1
|
Li H, Qiao L, Kong M, Fang H, Yan Z, Guo R, Guo W. Construction and validation of a prognostic signature based on microvascular invasion and immune-related genes in hepatocellular carcinoma. Sci Rep 2024; 14:26994. [PMID: 39506070 PMCID: PMC11541849 DOI: 10.1038/s41598-024-78467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is an independent risk factor of poor prognosis in hepatocellular carcinoma (HCC) and can be used to guide the diagnosis and treatment of HCC. The immune system serves as an integral role in the incidence and progression of HCC. However, the molecular biology correlation between MVI and tumor immunity and the value of combining the two parameters to predict patient prognosis and HCC response to treatment remain to be evaluated. RESULTS In this study, we used univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox analysis to establish the MVI and immune-related gene index (MIRGPI) including eight genes. We demonstrated that the MIRGPI was an independent risk factor in predicting the prognosis of HCC. Subsequently, our research established a nomogram model combining pathologic characteristics and verified its good clinical application value. In addition, our study found that the TP53 gene had a higher mutation frequency and a lower degree of immune infiltration in the high-risk group. The low-risk group had higher sensitivity to immunotherapy, sorafenib, and TACE treatment, and the high-risk group had higher sensitivity to common chemotherapeutic agents. Finally, SEMA3C was found to facilitate the proliferation, migration and invasive ability of HCC by in vitro and in vivo experiments, and its mechanism may be associated with the activation of the NF-Κb/EMT signaling pathway. CONCLUSIONS In summary, the MIRGPI signature we developed is a reliable marker for the prediction of prognosis and treatment response, and is important for the prognostic assessment and individualized treatment of HCC.
Collapse
Affiliation(s)
- Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Lixue Qiao
- Thyroid Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Haoran Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Hepatopathy and Transplantation Medicine, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Ran Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
- National Organ Transplantation Physician Training Center, Zhengzhou, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
- Department of Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Yang R, Yang F, Wei Y, Huang B, Cao T, Tan H, Liu D, Zou Q, Wen J, Wen L, Lu X, Yu C, Cai H, Xie X, Jiang S, Yao S, Liang Y. Hypoxia-induced Semaphorin 3A promotes the development of endometriosis through regulating macrophage polarization. Int Immunopharmacol 2024; 138:112559. [PMID: 38955028 DOI: 10.1016/j.intimp.2024.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Semaphorin 3A (Sema3A) is a member of neural guidance factor family well-known for inducing the collapse of nerve cell growth cone and regulating nerve redistribution. It also has been characterized as an immunoregulatory and tumor promoting factor. Our previous study showed that Sema3A was involved in the regulation of sympathetic innervation and neuropathic pain of endometriosis. Nevertheless, the role of Sema3A in the development of endometriosis and its potential upstreaming factor are still not clear. METHODS Histology experiments were carried to detect the expression of Sema3A, hypoxia -inducible factor 1α (HIF-1α) and the distribution of macrophages. Cell experiments were used to explore the effect of Sema3A on the proliferation and migration of endometrial stromal cells (ESCs) and to confirm the regulatory action of HIF-1α on Sema3A. In vivo experiments were carried out to explore the role of Sema3A on the development of endometriosis. RESULTS Sema3A was highly expressed in endometriotic lesions and could enhanced the proliferation and migration abilities of ESCs. Aberrant macrophage distribution was found in endometriotic lesions. Sema3A also promoted the differentiation of monocytes into anti-inflammatory macrophages, so indirectly mediating the proliferation and migration of ESCs. Hypoxic microenvironment induced Sema3A mRNA and protein expression in ESCs via HIF-1α. Administration of Sema3A promoted the development of endometriosis in a mouse model. CONCLUSIONS Sema3A, which is regulated by HIF-1α, is a promoting factor for the development of endometriosis. Targeting Sema3A may be a potential treatment strategy to control endometriotic lesions.
Collapse
Affiliation(s)
- Ruyu Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Yajing Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Biqi Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Tiefeng Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Hao Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Duo Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Qiuyu Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Jinjuan Wen
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Lei Wen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xi Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Changyang Yu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Heng Cai
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Xiaofei Xie
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Shaoru Jiang
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China.
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China; Department of Obstetrics and Gynecology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning 530022, Guangxi, China.
| |
Collapse
|
3
|
Li Y, Zhang Q, Yang R, Zhan Y, Li Z, Dai S, Chen D, Chen L, Ruggiero A, Ye C, Lu Y, Zhou E, Dong R, Dong K. Characterization of the malignant cells and microenvironment of infantile fibrosarcoma via single-cell RNA sequencing. Transl Pediatr 2024; 13:596-609. [PMID: 38715675 PMCID: PMC11071021 DOI: 10.21037/tp-24-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Infantile fibrosarcoma (IFS) is the most prevalent soft tissue sarcoma in children under 1 year old and is known for its rapid growth. The tumor lacks specific immunohistochemical tumor marker and a general view of tumor microenvironment (TME). Its primary therapeutic intervention places patients at a risk of disability or mutilation. This study aimed to elucidate the universal transcriptional characteristics of IFS and explore novel targets for diagnosis and therapy using single-cell RNA sequencing (scRNA-seq). METHODS Fresh tissue samples of IFS for scRNA-seq were collected from four patients before other treatments were administered. We conducted cell clustering, inferring copy number variation from scRNA-seq (InferCNV) analysis, gene differential expression analysis, cell function evaluation, Pearson correlation analysis, and cell-cell and ligand-receptor interaction analysis to investigate the distinct ecosystem of IFS. RESULTS According to the single-cell resolution data, we depicted the cell atlas of IFS, which comprised 14 cell populations. Through comparison with normal cells, the malignant cells were distinguished, and potential novel markers (POSTN, IGFBP2 and CTHRC1) were identified. We also found four various functional malignant cell subtypes, three of which exhibited cancer stem cells (CSCs) phenotypes, and investigated the interplay between these subtypes and nonmalignant cells in the TME of IFS. Endothelial cells and macrophages were found to dominate the cell-cell communication landscape within the microenvironment, promoting tumorigenesis via multiple receptor-ligand interactions. CONCLUSIONS This study provides a comprehensive characterization of the tumor transcriptome and TME of IFS at the cellular level, offering valuable insights for clinically significant advancements in the immunohistochemical diagnosis and treatment of IFS.
Collapse
Affiliation(s)
- Yi Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Qingchi Zhang
- Department of Pediatric Surgery, Xiamen Children’s Hospital, Xiamen Key Laboratory of Pediatric General Surgery Diseases, Xiamen, China
| | - Ran Yang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Zifeng Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Shuyang Dai
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Deqian Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | | | | | - Chunjing Ye
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yifei Lu
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Enqing Zhou
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
4
|
Jin D, Qian L, Chen J, Yu Z, Dong J. Prognostic impact of CD68+ tumor-associated macrophages in hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore) 2024; 103:e37834. [PMID: 38640338 PMCID: PMC11029977 DOI: 10.1097/md.0000000000037834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Evidence from clinical research suggests that the tumor-associated macrophages (TAMs) were associated with prognosis in hepatocellular carcinoma (HCC). The aim of the present meta-analysis was to conduct a qualitative analysis to explore the prognostic value of CD68 + TAMs in HCC. METHODS This study conducted a systematic search in Pubmed, Embase, the Cochrane Library and China National Knowledge Internet from inception of the databases to November 2023. The hazard ratio (HR) and 95% confidence interval (CI) were calculated employing fixed-effect or random-effect models depending on the heterogeneity of the included trials. The Newcastle-Ottawa Scale was used to evaluate the risk of prejudice. RESULTS We analyzed 4362 HCC patients. The present research indicated that the expression levels Of CD68 + TAMs were significantly associated with overall survival (OS) (HR = 1.55, 95% CI: 1.30-1.84) and disease-free survival (DFS) (HR = 1.44, 95% CI: 1.17-1.78). Subgroup analysis based on cutoff values showed that the "Median" subgroup showed a pooled HR of 1.66 with a 95% CI ranging from 1.32 to 2.08, which was slightly higher than the "Others" subgroup that exhibited a pooled HR of 1.40 and a 95% CI of 1.07 to 1.84. The "PT" subgroup had the highest pooled HR of 1.68 (95% CI: 1.19-2.37), indicating a worse OS compared to the "IT" (pooled HR: 1.50, 95% CI: 1.13-2.01) and "Mix" (pooled HR: 1.52, 95% CI: 1.03-2.26) subgroups. Moreover, in the sample size-based analysis, studies with more than 100 samples (>100) exhibited a higher pooled HR of 1.57 (95% CI: 1.28 to 1.93) compared to studies with fewer than 100 samples (<100), which had a pooled HR of 1.45 (95% CI: 1.00-2.10). CONCLUSIONS The analysis suggests that CD68 + TAMs were significantly associated with unfavorable OS and DFS in HCC patients, and may be served as a promising prognostic biomarker in HCC. However, more large-scale trials are needed to study the clinical value of TAMs in HCC.
