1
|
Das SK, Fisher PB. MDA-9/Syntenin as a therapeutic cancer metastasis target: current molecular and preclinical understanding. Expert Opin Ther Targets 2025; 29:75-92. [PMID: 40056146 PMCID: PMC12047740 DOI: 10.1080/14728222.2025.2472042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
INTRODUCTION Metastasis is a principal cause of patient morbidity and death from solid cancers with current therapies being inadequate. AREAS COVERED Detailed genomic analyses document mutational differences between the initial tumor and metastatic clones, posing a challenge to current targeted therapies, which focus predominantly on the phenotype of primary tumors. Considering the diverse signaling cascades and numerous compensatory pathways in metastasis, designing broad-spectrum anti-metastatic therapies remains challenging. Although significant anti-cancer activity is evident in specific patients with advanced cancers and metastases treated with single or combination immunotherapies, there are limitations, i.e. toxicity, immune inhibitory 'cold' tumors and the tumor microenvironment (TME), and intra- and intertumoral heterogeneity. Accordingly, multidisciplinary strategies are required to attack metastases and the TME to obtain optimal therapeutic responses. EXPERT OPINION To create potent anti-metastatic agents, defining critical genes/proteins and drugs controlling discrete steps in the metastatic cascade are mandatory. Melanoma differentiation-associated gene-9 (MDA-9), Syndecan Binding Protein (SDCBP) or Syntenin (MDA-9/Syntenin) is robustly expressed and serves essential roles in cancer disease progression through protein-protein interactions with additional metastasis-associated molecules and pathways. The importance of MDA-9/Syntenin in the metastatic process is now established and first-in-class inhibitory molecules look promising with some moving toward clinical evaluation.
Collapse
Affiliation(s)
- Swadesh K. Das
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B. Fisher
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
2
|
Hao S, Cong J, Ma Z, Xia Y, Zhang Y, Tong N, Tian J, Li Y. SPRR1B is Related to the Immune Microenvironment and Can Be Used as a Biomarker for the Diagnosis of Psoriasis. Int J Gen Med 2024; 17:401-418. [PMID: 38333021 PMCID: PMC10849920 DOI: 10.2147/ijgm.s439845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024] Open
Abstract
Background Psoriasis, a chronic inflammatory disorder with an unknown cause, significantly impacts the physical and psychological well-being of patients. However, current biomarkers related to psoriasis lack clinical specificity, sensitivity, and predictive ability. Methods In this study, we collected skin lesion tissues from 20 psoriasis patients and 20 normal skin samples. Additionally, we obtained four datasets from the GEO database, which included human psoriasis and healthy specimens. We utilized SVM-RFE analysis and the LASSO regression model to identify potential biomarkers. Furthermore, we examined the composition of immune cell types in psoriasis and their correlation with specific genes. Results Our investigation revealed 57 differentially expressed genes (DEGs), and we identified significantly enriched pathways through KEGG pathway analysis. The results of machine learning and WGCNA suggested that LCE3D and SPRR1B could potentially be used as marker genes for diagnosing psoriasis. RT-PCR and immunohistochemical detection confirmed the abnormally high expression of the SPRR1B gene in psoriasis. Analysis of immune cell infiltration revealed a strong positive correlation between SPRR1B and Macrophages M0 and T cells follicular helper, while showing the strongest negative correlation with resting Mast cells. In addition, we found that silencing SPRR1B in IFN-γ-treated HaCat cells could significantly reduce the increase in IL-17, IL-22, KRT6, and KRT16 caused by IFN-γ. Conclusion These findings suggest that SPRR1B may have a significant role in the pathogenesis of psoriasis and could be employed as a novel immunomarker for its development.
Collapse
Affiliation(s)
- Siyu Hao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Jiuyi Cong
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zhiqiang Ma
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Yan Xia
- Scientific Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yu Zhang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Nannan Tong
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jiangtian Tian
- Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Pintor-Romero VG, Hurtado-Ortega E, Nicolás-Morales ML, Gutiérrez-Torres M, Vences-Velázquez A, Ortuño-Pineda C, Espinoza-Rojo M, Navarro-Tito N, Cortés-Sarabia K. Biological Role and Aberrant Overexpression of Syntenin-1 in Cancer: Potential Role as a Biomarker and Therapeutic Target. Biomedicines 2023; 11:biomedicines11041034. [PMID: 37189651 DOI: 10.3390/biomedicines11041034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Syntenin-1 is a 298 amino acid protein codified by the melanoma differentiation-associated gene-9 (MDA-9). Structurally, it is composed of four domains: N-terminal, PDZ1, PDZ2, and C-terminal. The PDZ domains of syntenin-1 are involved in the stability and interaction with other molecules such as proteins, glycoproteins, and lipids. Domains are also associated with several biological functions such as the activation of signaling pathways related to cell-to-cell adhesion, signaling translation, and the traffic of intracellular lipids, among others. The overexpression of syntenin-1 has been reported in glioblastoma, colorectal, melanoma, lung, prostate, and breast cancer, which promotes tumorigenesis by regulating cell migration, invasion, proliferation, angiogenesis, apoptosis, and immune response evasion, and metastasis. The overexpression of syntenin-1 in samples has been associated with worst prognostic and recurrence, whereas the use of inhibitors such as shRNA, siRNA, and PDZli showed a diminution of the tumor size and reduction in metastasis and invasion. Syntenin-1 has been suggested as a potential biomarker and therapeutic target in cancer for developing more effective diagnostic/prognostic tests or passive/active immunotherapies.
