1
|
Ozdil B, Avci CB, Calik-Kocaturk D, Gorgulu V, Uysal A, Güler G, Karabay Yavaşoğlu NÜ, Aktug H. Modulating Cancer Stem Cell Characteristics in CD133+ Melanoma Cells through Hif1α, KLF4, and SHH Silencing. ACS OMEGA 2025; 10:16804-16814. [PMID: 40321496 PMCID: PMC12044452 DOI: 10.1021/acsomega.5c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Malignant melanoma is a highly aggressive form of skin cancer, partly driven by a subset of cancer stem cells (CSCs) with remarkable capacities for self-renewal, differentiation, and resistance to therapy. In this study, we examined how silencing three key genes-Hif1α, KLF4, and SHH-affects CSC characteristics. Using small interfering RNA (siRNA)-based approaches, we observed significant changes at both the gene and protein levels, shedding light on how these pathways influence melanoma progression. Our results demonstrated that silencing these genes reduces the stem-like features of CSCs. Notably, Hif1α silencing triggered a marked decrease in hypoxia-related gene expression, while targeting SHH led to a reduction in Gli1, a downstream effector of SHH signaling, highlighting its potential as a therapeutic target. We also observed changes in epigenetic markers such as HDAC9 and EP300, which play crucial roles in maintaining stemness and regulating gene expression. Interestingly, these interventions appeared to reprogram CSCs, pushing them toward a phenotype distinct from both traditional CSCs and non-stem cancer cells (NCSCs). Our findings emphasize the importance of targeting key signaling pathways in melanoma CSCs and underscore the value of mimicking the tumor microenvironment in experimental models. By revealing the dynamic plasticity of melanoma CSCs, this study offers fresh insights into potential therapeutic strategies, particularly using siRNA to modulate pathways associated with tumor progression and stem cell behavior.
Collapse
Affiliation(s)
- Berrin Ozdil
- Department
of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Turkey
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
- Department
of Physics, Biophysics Laboratory, Izmir
Institute of Technology, Izmir 35430, Turkey
| | - Cigir Biray Avci
- Department
of Medical Biology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | | | - Volkan Gorgulu
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Aysegul Uysal
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Günnur Güler
- Department
of Physics, Biophysics Laboratory, Izmir
Institute of Technology, Izmir 35430, Turkey
| | | | - Huseyin Aktug
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| |
Collapse
|
2
|
Wu Y, You Y, Jiang T, He Y, Fan Q, Zeng X, Li T, Lu Y, Qi L, Zhou F, Sun L, Wang D, Zou Y, Zhang G, Yuan Y, Mao Y. Proximity Labeling and Genetic Screening Reveal that DSG2 is a Counter Receptor of Siglec-9 and Suppresses Macrophage Phagocytosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406654. [PMID: 39813162 PMCID: PMC11884560 DOI: 10.1002/advs.202406654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/23/2024] [Indexed: 01/18/2025]
Abstract
Cancer cells present sialylated glycoconjugates that modulate the activity of various immune cells within the tumor microenvironment through trans interaction with immunosuppressive Siglec receptors. Identifying counter receptors for Siglecs can provide valuable targets for cancer immunotherapy, but it presents significant challenges. Here, the identification of DSG2 (Desmoglein 2) as a dominant counter receptor of Siglec-9 in melanoma cells is reported, using a workflow that combines the strength of proximity labeling and the advantage of CRISPR knockout screening. It is further demonstrated that the interaction between DSG2 and Siglec-9 is mainly dependent on sialic acid-bearing N-glycans on DSG2. Importantly, blocking trans interaction between DSG2 and Siglec-9 significantly enhances macrophage phagocytosis of melanoma cells and, to a lesser extent, other cancer cells. The work thus suggests sialylated DSG2 as a potential "don't eat me" signal molecule with therapeutic potentials in cancer immunotherapy.
Collapse
Affiliation(s)
- Ying Wu
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yuyu You
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Tingsong Jiang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yuqi He
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Qingchi Fan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Xinlei Zeng
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Ting Li
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yuxing Lu
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Liang Qi
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Fengxia Zhou
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Lingyu Sun
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Danyang Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510275China
| | - Yong Zou
- Department of Blood TransfusionThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510000China
| | - Guigen Zhang
- Institute of Human VirologyDepartment of Pathogen Biology and Biosecurityand Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Yanqiu Yuan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
- State Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yang Mao
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
- Guangdong Provincial Key Laboratory of Drug Non‐Clinical Evaluation and ResearchGuangzhou510006China
| |
Collapse
|
3
|
Green KJ, Pokorny J, Jarrell B. Dangerous liaisons: Loss of keratinocyte control over melanocytes in melanomagenesis. Bioessays 2024; 46:e2400135. [PMID: 39233509 PMCID: PMC11626500 DOI: 10.1002/bies.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Melanomas arise from transformed melanocytes, positioned at the dermal-epidermal junction in the basal layer of the epidermis. Melanocytes are completely surrounded by keratinocyte neighbors, with which they communicate through direct contact and paracrine signaling to maintain normal growth control and homeostasis. UV radiation from sunlight reshapes this communication network to drive a protective tanning response. However, repeated rounds of sun exposure result in accumulation of mutations in melanocytes that have been considered as primary drivers of melanoma initiation and progression. It is now clear that mutations in melanocytes are not sufficient to drive tumor formation-the tumor environment plays a critical role. This review focuses on changes in melanocyte-keratinocyte communication that contribute to melanoma initiation and progression, with a particular focus on recent mechanistic insights that lay a foundation for developing new ways to intercept melanoma development.
Collapse
Affiliation(s)
- Kathleen J. Green
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoUSA
- Department of DermatologyNorthwestern University Feinberg School of MedicineChicagoUSA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern UniversityChicagoUSA
| | - Jenny Pokorny
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoUSA
| | - Brieanna Jarrell
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoUSA
| |
Collapse
|
4
|
Thompson EJ, Escarbe S, Tvorogov D, Farshid G, Gregory PA, Khew-Goodall Y, Madden S, Ingman WV, Lindeman GJ, Lim E, Lopez AF, Bonder CS. Interleukin-3 production by basal-like breast cancer cells is associated with poor prognosis. Growth Factors 2024; 42:49-61. [PMID: 38299881 DOI: 10.1080/08977194.2023.2297693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Breast cancer represents a collection of pathologies with different molecular subtypes, histopathology, risk factors, clinical behavior, and responses to treatment. "Basal-like" breast cancers predominantly lack the receptors for estrogen and progesterone (ER/PR), lack amplification of human epidermal growth factor receptor 2 (HER2) but account for 10-15% of all breast cancers, are largely insensitive to targeted treatment and represent a disproportionate number of metastatic cases and deaths. Analysis of interleukin (IL)-3 and the IL-3 receptor subunits (IL-3RA + CSF2RB) reveals elevated expression in predominantly the basal-like group. Further analysis suggests that IL-3 itself, but not the IL-3 receptor subunits, associates with poor patient outcome. Histology on patient-derived xenografts supports the notion that breast cancer cells are a significant source of IL-3 that may promote disease progression. Taken together, these observations suggest that IL-3 may be a useful marker in solid tumors, particularly triple negative breast cancer, and warrants further investigation into its contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Emma J Thompson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Samantha Escarbe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Gelareh Farshid
- BreastScreen SA and SA Pathology, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Australia
| | | | - Wendy V Ingman
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- The Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Geoffrey J Lindeman
- Cancer Biology and Stem Cells Division, Walter, Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research and St. Vincent"s Clinical School, University of New South Wales, Darlinghurst,Australia
| | - Angel F Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
5
|
El‐Ayoubi A, Arakelyan A, Klawitter M, Merk L, Hakobyan S, Gonzalez‐Menendez I, Quintanilla Fend L, Holm PS, Mikulits W, Schwab M, Danielyan L, Naumann U. Development of an optimized, non-stem cell line for intranasal delivery of therapeutic cargo to the central nervous system. Mol Oncol 2024; 18:528-546. [PMID: 38115217 PMCID: PMC10920084 DOI: 10.1002/1878-0261.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Neural stem cells (NSCs) are considered to be valuable candidates for delivering a variety of anti-cancer agents, including oncolytic viruses, to brain tumors. However, owing to the previously reported tumorigenic potential of NSC cell lines after intranasal administration (INA), here we identified the human hepatic stellate cell line LX-2 as a cell type capable of longer resistance to replication of oncolytic adenoviruses (OAVs) as a therapeutic cargo, and that is non-tumorigenic after INA. Our data show that LX-2 cells can longer withstand the OAV XVir-N-31 replication and oncolysis than NSCs. By selecting the highly migratory cell population out of LX-2, an offspring cell line with a higher and more stable capability to migrate was generated. Additionally, as a safety backup, we applied genomic herpes simplex virus thymidine kinase (HSV-TK) integration into LX-2, leading to high vulnerability to ganciclovir (GCV). Histopathological analyses confirmed the absence of neoplasia in the respiratory tracts and brains of immuno-compromised mice 3 months after INA of LX-2 cells. Our data suggest that LX-2 is a novel, robust, and safe cell line for delivering anti-cancer and other therapeutic agents to the brain.