Collapse
Affiliation(s)
- Danwen Jin
- Pathological Diagnosis Center, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Liyong Qian
- Pathological Diagnosis Center, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Jiayao Chen
- Department of Laboratory, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Ze Yu
- Laboratory of Cell Biology and Molecular Biology, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| | - Jinliang Dong
- Department of Hepatobiliary Surgery, Zhoushan Hospital, Zhoushan City, Zhejiang Province, China
| |
Collapse
|
5
|
Andryszak N, Kurzawa P, Krzyżaniak M, Ruchała M, Nowicki M, Iżycki D, Czepczyński R. Expression of semaphorin 3A (SEMA3A) in breast cancer subtypes. Sci Rep 2024; 14:1969. [PMID: 38263416 PMCID: PMC10805734 DOI: 10.1038/s41598-024-51796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Breast cancer is a major health concern, and its accurate diagnosis and management depend on identifying its histological type and biological subtype. Semaphorin-3A (SEMA3A) is a membrane protein with diverse roles in cellular processes, including cancer progression and angiogenesis regulation. However, its role in breast cancer remains poorly understood. This study aimed to evaluate SEMA3A expression in breast cancer and investigate its distribution across breast cancer subtypes: luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). Immunohistochemical evaluation was performed on 98 breast cancer patients' tumor specimens, and SEMA3A expression was assessed in tumor cells and vessels. The study included the analysis of the Ki67 proliferation index, estrogen receptor (ER) expression, progesterone receptor (PR) expression, and HER2 status in conjunction with SEMA3A expression. Analysis indicated positive expression of SEMA3A in breast cancer cells in 60 out of 98 cases. SEMA3A expression correlated positively with Ki67 levels in tumor cells (p = 0.0005, R Spearman 0.338). Notably, a negative correlation was found between SEMA3A expression and ER and PR levels in tumor cells (p = 0.04, Spearman's R = - 0.21 and p = 0.016, Spearman's R = - 0.25 respectively). HER2 status did not significantly influence SEMA3A expression. The study demonstrated positive SEMA3A expression in tumor vessels across all subtypes in 91 out of 98 cases, suggesting its involvement in endothelial cell function. However, no significant differences in SEMA3A expression were observed between breast cancer subtypes either in vessels or tumor cells. These findings suggest that elevated SEMA3A expression may be associated with worse prognosis in breast cancer, especially in ER- and PR-negative tumors. Further investigations are warranted to fully comprehend the role of SEMA3A in breast cancer biology, which may lead to the identification of novel therapeutic targets and personalized treatment strategies for breast cancer patients.
Collapse
Affiliation(s)
- Natalia Andryszak
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland.
| | - Paweł Kurzawa
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, Poznan, Poland
| | - Monika Krzyżaniak
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781, Poznan, Poland
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
6
|
Zhang X, Yu C, Zhao S, Wang M, Shang L, Zhou J, Ma Y. The role of tumor-associated macrophages in hepatocellular carcinoma progression: A narrative review. Cancer Med 2023; 12:22109-22129. [PMID: 38098217 PMCID: PMC10757104 DOI: 10.1002/cam4.6717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, with complex etiology and mechanism, and a high mortality rate. Tumor-associated macrophages (TAMs) are an important part of the HCC tumor microenvironment. Studies in recent years have shown that TAMs are involved in multiple stages of HCC and are related to treatment and prognosis in HCC. The specific mechanisms between TAMs and HCC are gradually being revealed. This paper reviews recent advances in the mechanisms associated with TAMs in HCC, concentrating on an overview of effects of TAMs on drug resistance in HCC and the signaling pathways linked with HCC, providing clues for the treatment and prognosis determination of HCC.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Chao Yu
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Siqi Zhao
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Longcheng Shang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jin Zhou
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yong Ma
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Chicherova I, Hernandez C, Mann F, Zoulim F, Parent R. Axon guidance molecules in liver pathology: Journeys on a damaged passport. Liver Int 2023; 43:1850-1864. [PMID: 37402699 DOI: 10.1111/liv.15662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND AND AIMS The liver is an innervated organ that develops a variety of chronic liver disease (CLD). Axon guidance cues (AGCs), of which ephrins, netrins, semaphorins and slits are the main representative, are secreted or membrane-bound proteins that can attract or repel axons through interactions with their growth cones that contain receptors recognizing these messengers. While fundamentally implicated in the physiological development of the nervous system, the expression of AGCs can also be reinduced under acute or chronic conditions, such as CLD, that necessitate redeployment of neural networks. METHODS This review considers the ad hoc literature through the neglected canonical neural function of these proteins that is also applicable to the diseased liver (and not solely their observed parenchymal impact). RESULTS AGCs impact fibrosis regulation, immune functions, viral/host interactions, angiogenesis, and cell growth, both at the CLD and HCC levels. Special attention has been paid to distinguishing correlative and causal data in such datasets in order to streamline data interpretation. While hepatic mechanistic insights are to date limited, bioinformatic evidence for the identification of AGCs mRNAs positive cells, protein expression, quantitative regulation, and prognostic data have been provided. Liver-pertinent clinical studies based on the US Clinical Trials database are listed. Future research directions derived from AGC targeting are proposed. CONCLUSION This review highlights frequent implication of AGCs in CLD, linking traits of liver disorders and the local autonomic nervous system. Such data should contribute to diversifying current parameters of patient stratification and our understanding of CLD.
Collapse
Affiliation(s)
- Ievgeniia Chicherova
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| | - Charlotte Hernandez
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| | - Fanny Mann
- Aix-Marseille University, CNRS, IBDM, Marseille, France
| | - Fabien Zoulim
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
- Hepatogastroenterology Service, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France
| | - Romain Parent
- Cancer Research Centre of Lyon, Inserm Unit 1052, CNRS UMR 5286, University of Lyon, Léon Bérard Anticancer Centre, Lyon, France
| |
Collapse
|
8
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
9
|
Abstract
Semaphorin 3A is a secreted glycoprotein, which was originally identified as axon guidance factor in the neuronal system, but it also possesses immunoregulatory properties. Here, the effect of semaphorin 3A on T-lymphocytes, myeloid dendritic cells and macrophages is systematically analyzed on the bases of all publications available in the literature for 20 years. Expression of semaphorin 3A receptors – neuropilin-1 and plexins A – in these cells is described in details. The data obtained on human and murine cells is described comparatively. A comprehensive overview of the interaction of semaphorin 3A with mononuclear phagocyte system is presented for the first time. Semaphorin 3A signaling mostly results in changes of the cytoskeletal machinery and cellular morphology that regulate pathways involved in migration, adhesion, and cell–cell cooperation of immune cells. Accumulating evidence indicates that this factor is crucially involved in various phases of immune responses, including initiation phase, antigen presentation, effector T cell function, inflammation phase, macrophage activation, and polarization. In recent years, interest in this field has increased significantly because semaphorin 3A is associated with many human diseases and therefore can be used as a target for their treatment. Its involvement in the immune responses is important to study, because semaphorin 3A and its receptors turn to be a promising new therapeutic tools to be applied in many autoimmune, allergic, and oncology diseases.