Collapse
|
4
|
Mir C, Garcia-Mayea Y, Garcia L, Herrero P, Canela N, Tabernero R, Lorente J, Castellvi J, Allonca E, García-Pedrero J, Rodrigo JP, Carracedo Á, LLeonart ME. SDCBP Modulates Stemness and Chemoresistance in Head and Neck Squamous Cell Carcinoma through Src Activation. Cancers (Basel) 2021; 13:cancers13194952. [PMID: 34638436 PMCID: PMC8508472 DOI: 10.3390/cancers13194952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Drug resistance is the principal limiting factor to achieving good survival rates in patients with cancer. The identification of potential biomarkers for diagnosis and prognostic prediction, as well as the design of new molecular-targeted treatments, will be essential to improving head and neck squamous cell carcinoma (HNSCC) patient outcomes. In this sense, the sensitization of resistant cells and cancer stem cells (CSCs) represents a major challenge in cancer therapy. We conducted a proteomic study involving cisplatin-resistance and CSCs with the aim to unravel the molecular and cellular mechanisms by which tumor cells acquire resistance to chemotherapy. Syntenin-1 (SDCBP) was identified as an important protein involved in the chemoresistance and stemness of HNSCC tumors. Abstract To characterize the mechanisms that govern chemoresistance, we performed a comparative proteomic study analyzing head and neck squamous cell carcinoma (HNSCC) cells: CCL-138 (parental), CCL-138-R (cisplatin-resistant), and cancer stem cells (CSCs). Syntenin-1 (SDCBP) was upregulated in CCL-138-R cells and CSCs over parental cells. SDCBP depletion sensitized biopsy-derived and established HNSCC cell lines to cisplatin (CDDP) and reduced CSC markers, Src activation being the main SDCBP downstream target. In mice, SDCBP-depleted cells formed tumors with decreased mitosis, Ki-67 positivity, and metastasis over controls. Moreover, the fusocellular pattern of CCL-138-R cell-derived tumors reverted to a more epithelial morphology upon SDCBP silencing. Importantly, SDCBP expression was associated with Src activation, poor differentiated tumor grade, advanced tumor stage, and shorter survival rates in a series of 382 HNSCC patients. Our results reveal that SDCBP might be a promising therapeutic target for effectively eliminating CSCs and CDDP resistance.
Collapse
Affiliation(s)
- Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
- Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
| | - Laia Garcia
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya–Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (P.H.); (N.C.)
| | - Nuria Canela
- Eurecat, Centre Tecnològic de Catalunya–Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (P.H.); (N.C.)
| | - Rocío Tabernero
- Otorhinolaryngology Department, Hospital Vall d’Hebron (HUVH), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.T.); (J.L.)
| | - Juan Lorente
- Otorhinolaryngology Department, Hospital Vall d’Hebron (HUVH), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.T.); (J.L.)
| | - Josep Castellvi
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, University of Oviedo, 33011 Oviedo, Spain or (E.A.); (J.G.-P.); (J.P.R.)
| | - Juana García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, University of Oviedo, 33011 Oviedo, Spain or (E.A.); (J.G.-P.); (J.P.R.)
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Juan Pablo Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, University of Oviedo, 33011 Oviedo, Spain or (E.A.); (J.G.-P.); (J.P.R.)
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Matilde Esther LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-4894169
| |
Collapse
|
5
|
Heparin-Binding Protein 17/Fibroblast Growth Factor-Binding Protein-1 Knockout Inhibits Proliferation and Induces Differentiation of Squamous Cell Carcinoma Cells. Cancers (Basel) 2021; 13:cancers13112684. [PMID: 34072393 PMCID: PMC8199440 DOI: 10.3390/cancers13112684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Fibroblast growth factor (FGF) plays an important role in tumor growth by inducing angiogenesis in addition to promoting the proliferation of squamous cell carcinoma (SCC) and oral squamous cell carcinoma (OSCC) cells. Heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) purified from A431 cell-conditioned media based on its capacity to bind to FGF-1 and FGF-2 is recognized as a pro-angiogenic molecule as a consequence of its interaction with FGF-2. In this study, we have examined the functional role of HBp17/FGFBP-1 in A431 and HO-1-N-1 cells using the CRISPR/Cas9 technology. Our results showed that HBp17/FGFBP-1 knockout inhibited cell proliferation, colony formation, and cell motility compared to control. The amount of FGF-2 was decreased in culture medium conditioned by HBp17/FGFBP-1 knockout cells compared to control. We performed cDNA/protein expression analysis followed by Gene Ontology and protein–protein interaction analysis. The results demonstrate that both gene and protein expression related to epidermal development, cornification, and keratinization were upregulated in HBp17/FGFBP-1-knockout A431 and HO-1-N-1 cells. Abstract Heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) has been observed to induce the tumorigenic potential of epithelial cells and is highly expressed in oral cancer cell lines and tissues. It is also recognized as a pro-angiogenic molecule because of its interaction with fibroblast growth factor (FGF)-2. In this study, we examined the functional role of HBp17/FGFBP-1 in A431 and HO-1-N-1 cells. Originally, HBp17/FGFBP-1 was purified from A431 cell-conditioned media based on its capacity to bind to FGF-1 and FGF-2. We isolated and established HBp17/FGFBP-1-knockout (KO)-A431 and KO-HO-1-N-1 cell lines using the clusters of regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) gene editing technology. The amount of FGF-2 secreted into conditioned medium decreased for A431-HBp17-KO and HO-1-N-1-HBp17-KO cells compared to their WT counterparts. Functional assessment showed that HBp17/FGFBP-1 KO inhibited cell proliferation, colony formation, and cell motility in vitro. It also inhibited tumor growth in vivo compared to controls, which confirmed the significant difference in growth in vitro between HBp17-KO cells and wild-type (WT) cells, indicating that HBp17/FGFBP-1 is a potent therapeutic target in squamous cell carcinomas (SCC) and oral squamous cell carcinomas (OSCC). In addition, complementary DNA/protein expression analysis followed by Gene Ontology and protein–protein interaction (PPI) analysis using the Database for Visualization and Integrated Discovery and Search Tool for the Retrieval of Interacting Genes/Proteins showed that both gene and protein expression related to epidermal development, cornification, and keratinization were upregulated in A431-HBp17-KO and HO-1-N-1-KO cells. This is the first discovery of a novel role of HBp17/FGFBP-1 that regulates SCC and OSCC cell differentiation.