Collapse
Affiliation(s)
- Ali El‐Ayoubi
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Arsen Arakelyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
| | - Moritz Klawitter
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Luisa Merk
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
| | - Siras Hakobyan
- Research Group of BioinformaticsInstitute of Molecular Biology NAS RAYerevanArmenia
- Armenian Institute of BioinformaticsYerevanArmenia
| | - Irene Gonzalez‐Menendez
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Leticia Quintanilla Fend
- Institute for Pathology, Department of General and Molecular PathologyUniversity Hospital TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der IsarTechnical University of MunichGermany
- Department of Oral and Maxillofacial SurgeryMedical University InnsbruckAustria
- XVir Therapeutics GmbHMunichGermany
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Matthias Schwab
- Cluster of Excellence iFIT (EXC 2180) "Image‐Guided and Functionally Instructed Tumor Therapies"Eberhard Karls University of TübingenGermany
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Lusine Danielyan
- Department of Pharmacy and BiochemistryUniversity of TübingenGermany
- Department of Clinical PharmacologyUniversity Hospital TübingenGermany
- Neuroscience Laboratory and Departments of Biochemistry and Clinical PharmacologyYerevan State Medical UniversityArmenia
| | - Ulrike Naumann
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center NeurologyUniversity Hospital of TübingenGermany
- Gene and RNA Therapy Center (GRTC)Faculty of Medicine University TübingenGermany
| |
Collapse
|
6
|
Reis MBE, Maximo AI, Magno JM, de Lima Bellan D, Buzzo JLA, Simas FF, Rocha HAO, da Silva Trindade E, Camargo de Oliveira C. A Fucose-Containing Sulfated Polysaccharide from Spatoglossum schröederi Potentially Targets Tumor Growth Rather Than Cytotoxicity: Distinguishing Action on Human Melanoma Cell Lines. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:181-198. [PMID: 38273163 DOI: 10.1007/s10126-024-10287-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Natural substances are strategic candidates for drug development in cancer research. Marine-derived molecules are of special interest due to their wide range of biological activities and sustainable large-scale production. Melanoma is a type of skin cancer that originates from genetic mutations in melanocytes. BRAF, RAS, and NF1 mutations are described as the major melanoma drivers, but approximately 20% of patients lack these mutations and are included in the triple wild-type (tripleWT) classification. Recent advances in targeted therapy directed at driver mutations along with immunotherapy have only partially improved patients' overall survival, and consequently, melanoma remains deadly when in advanced stages. Fucose-containing sulfated polysaccharides (FCSP) are potential candidates to treat melanoma; therefore, we investigated Fucan A, a FCSP from Spatoglossum schröederi brown seaweed, in vitro in human melanoma cell lines presenting different mutations. Up to 72 h Fucan A treatment was not cytotoxic either to normal melanocytes or melanoma cell lines. Interestingly, it was able to impair the tripleWT CHL-1 cell proliferation (57%), comparable to the chemotherapeutic cytotoxic drug cisplatin results, with the advantage of not causing cytotoxicity. Fucan A increased CHL-1 doubling time, an effect attributed to cell cycle arrest. Vascular mimicry, a close related angiogenesis process, was also impaired (73%). Fucan A mode of action could be related to gene expression modulation, in special β-catenin downregulation, a molecule with protagonist roles in important signaling pathways. Taken together, results indicate that Fucan A is a potential anticancer molecule and, therefore, deserves further investigation.
Collapse
Affiliation(s)
- Maíra Barbosa E Reis
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | - Jessica Maria Magno
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Daniel de Lima Bellan
- Cell Biology Department, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | | | - Hugo Alexandre Oliveira Rocha
- Biochemistry Department, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | | | | |
Collapse
|
7
|
Myo Min KK, Ffrench CB, McClure BJ, Ortiz M, Dorward EL, Samuel MS, Ebert LM, Mahoney MG, Bonder CS. Desmoglein-2 as a cancer modulator: friend or foe? Front Oncol 2023; 13:1327478. [PMID: 38188287 PMCID: PMC10766750 DOI: 10.3389/fonc.2023.1327478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Desmoglein-2 (DSG2) is a calcium-binding single pass transmembrane glycoprotein and a member of the large cadherin family. Until recently, DSG2 was thought to only function as a cell adhesion protein embedded within desmosome junctions designed to enable cells to better tolerate mechanical stress. However, additional roles for DSG2 outside of desmosomes are continuing to emerge, particularly in cancer. Herein, we review the current literature on DSG2 in cancer and detail its impact on biological functions such as cell adhesion, proliferation, migration, invasion, intracellular signaling, extracellular vesicle release and vasculogenic mimicry. An increased understanding of the diverse repertoire of the biological functions of DSG2 holds promise to exploit this cell surface protein as a potential prognostic biomarker and/or target for better patient outcomes. This review explores the canonical and non-canonical functions of DSG2, as well as the context-dependent impacts of DSG2 in the realm of cancer.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Charlie B. Ffrench
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Barbara J. McClure
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael Ortiz
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Emma L. Dorward
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Michael S. Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Basil Hetzel Institute, Queen Elizabeth Hospital, SA, Adelaide, Australia
| | - Lisa M. Ebert
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Mỹ G. Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Claudine S. Bonder
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
8
|
Multi-omics analysis based on 3D-bioprinted models innovates therapeutic target discovery of osteosarcoma. Bioact Mater 2022; 18:459-470. [PMID: 35415297 PMCID: PMC8971536 DOI: 10.1016/j.bioactmat.2022.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Current in vitro models for osteosarcoma investigation and drug screening, including two-dimensional (2D) cell culture and tumour spheroids (i.e. cancer stem-like cells), lack extracellular matrix (ECM). Therefore, results from traditional models may not reflect real pathological processes in genuine osteosarcoma histological structures. Here, we report a three-dimensional (3D) bioprinted osteosarcoma model (3DBPO) that contains osteosarcoma cells and shrouding ECM analogue in a 3D frame. Photo-crosslinkable bioinks composed of gelatine methacrylamide and hyaluronic acid methacrylate mimicked tumour ECM. We performed multi-omics analysis, including transcriptomics and DNA methylomics, to determine differences between the 3DBPO model and traditional models. Compared with 2D models and tumour spheroids, our 3DBPO model showed significant changes in cell cycle, metabolism, adherens junctions, and other pathways associated with epigenetic regulation. The 3DBPO model was more sensitive to therapies targeted to the autophagy pathway. We showed that simulating ECM yielded different osteosarcoma cell metabolic characteristics and drug sensitivity in the 3DBPO model compared with classical models. We suggest 3D printed osteosarcoma models can be used in osteosarcoma fundamental and translational research, which may contribute to novel therapeutic strategy discovery. 3DBPO model behaved better than traditional 2D and CSC models in simulating in vivo osteosarcoma microenvironment. 3DBPO model showed significant changes in many signaling pathways associated with epigenetic regulation. 3DBPO model was particularly sensitive to autophagy-related drugs.
Collapse
|
9
|
Chen J, Bie R, Qin Y, Li Y, Ma S. Lq-based robust analytics on ultrahigh and high dimensional data. Stat Med 2022; 41:5220-5241. [PMID: 36098057 DOI: 10.1002/sim.9563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 06/02/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022]
Abstract
Ultrahigh and high dimensional data are common in regression analysis for various fields, such as omics data, finance, and biological engineering. In addition to the problem of dimension, the data might also be contaminated. There are two main types of contamination: outliers and model misspecification. We develop an unique method that takes into account the ultrahigh or high dimensional issues and both types of contamination. In this article, we propose a framework for feature screening and selection based on the minimum Lq-likelihood estimation (MLqE), which accounts for the model misspecification contamination issue and has also been shown to be robust to outliers. In numerical analysis, we explore the robustness of this framework under different outliers and model misspecification scenarios. To examine the performance of this framework, we conduct real data analysis using the skin cutaneous melanoma data. When comparing with traditional screening and feature selection methods, the proposed method shows superiority in both variable identification effectiveness and parameter estimation accuracy.
Collapse
Affiliation(s)
- Jiachen Chen
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Ruofan Bie
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Yichen Qin
- Department of Operations, Business Analytics and Information Systems, University of Cincinnati, Cincinnati, OH, USA
| | - Yang Li
- Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing, China.,RSS and China-Re Life Joint Lab on Public Health and Risk Management, Renmin University of China, Beijing, China
| | - Shuangge Ma
- Department of Biostatistics, Boston University, Boston, MA, USA.,RSS and China-Re Life Joint Lab on Public Health and Risk Management, Renmin University of China, Beijing, China
| |
Collapse
|
10
|
Bahlmann NA, Tsoukas RL, Erkens S, Wang H, Jönsson F, Aydin M, Naumova EA, Lieber A, Ehrhardt A, Zhang W. Properties of Adenovirus Vectors with Increased Affinity to DSG2 and the Potential Benefits of Oncolytic Approaches and Gene Therapy. Viruses 2022; 14:v14081835. [PMID: 36016457 PMCID: PMC9412290 DOI: 10.3390/v14081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Carcinomas are characterized by a widespread upregulation of intercellular junctions that create a barrier to immune response and drug therapy. Desmoglein 2 (DSG2) represents such a junction protein and serves as one adenovirus receptor. Importantly, the interaction between human adenovirus type 3 (Ad3) and DSG2 leads to the shedding of the binding domain followed by a decrease in the junction protein expression and transient tight junction opening. Junction opener 4 (JO-4), a small recombinant protein derived from the Ad3 fiber knob, was previously developed with a higher affinity to DSG2. JO-4 protein has been proven to enhance the effects of antibody therapy and chemotherapy and is now considered for clinical trials. However, the effect of the JO4 mutation in the context of a virus remains insufficiently studied. Therefore, we introduced the JO4 mutation to various adenoviral vectors to explore their infection properties. In the current experimental settings and investigated cell lines, the JO4-containing vectors showed no enhanced transduction compared with their parental vectors in DSG2-high cell lines. Moreover, in DSG2-low cell lines, the JO4 vectors presented a rather weakened effect. Interestingly, DSG2-negative cell line MIA PaCa-2 even showed resistance to JO4 vector infection, possibly due to the negative effect of JO4 mutation on the usage of another Ad3 receptor: CD46. Together, our observations suggest that the JO4 vectors may have an advantage to prevent CD46-mediated sequestration, thereby achieving DSG2-specific transduction.
Collapse
Affiliation(s)
- Nora A. Bahlmann
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Raphael L. Tsoukas
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty, University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Sebastian Erkens
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Franziska Jönsson
- Institute of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Ella A. Naumova
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Correspondence: (A.E.); (W.Z.)
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Correspondence: (A.E.); (W.Z.)
| |
Collapse
|
11
|
Tan LY, Cockshell MP, Moore E, Myo Min KK, Ortiz M, Johan MZ, Ebert B, Ruszkiewicz A, Brown MP, Ebert LM, Bonder CS. Vasculogenic mimicry structures in melanoma support the recruitment of monocytes. Oncoimmunology 2022; 11:2043673. [PMID: 35295096 PMCID: PMC8920250 DOI: 10.1080/2162402x.2022.2043673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The progression of cancer is facilitated by infiltrating leukocytes which can either actively kill cancer cells or promote their survival. Our current understanding of leukocyte recruitment into tumors is largely limited to the adhesion molecules and chemokines expressed by conventional blood vessels that are lined by endothelial cells (ECs). However, cancer cells themselves can form their own vascular structures (a process known as vasculogenic mimicry (VM)); but whether they actively participate in the recruitment of leukocytes remains to be elucidated. Herein, we demonstrate that VM-competent human melanoma cell lines express multiple adhesion molecules (e.g. CD44, intercellular adhesion molecule (ICAM)-1 and junction adhesion molecules (JAMs)) and chemokines (e.g. CXCL8 and CXCL12) relevant for leukocyte recruitment. Microfluidic-based adhesion assays revealed that similar to ECs, VM-competent melanoma cells facilitate the rolling and adhesion of leukocytes, particularly monocytes, under conditions of shear flow. Moreover, we identified ICAM-1 to be a key participant in this process. Transwell assays showed that, similar to ECs, VM-competent melanoma cells facilitate monocyte transmigration toward a chemotactic gradient. Gene expression profiling of human melanoma patient samples confirmed the expression of numerous leukocyte capture adhesion molecules and chemokines. Finally, immunostaining of patient tissue microarrays revealed that tumors with high VM content also contained higher numbers of leukocytes (including macrophages). Taken together, this study suggests an underappreciated role of VM vessels in solid tumors via their active participation in leukocyte recruitment and begins to identify key adhesion molecules and chemokines that underpin this process.
