1
|
Ghosh N, Chatterjee D, Datta A. Tumor heterogeneity and resistance in glioblastoma: the role of stem cells. Apoptosis 2025:10.1007/s10495-025-02123-y. [PMID: 40375039 DOI: 10.1007/s10495-025-02123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant brain tumor, characterized by its heterogeneity and the presence of glioblastoma stem cells (GSCs). GSCs are a subpopulation of cells within the tumor that possess self-renewal and differentiation capabilities, contributing to tumor initiation, progression, and recurrence. This review explores the unique biological properties of GSCs, including their molecular markers, signalling pathways, and interactions with the tumor microenvironment. We discuss the mechanisms by which GSCs evade conventional therapies, such as enhanced DNA repair and metabolic plasticity, which complicate treatment outcomes. Furthermore, we highlight recent advancements in identifying novel biomarkers and therapeutic targets that may improve the efficacy of treatments aimed at GSCs. The potential of targeted therapies, including immunotherapy and combination strategies, is also examined to overcome the challenges posed by GSCs. Ultimately, a deeper understanding of GSC biology is essential for developing personalized treatment approaches that can enhance patient outcomes in glioblastoma.
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Neuroscience Technology, School of Allied Health Sciences, Yenepoya, Mangalore, Karnataka, India
| | | | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, India.
| |
Collapse
|
2
|
Iluta S, Nistor M, Buruiana S, Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life (Basel) 2025; 15:228. [PMID: 40003637 PMCID: PMC11856057 DOI: 10.3390/life15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these two signaling networks complicates the development of long-term therapies that also minimize adverse effects on healthy tissues and are not overcome by therapy resistance from CSCs. The present work aims to overview the roles of Notch and Hh in cancer outburst and the intersection of the two pathways with one another, as well as with other networks, such as Wnt/β-catenin, TGF, and JAK/STAT3, and to explore the shaping of the tumor microenvironment (TME) with specific influence on CSC development and maintenance.
Collapse
Affiliation(s)
- Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Madalina Nistor
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania
| |
Collapse
|
3
|
Que Z, Yang K, Wang N, Li S, Li T. Functional Role of RBP in Osteosarcoma: Regulatory Mechanism and Clinical Therapy. Anal Cell Pathol (Amst) 2023; 2023:9849719. [PMID: 37426488 PMCID: PMC10328736 DOI: 10.1155/2023/9849719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
Malignant bone neoplasms can be represented by osteosarcoma (OS), which accounts for 36% of all sarcomas. To reduce tumor malignancy, extensive efforts have been devoted to find an ideal target from numerous candidates, among which RNA-binding proteins (RBPs) have shown their unparalleled competitiveness. With the special structure of RNA-binding domains, RBPs have the potential to establish relationships with RNAs or small molecules and are considered regulators of different sections of RNA processes, including splicing, transport, translation, and degradation of RNAs. RBPs have considerable significant roles in various cancers, and experiments revealed that there was a strong association of RBPs with tumorigenesis and tumor cell progression. Regarding OS, RBPs are a new orientation, but achievements in hand are noteworthy. Higher or lower expression of RBPs was first found in tumor cells compared to normal tissue. By binding to different molecules, RBPs are capable of influencing tumor cell phenotypes through different signaling pathways or other axes, and researches on medical treatment have been largely inspired. Exploring the prognostic and therapeutic values of RBPs in OS is a hotspot where diverse avenues on regulating RBPs have achieved dramatical effects. In this review, we briefly summarize the contribution of RBPs and their binding molecules to OS oncogenicity and generally introduce distinctive RBPs as samples. Moreover, we focus on the attempts to differentiate RBP's opposite functions in predicting prognosis and collect possible strategies for treatment. Our review provides forwards insight into improving the understanding of OS and suggests RBPs as potential biomarkers for therapies.