Collapse
|
6
|
Yao L, Yan J, Cheng F, Gan L, Huang Y, Zheng L, Fang N. Small Proline-Rich Protein 2B Facilitates Gastric Adenocarcinoma Proliferation via MDM2-p53/p21 Signaling Pathway. Onco Targets Ther 2021; 14:1453-1463. [PMID: 33664578 PMCID: PMC7924129 DOI: 10.2147/ott.s281032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
Background The small proline-rich protein 2B (SPRR2B) was firstly reported as a member of the cross-linked envelope protein in keratinocytes. The effect of SPRR2B in gastric adenocarcinoma (GC) remains unclear. This study initially explored the clinical significance of SPRR2B in GC patients as well as its role in tumor progression. Methods Immunohistochemistry was performed to characterize the expression of SPRR2B in GC tissues and adjacent tissues. The relationship between SPRR2B expression and clinicopathological features of GC patients was analyzed by Chi-square test. Kaplan-Meier method and Cox regression analyses were utilized to identify the prognostic factors of GC. Overexpression and knockdown assays were conducted to investigate possible signaling pathways downstream of SPRR2B. Flow cytometry assays were performed to evaluate cell cycle and apoptosis. Xenograft experiments were performed to validate tumor-related role of SPRR2B in vivo. Results Both mRNA and protein levels of SPRR2B in cancerous tissue were significantly higher than those in non-cancerous tissues. Meanwhile, SPRR2B expression was significantly associated with tumor size and tumor stage. Survival analysis revealed SPRR2B as one of the independent prognosis factors for overall survival of GC patients. Cellular and xenografts data implicated that silencing SPRR2B blocked the cell cycle of GC cells perhaps through MDM2-p53/p21-CDK1 pathway, while overexpressing SPRR2B exhibited opposite effects. Conclusion Our data suggest that SPRR2B may serve as a novel prognostic marker in GC, which functions at least partially by MDM2-p53/p21-CDK1 signaling pathway.
Collapse
Affiliation(s)
- Ling Yao
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi Province, People's Republic of China
| | - Jinhua Yan
- Department of Hematology, Third Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi Province, People's Republic of China
| | - Fei Cheng
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi Province, People's Republic of China
| | - Lihong Gan
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi Province, People's Republic of China
| | - Yaqin Huang
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi Province, People's Republic of China
| | - Li Zheng
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi Province, People's Republic of China
| | - Nian Fang
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, 330008, Jiangxi Province, People's Republic of China
| |
Collapse
|
7
|
Pradhan AK, Maji S, Das SK, Emdad L, Sarkar D, Fisher PB. MDA-9/Syntenin/SDCBP: new insights into a unique multifunctional scaffold protein. Cancer Metastasis Rev 2021; 39:769-781. [PMID: 32410111 DOI: 10.1007/s10555-020-09886-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor metastasis comprises a series of coordinated events that culminate in dissemination of cancer cells to distant sites within the body representing the greatest challenge impeding effective therapy of cancer and the leading cause of cancer-associated morbidity. Cancer cells exploit multiple genes and pathways to colonize to distant organs. These pathways are integrated and regulated at different levels by cellular- and extracellular-associated factors. Defining the genes and pathways that govern metastasis can provide new targets for therapeutic intervention. Melanoma differentiation associated gene-9 (mda-9) (also known as Syntenin-1 and SDCBP (Syndecan binding protein)) was identified by subtraction hybridization as a novel gene displaying differential temporal expression during differentiation of melanoma. MDA-9/Syntenin is an established Syndecan binding protein that functions as an adaptor protein. Expression of MDA-9/Syntenin is elevated at an RNA and protein level in a wide-range of cancers including melanoma, glioblastoma, neuroblastoma, and prostate, breast and liver cancer. Expression is increased significantly in metastatic cancer cells as compared with non-metastatic cancer cells or normal cells, which make it an attractive target in treating cancer metastasis. In this review, we focus on the role and regulation of mda-9 in cancer progression and metastasis.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA. .,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
8
|
Zhang Z, Shi R, Xu S, Li Y, Zhang H, Liu M, Zhu G, Chen C, Pan Z, Liu H, Chen J. Identification of small proline-rich protein 1B (SPRR1B) as a prognostically predictive biomarker for lung adenocarcinoma by integrative bioinformatic analysis. Thorac Cancer 2021; 12:796-806. [PMID: 33501784 PMCID: PMC7952803 DOI: 10.1111/1759-7714.13836] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND With the ongoing development of targeted therapy and immunotherapy in recent years, the overall five-year survival rate of NSCLC patients has not improved, and the search for novel diagnostic and prognostic markers for lung adenocarcinoma continues. METHODS Lung adenocarcinoma (LUAD) gene expression data and relevant clinical information were obtained from the TCGA. Hub genes were identified with weighted gene co-expression network analysis (WGCNA) and protein-protein interaction network (PPI). Survival analyses were also performed using GEPIA. The 536 LUAD patients were divided into two groups according to the SPRR1B expression level and analyzed by gene set enrichment analysis (GSEA) and verified by immunoblotting. The effects of SPRR1B on cell proliferation and cell metastasis and apoptosis were evaluated by 5-ethynyl-2'-deoxyuridine (EdU) staining, colony formation assay, transwell migration and invasion assay, and flow cytometry, respectively. RESULTS A total of 2269 DEGs were analyzed by WGCNA and five hub genes (CCK, FETUB, PCSK9, SPRR1B, and SPRR2D) were identified. Among them, SPRR1B was selected as one of the most significant prognostic genes in LUAD. SPRR1B was found to be highly expressed in lung adenocarcinoma cells compared with that in normal bronchial epithelial cells. In addition, silencing of SPRR1B could inhibit the cell proliferation, invasion, and migration of lung adenocarcinoma cells, but induced cell apoptosis and G2/M phase arrest in vitro. The result of GSEA and immunoblotting revealed that SPRR1B activated the MAPK signaling pathway involved in the proliferation and metastasis of lung cancer. CONCLUSIONS Our findings demonstrate that SPRR1B may function as a prognosis predictor in lung adenocarcinoma.