Collapse
Affiliation(s)
- Lih Y. Tan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Michaelia P. Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Eli Moore
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Kay K. Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Michael Ortiz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - M. Zahied Johan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Brenton Ebert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Andrew Ruszkiewicz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Michael P. Brown
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Royal Adelaide Hospital, Cancer Clinical Trials Unit, Adelaide, Australia
| | - Lisa M. Ebert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Royal Adelaide Hospital, Cancer Clinical Trials Unit, Adelaide, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
12
|
Fuchs M, Kugelmann D, Schlegel N, Vielmuth F, Waschke J. Desmoglein 2 can undergo Ca2+-dependent interactions with both desmosomal and classical cadherins including E-cadherin and N-cadherin. Biophys J 2022; 121:1322-1335. [PMID: 35183520 PMCID: PMC9034291 DOI: 10.1016/j.bpj.2022.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Desmoglein (Dsg) 2 is a ubiquitously expressed desmosomal cadherin. Particularly, it is present in all cell types forming desmosomes, including epithelial cells and cardiac myocytes and is upregulated in the autoimmune skin disease pemphigus. Thus, we here characterized the binding properties of Dsg2 in more detail using atomic force microscopy (AFM). Dsg2 exhibits homophilic interactions and also heterophilic interactions with the desmosomal cadherin desmocollin (Dsc) 2, and further with the classical cadherins E-cadherin (E-Cad) and N-cadherin (N-Cad), which may be relevant for cross talk between desmosomes and adherens junctions in epithelia and cardiac myocytes. We found that all homo- and heterophilic interactions were Ca2+-dependent. All binding forces observed are in the same force range, i.e., 30 to 40 pN, except for the Dsg2/E-Cad unbinding force, which with 45 pN is significantly higher. To further characterize the nature of the interactions, we used tryptophan, a critical amino acid required for trans-interaction, and a tandem peptide (TP) designed to cross-link Dsg isoforms. TP was sufficient to prevent the tryptophan-induced loss of Dsg2 interaction with the desmosomal cadherins Dsg2 and Dsc2; however, not with the classical cadherins E-Cad and N-Cad, indicating that the interaction modes of Dsg2 with desmosomal and classical cadherins differ. TP rescued the tryptophan-induced loss of Dsg2 binding on living enterocytes, suggesting that interaction with desmosomal cadherins may be more relevant. In summary, the data suggest that the ubiquitous desmosomal cadherin Dsg2 enables the cross talk with adherens junctions by interacting with multiple binding partners with implications for proper adhesive function in healthy and diseased states.
Collapse
|
13
|
Ono K, Sato K, Nakamura T, Yoshida Y, Murata S, Yoshida K, Kanemoto H, Umemori K, Kawai H, Obata K, Ryumon S, Hasegawa K, Kunisada Y, Okui T, Ibaragi S, Nagatsuka H, Sasaki A. Reproduction of the Antitumor Effect of Cisplatin and Cetuximab Using a Three-dimensional Spheroid Model in Oral Cancer. Int J Med Sci 2022; 19:1320-1333. [PMID: 35928727 PMCID: PMC9346383 DOI: 10.7150/ijms.74109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background/Aim: Cancer research has been conducted using cultured cells as part of drug discovery testing, but conventional two-dimensional culture methods are unable to reflect the complex tumor microenvironment. On the other hand, three-dimensional cultures have recently been attracting attention as in vitro models that more closely resemble the in vivo physiological environment. The purpose of this study was to establish a 3D culture method for oral cancer and to verify its practicality. Materials and Methods: Three-dimensional cultures were performed using several oral cancer cell lines. Western blotting was used for protein expression analysis of the collected cell masses (spheroids), and H-E staining was used for structural observation. The cultures were exposed to cisplatin and cetuximab and the morphological changes of spheroids over time and the expression changes of target proteins were compared. Results: Each cell line formed spheroidal cell aggregates and showed enhancement of cell adhesion molecules over time. H-E staining showed tumor tissue-like structures specific to each cell line. Cisplatin showed concentration-dependent antitumor effects due to loss of cell adhesion and spheroid disruption in each cell line, while cetuximab exhibited antitumor effects that correlated with EGFR expression in each cell line. Conclusion: Spheroids made from oral cancer cell lines appeared to have tumor-like characteristics that may reflect their clinical significance. In the future, it may become possible to produce tumor spheroids from tissue samples of oral cancer patients, and then apply them to drug screening and to develop individualized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Kisho Ono
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kohei Sato
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Tomoya Nakamura
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Yume Yoshida
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Shogo Murata
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kunihiro Yoshida
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hideka Kanemoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Koki Umemori
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Shoji Ryumon
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kazuaki Hasegawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Yuki Kunisada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
14
|
Szadai L, Velasquez E, Szeitz B, de Almeida NP, Domont G, Betancourt LH, Gil J, Marko-Varga M, Oskolas H, Jánosi ÁJ, Boyano-Adánez MDC, Kemény L, Baldetorp B, Malm J, Horvatovich P, Szász AM, Németh IB, Marko-Varga G. Deep Proteomic Analysis on Biobanked Paraffine-Archived Melanoma with Prognostic/Predictive Biomarker Read-Out. Cancers (Basel) 2021; 13:6105. [PMID: 34885218 PMCID: PMC8657028 DOI: 10.3390/cancers13236105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The discovery of novel protein biomarkers in melanoma is crucial. Our introduction of formalin-fixed paraffin-embedded (FFPE) tumor protocol provides new opportunities to understand the progression of melanoma and open the possibility to screen thousands of FFPE samples deposited in tumor biobanks and available at hospital pathology departments. In our retrospective biobank pilot study, 90 FFPE samples from 77 patients were processed. Protein quantitation was performed by high-resolution mass spectrometry and validated by histopathologic analysis. The global protein expression formed six sample clusters. Proteins such as TRAF6 and ARMC10 were upregulated in clusters with enrichment for shorter survival, and proteins such as AIFI1 were upregulated in clusters with enrichment for longer survival. The cohort's heterogeneity was addressed by comparing primary and metastasis samples, as well comparing clinical stages. Within immunotherapy and targeted therapy subgroups, the upregulation of the VEGFA-VEGFR2 pathway, RNA splicing, increased activity of immune cells, extracellular matrix, and metabolic pathways were positively associated with patient outcome. To summarize, we were able to (i) link global protein expression profiles to survival, and they proved to be an independent prognostic indicator, as well as (ii) identify proteins that are potential predictors of a patient's response to immunotherapy and targeted therapy, suggesting new opportunities for precision medicine developments.
Collapse
Affiliation(s)
- Leticia Szadai
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
| | - Erika Velasquez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (E.V.); (J.M.)
| | - Beáta Szeitz
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.S.); (A.M.S.)
| | - Natália Pinto de Almeida
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (N.P.d.A.); (M.M.-V.); (G.M.-V.)
- Chemistry Institute Federal, University of Rio de Janeiro, Rio de Janiero 21941-901, Brazil;
| | - Gilberto Domont
- Chemistry Institute Federal, University of Rio de Janeiro, Rio de Janiero 21941-901, Brazil;
| | - Lazaro Hiram Betancourt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Jeovanis Gil
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Matilda Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (N.P.d.A.); (M.M.-V.); (G.M.-V.)
| | - Henriett Oskolas
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Ágnes Judit Jánosi
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
| | - Maria del Carmen Boyano-Adánez
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcala de Henares, 28801 Alcalá de Henares, Madrid, Spain;
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
- HCEMM-USZ Skin Research Group, University of Szeged, 6720 Szeged, Hungary
| | - Bo Baldetorp
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (E.V.); (J.M.)
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, 9712 CP Groningen, The Netherlands;
| | - A. Marcell Szász
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.S.); (A.M.S.)
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (N.P.d.A.); (M.M.-V.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Department of Surgery, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
15
|
Ebert LM, Vandyke K, Johan MZ, DeNichilo M, Tan LY, Myo Min KK, Weimann BM, Ebert BW, Pitson SM, Zannettino ACW, Wallington-Beddoe CT, Bonder CS. Desmoglein-2 expression is an independent predictor of poor prognosis patients with multiple myeloma. Mol Oncol 2021; 16:1221-1240. [PMID: 34245117 PMCID: PMC8936512 DOI: 10.1002/1878-0261.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is the second most common haematological malignancy and is an incurable disease of neoplastic plasma cells (PC). Newly diagnosed MM patients currently undergo lengthy genetic testing to match chromosomal mutations with the most potent drug/s to decelerate disease progression. With only 17% of MM patients surviving 10‐years postdiagnosis, faster detection and earlier intervention would unequivocally improve outcomes. Here, we show that the cell surface protein desmoglein‐2 (DSG2) is overexpressed in ~ 20% of bone marrow biopsies from newly diagnosed MM patients. Importantly, DSG2 expression was strongly predictive of poor clinical outcome, with patients expressing DSG2 above the 70th percentile exhibiting an almost 3‐fold increased risk of death. As a prognostic factor, DSG2 is independent of genetic subtype as well as the routinely measured biomarkers of MM activity (e.g. paraprotein). Functional studies revealed a nonredundant role for DSG2 in adhesion of MM PC to endothelial cells. Together, our studies suggest DSG2 to be a potential cell surface biomarker that can be readily detected by flow cytometry to rapidly predict disease trajectory at the time of diagnosis.
Collapse
Affiliation(s)
- Lisa M Ebert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Kate Vandyke
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.,Myeloma Research Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - M Zahied Johan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Mark DeNichilo
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Lih Y Tan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Kay K Myo Min
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Benjamin M Weimann
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Brenton W Ebert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Andrew C W Zannettino
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.,Myeloma Research Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Craig T Wallington-Beddoe
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.,Flinders Medical Centre, Bedford Park, SA, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
16
|
CD36 promotes vasculogenic mimicry in melanoma by mediating adhesion to the extracellular matrix. BMC Cancer 2021; 21:765. [PMID: 34215227 PMCID: PMC8254274 DOI: 10.1186/s12885-021-08482-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated. Methods Human VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function. Results Herein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro ‘angiogenesis’ assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells. Conclusions Taken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-α3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.