Collapse
Affiliation(s)
- Ziyuan Que
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Kang Yang
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Nan Wang
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Shuying Li
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Tao Li
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
4
|
Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022; 180:114068. [PMID: 34822926 PMCID: PMC8724414 DOI: 10.1016/j.addr.2021.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is often diagnosed at an advanced stage and conventional treatments for disease management have limitations associated with them. Novel therapeutic targets are thus avidly sought for the effective management of LC. RNA binding proteins (RBPs) have been convincingly established as key players in tumorigenesis, and their dysregulation is linked to multiple cancers, including LC. In this context, we review the role of Human antigen R (HuR), an RBP that is overexpressed in LC, and further associated with various aspects of LC tumor growth and response to therapy. Herein, we describe the role of HuR in LC progression and outline the evidences supporting various pharmacologic and biologic approaches for inhibiting HuR expression and function. These approaches, including use of small molecule inhibitors, siRNAs and shRNAs, have demonstrated favorable results in reducing tumor cell growth, invasion and migration, angiogenesis and metastasis. Hence, HuR has significant potential as a key therapeutic target in LC. Use of siRNA-based approaches, however, have certain limitations that prevent their maximal exploitation as cancer therapies. To address this, in the conclusion of this review, we provide a list of nanomedicine-based HuR targeting approaches currently being employed for siRNA and shRNA delivery, and provide a rationale for the immense potential therapeutic benefits offered by nanocarrier-based HuR targeting and its promise for treating patients with LC.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan D Zhao
- Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Dual Knockdown of Musashi RNA-Binding Proteins MSI-1 and MSI-2 Attenuates Putative Cancer Stem Cell Characteristics and Therapy Resistance in Ovarian Cancer Cells. Int J Mol Sci 2021; 22:ijms222111502. [PMID: 34768932 PMCID: PMC8584030 DOI: 10.3390/ijms222111502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
In ovarian cancer, therapy resistance mechanisms complicate cancer cell eradication. Targeting Musashi RNA-binding proteins (MSI) may increase therapeutic efficacy. Database analyses were performed to identify gene expression associations between MSI proteins and key therapy resistance and cancer stem cell (CSC) genes. Then, ovarian cancer cells were subjected to siRNA-based dual knockdown of MSI-1 and MSI-2. CSC and cell cycle gene expression was investigated using quantitative polymerase chain reaction (qPCR), western blots, and flow cytometry. Metabolic activity and chemoresistance were assessed by MTT assay. Clonogenic assays were used to quantify cell survival post-irradiation. Database analyses demonstrated positive associations between MSI proteins and putative CSC markers NOTCH, MYC, and ALDH4A1 and negative associations with NOTCH inhibitor NUMB. MSI-2 expression was negatively associated with the apoptosis regulator p21. MSI-1 and MSI-2 were positively correlated, informing subsequent dual knockdown experiments. After MSI silencing, CSC genes were downregulated, while cell cycle progression was reduced. Metabolic activity was decreased in some cancer cells. Both chemo- and radioresistance were reduced after dual knockdown, suggesting therapeutic potential. Dual knockdown of MSI proteins is a promising venue to impede tumor growth and sensitize ovarian cancer cells to irradiation and chemotherapy.
Collapse
|
6
|
Bley N, Hmedat A, Müller S, Rolnik R, Rausch A, Lederer M, Hüttelmaier S. Musashi-1-A Stemness RBP for Cancer Therapy? BIOLOGY 2021; 10:407. [PMID: 34062997 PMCID: PMC8148009 DOI: 10.3390/biology10050407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein Musashi-1 (MSI1) promotes stemness during development and cancer. By controlling target mRNA turnover and translation, MSI1 is implicated in the regulation of cancer hallmarks such as cell cycle or Notch signaling. Thereby, the protein enhanced cancer growth and therapy resistance to standard regimes. Due to its specific expression pattern and diverse functions, MSI1 represents an interesting target for cancer therapy in the future. In this review we summarize previous findings on MSI1's implications in developmental processes of other organisms. We revisit MSI1's expression in a set of solid cancers, describe mechanistic details and implications in MSI1 associated cancer hallmark pathways and highlight current research in drug development identifying the first MSI1-directed inhibitors with anti-tumor activity.