Collapse
Affiliation(s)
- Ekaterina P Kiseleva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
- Mechnikov North-Western State Medical University, St. Petersburg, 195067, Russia
| | - Kristina V Rutto
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
| |
Collapse
|
10
|
Wu AML, Gossa S, Samala R, Chung MA, Gril B, Yang HH, Thorsheim HR, Tran AD, Wei D, Taner E, Isanogle K, Yang Y, Dolan EL, Robinson C, Difilippantonio S, Lee MP, Khan I, Smith QR, McGavern DB, Wakefield LM, Steeg PS. Aging and CNS Myeloid Cell Depletion Attenuate Breast Cancer Brain Metastasis. Clin Cancer Res 2021; 27:4422-4434. [PMID: 34083229 PMCID: PMC9974011 DOI: 10.1158/1078-0432.ccr-21-1549] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Breast cancer diagnosed in young patients is often aggressive. Because primary breast tumors from young and older patients have similar mutational patterns, we hypothesized that the young host microenvironment promotes more aggressive metastatic disease. EXPERIMENTAL DESIGN Triple-negative or luminal B breast cancer cell lines were injected into young and older mice side-by-side to quantify lung, liver, and brain metastases. Young and older mouse brains, metastatic and naïve, were analyzed by flow cytometry. Immune populations were depleted using antibodies or a colony-stimulating factor-1 receptor (CSF-1R) inhibitor, and brain metastasis assays were conducted. Effects on myeloid populations, astrogliosis, and the neuroinflammatory response were determined. RESULTS Brain metastases were 2- to 4-fold higher in young as compared with older mouse hosts in four models of triple-negative or luminal B breast cancer; no age effect was observed on liver or lung metastases. Aged brains, naïve or metastatic, contained fewer resident CNS myeloid cells. Use of a CSF-1R inhibitor to deplete myeloid cells, including both microglia and infiltrating macrophages, preferentially reduced brain metastasis burden in young mice. Downstream effects of CSF-1R inhibition in young mice resembled that of an aged brain in terms of myeloid numbers, induction of astrogliosis, and Semaphorin 3A secretion within the neuroinflammatory response. CONCLUSIONS Host microenvironmental factors contribute to the aggressiveness of triple-negative and luminal B breast cancer brain metastasis. CSF-1R inhibitors may hold promise for young brain metastasis patients.
Collapse
Affiliation(s)
- Alex Man Lai Wu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Selamawit Gossa
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Ramakrishna Samala
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Monika A Chung
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Brunilde Gril
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Helen R Thorsheim
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Andy D Tran
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- CCR Microscopy Core, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Debbie Wei
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Esra Taner
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kristine Isanogle
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Yuan Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Emma L Dolan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Christina Robinson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Quentin R Smith
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
11
|
Zhao L, Du W, Zhao D, Ji X, Huang Y, Pang Y, Guo K, Yin X. Catalpol Protects Against High Glucose-Induced Bone Loss by Regulating Osteoblast Function. Front Pharmacol 2021; 12:626621. [PMID: 33776769 PMCID: PMC7987667 DOI: 10.3389/fphar.2021.626621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 12/28/2022] Open
Abstract
Objective: The overall objective of this study was to investigate the effects of catalpol on bone remodeling of diabetic osteoporosis by regulating osteoblast differentiation and migration. Method: Using a murine model of diabetic osteoporosis, to detect the protective effects of catalpol on bone loss, architectural deterioration of trabecular bone and bone metabolism biomarkers were tested. A model of MC3T3-E1 cells was established by treatment with high glucose; the regulatory role of catalpol in the differentiation and migration was tested by Western blot, ALP staining, and Alizarin Red staining. Results: Catalpol treatment markedly ameliorated trabecular bone deterioration by reducing degenerative changes of the trabecular structure by improving the bone formation marker levels of ALP, osteopontin, type I collagen, and osteocalcin, as well as the level of OPG/RANKL. Catalpol enhanced cell motility and scattering following gap formation of MC3T3-E1 cells. Conclusion: The results indicated that catalpol exhibits a protective effect against diabetic osteoporosis by regulating the differentiation and migration of osteoblast.
Collapse
Affiliation(s)
- Lu Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dandan Zhao
- Department of Emergency Medicine Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xueyan Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yanfei Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yong Pang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kaijin Guo
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Yuen VWH, Wong CCL. Hypoxia-inducible factors and innate immunity in liver cancer. J Clin Invest 2021; 130:5052-5062. [PMID: 32750043 DOI: 10.1172/jci137553] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver has strong innate immunity to counteract pathogens from the gastrointestinal tract. During the development of liver cancer, which is typically driven by chronic inflammation, the composition and biological roles of the innate immune cells are extensively altered. Hypoxia is a common finding in all stages of liver cancer development. Hypoxia drives the stabilization of hypoxia-inducible factors (HIFs), which act as central regulators to dampen the innate immunity of liver cancer. HIF signaling in innate immune cells and liver cancer cells together favors the recruitment and maintenance of pro-tumorigenic immune cells and the inhibition of anti-tumorigenic immune cells, promoting immune evasion. HIFs represent attractive therapeutic targets to inhibit the formation of an immunosuppressive microenvironment and growth of liver cancer.
Collapse
Affiliation(s)
| | - Carmen Chak-Lui Wong
- Department of Pathology and.,State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Expression of Semaphorin 3A in Malignant and Normal Bladder Tissue: Immunohistochemistry Staining and Morphometric Evaluation. BIOLOGY 2021; 10:biology10020109. [PMID: 33546237 PMCID: PMC7913361 DOI: 10.3390/biology10020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Semaphorin 3A (Sema3A) was shown to play a significant role in different neoplasms. In a previous study by our team, we showed that Sema3A is overexpressed in patients with urothelial carcinoma (UC). In this study, we analyzed 43 specimens from patients with the entire spectrum of UC and compared them with samples from 14 normal urothelium using immunostaining and computerized morphometry. The results showed that patients with UC had intense Sema3A staining in the apical layer of the mucosa compared to patients without UC. Moreover, patients with higher grade UC showed intense Sema3A staining across all mucosal layers. Abstract Introduction: Our previous studies showed elevated levels of Semaphorin3a (Sema3A) in the urine of patients with urothelial cancer compared to healthy patients. The aim of this study was to analyze the extent of Sema3A expression in normal and malignant urothelial tissue using immune-staining microscopic and morphometric analysis. Materials and Methods: Fifty-seven paraffin-embedded bladder samples were retrieved from our pathology archive and analyzed: 14 samples of normal urothelium, 21 samples containing low-grade urothelial carcinoma, 13 samples of patients with high-grade urothelial carcinoma, 7 samples containing muscle invasive urothelial carcinoma, and 2 samples with pure urothelial carcinoma in situ. All samples were immunostained with anti Sema3A antibodies. The area of tissue stained with Sema3A and its intensity were analyzed using computerized morphometry and compared between the samples’ groups. Results: In normal bladder tissue, very light Sema3A staining was demonstrated on the mucosal basal layer and completely disappeared on the apical layer. In low-grade tumor samples, cells in the basal layer of the mucosa were also lightly stained with Sema3A, but Seama3A expression intensified upon moving apically, reaching its highest level on apical cells exfoliating to the urine. In high grade urothelial tumors, Seama3A staining was intense in the entire thickness of the mucosa. In samples containing carcinoma in situ, staining intensity was high and homogenous in all the neoplastic cells. Conclusions: Sema3A may be serve as a potential non-invasive marker of urothelial cancer.