Collapse
|
17
|
Juraleviciute M, Nsengimana J, Newton-Bishop J, Hendriks GJ, Slipicevic A. MX2 mediates establishment of interferon response profile, regulates XAF1, and can sensitize melanoma cells to targeted therapy. Cancer Med 2021; 10:2840-2854. [PMID: 33734579 PMCID: PMC8026919 DOI: 10.1002/cam4.3846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 01/05/2023] Open
Abstract
MX2 is an interferon inducible gene that is mostly known for its antiviral activity. We have previously demonstrated that MX2 is also associated with the tumorigenesis process in melanoma. However, it remains unknown which molecular mechanisms are regulated by MX2 in response to interferon signaling in this disease. Here, we report that MX2 is necessary for the establishment of an interferon‐induced transcriptional profile partially through regulation of STAT1 phosphorylation and other interferon‐related downstream factors, including proapoptotic tumor suppressor XAF1. MX2 and XAF1 expression tightly correlate in both cultured melanoma cell lines and in patient‐derived primary and metastatic tumors, where they also are significantly related with survival. MX2 mediates IFN growth‐inhibitory signals in both XAF1 dependent and independent ways and in a cell type and context‐dependent manner. Higher MX2 expression renders melanoma cells more sensitive to targeted therapy drugs such as vemurafenib and trametinib; however, this effect is XAF1 independent. In summary, we uncovered a new mechanism in the complex regulation of interferon signaling in melanoma that can influence both survival and response to therapy.
Collapse
Affiliation(s)
- Marina Juraleviciute
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jérémie Nsengimana
- Faculty of Medical Sciences, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Newton-Bishop
- Division of Haematology and Immunology, Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Gert J Hendriks
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ana Slipicevic
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
18
|
Kutova OM, Sencha LM, Pospelov AD, Dobrynina OE, Brilkina AA, Cherkasova EI, Balalaeva IV. Comparative Analysis of Cell-Cell Contact Abundance in Ovarian Carcinoma Cells Cultured in Two- and Three-Dimensional In Vitro Models. BIOLOGY 2020; 9:biology9120446. [PMID: 33291824 PMCID: PMC7761996 DOI: 10.3390/biology9120446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary Tumor resistance to therapy is a crucial problem of today’s oncology. The emerging data indicate that tumor microenvironment is the key participant in the resistance development. One of the most basic aspect of tumor microenvironment is intercellular adhesion. Our data obtained using monolayer culture, matrix-free and matrix-based three-dimensional in vitro models indicate that the abundance of cell-cell contact proteins is varying depending on the microenvironment. These differences coincided with the degree of the resistance to therapeutics. The importance of adhesion proteins in tumor resistance may provide the fundamental basis for improving cancer treatment approaches and must be taken into account when screening candidate drugs. Abstract Tumor resistance to therapy is associated with the 3D organization and peculiarities of the tumor microenvironment, of which intercellular adhesion is a key participant. In this work, the abundance of contact proteins was compared in SKOV-3 and SKOV-3.ip human ovarian adenocarcinoma cell lines, cultivated in monolayers, tumor spheroids and collagen hydrogels. Three-dimensional models were characterized by extremely low expression of basic molecules of adherens junctions E-cadherin and demonstrated a simultaneous decrease in desmosomal protein desmoglein-2, gap junction protein connexin-43 and tight junction proteins occludin and ZO-1. The reduction in the level of contact proteins was most pronounced in collagen hydrogel, accompanied by significantly increased resistance to treatment with doxorubicin and targeted anticancer toxin DARPin-LoPE. Thus, we suggest that 3D models of ovarian cancer, especially matrix-based models, tend to recapitulate tumor microenvironment and treatment responsiveness to a greater extent than monolayer culture, so they can be used as a highly relevant platform for drug efficiency evaluation.
Collapse
|
19
|
Weng CF, Huang CJ, Wu MH, Lee HHC, Ling TY. Co-Expression of Coxsackievirus/Adenovirus Receptors and Desmoglein 2 in Lung Adenocarcinoma: A Comprehensive Analysis of Bioinformatics and Tissue Microarrays. J Clin Med 2020; 9:jcm9113693. [PMID: 33217893 PMCID: PMC7698609 DOI: 10.3390/jcm9113693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction: Coxsackievirus/adenovirus receptors (CARs) and desmoglein-2 (DSG2) are similar molecules to adenovirus-based vectors in the cell membrane. They have been found to be associated with lung epithelial cell tumorigenesis and can be useful markers in predicting survival outcome in lung adenocarcinoma (LUAD). Methods: A gene ontology enrichment analysis disclosed that DSG2 was highly correlated with CAR. Survival analysis was then performed on 262 samples from the Cancer Genome Atlas, forming “Stage 1A” or “Stage 1B”. We therefore analyzed a tissue microarray (TMA) comprised of 108 lung samples and an immunohistochemical assay. Computer counting software was used to calculate the H-score of the immune intensity. Cox regression and Kaplan–Meier analyses were used to determine the prognostic value. Results: CAR and DSG2 genes are highly co-expressed in early stage LUAD and associated with significantly poorer survival (p = 0.0046). TMA also showed that CAR/DSG2 expressions were altered in lung cancer tissue. CAR in the TMA was correlated with proliferation, apoptosis, and epithelial–mesenchymal transition (EMT), while DSG2 was associated with proliferation only. The Kaplan–Meier survival analysis revealed that CAR, DSG2, or a co-expression of CAR/DSG2 was associated with poorer overall survival. Conclusions: The co-expression of CAR/DSG2 predicted a worse overall survival in LUAD. CAR combined with DSG2 expression can predict prognosis.
Collapse
Affiliation(s)
- Ching-Fu Weng
- Division of Pulmonary Medicine, Department of Internal Medicine, Hsinchu Cathay General Hospital, Hsinchu 300, Taiwan;
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 100, Taiwan
| | - Chi-Jung Huang
- Medical Research Center, Cathay General Hospital, Taipei 106, Taiwan;
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
| | - Mei-Hsuan Wu
- Teaching and Research Center, Hsinchu Cathay General Hospital, Hsinchu 300, Taiwan;
| | - Henry Hsin-Chung Lee
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
- Department of Surgery, Hsinchu Cathay General Hospital, Hsinchu 300, Taiwan
- Graduate Institute of Translational and Interdisciplinary Medicine, College of Health Sciences and Technology, National Central University, Taoyuan 320, Taiwan
- Correspondence: (H.H.-C.L.); (T.-Y.L.); Tel.: +886-3-527-8999 (ext. 61346) (H.H.-C.L.); +886-2-2312-3456 (ext. 88322) (T.-Y.L.)
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (H.H.-C.L.); (T.-Y.L.); Tel.: +886-3-527-8999 (ext. 61346) (H.H.-C.L.); +886-2-2312-3456 (ext. 88322) (T.-Y.L.)
| |
Collapse
|
20
|
Adenovirus Receptor Expression in Cancer and Its Multifaceted Role in Oncolytic Adenovirus Therapy. Int J Mol Sci 2020; 21:ijms21186828. [PMID: 32957644 PMCID: PMC7554712 DOI: 10.3390/ijms21186828] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the tumor cell is essential. Different adenovirus types bind to different receptors on the cell, of which the expression can vary between tumor types. Pre-existing neutralizing immunity to human adenovirus species C type 5 (HAdV-C5) has hampered its therapeutic efficacy in clinical trials, hence several adenoviral vectors from different species are currently being developed as a means to evade pre-existing immunity. Therefore, knowledge on the expression of appropriate adenovirus receptors on tumor cells is important. This could aid in determining which tumor types would benefit most from treatment with a certain oncolytic adenovirus type. This review provides an overview of the known receptors for human adenoviruses and how their expression on tumor cells might be differentially regulated compared to healthy tissue, before and after standardized anticancer treatments. Mechanisms behind the up- or downregulation of adenovirus receptor expression are discussed, which could be used to find new targets for combination therapy to enhance the efficacy of oncolytic adenovirus therapy. Additionally, the utility of the adenovirus receptors in oncolytic virotherapy is examined, including their role in viral spread, which might even surpass their function as primary entry receptors. Finally, future directions are offered regarding the selection of adenovirus types to be used in oncolytic adenovirus therapy in the fight against cancer.
Collapse
|
21
|
Kodet O, Kučera J, Strnadová K, Dvořánková B, Štork J, Lacina L, Smetana K. Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review). Int J Oncol 2020; 57:619-630. [PMID: 32705148 PMCID: PMC7384852 DOI: 10.3892/ijo.2020.5090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of cutaneous malignant melanoma has been steadily increasing worldwide for several decades. This phenomenon seems to follow the trend observed in many types of malignancies caused by multiple significant factors, including ageing. Despite the progress in cutaneous malignant melanoma therapeutic options, the curability of advanced disease after metastasis represents a serious challenge for further research. In this review, we summarise data on the microenvironment of cutaneous malignant melanoma with emphasis on intercellular signalling during the disease progression. Malignant melanocytes with features of neural crest stem cells interact with non‑malignant populations within this microenvironment. We focus on representative bioactive factors regulating this intercellular crosstalk. We describe the possible key factors and signalling cascades responsible for the high complexity of the melanoma microenvironment and its premetastatic niches. Furthermore, we present the concept of melanoma early becoming a systemic disease. This systemic effect is presented as a background for the new horizons in the therapy of cutaneous melanoma.