Collapse
Affiliation(s)
- Nadine Bley
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
- Core Facility Imaging, Institute for Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany
| | - Ali Hmedat
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Simon Müller
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Robin Rolnik
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Alexander Rausch
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
- Core Facility Imaging, Institute for Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany
| | - Marcell Lederer
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Stefan Hüttelmaier
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| |
Collapse
|
7
|
Baroni M, Yi C, Choudhary S, Lei X, Kosti A, Grieshober D, Velasco M, Qiao M, Burns SS, Araujo PR, DeLambre T, Son MY, Plateroti M, Ferreira MAR, Hasty EP, Penalva LOF. Musashi1 Contribution to Glioblastoma Development via Regulation of a Network of DNA Replication, Cell Cycle and Division Genes. Cancers (Basel) 2021; 13:1494. [PMID: 33804958 PMCID: PMC8036803 DOI: 10.3390/cancers13071494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/21/2022] Open
Abstract
RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in their levels are often observed in tumors with numerous oncogenic RBPs identified in recent years. Musashi1 (Msi1) is an RBP and stem cell gene that controls the balance between self-renewal and differentiation. High Msi1 levels have been observed in multiple tumors including glioblastoma and are often associated with poor patient outcomes and tumor growth. A comprehensive genomic analysis identified a network of cell cycle/division and DNA replication genes and established these processes as Msi1's core regulatory functions in glioblastoma. Msi1 controls this gene network via two mechanisms: direct interaction and indirect regulation mediated by the transcription factors E2F2 and E2F8. Moreover, glioblastoma lines with Msi1 knockout (KO) displayed increased sensitivity to cell cycle and DNA replication inhibitors. Our results suggest that a drug combination strategy (Msi1 + cell cycle/DNA replication inhibitors) could be a viable route to treat glioblastoma.
Collapse
Affiliation(s)
- Mirella Baroni
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Caihong Yi
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Third Xiangya Hospital, Central South University, Changsha 410000, China
| | - Saket Choudhary
- Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA 90089, USA;
| | - Xiufen Lei
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Adam Kosti
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Denise Grieshober
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mitzli Velasco
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mei Qiao
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Suzanne S. Burns
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Patricia R. Araujo
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Talia DeLambre
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mi Young Son
- Department of Molecular Medicine, Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA; (M.Y.S.); (E.P.H.)
| | - Michelina Plateroti
- Team: Development, Cancer and Stem Cells, Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 67200 Strasbourg, France;
| | | | - E. Paul Hasty
- Department of Molecular Medicine, Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA; (M.Y.S.); (E.P.H.)
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
8
|
Forouzanfar M, Lachinani L, Dormiani K, Nasr-Esfahani MH, Ghaedi K. Increased expression of MUSASHI1 in epithelial breast cancer cells is due to down regulation of miR-125b. BMC Mol Cell Biol 2021; 22:10. [PMID: 33541259 PMCID: PMC7863248 DOI: 10.1186/s12860-021-00348-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
Background Musashi1 (MSI1) is an oncogenic protein with a crucial role in the proliferation and characteristics of the epithelial cells in breast cancer. The change in expression of MSI1 has a role in solid tumor progression. There are different factors that regulate MSI1 expression in various cancer tissues including microRNAs which are considered as one of the most important of these factors. The aim of our study is identification of the molecular cause of maximal expression of MSI1 in epithelial breast cancer cell lines. Results Among predicted microRNAs, miR-125b, miR-637 and miR-802 were able to significantly reduce the luciferase activity. In addition, the relative expression of these three miRNAs were measured in the cancerous cell lines that results showed a significant reduction in expression of all microRNAs. On the other hand, only the overexpression of miR-125b caused a change in the expression pattern of MSI1 in breast epithelial cancer cell lines. Accordingly, our results demonstrated that the exogenous expression of miR-125b decreased not only the MSI1 protein but also expression of epithelial markers in breast cancer cells. Conclusions The results of luciferase reporter assay showed that MSI1 is a direct target for miR-125b in epithelial breast cancer cells. Moreover, higher amount of MSI1 in those cell lines seems due to the reduced amount of miR-125b, which is responsible for epithelial features of those kinds of cancer cells. Therefore, the modulation of miR-125b may be a potential approach to help to combat against epithelial breast tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00348-8.