Collapse
|
14
|
Liu LY, Ma XZ, Ouyang B, Ings DP, Marwah S, Liu J, Chen AY, Gupta R, Manuel J, Chen XC, Gage BK, Cirlan I, Khuu N, Chung S, Camat D, Cheng M, Sekhon M, Zagorovsky K, Abdou Mohamed MA, Thoeni C, Atif J, Echeverri J, Kollmann D, Fischer S, Bader GD, Chan WCW, Michalak TI, McGilvray ID, MacParland SA. Nanoparticle Uptake in a Spontaneous and Immunocompetent Woodchuck Liver Cancer Model. ACS NANO 2020; 14:4698-4715. [PMID: 32255624 DOI: 10.1021/acsnano.0c00468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is a tremendous focus on the application of nanomaterials for the treatment of cancer. Nonprimate models are conventionally used to assess the biomedical utility of nanomaterials. However, these animals often lack an intact immunological background, and the tumors in these animals do not develop spontaneously. We introduce a preclinical woodchuck hepatitis virus-induced liver cancer model as a platform for nanoparticle (NP)-based in vivo experiments. Liver cancer development in these out-bred animals occurs as a result of persistent viral infection, mimicking human hepatitis B virus-induced HCC development. We highlight how this model addresses key gaps associated with other commonly used tumor models. We employed this model to (1) track organ biodistribution of gold NPs after intravenous administration, (2) examine their subcellular localization in the liver, (3) determine clearance kinetics, and (4) characterize the identity of hepatic macrophages that take up NPs using RNA-sequencing (RNA-seq). We found that the liver and spleen were the primary sites of NP accumulation. Subcellular analyses revealed accumulation of NPs in the lysosomes of CD14+ cells. Through RNA-seq, we uncovered that immunosuppressive macrophages within the woodchuck liver are the major cell type that take up injected NPs. The woodchuck-HCC model has the potential to be an invaluable tool to examine NP-based immune modifiers that promote host anti-tumor immunity.
Collapse
Affiliation(s)
- Lewis Y Liu
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Xue-Zhong Ma
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Ben Ouyang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, Ontario, Canada M5S 3G9
| | - Danielle P Ings
- Molecular Virology and Hepatology Research Group, Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6
| | - Sagar Marwah
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Jeff Liu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Room 230, Toronto, Ontario, Canada M5S 3E1
| | - Annie Y Chen
- Molecular Virology and Hepatology Research Group, Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6
| | - Rahul Gupta
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Justin Manuel
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Xu-Chun Chen
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Blair K Gage
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Iulia Cirlan
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Nicholas Khuu
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Sai Chung
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Damra Camat
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Michael Cheng
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Luna Nanotech, Toronto, Ontario, Canada M5G 1Y8
| | - Manmeet Sekhon
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Kyryl Zagorovsky
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, Ontario, Canada M5S 3G9
- Luna Nanotech, Toronto, Ontario, Canada M5G 1Y8
| | - Mohamed A Abdou Mohamed
- Luna Nanotech, Toronto, Ontario, Canada M5G 1Y8
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt 44519
| | - Cornelia Thoeni
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Jawairia Atif
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Juan Echeverri
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Dagmar Kollmann
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Sandra Fischer
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| | - Gary D Bader
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Room 230, Toronto, Ontario, Canada M5S 3E1
| | - Warren C W Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Rosebrugh Building, Room 407, Toronto, Ontario, Canada M5S 3G9
- Department of Materials Science and Engineering, University of Toronto, 160 College Street, Room 450, Toronto, Ontario, Canada M5S 3E1
| | - Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6
| | - Ian D McGilvray
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
| | - Sonya A MacParland
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
- Department of Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 6271, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
15
|
Imoto T, Kondo S, Wakisaka N, Hai PT, Seishima N, Kano M, Ueno T, Mizokami H, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Moriyama-Kita M, Yoshizaki T. Overexpression of Semaphorin 3A is a Marker Associated with Poor Prognosis in Patients with Nasopharyngeal Carcinoma. Microorganisms 2020; 8:microorganisms8030423. [PMID: 32192122 PMCID: PMC7143379 DOI: 10.3390/microorganisms8030423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Semaphorins were discovered as guidance signals that mediate neural development. Recent studies suggest that semaphorin 3A (Sema3A), a member of the semaphorin family, is involved in the development of several cancers. This study aimed to analyze the association of Sema3A with the clinical features of nasopharyngeal carcinoma (NPC), an Epstein–Barr virus-associated carcinoma, and the Epstein–Barr virus primary oncogene latent membrane protein 1 (LMP1). The expression of Sema3A and LMP1 was immunohistochemically examined in the 35 NPC specimens. The mean expression scores for Sema3A and LMP1 were 20.8% ± 14.5% and 13.9% ± 14.8%, respectively. The expression of Sema3A significantly correlated with that of LMP1 (r = 0.41, p = 0.014). In addition, the Sema3A high cohort showed significantly poorer prognosis than the Sema3A low cohort. Sema3A expression was higher in the LMP1-positive KH-1 and KR-4 cell lines compared to the LMP1-negative HeLa cells. Overexpression of LMP1 in the LMP1-negative AdAH cell line upregulated Sema3A expression, both at the transcriptional and translational level. Finally, Sema3A expression was associated with poor prognosis in patients with NPC. Our data suggest that LMP1 induces the expression of Sema3A, which may promote tumor progression in NPC.
Collapse
|
16
|
Nrp1 is Activated by Konjac Ceramide Binding-Induced Structural Rigidification of the a1a2 Domain. Cells 2020; 9:cells9020517. [PMID: 32102436 PMCID: PMC7072815 DOI: 10.3390/cells9020517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Konjac ceramide (kCer) is a plant-type ceramide composed of various long-chain bases and α-hydroxyl fatty acids. The presence of d4t,8t-sphingadienine is essential for semaphorin 3A (Sema3A)-like activity. Herein, we examined the three neuropilin 1 (Nrp1) domains (a1a2, b1b2, or c), and found that a1a2 binds to d4t,8t-kCer and possesses Sema3A-like activity. kCer binds to Nrp1 with a weak affinity of μM dissociation constant (Kd). We wondered whether bovine serum albumin could influence the ligand–receptor interaction that a1a2 has with a single high affinity binding site for kCer (Kd in nM range). In the present study we demonstrated the influence of bovine serum albumin. Thermal denaturation indicates that the a1a2 domain may include intrinsically disordered region (IDR)-like flexibility. A potential interaction site on the a1 module was explored by molecular docking, which revealed a possible Nrp1 activation mechanism, in which kCer binds to Site A close to the Sema3A-binding region of the a1a2 domain. The a1 module then accesses a2 as the IDR-like flexibility becomes ordered via kCer-induced protein rigidity of a1a2. This induces intramolecular interaction between a1 and a2 through a slight change in protein secondary structure.