Collapse
Affiliation(s)
- Zihe Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruifeng Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Songlin Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangsheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenhua Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
9
|
SDCBP/MDA-9/syntenin phosphorylation by AURKA promotes esophageal squamous cell carcinoma progression through the EGFR-PI3K-Akt signaling pathway. Oncogene 2020; 39:5405-5419. [PMID: 32572158 DOI: 10.1038/s41388-020-1369-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/19/2020] [Accepted: 06/11/2020] [Indexed: 01/02/2023]
Abstract
SDCBP is an adapter protein containing two tandem PDZ domains mediating cell adhesion. The role and underlying molecular mechanism of SDCBP in ESCC remain obscure. Here, we report that SDCBP is frequently overexpressed in ESCC tissues and cells compared to normal controls and that its overexpression is correlated with late clinical stage and predicts poor prognosis in ESCC patients. Functionally, high expression of SDCBP is positively related to ESCC progression both in vitro and in vivo. Furthermore, mechanistic studies show that SDCBP activates the EGFR-PI3K-Akt signaling pathway by binding to EGFR and preventing EGFR internalization. Moreover, we provide evidence that AURKA binds to SDCBP and phosphorylates it at the Ser131 and Thr200 sites to inhibit ubiquitination-mediated SDCBP degradation. More importantly, the sites at which AURKA phosphorylates SDCBP are crucial for the EGFR signaling-mediated oncogenic function of SDCBP. Taken together, we propose that SDCBP phosphorylation by AURKA prevents SDCBP degradation and promotes ESCC tumor growth through the EGFR-PI3K-Akt signaling pathway. Our findings unveil a new AURKA-SDCBP-EGFR axis that is involved in ESCC progression and provide a promising therapeutic target for ESCC treatment in the clinic.
Collapse
|
10
|
Das SK, Maji S, Wechman SL, Bhoopathi P, Pradhan AK, Talukdar S, Sarkar D, Landry J, Guo C, Wang XY, Cavenee WK, Emdad L, Fisher PB. MDA-9/Syntenin (SDCBP): Novel gene and therapeutic target for cancer metastasis. Pharmacol Res 2020; 155:104695. [PMID: 32061839 PMCID: PMC7551653 DOI: 10.1016/j.phrs.2020.104695] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The primary cause of cancer-related death from solid tumors is metastasis. While unraveling the mechanisms of this complicated process continues, our ability to effectively target and treat it to decrease patient morbidity and mortality remains disappointing. Early detection of metastatic lesions and approaches to treat metastases (both pharmacological and genetic) are of prime importance to obstruct this process clinically. Metastasis is complex involving both genetic and epigenetic changes in the constantly evolving tumor cell. Moreover, many discrete steps have been identified in metastatic spread, including invasion, intravasation, angiogenesis, attachment at a distant site (secondary seeding), extravasation and micrometastasis and tumor dormancy development. Here, we provide an overview of the metastatic process and highlight a unique pro-metastatic gene, melanoma differentiation associated gene-9/Syntenin (MDA-9/Syntenin) also called syndecan binding protein (SDCBP), which is a major contributor to the majority of independent metastatic events. MDA-9 expression is elevated in a wide range of carcinomas and other cancers, including melanoma, glioblastoma multiforme and neuroblastoma, suggesting that it may provide an appropriate target to intervene in metastasis. Pre-clinical studies confirm that inhibiting MDA-9 either genetically or pharmacologically profoundly suppresses metastasis. An additional benefit to blocking MDA-9 in metastatic cells is sensitization of these cells to a second therapeutic agent, which converts anti-invasion effects to tumor cytocidal effects. Continued mechanistic and therapeutic insights hold promise to advance development of truly effective therapies for metastasis in the future.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Stephen L Wechman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Joseph Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, CA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
11
|
Syntenin: PDZ Protein Regulating Signaling Pathways and Cellular Functions. Int J Mol Sci 2019; 20:ijms20174171. [PMID: 31454940 PMCID: PMC6747541 DOI: 10.3390/ijms20174171] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
Syntenin is an adaptor-like molecule that has two adjacent tandem postsynaptic density protein 95/Discs large protein/Zonula occludens 1 (PDZ) domains. The PDZ domains of syntenin recognize multiple peptide motifs with low to moderate affinity. Many reports have indicated interactions between syntenin and a plethora of proteins. Through interactions with various proteins, syntenin regulates the architecture of the cell membrane. As a result, increases in syntenin levels induce the metastasis of tumor cells, protrusion along the neurite in neuronal cells, and exosome biogenesis in various cell types. Here, we review the updated data that support various roles for syntenin in the regulation of neuronal synapses, tumor cell invasion, and exosome control.
Collapse
|
12
|
Kannan A, Philley JV, Hertweck KL, Ndetan H, Singh KP, Sivakumar S, Wells RB, Vadlamudi RK, Dasgupta S. Cancer Testis Antigen Promotes Triple Negative Breast Cancer Metastasis and is Traceable in the Circulating Extracellular Vesicles. Sci Rep 2019; 9:11632. [PMID: 31406142 PMCID: PMC6690992 DOI: 10.1038/s41598-019-48064-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Triple negative breast cancer (TNBC) has poor survival, exhibits rapid metastases, lacks targeted therapies and reliable prognostic markers. Here, we examined metastasis promoting role of cancer testis antigen SPANXB1 in TNBC and its utility as a therapeutic target and prognostic biomarker. Expression pattern of SPANXB1 was determined using matched primary cancer, lymph node metastatic tissues and circulating small extracellular vesicles (sEVs). cDNA microarray analysis of TNBC cells stably integrated with a metastasis suppressor SH3GL2 identified SPANXB1 as a potential target gene. TNBC cells overexpressing SH3GL2 exhibited decreased levels of both SPANXB1 mRNA and protein. Silencing of SPANXB1 reduced migration, invasion and reactive oxygen species production of TNBC cells. SPANXB1 depletion augmented SH3GL2 expression and decreased RAC-1, FAK, A-Actinin and Vinculin expression. Phenotypic and molecular changes were reversed upon SPANXB1 re-expression. SPANXB1 overexpressing breast cancer cells with an enhanced SPANXB1:SH3GL2 ratio achieved pulmonary metastasis within 5 weeks, whereas controls cells failed to do so. Altered expression of SPANXB1 was detected in the sEVs of SPANXB1 transduced cells. Exclusive expression of SPANXB1 was traceable in circulating sEVs, which was associated with TNBC progression. SPANXB1 represents a novel and ideal therapeutic target for blocking TNBC metastases due to its unique expression pattern and may function as an EV based prognostic marker to improve TNBC survival. Uniquely restricted expression of SPANXB1 in TNBCs, makes it an ideal candidate for targeted therapeutics and prognostication.