Collapse
Affiliation(s)
- Mahboobeh Forouzanfar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran
| | - Liana Lachinani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran.
| |
Collapse
|
9
|
MSI1 Promotes the Expression of the GBM Stem Cell Marker CD44 by Impairing miRNA-Dependent Degradation. Cancers (Basel) 2020; 12:cancers12123654. [PMID: 33291443 PMCID: PMC7762192 DOI: 10.3390/cancers12123654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most lethal brain tumor with a median survival rate of approximately 14 months. GBM patients commonly suffer from tumor recurrence, indicating that populations of chemo/radio-resistant stem cell-like tumor cells survive treatments. Here we reveal that the neuronal stem cell marker Musashi1 (MSI1) is highly expressed in primary GBM and recurrences. We identify a novel regulatory role of MSI1 in GBM-derived cell lines and patient-derived tumorspheres, the enhancement of stemness marker expression, here demonstrated for CD44. Furthermore, we provide a rationale for MSI1-centered therapeutic targeting strategies to improve treatment options of this chemo/radio-resistant malignancy. Abstract The stem cell marker Musashi1 (MSI1) is highly expressed during neurogenesis and in glioblastoma (GBM). MSI1 promotes self-renewal and impairs differentiation in cancer and non-malignant progenitor cells. However, a comprehensive understanding of its role in promoting GBM-driving networks remains to be deciphered. We demonstrate that MSI1 is highly expressed in GBM recurrences, an oncologist’s major defiance. For the first time, we provide evidence that MSI1 promotes the expression of stem cell markers like CD44, co-expressed with MSI1 within recurrence-promoting cells at the migrating front of primary GBM samples. With GBM cell models of pediatric and adult origin, including isolated primary tumorspheres, we show that MSI1 promotes stem cell-like characteristics. Importantly, it impairs CD44 downregulation in a 3′UTR- and miRNA-dependent manner by controlling mRNA turnover. This regulation is disturbed by the previously reported MSI1 inhibitor luteolin, providing further evidence for a therapeutic target potential of MSI1 in GBM treatment.
Collapse
|
10
|
Dong Y, Li J, Liu R, Zhao Z, Wang S, Cui K. Musashi1 expression is negatively correlated with numb expression in brain metastases. Medicine (Baltimore) 2020; 99:e22000. [PMID: 33120728 PMCID: PMC7581019 DOI: 10.1097/md.0000000000022000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 11/25/2022] Open
Abstract
The expression of tumor stem cell markers musashi1 (msi1) and numb in brain metastases were detected to explore their roles in the development of brain metastases.A total of 51 cases of brain metastasis, 29 cases of primary tumor and 15 cases of normal brain tissue were selected. Immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) were used to detect msi1 and numb expression at the protein and mRNA levels. Correlation between msi1 and numb in brain metastases were evaluated.Immunohistochemistry and RT-PCR showed that no significant difference in the expression of msi1 and numb between brain metastases and primary tumors was observed (P > .05); the expression of msi1 and numb in brain metastases was significantly higher than that in normal brain tissues (P < .05); and the expression of msi1 and numb in primary tumors was significantly higher than that in normal brain tissues (P < .05). In general, the expression of msi1 gene was negatively correlated with the expression of numb at mRNA level by Pearson correlation analysis (r = -0.345, P < .05). Additionally, the expression of msi1 and numb in brain metastases was not related to gender, age, and tissue origin (P > .05).Msi1 is highly expressed in brain metastases and primary tumors, while numb is lowly expressed in brain metastases and primary tumors; msi1 and numb are negatively correlated in brain metastases, suggesting that msi1 and numb may have regulatory mechanisms in the development of brain metastases.
