1
|
Sun H, Hu C, Zheng X, Zhuang J, Wei X, Cai J. Correlation between serum lipid levels and endocrine resistance in patients with ER-positive breast cancer. Medicine (Baltimore) 2023; 102:e35048. [PMID: 37832070 PMCID: PMC10578763 DOI: 10.1097/md.0000000000035048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/11/2023] [Indexed: 10/15/2023] Open
Abstract
Lipid metabolism may be involved in the development of endocrine drug resistance in ER-positive (ER+) breast cancer (BC). This study aimed to investigate the relationship between serum lipid levels, risk stratification of dyslipidemia, and endocrine resistance. We collected the data from 166 ER + breast cancer patients who received endocrine therapy (ET). 73 of 166 patients (44.0%)developed endocrine resistance. Univariate and multivariate COX regression were conducted to explore the potential factors affecting endocrine resistance in BC. The clinical T stage, mean serum lipid levels in ET progression-free-survival (total cholesterol, triglycerides, low-density lipoprotein cholesterol, apolipoprotein A, and triglycerides/high-density lipoprotein cholesterol) were correlated with endocrine resistance (R = 0.214, P = .006; R = 0.268, P < .001; R = 0.182, P = .019;R = 0.197, P = .011; R = 0.211, P = .006; R = 0.159, P < .041). Clinical stage, triglycerides (TG) in endocrine therapy progression-free-survival (ePFS) and low-density lipoprotein cholesterol (LDL-C) in ePFS were independent predictors of endocrine resistance (P < .05; OR = 1.406, CI 1.108-1.783, P < .05; OR = 1.309, CI 1.026-1.669, P < .05, respectively). Moreover, in clinical stage III, the ePFS was worse in patients with in the high-risk and extremely high-risk group the median ePFS time was 8.0 months (95% CI: 1.140-14.860, P < .05). Clinical stage, TG in ePFS and LDL-C in ePFS may act as a new predictive biomarker for endocrine resistance in BC. The lipid levels of BC patients should be closely monitored throughout the treatment process, and patients with dyslipidemia should receive treatment immediately.
Collapse
Affiliation(s)
- Hong Sun
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, P. R. China
| | - Congting Hu
- School of Pharmacy, Fujian Medical University, Fuzhou, P. R. China
| | - Xiaohan Zheng
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, P. R. China
- Department of Pharmacy, South Branch of Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, P. R. China
| | - Jie Zhuang
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, P. R. China
| | - Xiaoxia Wei
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, P. R. China
| | - Jiaqin Cai
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, P. R. China
| |
Collapse
|
3
|
Zheng YK, Zhou ZS, Wang GZ, Tu JY, Cheng HB, Ma SZ, Ke C, Wang Y, Jian QP, Shu YH, Wu XW. MiR-122-5p regulates the mevalonate pathway by targeting p53 in non-small cell lung cancer. Cell Death Dis 2023; 14:234. [PMID: 37005437 PMCID: PMC10067850 DOI: 10.1038/s41419-023-05761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
The 5-year survival rate of non-small cell lung cancer (NSCLC) patients is very low. MicroRNAs (miRNAs) are involved in the occurrence of NSCLC. miR-122-5p interacts with wild-type p53 (wtp53), and wtp53 affects tumor growth by inhibiting the mevalonate (MVA) pathway. Therefore, this study aimed to evaluate the role of these factors in NSCLC. The role of miR-122-5p and p53 was established in samples from NSCLC patients, and human NSCLC cells A549 using the miR-122-5p inhibitor, miR-122-5p mimic, and si-p53. Our results showed that inhibiting miR-122-5p expression led to the activation of p53. This inhibited the progression of the MVA pathway in the NSCLC cells A549, hindered cell proliferation and migration, and promoted apoptosis. miR-122-5p was negatively correlated with p53 expression in p53 wild-type NSCLC patients. The expression of key genes in the MVA pathway in tumors of p53 wild-type NSCLC patients was not always higher than the corresponding normal tissues. The malignancy of NSCLC was positively correlated with the high expression of the key genes in the MVA pathway. Therefore, miR-122-5p regulated NSCLC by targeting p53, providing potential molecular targets for developing targeted drugs.