Collapse
Affiliation(s)
- Anbarasu Kannan
- Departments of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Julie V Philley
- Departments of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Kate L Hertweck
- Departments of Biology, The University of Texas at Tyler, Tyler, Texas, USA.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Harrison Ndetan
- Departments of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Karan P Singh
- Departments of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Subramaniam Sivakumar
- Departments of Biochemistry, Sri Sankara Arts and Science College, Kanchipuram, India
| | - Robert B Wells
- Departments of Pathology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Ratna K Vadlamudi
- Departments of Obstetrics and Gynecology, CDP program, Mays Cancer Center, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Santanu Dasgupta
- Departments of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA. .,Departments of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA.
| |
Collapse
|
13
|
Das SK, Kegelman TP, Pradhan AK, Shen XN, Bhoopathi P, Talukdar S, Maji S, Sarkar D, Emdad L, Fisher PB. Suppression of Prostate Cancer Pathogenesis Using an MDA-9/Syntenin (SDCBP) PDZ1 Small-Molecule Inhibitor. Mol Cancer Ther 2019; 18:1997-2007. [PMID: 31345950 DOI: 10.1158/1535-7163.mct-18-1019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/10/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
Abstract
Metastasis is the primary determinant of death in patients with diverse solid tumors and MDA-9/Syntenin (SDCBP), a pro-metastatic and pro-angiogenic gene, contributes to this process. Recently, we documented that by physically interacting with IGF-1R, MDA-9/Syntenin activates STAT3 and regulates prostate cancer pathogenesis. These observations firmly established MDA-9/Syntenin as a potential molecular target in prostate cancer. MDA-9/Syntenin contains two highly homologous PDZ domains predicted to interact with a plethora of proteins, many of which are central to the cancerous process. An MDA-9/Syntenin PDZ1 domain-targeted small molecule (PDZ1i) was previously developed using fragment-based drug discovery (FBDD) guided by NMR spectroscopy and was found to be well-tolerated in vivo, had significant half-life (t 1/2 = 9 hours) and displayed substantial anti-prostate cancer preclinical in vivo activity. PDZ1i blocked tumor cell invasion and migration in vitro, and metastasis in vivo Hence, we demonstrate that PDZ1i an MDA-9/Syntenin PDZ1 target-specific small-molecule inhibitor displays therapeutic potential for prostate and potentially other cancers expressing elevated levels of MDA-9/Syntenin.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Timothy P Kegelman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
14
|
Das SK, Sarkar D, Emdad L, Fisher PB. MDA-9/Syntenin: An emerging global molecular target regulating cancer invasion and metastasis. Adv Cancer Res 2019; 144:137-191. [PMID: 31349898 DOI: 10.1016/bs.acr.2019.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With few exceptions, metastasis is the terminal stage of cancer with limited therapeutic options. Metastasis consists of numerous phenotypic and genotypic alterations of cells that are directly and indirectly induced by multiple intrinsic (cellular) and extrinsic (micro-environmental) factors. To metastasize, a cancer cell often transitions from an epithelial to mesenchymal morphology (EMT), modifies the extracellular matrix, forms emboli and survives in the circulation, escapes immune surveillance, adheres to sites distant from the initial tumor and finally develops a blood supply (angiogenesis) and colonizes in a secondary niche (a micrometastasis). Scientific advances have greatly enhanced our understanding of the precise molecular and genetic changes, operating independently or collectively, that lead to metastasis. This review focuses on a unique gene, melanoma differentiation associated gene-9 (also known as Syntenin-1; Syndecan Binding Protein (sdcbp); mda-9/syntenin), initially cloned and characterized from metastatic human melanoma and shown to be a pro-metastatic gene. In the last two decades, our comprehension of the diversity of actions of MDA-9/Syntenin on cellular phenotype has emerged. MDA-9/Sytenin plays pivotal regulatory roles in multiple signaling cascades and orchestrates both metastatic and non-metastatic events. Considering the relevance of this gene in controlling cancer invasion and metastasis, approaches have been developed to uniquely and selectively target this gene. We also provide recent updates on strategies that have been successfully employed in targeting MDA-9/Syntenin resulting in profound pre-clinical anti-cancer activity.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
15
|
Yu Y, Li S, Wang K, Wan X. A PDZ Protein MDA-9/Syntenin: As a Target for Cancer Therapy. Comput Struct Biotechnol J 2019; 17:136-141. [PMID: 30766662 PMCID: PMC6360254 DOI: 10.1016/j.csbj.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022] Open
Abstract
Melanoma differentiation-associated gene 9 (MDA-9)/Syntenin is a multidomain PDZ protein and identified as a key oncogene in melanoma initially. This protein contains a unique tandem PDZ domain architecture (PDZ1 and PDZ2 spaced by a 4-amino acid linker), an N-terminal domain (NTD) that is structurally uncharacterized and a short C-terminal domain (CTD). The PDZ1 domain is regarded as the PDZ signaling domain while PDZ2 served as the PDZ superfamily domain. It has various cellular roles by regulating many of major signaling pathways in numerous cancertypes. Through the use of novel drug design methods, such as dimerization and unnatural amino acid substitution of inhibitors in our group, the protein may provide a valuable therapeutic target. The objective of this review is to provide a current perspective on the cancer-specific role of MDA-9/Syntenin in order to explore its potential for cancer drug discovery and cancer therapy.