Collapse
|
11
|
Lan L, Liu J, Xing M, Smith AR, Wang J, Wu X, Appelman C, Li K, Roy A, Gowthaman R, Karanicolas J, Somoza AD, Wang CCC, Miao Y, De Guzman R, Oakley BR, Neufeld KL, Xu L. Identification and Validation of an Aspergillus nidulans Secondary Metabolite Derivative as an Inhibitor of the Musashi-RNA Interaction. Cancers (Basel) 2020; 12:cancers12082221. [PMID: 32784494 PMCID: PMC7463734 DOI: 10.3390/cancers12082221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
RNA-binding protein Musashi-1 (MSI1) is a key regulator of several stem cell populations. MSI1 is involved in tumor proliferation and maintenance, and it regulates target mRNAs at the translational level. The known mRNA targets of MSI1 include Numb, APC, and P21WAF-1, key regulators of Notch/Wnt signaling and cell cycle progression, respectively. In this study, we aim to identify small molecule inhibitors of MSI1-mRNA interactions, which could block the growth of cancer cells with high levels of MSI1. Using a fluorescence polarization (FP) assay, we screened small molecules from several chemical libraries for those that disrupt the binding of MSI1 to its consensus RNA. One cluster of hit compounds is the derivatives of secondary metabolites from Aspergillus nidulans. One of the top hits, Aza-9, from this cluster was further validated by surface plasmon resonance and nuclear magnetic resonance spectroscopy, which demonstrated that Aza-9 binds directly to MSI1, and the binding is at the RNA binding pocket. We also show that Aza-9 binds to Musashi-2 (MSI2) as well. To test whether Aza-9 has anti-cancer potential, we used liposomes to facilitate Aza-9 cellular uptake. Aza-9-liposome inhibits proliferation, induces apoptosis and autophagy, and down-regulates Notch and Wnt signaling in colon cancer cell lines. In conclusion, we identified a series of potential lead compounds for inhibiting MSI1/2 function, while establishing a framework for identifying small molecule inhibitors of RNA binding proteins using FP-based screening methodology.
Collapse
Affiliation(s)
- Lan Lan
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Jiajun Liu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Minli Xing
- Bio-NMR Core Facility, the University of Kansas, Lawrence, KS 66045, USA;
| | - Amber R. Smith
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Jinan Wang
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - Xiaoqing Wu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Carl Appelman
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Ke Li
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Anuradha Roy
- High Throughput Screening Laboratory, the University of Kansas, Lawrence, KS 66045, USA;
| | - Ragul Gowthaman
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Amber D. Somoza
- Department of Chemistry, University of Southern California, Los Angeles, CA 90007, USA; (A.D.S.); (C.C.C.W.)
| | - Clay C. C. Wang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90007, USA; (A.D.S.); (C.C.C.W.)
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90007, USA
| | - Yinglong Miao
- Center for Computational Biology, the University of Kansas, Lawrence, KS 66045, USA; (J.W.); (R.G.); (Y.M.)
| | - Roberto De Guzman
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Berl R. Oakley
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
| | - Kristi L. Neufeld
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
- Department of Cancer Biology, the University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Liang Xu
- Departments of Molecular Biosciences, the University of Kansas, Lawrence, KS 66045, USA; (L.L.); (J.L.); (A.R.S.); (X.W.); (C.A.); (K.L.); (R.D.G.); (B.R.O.); (K.L.N.)