Collapse
Affiliation(s)
- Yu-Kun Zheng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhong-Shi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Guang-Zhong Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Ji-Yuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Huan-Bo Cheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shang-Zhi Ma
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi-Pan Jian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yu-Hang Shu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Wei Wu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Gomez-Alonso MDC, Kretschmer A, Wilson R, Pfeiffer L, Karhunen V, Seppälä I, Zhang W, Mittelstraß K, Wahl S, Matias-Garcia PR, Prokisch H, Horn S, Meitinger T, Serrano-Garcia LR, Sebert S, Raitakari O, Loh M, Rathmann W, Müller-Nurasyid M, Herder C, Roden M, Hurme M, Jarvelin MR, Ala-Korpela M, Kooner JS, Peters A, Lehtimäki T, Chambers JC, Gieger C, Kettunen J, Waldenberger M. DNA methylation and lipid metabolism: an EWAS of 226 metabolic measures. Clin Epigenetics 2021; 13:7. [PMID: 33413638 PMCID: PMC7789600 DOI: 10.1186/s13148-020-00957-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The discovery of robust and trans-ethnically replicated DNA methylation markers of metabolic phenotypes, has hinted at a potential role of epigenetic mechanisms in lipid metabolism. However, DNA methylation and the lipid compositions and lipid concentrations of lipoprotein sizes have been scarcely studied. Here, we present an epigenome-wide association study (EWAS) (N = 5414 total) of mostly lipid-related metabolic measures, including a fine profiling of lipoproteins. As lipoproteins are the main players in the different stages of lipid metabolism, examination of epigenetic markers of detailed lipoprotein features might improve the diagnosis, prognosis, and treatment of metabolic disturbances. RESULTS We conducted an EWAS of leukocyte DNA methylation and 226 metabolic measurements determined by nuclear magnetic resonance spectroscopy in the population-based KORA F4 study (N = 1662) and replicated the results in the LOLIPOP, NFBC1966, and YFS cohorts (N = 3752). Follow-up analyses in the discovery cohort included investigations into gene transcripts, metabolic-measure ratios for pathway analysis, and disease endpoints. We identified 161 associations (p value < 4.7 × 10-10), covering 16 CpG sites at 11 loci and 57 metabolic measures. Identified metabolic measures were primarily medium and small lipoproteins, and fatty acids. For apolipoprotein B-containing lipoproteins, the associations mainly involved triglyceride composition and concentrations of cholesterol esters, triglycerides, free cholesterol, and phospholipids. All associations for HDL lipoproteins involved triglyceride measures only. Associated metabolic measure ratios, proxies of enzymatic activity, highlight amino acid, glucose, and lipid pathways as being potentially epigenetically implicated. Five CpG sites in four genes were associated with differential expression of transcripts in blood or adipose tissue. CpG sites in ABCG1 and PHGDH showed associations with metabolic measures, gene transcription, and metabolic measure ratios and were additionally linked to obesity or previous myocardial infarction, extending previously reported observations. CONCLUSION Our study provides evidence of a link between DNA methylation and the lipid compositions and lipid concentrations of different lipoprotein size subclasses, thus offering in-depth insights into well-known associations of DNA methylation with total serum lipids. The results support detailed profiling of lipid metabolism to improve the molecular understanding of dyslipidemia and related disease mechanisms.
Collapse
Affiliation(s)
- Monica Del C Gomez-Alonso
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Anja Kretschmer
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Liliane Pfeiffer
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Ville Karhunen
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Center for Life Course Health Research, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, Middlesex, UK
| | - Kirstin Mittelstraß
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Simone Wahl
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Pamela R Matias-Garcia
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany
| | - Sacha Horn
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Luis R Serrano-Garcia
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Sylvain Sebert
- Center for Life Course Health Research, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku University Hospital, Turku, Finland
| | - Marie Loh
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55101, Mainz, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mikko Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Center for Life Course Health Research, University of Oulu, Oulu University Hospital, Oulu, Finland
- UKMRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Mika Ala-Korpela
- Center for Life Course Health Research, University of Oulu, Oulu University Hospital, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, Middlesex, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, Middlesex, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Kettunen
- Center for Life Course Health Research, University of Oulu, Oulu University Hospital, Oulu, Finland
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany.
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|