Collapse
Affiliation(s)
- Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Shuangdi Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
16
|
Tian W, Wu W, Li X, Rui X, Wu Y. MiRNA-139-3p inhibits the proliferation, invasion, and migration of human glioma cells by targeting MDA-9/syntenin. Biochem Biophys Res Commun 2018; 508:295-301. [PMID: 30502089 DOI: 10.1016/j.bbrc.2018.11.144] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022]
Abstract
Gliomas are the most common primary malignant brain tumor in adults. Although these tumors are aggressive and frequently lethal, there are currently few therapeutic approaches available to prolong patient survival. MicroRNAs play important roles in regulating the expression of genes that control diverse cellular processes. Here, we investigated the expression and function of miR-139-3p in gliomas using clinical specimens, cultured cells, and a mouse xenograft tumor model. We found that miR-139-3p expression is markedly lower in human glioma tissues than in normal brain tissues. We identified melanoma differentiation-associated gene-9 (MDA-9)/syntenin, an adaptor protein implicated in tumor metastasis, as a novel direct target of miR-139-3p and showed that syntenin mRNA and miR-139-3p levels were inversely correlated in clinical specimens (r = -0.6817, P = 0.0002). Overexpression of miR-139-3p in human glioma cell lines inhibited cell proliferation, migration, and invasion, and these effects were rescued by co-transfection with syntenin. Our results indicate that miR-139-3p plays a significant role in controlling behaviors associated with the malignant progression of gliomas, and we identify the miR-139-3p-syntenin axis as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Wei Tian
- Nanjing Medical University, 210000, Nanjing, JiangSu, China.
| | - WeiNing Wu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, 210000, Nanjing, JiangSu, China.
| | - XiaoJian Li
- Nanjing Medical University, 210000, Nanjing, JiangSu, China.
| | - Xiangyu Rui
- Nanjing Medical University, 210000, Nanjing, JiangSu, China.
| | - YouZhi Wu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, 210000, Nanjing, JiangSu, China.
| |
Collapse
|
17
|
Das SK, Pradhan AK, Bhoopathi P, Talukdar S, Shen XN, Sarkar D, Emdad L, Fisher PB. The MDA-9/Syntenin/IGF1R/STAT3 Axis Directs Prostate Cancer Invasion. Cancer Res 2018; 78:2852-2863. [PMID: 29572229 DOI: 10.1158/0008-5472.can-17-2992] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/26/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022]
Abstract
Although prostate cancer is clinically manageable during several stages of progression, survival is severely compromised once cells invade and metastasize to distant organs. Comprehending the pathobiology of invasion is required for developing efficacious targeted therapies against metastasis. Based on bioinformatics data, we predicted an association of melanoma differentiation-associated gene-9 [syntenin, or syndecan binding protein (SDCBP)] in prostate cancer progression. Using tissue samples from various Gleason stage prostate cancer patients with adjacent normal tissue, a series of normal prostate and prostate cancer cell lines (with differing tumorigenic/metastatic properties), mda-9/syntenin-manipulated variants (including loss-of-function and gain-of-function cell lines), and CRISPR/Cas9 stable MDA-9/Syntenin knockout cells, we now confirm the relevance of and dependence on MDA-9/syntenin in prostate cancer invasion. MDA-9/Syntenin physically interacted with insulin-like growth factor-1 receptor following treatment with insulin-like growth factor binding protein-2 (IGFBP2), regulating downstream signaling processes that enabled STAT3 phosphorylation. This activation enhanced expression of MMP2 and MMP9, two established enzymes that positively regulate invasion. In addition, MDA-9/syntenin-mediated upregulation of proangiogenic factors including IGFBP2, IL6, IL8, and VEGFA also facilitated migration of prostate cancer cells. Collectively, our results draw attention to MDA-9/Syntenin as a positive regulator of prostate cancer metastasis, and the potential application of targeting this molecule to inhibit invasion and metastasis in prostate cancer and potentially other cancers.Significance: This study provides new mechanistic insight into the proinvasive role of MDA-9/Syntenin in prostate cancer and has potential for therapeutic application to prevent prostate cancer metastasis. Cancer Res; 78(11); 2852-63. ©2018 AACR.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
18
|
MDA-9/Syntenin (SDCBP) modulates small GTPases RhoA and Cdc42 via transforming growth factor β1 to enhance epithelial-mesenchymal transition in breast cancer. Oncotarget 2018; 7:80175-80189. [PMID: 27863394 PMCID: PMC5348312 DOI: 10.18632/oncotarget.13373] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is one of the decisive steps regulating cancer invasion and metastasis. However, the molecular mechanisms underlying this transition require further clarification. MDA-9/syntenin (SDCBP) expression is elevated in breast cancer patient samples as well as cultured breast cancer cells. Silencing expression of MDA-9 in mesenchymal metastatic breast cancer cells triggered a change in cell morphology in both 2D- and 3D-cultures to a more epithelial-like phenotype, along with changes in EMT markers, cytoskeletal rearrangement and decreased invasion. Conversely, over expressing MDA-9 in epithelial non-metastatic breast cancer cells instigated a change in morphology to a more mesenchymal phenotype with corresponding changes in EMT markers, cytoskeletal rearrangement and an increase in invasion. We also found that MDA-9 upregulated active levels of known modulators of EMT, the small GTPases RhoA and Cdc42, via TGFβ1. Reintroducing TGFβ1 in MDA-9 silenced cells restored active RhoA and cdc42 levels, modulated cytoskeletal rearrangement and increased invasion. We further determined that MDA-9 interacts with TGFβ1 via its PDZ1 domain. Finally, in vivo studies demonstrated that silencing the expression of MDA-9 resulted in decreased lung metastasis and TGFβ1 re-expression partially restored lung metastases. Our findings provide evidence for the relevance of MDA-9 in mediating EMT in breast cancer and support the potential of MDA-9 as a therapeutic target against metastatic disease.