Collapse
|
17
|
Tian T, Zhang L, Tang K, Wang A, Wang J, Wang J, Wang F, Wang W, Ma X. SEMA3A Exon 9 Expression Is a Potential Prognostic Marker of Unfavorable Recurrence-Free Survival in Patients with Tongue Squamous Cell Carcinoma. DNA Cell Biol 2020; 39:555-562. [PMID: 32074456 DOI: 10.1089/dna.2019.5109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study tried to assess the prognostic value of semaphorin (SEMA) family genes in patients with tongue squamous cell carcinoma (TSCC) and the potential epigenetic alterations of the genes. The part of third-level TSCC data in The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma (TCGA-HNSC) was extracted using the UCSC Xena browser for analysis. Among 20 SEMA genes examined, 7 were markedly upregulated, while 8 were substantially decreased in TSCC tissues compared with adjacent normal tissues. SEMA3A was the only gene with independent prognostic value in terms of recurrence-free survival (RFS) in multivariate analysis (hazard ratio [HR]: 1.697, 95% CI: 1.228-2.345, p = 0.001). Among the individual exons of SEMA3A, the exon 9 had a better prognostic value in terms of recurrence than total SEMA3A expression and its expression also independently predicted shorter RFS (HR: 2.193, 95% CI: 1.463-3.290, p < 0.001). The methylation levels of two CpG sites (cg06144675 and cg13988052) were moderately correlated with SEMA3A expression. Interestingly, cg06144675, which locates at the promoter region, showed a negative correlation with SEMA3A expression, whereas cg13988052, which is in the intron of SEMA3A gene body showed a positive correlation with SEMA3A expression. In conclusion, SEMA3A expression is aberrantly upregulated in TSCC tissues. Its exon 9 expression is a potentially valuable prognostic marker of unfavorable RFS in TSCC patients. Both promoter hypomethylation and gene body hypermethylation might contribute to the dysregulation.
Collapse
Affiliation(s)
- Tian Tian
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Lingnan Zhang
- Department of Orthodontics, Binzhou Medical University Hospital, Binzhou, China
| | - Kailiang Tang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Aiqin Wang
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Jing Wang
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Fang Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Wenlong Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Xiangrui Ma
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
18
|
Sun XY, Yu SZ, Zhang HP, Li J, Guo WZ, Zhang SJ. A signature of 33 immune-related gene pairs predicts clinical outcome in hepatocellular carcinoma. Cancer Med 2020; 9:2868-2878. [PMID: 32068352 PMCID: PMC7163092 DOI: 10.1002/cam4.2921] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/01/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Hepatocellular carcinoma (HCC) has become the second most common tumor type that contributes to cancer‐related death worldwide. The study aimed to establish a robust immune‐related gene pair (IRGP) signature for predicting the prognosis of HCC patients. Methods Two RNA‐seq datasets (The Cancer Genome Atlas Program and International Cancer Genome Consortium) and one microarray dataset (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520) were included in this study. We used a series of immune‐related genes from the ImmPort database to construct gene pairs. Lasso penalized Cox proportional hazards regression was employed to develop the best prognostic signature. We assigned patients into two groups with low immune risk and high immune risk. Then, the prognostic ability of the signature was evaluated by a log‐rank test and a Cox proportional hazards regression model. Results After 1000 iterations, the 33‐immune gene pair model obtained the highest frequency. As a result, we chose the 33 immune gene pairs to establish the immune‐related prognostic signature. As we expected, the immune‐related signature accurately predicted the prognosis of HCC patients, and high‐risk groups showed poor prognosis in the training datasets and testing datasets as well as in the validation datasets. Furthermore, the immune‐related gene pair (IRGP) signature also showed higher predictive accuracy than three existing prognostic signatures. Conclusion Our prognostic signature, which reflects the link between the immune microenvironment and HCC patient outcome, is promising for prognosis prediction in HCC.
Collapse
Affiliation(s)
- Xiao-Yan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Shi-Zhe Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Hua-Peng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Jeon KI, Nehrke K, Huxlin KR. Semaphorin 3A potentiates the profibrotic effects of transforming growth factor-β1 in the cornea. Biochem Biophys Res Commun 2020; 521:333-339. [PMID: 31668808 DOI: 10.1016/j.bbrc.2019.10.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 11/16/2022]
Abstract
Corneal scarring is a major cause of blindness worldwide with few effective therapeutic options. Finding a treatment would be of tremendous public health benefit, but requires a thorough understanding of the complex interactions that underlie this phenomenon. Here, we tested the hypothesis that the large increase in expression of Semaphorin 3A (SEMA3A) in corneal wounds contributes to the development of stromal fibrosis. We first verified this increased expression in vivo, in a cat model of photorefractive keratectomy-induced corneal wounding. We then examined the impact of adding exogenous SEMA3A to cultured corneal fibroblasts, and assessed how this affected the ability of transforming growth factor-beta1 (TGF-β1) to induce their differentiation into myofibroblasts. Finally, we examined how siRNA knockdown of endogenous SEMA3A affected these same phenomena. We found exogenous SEMA3A to significantly potentiate TGF-β1's profibrotic effects, with only a minimal contribution from cell-intrinsic SEMA3A. Our results suggest a previously unrecognized interaction between SEMA3A and TGF-β1 in the wounded cornea, and a possible contribution of SEMA3A to the regulation of tissue fibrosis and remodeling in this transparent organ.
Collapse
Affiliation(s)
| | - Keith Nehrke
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
20
|
Ding W, Tan Y, Qian Y, Xue W, Wang Y, Jiang P, Xu X. Clinicopathologic and prognostic significance of tumor-associated macrophages in patients with hepatocellular carcinoma: A meta-analysis. PLoS One 2019; 14:e0223971. [PMID: 31618252 PMCID: PMC6795444 DOI: 10.1371/journal.pone.0223971] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Tumor-associated macrophages (TAMs) deserve more focus because of its clinicopathologic and prognostic roles in solid tumors. However, the prognostic value of TAMs in patients with hepatocellular carcinoma (HCC) is still controversial. We performed a meta-analysis to resolve the issue. METHODS We selected relevant studies from the Cochrane Library, Embase and PubMed databases. The hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated employing fixed-effect or random-effect models depending on the heterogeneity of the included trials. Moreover, we also performed subgroup analysis, cumulative meta-analysis, sensitivity analysis, and bias analysis (Egger's test). RESULTS A total of 20 observational studies with 4297 patients were enrolled. For TAMs subsets, high density of CD68+ TAMs in either intratumor (IT) (pooled HR = 1.417; 95% CI = 1.092-1.839; P = 0.009) or peritumor (PT) (pooled HR = 1.393; 95% CI = 1.022-1.899; P = 0.036) was associated with a poor OS. High density of CD68+ TAMs in IT was also associated with high AFP value, large tumor size, absent encapsulation, present vascular invasion, and later tumor-nodes-metastasis (TNM) stage. High density of CD163+ macrophages in serum was associated with a poor OS (pooled HR = 5.698; 95% CI = 3.062-10.603; P < 0.001). High density of CD204+ TAMs in IT was associated with a poor OS (pooled HR = 1.947; 95% CI = 1.387-2.733; P < 0.001. High density of CD206+ TAMs in IT was associated with a poor OS (pooled HR = 1.723; 95% CI = 1.308-2.270; P < 0.001) and DFS (pooled HR = 1.711; 95% CI = 1.214-2.412; P = 0.002). However, high density of CD169+ TAMs in IT was associated with a good OS (pooled HR = 0.471; 95% CI = 0.343-0.647; P = 0.037). CONCLUSIONS TAMs could serve as independent predictive indicators and therapeutic targets for HCC. Further trials are needed to elucidate the exact relationship and the underlying mechanism.