Collapse
Affiliation(s)
- Ondřej Kodet
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jan Kučera
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
| | - Karolína Strnadová
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Barbora Dvořánková
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jiří Štork
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
22
|
Wang D, Ruan X, Liu X, Xue Y, Shao L, Yang C, Zhu L, Yang Y, Li Z, Yu B, Feng T, Liu Y. SUMOylation of PUM2 promotes the vasculogenic mimicry of glioma cells via regulating CEBPD. Clin Transl Med 2020; 10:e168. [PMID: 32997416 PMCID: PMC7507322 DOI: 10.1002/ctm2.168] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 02/05/2023] Open
Abstract
Glioma is the most common form of primary central nervous malignant tumors. Vasculogenic mimicry (VM) is a blood supply channel that is different from endothelial blood vessels in glioma. VM is related to tumor invasion and metastasis. Therefore, it plays an important role to target therapy for glioma VM. Our experimental results showed abnormal expression of UBE2I, PUM2, CEBPD, and DSG2 in glioma cells. The Co-IP and Immunofluorescence staining were used to detect that PUM2 can be modified by SUMO2/3. The interaction between PUM2 and CEBPD mRNA was detected by the RIP assays. The interaction between transcription factor CEBPD and promoter region of DSG2 was detected by the ChIP assays and luciferase assays. The capacity for migration in glioma cells was observed by the laser holographic microscope. The capacity for invasion in glioma cells was detected by Transwell method. The VM in glioma cells was detected by three-dimensional cell culture method. The experimental results found that the upregulation of UBE2I in glioma tissues and cells promotes the SUMOylation of PUM2, which decreases not only the stability of PUM2 protein but also decreases the inhibitory effect of PUM2 on CEBPD mRNA. The upregulation of CEBPD promotes the binding to the upstream promoter region of DSG2 gene, further upregulates the expression of DSG2, and finally promotes the development of glioma VM. In conclusion, this study found that the UBE2I/PUM2/CEBPD/DSG2 played crucial roles in regulating glioma VM. It also provides potential targets and alternative strategies for combined treatment of glioma.
Collapse
Affiliation(s)
- Di Wang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Xuelei Ruan
- Department of Neurobiology, School of life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Xiaobai Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Yixue Xue
- Department of Neurobiology, School of life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Lianqi Shao
- Department of Neurobiology, School of life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Chunqing Yang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Lu Zhu
- Department of Neurobiology, School of life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Yang Yang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Zhen Li
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Bo Yu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Tianda Feng
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| | - Yunhui Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Clinical Medical Research Center in Nervous System DiseaseShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
| |
Collapse
|
23
|
Flemming JP, Hill BL, Haque MW, Raad J, Bonder CS, Harshyne LA, Rodeck U, Luginbuhl A, Wahl JK, Tsai KY, Wermuth PJ, Overmiller AM, Mahoney MG. miRNA- and cytokine-associated extracellular vesicles mediate squamous cell carcinomas. J Extracell Vesicles 2020; 9:1790159. [PMID: 32944178 PMCID: PMC7480578 DOI: 10.1080/20013078.2020.1790159] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Exosomes, or small extracellular vesicles (sEVs), serve as intercellular messengers with key roles in normal and pathological processes. Our previous work had demonstrated that Dsg2 expression in squamous cell carcinoma (SCC) cells enhanced both sEV secretion and loading of pro-mitogenic cargo. In this study, using wild-type Dsg2 and a mutant form that is unable to be palmitoylated (Dsg2cacs), we investigated the mechanism by which Dsg2 modulates SCC tumour development and progression through sEVs. We demonstrate that palmitoylation was required for Dsg2 to regulate sub-cellular localisation of lipid raft and endosomal proteins necessary for sEV biogenesis. Pharmacological inhibition of the endosomal pathway abrogated Dsg2-mediated sEV release. In murine xenograft models, Dsg2-expressing cells generated larger xenograft tumours as compared to cells expressing GFP or Dsg2cacs. Co-treatment with sEVs derived from Dsg2-over-expressing cells increased xenograft size. Cytokine profiling revealed, Dsg2 enhanced both soluble and sEV-associated IL-8 and miRNA profiling revealed, Dsg2 down-regulated both cellular and sEV-loaded miR-146a. miR-146a targets IRAK1, a serine-threonine kinase involved in IL-8 signalling. Treatment with a miR-146a inhibitor up-regulated both IRAK1 and IL-8 expression. RNAseq analysis of HNSCC tumours revealed a correlation between Dsg2 and IL-8. Finally, elevated IL-8 plasma levels were detected in a subset of HNSCC patients who did not respond to immune checkpoint therapy, suggesting that these patients may benefit from prior anti-IL-8 treatment. In summary, these results suggest that intercellular communication through cell-cell adhesion, cytokine release and secretion of EVs are coordinated, and critical for tumour growth and development, and may serve as potential prognostic markers to inform treatment options. Abbreviations Basal cell carcinomas, BCC; Betacellulin, BTC; 2-bromopalmitate, 2-Bromo; Cluster of differentiation, CD; Cytochrome c oxidase IV, COX IV; Desmoglein 2, Dsg2; Early endosome antigen 1, EEA1; Epidermal growth factor receptor substrate 15, EPS15; Extracellular vesicle, EV; Flotillin 1, Flot1; Glyceraldehyde-3-phosphate dehydrogenase, GAPH; Green fluorescent protein, GFP; Head and neck squamous cell carcinoma, HNSCC; Interleukin-1 receptor-associated kinase 1, IRAK1; Interleukin 8, IL-8; Large EV, lEV; MicroRNA, miR; Palmitoylacyltransferase, PAT; Ras-related protein 7 Rab7; Small EV, sEV; Squamous cell carcinoma, SCC; Tissue inhibitor of metalloproteinases, TIMP; Tumour microenvironment, TME
Collapse
Affiliation(s)
- Joseph P Flemming
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brianna L Hill
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohammed W Haque
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica Raad
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Larry A Harshyne
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - James K Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Kenneth Y Tsai
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA
| | - Peter J Wermuth
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew M Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mỹ G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Abstract
Tumour vasculature supports the growth and progression of solid cancers with both angiogenesis (endothelial cell proliferation) and vasculogenic mimicry (VM, the formation of vascular structures by cancer cells themselves) predictors of poor patient outcomes. Increased circulating platelet counts also predict poor outcome for cancer patients but the influence of platelets on tumour vasculature is incompletely understood. Herein, we show with in vitro assays that platelets did not influence angiogenesis but did actively inhibit VM formation by cancer cell lines. Both platelet sized beads and the releasates from platelets were partially effective at inhibiting VM formation suggesting that direct contact maximises the effect. Platelets also promoted cancer cell invasion in vitro. B16F10 melanomas in Bcl-xPlt20/Plt20 thrombocytopenic mice showed a higher content of VM than their wildtype counterparts while angiogenesis did not differ. In a xenograft mouse model of breast cancer with low-dose aspirin to inactivate the platelets, the burden of MDA-MB-231-LM2 breast cancer cells was reduced and the gene expression profile of the cancer cells was altered; but no effect on tumour vasculature was observed. Taken together, this study provides new insights into the action of platelets on VM formation and their involvement in cancer progression.
Collapse
|
25
|
Zhao M, Huang W, Zou S, Shen Q, Zhu X. A Five-Genes-Based Prognostic Signature for Cervical Cancer Overall Survival Prediction. Int J Genomics 2020; 2020:8347639. [PMID: 32300605 PMCID: PMC7136791 DOI: 10.1155/2020/8347639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/08/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Aims. This study is aimed at identifying a prognostic signature for cervical cancer. Main Methods. The gene expression data and clinical information of cervical cancer and normal cervical tissues were acquired from The Cancer Genome Atlas and from three datasets of the Gene Expression Omnibus database. DESeq2 and Limma were employed to screen differentially expressed genes (DEGs). The overlapping DEGs among all datasets were considered the final DEGs. Then, the functional enrichment analysis was performed. Moreover, the Cox proportional hazards regression was performed to establish a prognostic signature of the DEGs. The Kaplan-Meier analysis was applied to test the model. Relationships between gene expression and clinicopathological parameters in cervical cancer, including age, HPV status, histology, stage, and lymph node metastasis, were analysed by the chi-square test. The somatic mutations of these prognostic genes were assessed through cBioPortal. The robustness of the model was verified in another two independent validation cohorts. Key Findings. In total, 169 overlapping upregulated genes and 29 overlapping downregulated genes were identified in cervical cancer compared with normal cervical tissues. Functional enrichment analysis indicated that the DEGs were mainly enriched in DNA replication, the cell cycle, and the p53 signalling pathway. Finally, a 5-gene- (ITM2A, DSG2, SPP1, EFNA1, and MMP1) based prognostic signature was built. According to this model, each patient was given a prognostic-related risk value. The Kaplan-Meier analysis showed that a higher risk was related to worse overall survival in cervical cancer, with an area under the receiver operating characteristic curve of 0.811 for 15 years. The validity of this model in the prediction of cervical cancer outcome was verified in another two independent datasets. In addition, our study also found that the low expression of ITM2A was associated with cervical adenocarcinoma. Interestingly, DSG2 was associated with the HPV status of cervical cancer. Significance. Our study constructed a prognostic model in cervical cancer and discovered two novel genes, ITM2A and DSG2, associated with cervical carcinogenesis and survival.
Collapse
Affiliation(s)
- Menghuang Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenbin Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shuangwei Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qi Shen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
26
|
Meng H, Liu J, Qiu J, Nie S, Jiang Y, Wan Y, Cheng W. Identification of Key Genes in Association with Progression and Prognosis in Cervical Squamous Cell Carcinoma. DNA Cell Biol 2020; 39:848-863. [PMID: 32202912 DOI: 10.1089/dna.2019.5202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer remains a primary cause of female death in developing countries, but its prognosis can be greatly improved if patients are diagnosed earlier. In the present study, we screened the common differentially expressed genes (DEGs) of cervical squamous cell carcinoma (CESC) from dataset GSE7803, Gene Expression Omnibus, and The Cancer Genome Atlas databases. An integrated bioinformatics analysis was performed based on these DEGs for their enrichment in functions and pathways, interaction network, prognostic signature, and candidate molecular drugs. As a result, 164 (114 upregulated and 47 downregulated) DEGs of CESC were identified for further investigation. We then conducted the gene ontology term enrichment and Kyoto Encyclopedia of Genes and Genomes Pathway analyses to reveal the underlying functions and pathways of these DEGs. In the protein-protein interaction network, hub module and hub genes were identified. Five genes of significant prognostic value-DSG2, ITM2A, CENPM, RIBC2, and MEIS2-were identified by prognostic signature analysis and used to construct a risk linear model. Further validation and investigation suggested DSG2 might be a key gene in CESC prognosis. We then identified two candidate small molecules (trichostatin A and tanespimycin) against CESC. Further validation and exploration of these hub genes are warranted for future prospect in clinical applications.