Collapse
|
19
|
Chen J, Tang J, Chen W, Gao Y, He Y, Zhang Q, Ran Q, Cao F, Yao S. Effects of syndecan-1 on the expression of syntenin and the migration of U251 glioma cells. Oncol Lett 2017; 14:7217-7224. [PMID: 29344156 PMCID: PMC5754878 DOI: 10.3892/ol.2017.7170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/06/2017] [Indexed: 11/12/2022] Open
Abstract
Glioma is the most frequently occuring primary brain tumor. Syndecan-1 (SDC1) expression is related to poor prognosis of numerous human malignancies including glioma. Syndecan binding protein (SDCBP) is an important partner for SDC1. The present study investigated whether SDC1 and SDCBP are expressed in glioma and their functions on glioma cell migration. An immunohistochemical assay revealed that SDC1 and SDCBP were expressed and were positively related to malignant level of glioma (SDC1, rs=0.576, P=0.001; SDCBP, rs=0.661, P<0.001). Moreover, the protein levels of SDC1 were positively correlated with those of SDCBP in glioma tissues (rs=0.628, P=0.001). In U251 glioma cells, protein levels of SDC1 and SDCBP were both upregulated in U251 cells with SDC1 overexpression, while downregulated with SDC1 knockdown. Transwell assay and scratch-wound healing assay showed that SDC1 overexpression significantly increased U251 cell migration, while SDC1 knockdown had the opposite effects. Rac1 activity, signal transducer and activator of transcription 3 (STAT3) phosphorylation, as well as expression of matrix metalloproteinase 2 (MMP2) and MMP9 was significantly increased by SDC1 overexpression, while was decreased by SDC1 knockdown. In conclusion, SDC1 overexpression upregulated SDCBP expression, and promoted glioma cell migration via Rac1 activation.
Collapse
Affiliation(s)
- Jun Chen
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Jun Tang
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Wei Chen
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Yang Gao
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Yang He
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Qiang Zhang
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Qishan Ran
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China.,Department of Stroke Unit and Neurosurgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563000, P.R. China
| | - Fang Cao
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Shengtao Yao
- Department of Stroke Unit and Neurosurgery, The First People's Hospital of Zunyi, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
20
|
Kannan A, Hertweck KL, Philley JV, Wells RB, Dasgupta S. Genetic Mutation and Exosome Signature of Human Papilloma Virus Associated Oropharyngeal Cancer. Sci Rep 2017; 7:46102. [PMID: 28383029 DOI: 10.1038/srep46102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/10/2017] [Indexed: 12/30/2022] Open
Abstract
Human papilloma virus-16 (HPV-16) associated oropharyngeal cancer (HPVOPC) is increasing alarmingly in the United States. We performed whole genome sequencing of a 44 year old, male HPVOPC subject diagnosed with moderately differentiated tonsillar carcinoma. We identified new somatic mutation in MUC16 (A.k.a. CA-125), MUC12, MUC4, MUC6, MUC2, SIRPA, HLA-DRB1, HLA-A and HLA-B molecules. Increased protein expression of MUC16, SIRPA and decreased expression of HLA-DRB1 was further demonstrated in this HPVOPC subject and an additional set of 15 HPVOPC cases. Copy number gain (3 copies) was also observed for MUC2, MUC4, MUC6 and SIRPA. Enhanced expression of MUC16, SIRPA and HPV-16-E7 protein was detectable in the circulating exosomes of numerous HPVOPC subjects. Treatment of non-tumorigenic mammary epithelial cells with exosomes derived from aggressive HPVOPC cells harboring MUC16, SIRPA and HPV-16-E7 proteins augmented invasion and induced epithelial to mesenchymal transition (EMT) accompanied by an increased expression ratio of the EMT markers Vimentin/E-cadherin. Exosome based screening of key HPVOPC associated molecules could be beneficial for early cancer diagnosis, monitoring and surveillance.
Collapse
Affiliation(s)
- Anbarasu Kannan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Kate L Hertweck
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Julie V Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Robert B Wells
- Department of Pathology, The University of Texas Health Science Center at Tyler, Tyler, Texas., USA
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
21
|
Das SK, Guo C, Pradhan AK, Bhoopathi P, Talukdar S, Shen XN, Emdad L, Subler MA, Windle JJ, Sarkar D, Wang XY, Fisher PB. Knockout of MDA-9/Syntenin (SDCBP) expression in the microenvironment dampens tumor-supporting inflammation and inhibits melanoma metastasis. Oncotarget 2016; 7:46848-46861. [PMID: 27341128 PMCID: PMC5216907 DOI: 10.18632/oncotarget.10040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022] Open
Abstract
Cancer development and progression to metastasis is a complex process, which largely depends on bidirectional communication between tumor cells and their microenvironment. Melanoma differentiation associated gene-9 (mda-9, also known as Syntenin-1, SDCBP), a gene first cloned by our group, is robustly expressed in multiple cancers including melanoma and contributes to invasion and metastasis in a tumor cell-intrinsic manner. However, the role of MDA-9/Syntenin in the tumor cell-extrinsic microenvironment remains unclear even though MDA-9/Syntenin is ubiquitously expressed in most organs that are active metastatic sites for melanoma, e.g., lung, lymph node, brain, and liver. In this study, we explored the effect of environmental mda-9/syntenin expression on melanoma growth and metastasis using multiple immunocompetent animal models, syngeneic B16 xenograft and intravenous B16 mouse model and a genetically engineered mouse (GEM) model of melanoma. Host-deficient expression of mda-9/syntenin in mice negatively impacted on subcutaneously implanted B16 tumor growth and lung metastasis. Absence of MDA-9/Syntenin in the lung microenvironment suppressed tumor growth by modulating in situ Interleukin 17A (IL17A) expression and impaired the recruitment of myeloid derived suppressor cells (MDSCs) and Th17 cells as compared to genetically wild type animals. Additionally, loss of mda-9/syntenin expression in a spontaneous melanoma model (melanocyte-specific pten loss and BrafV600E mutation) significantly delayed tumor initiation and suppressed metastasis to the lymph nodes and lungs. The present study highlights a novel role of mda-9/syntenin in tumor-promoting inflammation and immune suppression. These observations along with other documented roles of MDA-9/Syntenin in cancer and metastasis support the potential relevance of MDA-9/Syntenin in the carcinogenic process and as a target for developing improved therapies by using either genetic or pharmacologic approaches to treat and prevent melanoma and other cancers.