Collapse
Affiliation(s)
- Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Yulin Tan
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Yan Qian
- Department of Respiration, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Wenbo Xue
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Yibo Wang
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Peng Jiang
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Xuezhong Xu
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| |
Collapse
|
21
|
Tan G. Inhibitory effects of Semaphorin 3F as an alternative candidate to anti-VEGF monoclonal antibody on angiogenesis. In Vitro Cell Dev Biol Anim 2019; 55:756-765. [DOI: 10.1007/s11626-019-00392-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
|
22
|
Zhang J, Chang L, Zhang X, Zhou Z, Gao Y. Meta-Analysis of the Prognostic and Clinical Value of Tumor-Associated Macrophages in Hepatocellular Carcinoma. J INVEST SURG 2019; 34:297-306. [PMID: 31412745 DOI: 10.1080/08941939.2019.1631411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Tumor-associated macrophages (TAMs) are key components of the cancer microenvironment. This meta-analysis aimed to determine the association between TAMs and hepatocellular carcinoma (HCC). Methods: All studies investigating macrophages in HCC from January 2008 to May 2018 were retrieved by searching the Cochrane Library, EMBASE, PubMed, Chinese National Knowledge Infrastructure, and Wanfang databases. The associations of TAMs with overall survival (OS), disease-free survival (DFS) and the corresponding hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were pooled for analysis. Heterogeneity was assessed by using the Q test and I2 statistic. Statistical analyses were performed with Stata 13.0. Results: Seventeen articles with a total of 3547 patients were included in this meta-analysis. The pooled analysis showed that a high density of M2 TAMs in intratumor (IT) was significantly correlated with OS (HR = 1.58, 95%CI = 1.15-2.00), and the subgroup analysis suggested the significant difference in CD206+M2 TAMs (HR = 1.74, 95%CI = 1.26-2.21). However, the high expression levels of CD68+M1 TAMs in the IT or peritumor (PT) were not related with OS (CD68 in IT:HR = 1.30, 95%CI = 0.88-1.72;CD68 in PT:HR = 1.39, 95%CI = 0.93-1.85). Furthermore, a high density of CD206+M2 TAMs in IT showed a significant association with vascular invasion (OR = 2.18, 95%CI = 1.38-3.44) and more advanced TNM stage (OR = 2.38, 95%CI = 1.12-5.07). Conclusions: CD68+M1 TAMs have no prognostic effects on OS.A high density of M2 TAMs in IT is associated with poor prognosis in HCC, and CD206+ M2 TAMs can be used as a prognostic biomarker in HCC. However, the limit sample sizes might cause potential publication bias, thus more trails on CD206 are needed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of the Oncology, Shuguang Hospital, Shanghai, China
| | - Lisheng Chang
- Department of the Oncology, Shuguang Hospital, Shanghai, China
| | - Xin Zhang
- Department of Hepatopathy, Shuguang Hospital, Shanghai, China
| | - Zhenhua Zhou
- Department of Hepatopathy, Shuguang Hospital, Shanghai, China
| | - Yueqiu Gao
- Department of Hepatopathy, Shuguang Hospital, Shanghai, China
| |
Collapse
|
23
|
Karpuz T, Araz M, Korkmaz L, Kılınc I, Findik S, Karaagaç M, Eryilmaz MK, Artac M. The Prognostic Value of Serum Semaphorin3A and VEGF Levels in Patients with Metastatic Colorectal Cancer. J Gastrointest Cancer 2019; 51:491-497. [PMID: 31218581 DOI: 10.1007/s12029-019-00263-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Despite new treatment options in metastatic colorectal cancer (mCRC), new prognostic markers are still needed to determine optimal chemoregimen especially for anti-angiogenesis drugs. In this study, we evaluated the serum semaphorin and VEGF-A levels as prognostic factors in patients with mCRC. METHODS Patients with diagnosed mCRC who were treated with first-line bevacizumab plus chemotherapy were included in the study. Venous blood samples of 37 patients with metastatic colon cancer were taken, and serum semaphorin 3A and VEGF-A levels were studied in pre-treatment and the 1st and third months after the treatment was initiated. RESULTS Totally, 37 patients were enrolled in the study. The patients' mean age was 62 years. Twenty-eight (49%) of the patients were male, and 19 (51%) were female. Serum semaphorin3A (sema3A) levels of the patients were 5.4 ± 7.4 ng/ml before the treatment, 3.5 ± 3.3 ng/ml at the first month, and 3.5 ± 3.7 ng/ml at the third month. Serum VEGF-A levels were 27.7 ± 32.9 ng/l before the treatment, 23.1 ± 28.1 ng/l at the first month, and 28.9 ± 30.2 ng/l at the third month. There was no significant correlation between the survival and pre-treatment VEGF-A level (p = 0.064). Overall survival (OS) was statistically significantly higher in patients with pre-treatment semaphorin 3A levels below 5.4 ng/ml than higher than 5.4 ng/ml (10.5 months vs 4.5 months, respectively, HR 0.23, 95% CI 19.635-11,391, p = 0.012). CONCLUSION Pre-treatment semaphorin 3A level can be a prognostic marker for the mCRC patients who were treated with bevacizumab in patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Tuba Karpuz
- Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| | - Murat Araz
- Department of Internal Medicine and Medical Oncology, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey.
| | - Levent Korkmaz
- Department of Internal Medicine and Medical Oncology, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| | - Ibrahim Kılınc
- Department of Biochemistry, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| | - Sidika Findik
- Department of Pathology, Saraykoy Akyokus Street, Necmettin Erbakan University Meram Faculty of Medicine, postal code, 42080, Konya, Turkey
| | - Mustafa Karaagaç
- Department of Internal Medicine and Medical Oncology, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| | - Melek Karakurt Eryilmaz
- Department of Internal Medicine and Medical Oncology, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| | - Mehmet Artac
- Department of Internal Medicine and Medical Oncology, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| |
Collapse
|
24
|
Brick LA, Marraccini ME, Micalizzi L, Benca-Bachman CE, Knopik VS, Palmer RHC. Overlapping genetic effects between suicidal ideation and neurocognitive functioning. J Affect Disord 2019; 249:104-111. [PMID: 30769295 PMCID: PMC6937431 DOI: 10.1016/j.jad.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/18/2019] [Accepted: 02/05/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Suicide is the second leading cause of death among adolescents and young adults. Several studies have indicated significant genetic influences on suicide-related phenotypes and mounting evidence from neurobiological research has linked deficits in neurocognitive abilities to suicide phenotypes. The goal of the present study was to estimate the heritability of suicidal ideation (SI) in a large sample of adolescents and determine if SI is genetically correlated with neurocognitive functioning. METHODS Genome-wide data (N = 3564 unrelated individuals of European Ancestry) were drawn from the Philadelphia Neurodevelopment Cohort. Adolescents completed a psychiatric assessment, as well as a computerized neurocognitive battery to assess performance across four domains: memory, executive function, social cognition, and complex cognition. Genomic-relatedness-matrix restricted maximum likelihood (GREML) estimation was used to determine SNP-heritability (h2SNP) of SI and the genetic correlation (rG) between SI and neurocognitive domains. RESULTS Nearly 17% of adolescents reported SI. The SNP-heritability estimate for SI was marginally significant (h2SNP = 11%, SE = 8%, p = 0.086). Bivariate analyses indicated a significant rG between SI and emotion identification (rG = 0.79, SE = 0.45, p = 0.006; phenotypic correlation r = 0.04, p = 0.017). LIMITATIONS It is possible that SI may represent a related, but differentially heritable construct from suicide attempts/completion and other comorbid psychopathology. Additionally, though genetic correlations point to shared genetic factors across traits, direct causal mechanisms cannot be deduced. CONCLUSIONS Common heritable factors contribute to variation in SI and neurocognitive functioning. Genetic factors influencing emotion identification have significant genetic overlap with SI.
Collapse
Affiliation(s)
- Leslie A Brick
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | - Marisa E Marraccini
- School of Education, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren Micalizzi
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
| | - Chelsie E Benca-Bachman
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Rohan H C Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
25
|
Semaphorin Signaling in Cancer-Associated Inflammation. Int J Mol Sci 2019; 20:ijms20020377. [PMID: 30658382 PMCID: PMC6358995 DOI: 10.3390/ijms20020377] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.