Collapse
Affiliation(s)
- Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiangnan Qiu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Cury SS, Lapa RML, de Mello JBH, Marchi FA, Domingues MAC, Pinto CAL, Carvalho RF, de Carvalho GB, Kowalski LP, Rogatto SR. Increased DSG2 plasmatic levels identified by transcriptomic-based secretome analysis is a potential prognostic biomarker in laryngeal carcinoma. Oral Oncol 2020; 103:104592. [PMID: 32087405 DOI: 10.1016/j.oraloncology.2020.104592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The tumor secretome deconvolution is a promising strategy to identify diagnostic and prognostic biomarkers. Here, transcriptomic-based secretome analysis was performed aiming to discover laryngeal squamous cell carcinomas (LSCC) biomarkers from potentially secreted proteins (PSPs). MATERIAL AND METHODS The tumor expression profile (35 LSCC biopsies compared with surrounding normal tissues - SN) revealed 589 overexpressed genes. This gene list was used for secretome analysis based on laryngeal tumors and related secretome databases. RESULTS Forty-nine (Laryngeal tumor secretome database) and 50 (Human Protein Atlas and Cancer Secretome Database) PSPs presented an association with worse overall survival. Specifically, DSG2 overexpression was strongly correlated with poor survival and distant metastasis. DSG2 increased expression was confirmed in the LSCC dataset (LSCC = 111; SN = 12) from TCGA. A significant association between shorter survival and DSG2 overexpression was also detected. In an independent cohort of cases, we analyzed and confirmed high protein levels of DSG2 in plasma from LSCC patients. CONCLUSION A set of PSPs including the circulating DSG2, were associated with shorter overall survival in LSCC. DSG2 overexpression was also correlated with distant metastasis. The high plasmatic protein levels of DSG2 suggest its potential to be tested in liquid biopsies and applied as prognostic biomarker of LSCC.
Collapse
Affiliation(s)
- Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rainer Marco Lopez Lapa
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Julia Bette Homem de Mello
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo Brazil
| | | | | | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark.
| |
Collapse
|
28
|
Sun R, Ma C, Wang W, Yang S. Upregulation of desmoglein 2 and its clinical value in lung adenocarcinoma: a comprehensive analysis by multiple bioinformatics methods. PeerJ 2020; 8:e8420. [PMID: 32095325 PMCID: PMC7024574 DOI: 10.7717/peerj.8420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
Background Desmoglein-2 (DSG2), a desmosomal adhesion molecule, is found to be closely related to tumorigenesis in recent years. However, the clinical value of DSG2 in lung adenocarcinoma remains unclear. Methods Real-time reverse transcription-quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression of DSG2 in 40 paired lung adenocarcinoma tissues and corresponding non-cancerous tissues. Data from The Cancer Genome Atlas (TCGA) and Oncomine datasets were also downloaded and analyzed. The correlation between DSG2 and clinicopathological features was investigated. The expression of DSG2 protein by immunohistochemical was also detected from tissue microarray and the Human Protein Atlas database. Integrated meta-analysis combining the three sources (qRT-PCR data, TCGA data and Oncomine datasets) was performed to evaluate the clinical value of DSG2. Univariate and multivariate Cox regression analyses were used to explore the prognostic value of DSG2. Then, co-expressed genes were calculated by Pearson correlation analysis. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to investigate the underlying molecular mechanism. The expression level in lung adenocarcinoma and prognostic significance of the top ten co-expressed genes were searched from Gene Expression Profiling Interactive Analysis (GEPIA) online database. Results DSG2 was highly expressed in lung adenocarcinoma tissues based on qRT-PCR, TCGA and Oncomine datasets. The protein expression of DSG2 was also higher in lung adenocarcinoma. According to qRT-PCR and TCGA, high DSG2 expression was positively associated with tumor size (p = 0.027, p = 0.001), lymph node metastasis (p = 0.014, p < 0.001) and TNM stage (p = 0.023, p < 0.001). The combined standard mean difference values of DSG2 expression based on the three sources were 1.30 (95% confidence interval (CI): 1.08–1.52) using random effect model. The sensitivity and specificity were 0.73 (95% CI [0.69–0.76]) and 0.96 (95% CI [0.89–0.98]). The area under the curve based on summarized receiver operating characteristic (SROC) curve was 0.79 (95% CI [0.75–0.82]). Survival analysis revealed that high DSG2 expression was associated with a short overall survival (hazard ratio [HR] = 1.638; 95% CI [1.214–2.209], p = 0.001) and poor progression-free survival (HR = 1.475; 95% CI [1.102–1.974], p < 0.001). A total of 215 co-expressed genes were identified. According to GO and KEGG analyses, these co-expressed genes may be involved in “cell division”, “cytosol”, “ATP binding” and “cell cycle”. Based on GEPIA database, seven of the top ten co-expressed genes were highly expressed in lung adenocarcinoma (DSC2, SLC2A1, ARNTL2, ERO1L, ECT2, ANLN and LAMC2). High expression of these genes had shorter overall survival. Conclusions The expression of DSG2 is related to the tumor size, lymph node metastasis and TNM stage. Also, DSG2 predicts poor prognosis in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ruiying Sun
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Ma
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
29
|
Kuryk L, Møller ASW. Chimeric oncolytic Ad5/3 virus replicates and lyses ovarian cancer cells through desmoglein-2 cell entry receptor. J Med Virol 2020; 92:1309-1315. [PMID: 31944306 PMCID: PMC7496614 DOI: 10.1002/jmv.25677] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022]
Abstract
Despite new therapies, the estimated 229 875 women living with ovarian cancer have a 5‐year survival rate of 47.6%. This cavity‐localized cancer lends itself to local administration of modalities, such as the oncolytic adenovirus (Ad) Ad5/3‐D24‐granulocyte‐macrophage colony‐stimulating factor virus (ONCOS‐102). Its repeated administration to a patient with chemotherapy‐refractory ovarian cancer induced CD8+ antitumor immune responses with the overall survival reaching 40 months. Here we probe the dominant receptor used by ONCOS‐102 in four established epithelial ovarian cancer cell lines. Ad3 can use the desmoglein‐2 (DSG2) and CD46 receptors on susceptible cells. DSG2 was nearly absent in A2780 cells but was expressed in more than 90% of OAW42, OVCAR3, and OV‐90 cells. After 96 hours, ONCOS‐102 treatment showed significant oncolytic activity (≧50%) in OAW42, OVCAR3, and OV‐90 cells, but minimal activity in A2780 cells, suggesting DSG2 as the dominant receptor for ONCOS‐102. Furthermore, retrospective analyses of phase I clinical trial of ONCOS‐102 treatment of 12 patients with varied tumors indicated a correlation between viral genomes in blood and DSG2 RNA expression. These data support the role of DSG2 expression on cancer cells in virus infectivity and the continued development of ONCOS‐102 for ovarian cancer treatment. These data support the role of DSG2 expression on cancer cells in virus infectivity and the continued development of ONCOS‐102 for ovarian cancer treatment.
Collapse
Affiliation(s)
- Lukasz Kuryk
- Clinical Science, Targovax Oy, Helsinki, Finland.,Department of Virology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | | |
Collapse
|
30
|
Zhou BX, Li Y. Significance of desmoglein-2 on cell malignant behaviors via mediating MAPK signaling in cervical cancer. Kaohsiung J Med Sci 2020; 36:336-343. [PMID: 31930774 DOI: 10.1002/kjm2.12182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/19/2019] [Indexed: 02/03/2023] Open
Abstract
Desmoglein-2 (DSG2) is an integral component of desmosomes, maintaining cell-cell adhension in multiple cancers. It has been well studied in epithelial cells, cardiomyocytes and primary prostate cancer, colon cancer, skin squamous cell carcinoma, except for cervical cancer. Hence, we performed this study to examine the function of DSG2 in cervical cancer. We used TCGA and Oncomine databases to assess the expression level of DSG2 in cervical cancer cases. Kaplan-Meier method with log-rank test was utilized to plot overall survival (OS) curve. The reverse transcription-quantitative polymerase chain reaction (qRT-PCR) and western blotting were performed to detect the expression of DSG2 in cells. Cell Counting Kit-8 (CCK-8), wound-healing analysis, and transwell assay were carried out to examine proliferation, migration, and invasion of cells. A higher level of DSG2 in cervical cancer was associated with lower OS rate. Knockdown of DSG2 inhibited cervical cancer cell proliferation, migration, and invasion, while DSG2 enhancement promoted cell proliferation, migration, and invasion. Moreover, the proteins expression of p-MEK and p-ERK that are required for mitogen-activated protein kinases (MAPK) pathway were downregulated after reducing DSG2. In conclusion, these findings illustrated the importance of DSG2 in cervical cancer development and cell behaviors by mediating MAPK signaling pathway, suggesting DSG2 maybe a novel therapeutic target in control of cervical cancer.
Collapse
Affiliation(s)
- Bing-Xia Zhou
- Department of Dermatological, Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Li
- Department of First Operating Room, Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Hüttenhain R, Choi M, Martin de la Fuente L, Oehl K, Chang CY, Zimmermann AK, Malander S, Olsson H, Surinova S, Clough T, Heinzelmann-Schwarz V, Wild PJ, Dinulescu DM, Niméus E, Vitek O, Aebersold R. A Targeted Mass Spectrometry Strategy for Developing Proteomic Biomarkers: A Case Study of Epithelial Ovarian Cancer. Mol Cell Proteomics 2019; 18:1836-1850. [PMID: 31289117 PMCID: PMC6731088 DOI: 10.1074/mcp.ra118.001221] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Protein biomarkers for epithelial ovarian cancer are critical for the early detection of the cancer to improve patient prognosis and for the clinical management of the disease to monitor treatment response and to detect recurrences. Unfortunately, the discovery of protein biomarkers is hampered by the limited availability of reliable and sensitive assays needed for the reproducible quantification of proteins in complex biological matrices such as blood plasma. In recent years, targeted mass spectrometry, exemplified by selected reaction monitoring (SRM) has emerged as a method, capable of overcoming this limitation. Here, we present a comprehensive SRM-based strategy for developing plasma-based protein biomarkers for epithelial ovarian cancer and illustrate how the SRM platform, when combined with rigorous experimental design and statistical analysis, can result in detection of predictive analytes.Our biomarker development strategy first involved a discovery-driven proteomic effort to derive potential N-glycoprotein biomarker candidates for plasma-based detection of human ovarian cancer from a genetically engineered mouse model of endometrioid ovarian cancer, which accurately recapitulates the human disease. Next, 65 candidate markers selected from proteins of different abundance in the discovery dataset were reproducibly quantified with SRM assays across a large cohort of over 200 plasma samples from ovarian cancer patients and healthy controls. Finally, these measurements were used to derive a 5-protein signature for distinguishing individuals with epithelial ovarian cancer from healthy controls. The sensitivity of the candidate biomarker signature in combination with CA125 ELISA-based measurements currently used in clinic, exceeded that of CA125 ELISA-based measurements alone. The SRM-based strategy in this study is broadly applicable. It can be used in any study that requires accurate and reproducible quantification of selected proteins in a high-throughput and multiplexed fashion.