- Department of Radiation Oncology, the University of Kansas Cancer Center, Kansas City, KS 66160, USA
- Correspondence:
| |
Collapse
|
12
|
Forouzanfar M, Lachinani L, Dormiani K, Nasr-Esfahani MH, Gure AO, Ghaedi K. Intracellular functions of RNA-binding protein, Musashi1, in stem and cancer cells. Stem Cell Res Ther 2020; 11:193. [PMID: 32448364 PMCID: PMC7245930 DOI: 10.1186/s13287-020-01703-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding protein, musashi1 (MSI1), is a main protein in asymmetric cell division of the sensory organ precursor cells, whereas its expression is reported to be upregulated in cancers. This protein is a critical element in proliferation of stem and cancer stem cells, which acts through Wnt and Notch signaling pathways. Moreover, MSI1 modulates malignancy and chemoresistance of lung cancer cells via activating the Akt signaling. Due to the main role of MSI1 in metastasis and cancer development, MSI1 would be an appropriate candidate for cancer therapy. Downregulation of MSI1 inhibits proliferation of cancer stem cells and reduces the growth of solid tumors in several cancers. On the other hand, MSI1 expression is regulated by microRNAs in such a way that several different tumor suppressor miRNAs negatively regulate oncogenic MSI1 and inhibit migration and tumor metastasis. The aim of this review is summarizing the role of MSI1 in stem cell proliferation and cancer promotion.
Collapse
Affiliation(s)
- Mahboobeh Forouzanfar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran
| | - Liana Lachinani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran
| | - Kianoush Dormiani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Code 816513-1378, Iran. .,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Ali Osmay Gure
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Square, Isfahan, P.O. Code 81746, Iran. .,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
13
|
Pötschke R, Gielen G, Pietsch T, Kramm C, Klusmann JH, Hüttelmaier S, Kühnöl CD. Musashi1 enhances chemotherapy resistance of pediatric glioblastoma cells in vitro. Pediatr Res 2020; 87:669-676. [PMID: 31756732 DOI: 10.1038/s41390-019-0628-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive form of glioma in adults and children and is associated with very poor prognosis. Pediatric tumors are biologically distinct from adult GBM and differ in response to current GBM treatment protocols. Regarding pediatric GBM, new drug combinations and the molecular background of chemotherapy effects need to be investigated, in order to increase patient survival outcome. METHODS The expression of the RNA-binding protein Musashi1 (MSI1) in pediatric glioma samples of different WHO tumor grades was investigated on the protein (immunohistochemistry) and on the RNA level (publicly accessible RNA sequencing dataset). The impact of the chemotherapeutic temozolomide (TMZ) in combination with valproic acid (VPA) was tested in two pediatric glioblastoma-derived cell lines. The supportive effect of MSI1 expression against this treatment was investigated via transient knockdown and protein overexpression. RESULTS MSI1 expression correlates with pediatric high-grade glioma (HGG). The combination of TMZ with VPA significantly increases the impact of drug treatment on cell viability in vitro. MSI1 was found to promote drug resistance to the combined treatment with TMZ and VPA. CONCLUSION MSI1 expression is a potential marker for pediatric HGG and increases chemoresistance. Inhibition of MSI1 might lead to an improved patient outcome and therapy response.
Collapse
Affiliation(s)
- Rebecca Pötschke
- Molecular Cell Biology, Institute of Molecular Medicine, Martin-Luther-University, Halle (Saale), Germany.,Department of Pediatric Hematology/Oncology, University Hospital, Halle (Saale), Germany
| | - Gerrit Gielen
- Institute of Neuropathology, University Hospital, Bonn, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, University Hospital, Bonn, Germany
| | - Christof Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center, Göttingen, Germany
| | - Jan-Henning Klusmann
- Department of Pediatric Hematology/Oncology, University Hospital, Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Molecular Cell Biology, Institute of Molecular Medicine, Martin-Luther-University, Halle (Saale), Germany.
| | - Caspar D Kühnöl
- Department of Pediatric Hematology/Oncology, University Hospital, Halle (Saale), Germany.