Collapse
|
26
|
Ding W, Cao Y, Xing F, Tao M, Fu H, Luo H, Yang X. A Preliminary Study of the Effect of Semaphorin 3A and Acitretin on the Proliferation, Migration, and Apoptosis of HaCaT Cells. Indian J Dermatol 2019; 64:250. [PMID: 31148871 PMCID: PMC6537688 DOI: 10.4103/ijd.ijd_179_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Vascular endothelial growth factor (VEGF) is significantly elevated in psoriatic patients and is associated with the severity of the psoriasis. Due to the effect of inhibiting production of VEGF, acitretin can effectively treat psoriasis. Semaphorin 3A (Sema3A) restrain tumor growth and angiogenesis by partially reversing VEGF effects on tumor. However, the role of Sema3A in the pathogenesis of psoriasis is unclear. Aims and Objectives: This study aimed to investigate the effect of VEGF, Sema3A, and acitretin on HaCaT cells, to see whether Sema3A could be a beneficial factor in psoriasis, as well as acitretin. Materials and Methods: Functional analysis of VEGF, Sema3A, and acitretin was carried out using HaCaT cells cultured under different treatments. Cell counting kit-8 method, colony formation assay, flow cytometry, transwell migration, reverse transcription-polymerase chain reaction, and Western blot test were performed to measure proliferation, colony formation, migration, apoptosis, and the expression of Bcl2, Bax, Caspase 3, and Caspase 9 of HaCaT cells. Results: Sema3A and acitretin inhibited the proliferation, colony formation, and migration of HaCaT cells, while induced the apoptosis of HaCaT cells by inhibiting the expression of Bcl2, and promoting the expression of Bax, Caspase 3, and Caspase 9, which were opposite to VEGF. Sema3A and acitretin partially reversed the function of VEGF. Conclusions: Like acitretin, exogenous supplement of Sema3A may correct the abnormal proliferation and apoptosis procedure of HaCaT cells, and partially reverse the function of VEGF.
Collapse
Affiliation(s)
- Wei Ding
- Department of Dermatology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengling Xing
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Maocan Tao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyang Fu
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongbin Luo
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaohong Yang
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
27
|
Parsa S, Sharifzadeh S, Monabati A, Seyyedi N, Ranjbaran R, Baghbani MR, Nemati M, Jafarzadeh A. Overexpression of Semaphorin-3A and Semaphorin-4D in the Peripheral Blood from Newly Diagnosed Patients with Chronic Lymphocytic Leukemia. Int J Hematol Oncol Stem Cell Res 2019; 13:25-34. [PMID: 31205625 PMCID: PMC6557972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Semaphorins play prominent roles in physiological and pathological processes such as vascular development, tumor growth and immune responses. Semaphorins have different roles in various kinds of cancers, but there is no study concerning their expression in the chronic lymphocytic leukemia (CLL). This study aimed to assess the SEMA3A, SEMA4A and SEMA4D expression in patients with CLL. Materials and Methods: Peripheral blood specimens were collected from 30 newly-diagnosed untreated patients with CLL and 30 healthy subjects as a control group. The SEMA3A, SEMA4A and SEMA4D expression was determined by real-time PCR method. Results: The fold change expression of SEMA3A and SEMA4D was 7.58 ± 2.66 and 3.20 ± 0.99 in patients with CLL, and was 1.01 ± 0.31 and 1.00 ± 0.27 in healthy subjects, respectively. The CLL patients expressed higher amounts of SEMA3A and SEMA4D in comparison with healthy subjects (P<0.02 and P<0.03, respectively). The fold change expression of SEMA3A in patients with stage II (11.12 ± 5.35) was also higher than patients with stage I (4.49 ± 1.61, P<0.05). No significant difference was also observed in the expression of SEMA4A and SEMA4D between patients with stage I and stage II CLL. In both CLL and control groups, the fold change expression of SEMA3A was higher in men than in women (P<0.03 and P<0.02, respectively). Conclusion: The results of the study indicated elevated expression of the SEMA3A and SEMA4D in patients with CLL. The SEMA3A expression was influenced by tumor stage and gender of participants.
Collapse
Affiliation(s)
- Somayeh Parsa
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Science and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Noorossadat Seyyedi
- Diagnostic Laboratory Science and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbaran
- Diagnostic Laboratory Science and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Baghbani
- Diagnostic Laboratory Science and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nemati
- Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran,Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
28
|
Guo JC, Wu Y, Chen Y, Pan F, Wu ZY, Zhang JS, Wu JY, Xu XE, Zhao JM, Li EM, Zhao Y, Xu LY. Protein-coding genes combined with long noncoding RNA as a novel transcriptome molecular staging model to predict the survival of patients with esophageal squamous cell carcinoma. Cancer Commun (Lond) 2018; 38:4. [PMID: 29784063 PMCID: PMC5993132 DOI: 10.1186/s40880-018-0277-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/18/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal carcinoma in China. This study was to develop a staging model to predict outcomes of patients with ESCC. METHODS Using Cox regression analysis, principal component analysis (PCA), partitioning clustering, Kaplan-Meier analysis, receiver operating characteristic (ROC) curve analysis, and classification and regression tree (CART) analysis, we mined the Gene Expression Omnibus database to determine the expression profiles of genes in 179 patients with ESCC from GSE63624 and GSE63622 dataset. RESULTS Univariate cox regression analysis of the GSE63624 dataset revealed that 2404 protein-coding genes (PCGs) and 635 long non-coding RNAs (lncRNAs) were associated with the survival of patients with ESCC. PCA categorized these PCGs and lncRNAs into three principal components (PCs), which were used to cluster the patients into three groups. ROC analysis demonstrated that the predictive ability of PCG-lncRNA PCs when applied to new patients was better than that of the tumor-node-metastasis staging (area under ROC curve [AUC]: 0.69 vs. 0.65, P < 0.05). Accordingly, we constructed a molecular disaggregated model comprising one lncRNA and two PCGs, which we designated as the LSB staging model using CART analysis in the GSE63624 dataset. This LSB staging model classified the GSE63622 dataset of patients into three different groups, and its effectiveness was validated by analysis of another cohort of 105 patients. CONCLUSIONS The LSB staging model has clinical significance for the prognosis prediction of patients with ESCC and may serve as a three-gene staging microarray.
Collapse
Affiliation(s)
- Jin-Cheng Guo
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
| | - Yang Wu
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 P. R. China
| | - Yang Chen
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
| | - Feng Pan
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
| | - Zhi-Yong Wu
- Departments of Oncology Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, Guangdong 515041 P. R. China
| | - Jia-Sheng Zhang
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
| | - Jian-Yi Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
| | - Xiu-E Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
| | - Jian-Mei Zhao
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
| | - En-Min Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 P. R. China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041 P. R. China
| |
Collapse
|
29
|
Abstract
Several neuronal guidance proteins, known as semaphorin molecules, function in the immune system. This dual tissue performance has led to them being defined as "neuroimmune semaphorins". They have been shown to regulate T cell activation by serving as costimulatory molecules. Similar to classical costimulatory molecules, neuroimmune semaphorins are either constitutively or inducibly expressed on immune cells. In contrast to the classical costimulatory molecule function, the action of neuroimmune semaphorins requires the presence of two signals, the first one provided by TCR/MHC engagement, and the second one provided by B7/CD28 interaction. Thus, neuroimmune semaphorins serve as a "signal three" for immune cell activation and regulate the overall intensity of immune response. The current knowledge on their structures, multiple receptors, specific cell/tissue/organ expression, and distinct functions in different diseases are summarized and discussed in this review.