Collapse
Affiliation(s)
- Ruth Hüttenhain
- ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Meena Choi
- §Khoury College of Computer Sciences, Northeastern University, Boston, MA
| | | | - Kathrin Oehl
- ‖Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Ching-Yun Chang
- **Department of Statistics, Purdue University, West Lafayette, IN
| | - Anne-Kathrin Zimmermann
- ‖Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Susanne Malander
- ¶Department of Surgery and Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Håkan Olsson
- ¶Department of Surgery and Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Silvia Surinova
- ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Timothy Clough
- **Department of Statistics, Purdue University, West Lafayette, IN
| | - Viola Heinzelmann-Schwarz
- ‡‡Gynecological Cancer Center, University Hospital Basel, University of Basel, Basel, Switzerland; §§Ovarian Cancer Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Peter J Wild
- ¶¶Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Daniela M Dinulescu
- ‖‖Department of Pathology, Division of Women's and Perinatal Pathology Brigham and Women's Hospital Harvard Medical School, Boston, MA
| | - Emma Niméus
- ¶Department of Surgery and Oncology, Clinical Sciences, Lund University, Lund, Sweden; ‡‡‡Department of Surgery, Skånes University hospital, Lund, Sweden
| | - Olga Vitek
- §Khoury College of Computer Sciences, Northeastern University, Boston, MA; **Department of Statistics, Purdue University, West Lafayette, IN
| | - Ruedi Aebersold
- ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; §§§Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
32
|
Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH, Ni QX, Yu XJ, Liu L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 2019; 22:15-36. [PMID: 30168025 DOI: 10.1007/s10456-018-9645-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. Although the standard of care in pancreatic cancer has improved, prognoses for patients remain poor with a 5-year survival rate of < 5%. Angiogenesis, namely, the formation of new blood vessels from pre-existing vessels, is an important event in tumor growth and hematogenous metastasis. It is a dynamic and complex process involving multiple mechanisms and is regulated by various molecules. Inhibition of angiogenesis has been an established therapeutic strategy for many solid tumors. However, clinical outcomes are far from satisfying for pancreatic cancer patients receiving anti-angiogenic therapies. In this review, we summarize the current status of angiogenesis in pancreatic cancer research and explore the reasons for the poor efficacy of anti-angiogenic therapies, aiming to identify some potential therapeutic targets that may enhance the effectiveness of anti-angiogenic treatments.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chun-Tao Wu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wen-Quan Wang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He-Li Gao
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hao Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shi-Rong Zhang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin-Zhi Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zi-Hao Qi
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quan-Xing Ni
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Liang Liu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Chen L, Liu X, Zhang J, Liu Y, Gao A, Xu Y, Lin Y, Du Q, Zhu Z, Hu Y, Liu Y. Characterization of desmoglein 2 expression in ovarian serous tumors and its prognostic significance in high-grade serous carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4977-4986. [PMID: 31949574 PMCID: PMC6962919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 06/10/2023]
Abstract
Desmogleins (Dsgs) are major members of the desmosomal cadherins that are critically involved in cell-cell adhesion and the maintenance of normal tissue architecture in epithelia. DSG2 is the most ubiquitous desmosomal cadherin; however, abnormal expression of DSG2 has been detected in several types of cancer with controversial results. So far, little is known about DSG2 expression in ovarian serous tumor (OST) and its associations with survival and clinicopathologic data. In this study, mRNA and protein expression of DSG2 was detected in 33 cases of nonfixed samples and 92 cases of paraffin-embedded OST specimens (including benign, borderline, low-grade, and high-grade) by using qRT-PCR and immunohistochemistry, respectively. DSG2 expression was then measured in 162 cases of high-grade serous carcinoma (HGSC) by immunohistochemistry, and the expression levels were correlated with clinicopathologic and prognostic data. As the results, DSG2 could be readily detected in benign tumor with relative weak expression at the mRNA level and showed weak but complete staining at the cell-cell borders. This was similar to the expression pattern in the normal fallopian epithelial tissue. However, the expression tendency of DSG2 at the mRNA and protein level was inconsistent in borderline and malignant OST. In addition, we found that a low DSG2 expression was associated with poor prognosis (P < 0.05) and high mitosis (P = 0.0042) of HGSC. Thus, DSG2 may be involved in the progression of ovarian cancer and plays a different role in different OST. Moreover, a low DSG2 expression was associated with poor prognosis of HGSC.
Collapse
Affiliation(s)
- Ling Chen
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Xinxin Liu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Jin Zhang
- Department of Genetics and Cell Biology, College of Life Science, Nankai UniversityTianjin, China
| | - Yanxia Liu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Ang Gao
- Department of Genetics and Cell Biology, College of Life Science, Nankai UniversityTianjin, China
| | - Yanning Xu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Yang Lin
- Department of Oncology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Qiuyue Du
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai UniversityTianjin, China
| | - Yuanjing Hu
- Department of Oncology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| | - Yixin Liu
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Gynecology Obstetrics Hospital of Nankai UniversityTianjin, China
| |
Collapse
|
34
|
Rhodocetin-αβ selectively breaks the endothelial barrier of the tumor vasculature in HT1080 fibrosarcoma and A431 epidermoid carcinoma tumor models. Oncotarget 2018; 9:22406-22422. [PMID: 29854288 PMCID: PMC5976474 DOI: 10.18632/oncotarget.25032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
The tumor vasculature differs from normal blood vessels in morphology, composition and stability. Here, we describe a novel tumor vessel-disrupting mechanism. In an HT1080/mouse xenograft tumor model rhodocetin-αβ was highly effective in disrupting the tumor endothelial barrier. Mechanistically, rhodocetin-αβ triggered MET signaling via neuropilin-1. As both neuropilin-1 and MET were only lumen-exposed in a subset of abnormal tumor vessels, but not in normal vessels, the prime target of rhodocetin-αβ were these abnormal tumor vessels. Consequently, cells lining such tumor vessels became increasingly motile which compromised the vessel wall tightness. After this initial leakage, rhodocetin-αβ could leave the bloodstream and reach the as yet inaccessible neuropilin-1 on the basolateral side of endothelial cells and thus disrupt nearby vessels. Due to the specific neuropilin-1/MET co-distribution on cells lining such abnormal tumor vessels in contrast to normal endothelial cells, rhodocetin-αβ formed the necessary trimeric signaling complex of rhodocetin-αβ-MET-neuropilin-1 only in these abnormal tumor vessels. This selective attack of tumor vessels, sparing endothelial cell-lined vessels of normal tissues, suggests that the neuropilin-1-MET signaling axis may be a promising drugable target for anti-tumor therapy, and that rhodocetin-αβ may serve as a lead structure to develop novel anti-tumor drugs that target such vessels.
Collapse
|
35
|
Collateral Damage Intended-Cancer-Associated Fibroblasts and Vasculature Are Potential Targets in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18112355. [PMID: 29112161 PMCID: PMC5713324 DOI: 10.3390/ijms18112355] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
After oncogenic transformation, tumor cells rewire their metabolism to obtain sufficient energy and biochemical building blocks for cell proliferation, even under hypoxic conditions. Glucose and glutamine become their major limiting nutritional demands. Instead of being autonomous, tumor cells change their immediate environment not only by their metabolites but also by mediators, such as juxtacrine cell contacts, chemokines and other cytokines. Thus, the tumor cells shape their microenvironment as well as induce resident cells, such as fibroblasts and endothelial cells (ECs), to support them. Fibroblasts differentiate into cancer-associated fibroblasts (CAFs), which produce a qualitatively and quantitatively different extracellular matrix (ECM). By their contractile power, they exert tensile forces onto this ECM, leading to increased intratumoral pressure. Moreover, along with enhanced cross-linkage of the ECM components, CAFs thus stiffen the ECM. Attracted by tumor cell- and CAF-secreted vascular endothelial growth factor (VEGF), ECs sprout from pre-existing blood vessels during tumor-induced angiogenesis. Tumor vessels are distinct from EC-lined vessels, because tumor cells integrate into the endothelium or even mimic and replace it in vasculogenic mimicry (VM) vessels. Not only the VM vessels but also the characteristically malformed EC-lined tumor vessels are typical for tumor tissue and may represent promising targets in cancer therapy.
Collapse
|
36
|
Cheng R, Cai XR, Ke K, Chen YL. Notch4 inhibition suppresses invasion and vasculogenic mimicry formation of hepatocellular carcinoma cells. Curr Med Sci 2017; 37:719-725. [PMID: 29058285 DOI: 10.1007/s11596-017-1794-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/25/2017] [Indexed: 01/27/2023]
Abstract
Vasculogenic mimicry (VM) is a process by which aggressive tumor cells generate non-endothelial cell-lined channels in malignant tumors including hepatocellular carcinoma (HCC). It has provided new insights into tumor behavior and has surfaced as a potential target for drug therapy. The molecular events underlying the process of VM formation are still poorly understood. In this study, we attempted to elucidate the relationship between Notch4 and VM formation in HCC. An effective siRNA lentiviral vector targeting Notch4 was constructed and transfected into Bel7402, a HCC cell line. VM networks were observed with a microscope in a 3 dimensional cell culture system. Cell migration and invasion were evaluated using wound healing and transwell assays. Matrix metalloproteinases (MMPs) activity was detected by gelatin zymography. Furthermore, the role of Notch4 inhibition in Bel7402 cells in vivo was examined in subcutaneous xenograft tumor model of mice. The results showed that downregulation of Notch4 destroyed VM network formation and inhibited migration and invasion of tumor cells in vitro (P<0.05). In vivo, tumor growth was also inhibited in subcutaneous xenograft model (P<0.05). The potential mechanisms might be related with down-regulation of MT1-MMP, MMP-2, MMP-9 expression and inhibition of the activation of MMP2 and MMP9. These results indicated that Notch4 may play an important role in VM formation and tumor invasion in HCC. Related molecular pathways may be used as novel therapeutic targets for HCC antiangiogenesis therapy.
