were mainly signaling pathways. It is worth mentioning that this experiment also confirmed that NLRP3, caspase-1 and other inflammasome are involved in pyroptosis. CONCLUSION Baicalein has protected against LPS-induced lung tissues injury via inhibiting inflammatory response and pyroptosis.
Collapse
Affiliation(s)
- Zhi-Dan Gao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xiannning, 437100, PR China; Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xiannning, 437100, PR China; School of Medicine and Health Sciences, Xianning Medical College, Hubei University of Science and Technology, Xiannning, 437100, PR China
| | - Hai-Dong Yan
- Ward 2 of Gastrointestinal Surgery, Xianning Central Hospital, The First Affliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xiannning, 437100, PR China
| | - Ning-Hua Wu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xiannning, 437100, PR China
| | - Qing Yao
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xiannning, 437100, PR China
| | - Bin-Bin Wan
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xiannning, 437100, PR China
| | - Xiu-Fen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xiannning, 437100, PR China
| | - Zhen-Wang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xiannning, 437100, PR China
| | - Qing-Jie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xiannning, 437100, PR China.
| | - Cui-Ping Huang
- School of Medicine and Health Sciences, Xianning Medical College, Hubei University of Science and Technology, Xiannning, 437100, PR China.
| |
Collapse
|
12
|
Zeng P, Yi Y, Su HF, Ye CY, Sun YW, Zhou XW, Lu Y, Shi A, Tian Q. Key Phytochemicals and Biological Functions of Chuanxiong Rhizoma Against Ischemic Stroke: A Network Pharmacology and Experimental Assessment. Front Pharmacol 2022; 12:758049. [PMID: 34992531 PMCID: PMC8724589 DOI: 10.3389/fphar.2021.758049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Presently, the treatment options for ischemic stroke (IS) are limited due to the complicated pathological process of the disease. Chuanxiong Rhizome (CR), also known as Conioselinum anthriscoides "Chuanxiong" (rhizome), is the most widely used traditional Chinese medicine for treating stroke. This study aimed to uncover the key phytochemicals and biological functions of CR against IS through a network pharmacology approach combining with IS pathophysiology analysis. We employed permanent unilateral common carotid artery ligation to construct a mouse model of global cerebral ischemia and found that cerebral ischemia injuries were improved after 7 days of gavage treatment of CR (1,300 mg/kg/day). CR exerts protective effects on neurons mainly by acting on targets related to synaptic structure, synaptic function, neuronal survival and neuronal growth. A total of 18 phytochemicals from CR based on UHPLC-MS/MS that corresponded to 85 anti-IS targets. Coniferyl ferulate, neocnidilide and ferulic acid were identified as the key phytochemicals of CR against IS. Its brain protective effects involve anti-inflammatory, anti-oxidative stress, and anti-cell death activities and improves blood circulation. Additionally, the two most important synergistic effects of CR phytochemicals in treating IS are prevention of infection and regulation of blood pressure. In brain samples of Sham mice, L-tryptophan and vanillin were detected, while L-tryptophan, gallic acid, vanillin and cryptochlorogenic acid were detected in IS mice by UHPLC-MS/MS. Our findings provide a pathophysiology relevant pharmacological basis for further researches on IS therapeutic drugs.
Collapse
Affiliation(s)
- Peng Zeng
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Yi
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Fei Su
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao-Yuan Ye
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Wen Sun
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Wen Zhou
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Key Laboratory of Neurological Disease of National Education Ministry, Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Zeng P, Su HF, Ye CY, Qiu SW, Tian Q. Therapeutic Mechanism and Key Alkaloids of Uncaria rhynchophylla in Alzheimer’s Disease From the Perspective of Pathophysiological Processes. Front Pharmacol 2021; 12:806984. [PMID: 34975502 PMCID: PMC8715940 DOI: 10.3389/fphar.2021.806984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Presently, there is a lack of effective disease-modifying drugs for the treatment of Alzheimer’s disease (AD). Uncaria rhynchophylla (UR) and its predominant active phytochemicals alkaloids have been studied to treat AD. This study used a novel network pharmacology strategy to identify UR alkaloids against AD from the perspective of AD pathophysiological processes and identified the key alkaloids for specific pathological process. The analysis identified 10 alkaloids from UR based on high-performance liquid chromatography (HPLC) that corresponded to 127 targets correlated with amyloid-β (Aβ) pathology, tau pathology and Alzheimer disease pathway. Based on the number of targets correlated with AD pathophysiological processes, angustoline, angustidine, corynoxine and isocorynoxeine are highly likely to become key phytochemicals in AD treatment. Among the 127 targets, JUN, STAT3, MAPK3, CCND1, MMP2, MAPK8, GSK3B, JAK3, LCK, CCR5, CDK5 and GRIN2B were identified as core targets. Based on the pathological process of AD, angustoline, angustidine and isocorynoxeine were identified as the key UR alkaloids regulating Aβ production and corynoxine, isocorynoxeine, dihydrocorynatheine, isorhynchophylline and hirsutine were identified as key alkaloids that regulate tau phosphorylation. The findings of this study contribute to a more comprehensive understanding of the key alkaloids and mechanisms of UR in the treatment of AD, as well as provide candidate compounds for drug research and development for specific AD pathological processes.
Collapse
|