Collapse
Affiliation(s)
- Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K. Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
22
|
Mitochondrial Reprogramming Regulates Breast Cancer Progression. Clin Cancer Res 2016; 22:3348-60. [DOI: 10.1158/1078-0432.ccr-15-2456] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/06/2016] [Indexed: 11/16/2022]
|
23
|
Philley JV, Kannan A, Qin W, Sauter ER, Ikebe M, Hertweck KL, Troyer DA, Semmes OJ, Dasgupta S. Complex-I Alteration and Enhanced Mitochondrial Fusion Are Associated With Prostate Cancer Progression. J Cell Physiol 2015; 231:1364-74. [PMID: 26530043 DOI: 10.1002/jcp.25240] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022]
Abstract
Mitochondria (mt) encoded respiratory complex-I (RCI) mutations and their pathogenicity remain largely unknown in prostate cancer (PCa). Little is known about the role of mtDNA loss on mt integrity in PCa. We determined mtDNA mutation in human and mice PCa and assessed the impact of mtDNA depletion on mt integrity. We also examined whether the circulating exosomes from PCa patients are transported to mt and carry mtDNA or mt proteins. We have employed next generation sequencing of the whole mt genome in human and Hi-myc PCa. The impact of mtDNA depletion on mt integrity, presence of mtDNA, and protein in sera exosomes was determined. A co-culture of human PCa cells and the circulating exosomes followed by confocal imaging determined co-localization of exosomes and mt. We observed frequent RCI mutations in human and Hi-myc PCa which disrupted corresponding complex protein expression. Depletion of mtDNA in PCa cells influenced mt integrity, increased expression of MFN1, MFN2, PINK1, and decreased expression of MT-TFA. Increased mt fusion and expression of PINK1 and DNM1L were also evident in the Hi-myc tumors. RCI-mtDNA, MFN2, and IMMT proteins were detected in the circulating exosomes of men with benign prostate hyperplasia (BPH) and progressive PCa. Circulating exosomes and mt co-localized in PCa cells. Our study identified new pathogenic RCI mutations in PCa and defined the impact of mtDNA loss on mt integrity. Presence of mtDNA and mt proteins in the circulating exosomes implicated their usefulness for biomarker development.
Collapse
Affiliation(s)
- Julie V Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Anbarasu Kannan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Wenyi Qin
- Department of Surgery, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Edward R Sauter
- Department of Surgery, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Kate L Hertweck
- Department of Biology, The University of Texas at Tyler, Tyler, Texas
| | - Dean A Troyer
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Oliver J Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
24
|
Kashyap R, Roucourt B, Lembo F, Fares J, Carcavilla AM, Restouin A, Zimmermann P, Ghossoub R. Syntenin controls migration, growth, proliferation, and cell cycle progression in cancer cells. Front Pharmacol 2015; 6:241. [PMID: 26539120 PMCID: PMC4612656 DOI: 10.3389/fphar.2015.00241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/07/2015] [Indexed: 11/25/2022] Open
Abstract
The scaffold protein syntenin abounds during fetal life where it is important for developmental movements. In human adulthood, syntenin gain-of-function is increasingly associated with various cancers and poor prognosis. Depending on the cancer model analyzed, syntenin affects various signaling pathways. We previously have shown that syntenin allows syndecan heparan sulfate proteoglycans to escape degradation. This indicates that syntenin has the potential to support sustained signaling of a plethora of growth factors and adhesion molecules. Here, we aim to clarify the impact of syntenin loss-of-function on cancer cell migration, growth, and proliferation, using cells from various cancer types and syntenin shRNA and siRNA silencing approaches. We observed decreased migration, growth, and proliferation of the mouse melanoma cell line B16F10, the human colon cancer cell line HT29 and the human breast cancer cell line MCF7. We further documented that syntenin controls the presence of active β1 integrin at the cell membrane and G1/S cell cycle transition as well as the expression levels of CDK4, Cyclin D2, and Retinoblastoma proteins. These data confirm that syntenin supports the migration and growth of tumor cells, independently of their origin, and further highlight the attractiveness of syntenin as potential therapeutic target.
Collapse
Affiliation(s)
- Rudra Kashyap
- Laboratory for Signal Integration in Cell Fate Decision, Department of Human Genetics, KU Leuven Leuven, Belgium ; Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| | - Bart Roucourt
- Laboratory for Signal Integration in Cell Fate Decision, Department of Human Genetics, KU Leuven Leuven, Belgium
| | - Frederique Lembo
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| | - Joanna Fares
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| | - Ane Marcos Carcavilla
- Laboratory for Signal Integration in Cell Fate Decision, Department of Human Genetics, KU Leuven Leuven, Belgium
| | - Audrey Restouin
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| | - Pascale Zimmermann
- Laboratory for Signal Integration in Cell Fate Decision, Department of Human Genetics, KU Leuven Leuven, Belgium ; Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| | - Rania Ghossoub
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université Marseille, France ; Inserm U1068, Institut Paoli-Calmettes Marseille, France ; Centre National de la Recherche Scientifique, UMR7258 Marseille, France
| |
Collapse
|