Collapse
Affiliation(s)
- Rui Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Xin-Ran Cai
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Kun Ke
- Department of Interventional Radiology, Union Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Yan-Ling Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
37
|
Overmiller AM, Pierluissi JA, Wermuth PJ, Sauma S, Martinez-Outschoorn U, Tuluc M, Luginbuhl A, Curry J, Harshyne LA, Wahl JK, South AP, Mahoney MG. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. FASEB J 2017; 31:3412-3424. [PMID: 28438789 DOI: 10.1096/fj.201601138rr] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-derived vesicles that serve as intercellular messengers carrying lipids, proteins, and genetic material. Substantial evidence has shown that cancer-derived EVs, secreted by tumor cells into the blood and other bodily fluids, play a critical role in modulating the tumor microenvironment and affecting the pathogenesis of cancer. Here we demonstrate for the first time that squamous cell carcinoma (SCC) EVs were enriched with the C-terminal fragment of desmoglein 2 (Dsg2), a desmosomal cadherin often overexpressed in malignancies. Overexpression of Dsg2 increased EV release and mitogenic content including epidermal growth factor receptor and c-Src. Inhibiting ectodomain shedding of Dsg2 with the matrix metalloproteinase inhibitor GM6001 resulted in accumulation of full-length Dsg2 in EVs and reduced EV release. When cocultured with Dsg2/green fluorescence protein-expressing SCC cells, green fluorescence protein signal was detected by fluorescence-activated cell sorting analysis in the CD90+ fibroblasts. Furthermore, SCC EVs activated Erk1/2 and Akt signaling and enhanced fibroblast cell proliferation. In vivo, Dsg2 was highly up-regulated in the head and neck SCCs, and EVs isolated from sera of patients with SCC were enriched in Dsg2 C-terminal fragment and epidermal growth factor receptor. This study defines a mechanism by which Dsg2 expression in cancer cells can modulate the tumor microenvironment, a step critical for tumor progression.-Overmiller, A. M., Pierluissi, J. A., Wermuth, P. J., Sauma, S., Martinez-Outschoorn, U., Tuluc, M., Luginbuhl, A., Curry, J., Harshyne, L. A., Wahl, J. K. III, South, A. P., Mahoney, M. G. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes.
Collapse
Affiliation(s)
- Andrew M Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jennifer A Pierluissi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Peter J Wermuth
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sami Sauma
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Madalina Tuluc
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joseph Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Larry A Harshyne
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James K Wahl
- Department of Oral Biology, University of Nebraska, Lincoln, Nebraska, USA
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mỹ G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
38
|
Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés M, Oliver FJ. Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer 2017; 16:65. [PMID: 28320399 PMCID: PMC5359927 DOI: 10.1186/s12943-017-0631-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Vasculogenic mimicry (VM) is a blood supply system independent of endothelial vessels in tumor cells from different origins. It reflects the plasticity of aggressive tumor cells that express vascular cell markers and line tumor vasculature. The presence of VM is associated with a high tumor grade, short survival, invasion and metastasis. Endothelial cells (ECs) express various members of the cadherin superfamily, in particular vascular endothelial (VE-) cadherin, which is the main adhesion receptor of endothelial adherent junctions. Aberrant extra-vascular expression of VE-cadherin has been observed in certain cancer types associated with VM. In this review we focus on non-endothelial VE-cadherin as a prominent factor involved in the acquisition of tubules-like structures by aggressive tumor cells and we summarize the specific signaling pathways, the association with trans-differentiation and stem-like phenotype and the therapeutic opportunities derived from the in-depth knowledge of the peculiarities of the biology of VE-cadherin and other key components of VM.
Collapse
Affiliation(s)
| | | | | | - F Javier Oliver
- IPBLN, CSIC, CIBERONC, Granada, Spain. .,IPBLN, CSIC, Av. Conocimiento s/n, 18016, Granada, Spain.
| |
Collapse
|
39
|
Wei H, Wang F, Wang Y, Li T, Xiu P, Zhong J, Sun X, Li J. Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci 2017; 108:478-487. [PMID: 28002618 PMCID: PMC5378285 DOI: 10.1111/cas.13138] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/07/2016] [Accepted: 12/17/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive human malignancies. The Yes-associated protein-1 (YAP) plays a critical role in cell proliferation, apoptosis and angiogenesis. Verteporfin is a photosensitizer used in photodynamic therapy and also a small molecular inhibitor of the Hippo-YAP pathway. However, little is known about whether verteporfin could inhibit YAP activity in PDAC cells. Our present results showed that verteporfin suppressed the proliferation of human PDAC PANC-1 and SW1990 cells by arresting cells at the G1 phase, and inducing apoptosis in dose- and time-dependent manners. Verteporfin also inhibited the tumor growth on the PDAC xenograft model. Treatment with verteporfin led to downregulation of cyclinD1 and cyclinE1, modulation of Bcl-2 family proteins and activation of PARP. In addition, verteporfin exhibited an inhibitory effect on angiogenesis and vasculogenic mimicry via suppressing Ang2, MMP2, VE-cadherin, and α-SMA expression in vitro and in vivo. Mechanism studies demonstrated that verteporfin impaired YAP and TEAD interaction to suppress the expression of targeted genes. Our results provide a foundation for repurposing verteporfin as a promising anti-tumor drug in the treatment of pancreatic cancer by targeting the Hippo pathway.
Collapse
Affiliation(s)
- Honglong Wei
- Department of General SurgeryQianfoshan HospitalShandong UniversityJinanChina
| | - Fuhai Wang
- Department of General SurgeryQianfoshan HospitalShandong UniversityJinanChina
| | - Yong Wang
- Department of General SurgeryQianfoshan HospitalShandong UniversityJinanChina
| | - Tao Li
- Department of General SurgeryQianfoshan HospitalShandong UniversityJinanChina
| | - Peng Xiu
- Department of General SurgeryQianfoshan HospitalShandong UniversityJinanChina
| | - Jingtao Zhong
- Department of General SurgeryQianfoshan HospitalShandong UniversityJinanChina
| | - Xueying Sun
- Department of Molecular Medicine and PathologyFaculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Jie Li
- Department of General SurgeryQianfoshan HospitalShandong UniversityJinanChina
| |
Collapse
|
40
|
Cai F, Zhu Q, Miao Y, Shen S, Su X, Shi Y. Desmoglein-2 is overexpressed in non-small cell lung cancer tissues and its knockdown suppresses NSCLC growth by regulation of p27 and CDK2. J Cancer Res Clin Oncol 2017; 143:59-69. [PMID: 27629878 DOI: 10.1007/s00432-016-2250-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Desmoglein-2 (Dsg2) is a cell adhesion protein of the cadherin superfamily. Altered Dsg2 expression is associated with tumorigenesis. This study determined Dsg2 expression in non-small cell lung cancer (NSCLC) tissue specimens for association with clinicopathological and survival data and then assessed the effect of Dsg2 knockdown on regulation of NSCLC cell malignant behaviors in vitro and in nude mouse xenografts. METHODS qRT-PCR and Western blot were used to detect Dsg2 expression in 28 paired NSCLC and normal tissue samples. Immunohistochemistry was used to detect Dsg2 expression in 70 cases of paraffin-embedded NSCLC tissues. NSCLC A549, H1703, and H1299 cells were cultured with Dsg2 knockdown performed using Dsg2 siRNA. Cell viability, cell cycle, apoptosis, and colony formation were assessed. siRNA-transfected A549 cells were also used to generate tumor xenografts in nude mice. RESULTS Both Dsg2 mRNA and protein were highly expressed in NSCLC tissues and associated with NSCLC size, but not with overall survival of patients. Moreover, knockdown of Dsg2 expression reduced NSCLC cell proliferation and arrested them at the G1 phase of the cell cycle, but did not significantly affect NSCLC cell apoptosis. Dsg2 knockdown downregulated cyclin-dependent kinase 2 expression and upregulated p27 expression. Nude mouse xenograft assays showed that Dsg2 knockdown inhibited NSCLC xenograft growth in vivo. CONCLUSION This study revealed the importance of Dsg2 in suppression of NSCLC development and progression. Further studies will explore whether restoration of Dsg2 expression is a novel strategy in control of NSCLC.
Collapse
Affiliation(s)
- Feng Cai
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Yingying Miao
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Simei Shen
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Xin Su
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| | - Yi Shi
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
41
|
Ebert LM, Tan LY, Johan MZ, Min KKM, Cockshell MP, Parham KA, Betterman KL, Szeto P, Boyle S, Silva L, Peng A, Zhang Y, Ruszkiewicz A, Zannettino ACW, Gronthos S, Koblar S, Harvey NL, Lopez AF, Shackleton M, Bonder CS. A non-canonical role for desmoglein-2 in endothelial cells: implications for neoangiogenesis. Angiogenesis 2016; 19:463-86. [PMID: 27338829 PMCID: PMC5026727 DOI: 10.1007/s10456-016-9520-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/11/2016] [Indexed: 01/06/2023]
Abstract
Desmogleins (DSG) are a family of cadherin adhesion proteins that were first identified in desmosomes and provide cardiomyocytes and epithelial cells with the junctional stability to tolerate mechanical stress. However, one member of this family, DSG2, is emerging as a protein with additional biological functions on a broader range of cells. Here we reveal that DSG2 is expressed by non-desmosome-forming human endothelial progenitor cells as well as their mature counterparts [endothelial cells (ECs)] in human tissue from healthy individuals and cancer patients. Analysis of normal blood and bone marrow showed that DSG2 is also expressed by CD34+CD45dim hematopoietic progenitor cells. An inability to detect other desmosomal components, i.e., DSG1, DSG3 and desmocollin (DSC)2/3, on these cells supports a solitary role for DSG2 outside of desmosomes. Functionally, we show that CD34+CD45dimDSG2+ progenitor cells are multi-potent and pro-angiogenic in vitro. Using a ‘knockout-first’ approach, we generated a Dsg2 loss-of-function strain of mice (Dsg2lo/lo) and observed that, in response to reduced levels of Dsg2: (i) CD31+ ECs in the pancreas are hypertrophic and exhibit altered morphology, (ii) bone marrow-derived endothelial colony formation is impaired, (iii) ex vivo vascular sprouting from aortic rings is reduced, and (iv) vessel formation in vitro and in vivo is attenuated. Finally, knockdown of DSG2 in a human bone marrow EC line reveals a reduction in an in vitro angiogenesis assay as well as relocalisation of actin and VE-cadherin away from the cell junctions, reduced cell–cell adhesion and increased invasive properties by these cells. In summary, we have identified DSG2 expression in distinct progenitor cell subpopulations and show that, independent from its classical function as a component of desmosomes, this cadherin also plays a critical role in the vasculature.
Collapse
Affiliation(s)
- Lisa M Ebert
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Lih Y Tan
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - M Zahied Johan
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Kay Khine Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Michaelia P Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Kate A Parham
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Kelly L Betterman
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Paceman Szeto
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Samantha Boyle
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Lokugan Silva
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Angela Peng
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - YouFang Zhang
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Ruszkiewicz
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Andrew C W Zannettino
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Simon Koblar
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia.,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mark Shackleton
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA, 5000, Australia. .,Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|