Collapse
Affiliation(s)
- Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- SemaPlex LLC, Ellicott City, MD, USA.
| |
Collapse
|
30
|
Vadasz Z, Rubinstein J, Bejar J, Sheffer H, Halachmi S. Overexpression of semaphorin 3A in patients with urothelial cancer. Urol Oncol 2017; 36:161.e1-161.e6. [PMID: 29288007 DOI: 10.1016/j.urolonc.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE A highly sensitive and specific urine marker for the detection of recurrent urothelial cancer and for screening healthy population or people at risk for urothelial cancer has not been found yet. As urine cytology is not sensitive enough, patients with non-muscle-invasive bladder cancer need lifelong follow-up involving multiple invasive cystoscopies. Our aims of study were to examine the expression of semaphorin 3A in urothelial cancer patients and to evaluate semaphorin 3A as a potential marker for urothelial cancer. MATERIALS AND METHODS Urine samples were taken from patients with known bladder tumor, hospitalized for transurethral resection of lesions, from patients with history of urothelial cancer admitted for endoscopic follow up, from patients with other nonmalignant urological conditions such as prostatic hyperplasia, stress incontinence, urethral stricture, ureteral and kidney stones, and from healthy volunteers with no history of urothelial malignancy and no urological symptoms. Semaphorin 3A (sema3A) protein level was measured using enzyme-linked immunosorbent assay in every sample and levels were correlated with endoscopic and pathological findings. In addition, we performed immunohistochemically staining with semaphorin 3A of 15 tissue samples (various tumors and normal bladder tissues). RESULTS A total of 183 urine samples were tested. Out of them, 116 patients (mean age 70.7; 94 males and 22 females) had positive cystoscopy, and 67 (mean age 64.7; 51 males and 16 females) had negative cystoscopy. Higher sema3A values were significantly correlated (P = 0.006) with presence of urothelial cancer, as determined by positive cystoscopy or urethroscopy and pathological biopsy. Sema3A levels also showed positive correlation with the number of tumors. Sema3A levels combined with urine cytology showed much higher sensitivity compared with cytology alone (66% vs. 33%), with smaller reduction of specificity (77% vs. 90%). Immunohistochemical staining showed intense staining in high stage and grade tumors, and almost no staining in normal tissue. CONCLUSIONS Semaphorin 3A is overexpressed in urothelial cancer patients, as evidenced both in its presence in urine and in bladder tissue. Semaphorin 3A in urine is a promising potential urothelial cancer biomarker either independently or in conjunction with cytology. Further tests are needed to elucidate the sex difference in the expression of Sema3A in the urine of bladder cancer patients.
Collapse
Affiliation(s)
- Zahava Vadasz
- The Department of Clinical Immunology, Bnai Zion Medical Center, Haifa, Israel
| | - Jacob Rubinstein
- The Department of Mathematic, Technion, Israeli Institute of Technology, Haifa, Israel
| | - Jacob Bejar
- The Department of Pathology, Bnai Zion Medical Center, Haifa, Israel
| | - Hilla Sheffer
- The Department of Pathology, Bnai Zion Medical Center, Haifa, Israel
| | - Sarel Halachmi
- The Department of Urology, Bnai Zion Medical Center, Haifa, Israel.
| |
Collapse
|
31
|
Lee J, Shin YJ, Lee K, Cho HJ, Sa JK, Lee SY, Kim SH, Lee J, Yoon Y, Nam DH. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress Glioblastoma Tumor Growth. Cancer Res Treat 2017; 50:1009-1022. [PMID: 29129044 PMCID: PMC6056981 DOI: 10.4143/crt.2017.315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/30/2017] [Indexed: 11/21/2022] Open
Abstract
Purpose Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. Materials and Methods We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3AmRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. Results By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. Conclusion In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.
Collapse
Affiliation(s)
- Jaehyun Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Yong Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoungmin Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Cho
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jason K Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang-Yun Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Seok-Hyung Kim
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yeup Yoon
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Sumi S, Umemura N, Takayama E, Ohkoshi E, Adachi M, Mizuno-Kamiya M, Inagaki T, Kawaki H, Sumitomo S, Kondoh N. Metastasized murine oral squamous cell carcinoma cells induce intratumoral polymorphonuclear myeloid derived suppressor cells. Oncol Rep 2017; 37:2897-2904. [PMID: 28405677 DOI: 10.3892/or.2017.5575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/20/2017] [Indexed: 11/06/2022] Open
Abstract
Myeloid derived suppressor cells (MDSCs) localize to hematopoietic organs and peripheral blood during inflammation or tumor tissues and lymph nodes in the presence of a tumor. However, whether there are differences in MDSCs found in the primary tumor and metastases is unknown. In the present study, we established a cell line of metastasized tumor cells to a lymph node, L5-11, which were derived from the Sq-1979 mouse buccal mucosa squamous cell carcinoma cell line. We then analyzed tumor immunogenicity, especially with regard to MDSCs, to clarify the differences between the primary tumor and metastases, using an isogenic heterotopic tumor transplantation model. Our data showed that the population of intratumoral MDSCs, especially polymorphonuclear MDSCs in the lymph node metastasis model were significantly increased compared with syngeneic grafts from the primary cell line Sq-1979 after 21 days. Furthermore, we identified that the lymph node metastasis cell line had increased expression of genes that promote the expansion of MDSCs, tumor growth and metastasis. Hence, these data suggest that tumor immunosuppression can occur via activation of MDSCs. However, further examination is required to clarify whether all or a subset of these factors from the lymph node metastasis tumor cells are required to induce intratumoral MDSCs.
Collapse
Affiliation(s)
- Shigeki Sumi
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry, Gifu 501‑0296, Japan
| | - Naoki Umemura
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu 501‑0296, Japan
| | - Eiji Takayama
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu 501‑0296, Japan
| | - Emika Ohkoshi
- Department of Natural and Medicinal Chemistry, Faculty of Pharmaceutical Sciences Aomori University, Aomori 030-0943, Japan
| | - Makoto Adachi
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry, Gifu 501‑0296, Japan
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory Department of Management and Information Studies, Asahi University School of Business Administration, Gifu 501-0296, Japan
| | - Toshihiro Inagaki
- Department of Oral and Maxillofacial Surgery, Division of Reparative and Regenerative Medicine, Institute of Medical Science, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu 501‑0296, Japan
| | - Shinichiro Sumitomo
- Department of Oral and Maxillofacial Surgery, Asahi University School of Dentistry, Gifu 501‑0296, Japan
| | - Nobuo Kondoh
- Department of Oral Biochemistry, Asahi University School of Dentistry, Gifu 501‑0296, Japan
| |
Collapse
|
33
|
Increased semaphorin 3c expression promotes tumor growth and metastasis in pancreatic ductal adenocarcinoma by activating the ERK1/2 signaling pathway. Cancer Lett 2017; 397:12-22. [PMID: 28315433 DOI: 10.1016/j.canlet.2017.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Pancreatic cancer is characterized by neural alterations and aberrant expression of neural-specific factors. Semaphorins have been recognized as key contributors in axon guidance, the immune response and tumor progression. Recent studies have suggested the involvement of Semaphorin 3c (sema3c) in tumorigenesis and metastasis in numerous types of cancer, however, the clinical significance of sema3c and its role in the growth and metastasis of pancreatic ductal adenocarcinoma (PDAC) remain unclear. In this study, we found that aberrant sema3c expression was positively associated with a particular tumor stage and correlated with poor survival of PDAC patients. Knockdown of sema3c attenuated proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in a pancreatic cancer cell line and reduced PDAC cell tumorigenesis upon xenotransplantation into NOD/SCID mice. Overexpression of sema3c produced the opposite effects and promoted the extracellular signal-regulated kinase (ERK)1/2 signaling pathway. Overall, our findings demonstrate that aberrant expression of sema3c is correlated with poor prognosis of PDAC patients and promotes tumor growth and metastasis by activating ERK1/2 signaling pathway.
Collapse
|