| |
Collapse
|
14
|
Chagas PF, Baroni M, Brassesco MS, Tone LG. Interplay between the RNA binding‐protein Musashi and developmental signaling pathways. J Gene Med 2020; 22:e3136. [DOI: 10.1002/jgm.3136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Pablo Ferreira Chagas
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - Mirella Baroni
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão PretoUniversity of São Paulo Brazil
| | - Luiz Gonzaga Tone
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
- Department of PediatricsRibeirão Preto Medical School São Paulo
| |
Collapse
|
15
|
Cragle CE, MacNicol MC, Byrum SD, Hardy LL, Mackintosh SG, Richardson WA, Gray NK, Childs GV, Tackett AJ, MacNicol AM. Musashi interaction with poly(A)-binding protein is required for activation of target mRNA translation. J Biol Chem 2019; 294:10969-10986. [PMID: 31152063 PMCID: PMC6635449 DOI: 10.1074/jbc.ra119.007220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
The Musashi family of mRNA translational regulators controls both physiological and pathological stem cell self-renewal primarily by repressing target mRNAs that promote differentiation. In response to differentiation cues, Musashi can switch from a repressor to an activator of target mRNA translation. However, the molecular events that distinguish Musashi-mediated translational activation from repression are not understood. We have previously reported that Musashi function is required for the maturation of Xenopus oocytes and specifically for translational activation of specific dormant maternal mRNAs. Here, we employed MS to identify cellular factors necessary for Musashi-dependent mRNA translational activation. We report that Musashi1 needs to associate with the embryonic poly(A)-binding protein (ePABP) or the canonical somatic cell poly(A)-binding protein PABPC1 for activation of Musashi target mRNA translation. Co-immunoprecipitation studies demonstrated an increased Musashi1 interaction with ePABP during oocyte maturation. Attenuation of endogenous ePABP activity severely compromised Musashi function, preventing downstream signaling and blocking oocyte maturation. Ectopic expression of either ePABP or PABPC1 restored Musashi-dependent mRNA translational activation and maturation of ePABP-attenuated oocytes. Consistent with these Xenopus findings, PABPC1 remained associated with Musashi under conditions of Musashi target mRNA de-repression and translation during mammalian stem cell differentiation. Because association of Musashi1 with poly(A)-binding proteins has previously been implicated only in repression of Musashi target mRNAs, our findings reveal novel context-dependent roles for the interaction of Musashi with poly(A)-binding protein family members in response to extracellular cues that control cell fate.
Collapse
Affiliation(s)
- Chad E Cragle
- Department of Neurobiology and Developmental Sciences
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences,; Center for Translational Neuroscience
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology,; Arkansas Children's Research Institute
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences
| | | | - William A Richardson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Nicola K Gray
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences,; Center for Translational Neuroscience
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology,; Arkansas Children's Research Institute
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences,; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and.
| |
Collapse
|
16
|
Minuesa G, Albanese SK, Xie W, Kazansky Y, Worroll D, Chow A, Schurer A, Park SM, Rotsides CZ, Taggart J, Rizzi A, Naden LN, Chou T, Gourkanti S, Cappel D, Passarelli MC, Fairchild L, Adura C, Glickman JF, Schulman J, Famulare C, Patel M, Eibl JK, Ross GM, Bhattacharya S, Tan DS, Leslie CS, Beuming T, Patel DJ, Goldgur Y, Chodera JD, Kharas MG. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat Commun 2019; 10:2691. [PMID: 31217428 PMCID: PMC6584500 DOI: 10.1038/s41467-019-10523-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
The MUSASHI (MSI) family of RNA binding proteins (MSI1 and MSI2) contribute to a wide spectrum of cancers including acute myeloid leukemia. We find that the small molecule Ro 08-2750 (Ro) binds directly and selectively to MSI2 and competes for its RNA binding in biochemical assays. Ro treatment in mouse and human myeloid leukemia cells results in an increase in differentiation and apoptosis, inhibition of known MSI-targets, and a shared global gene expression signature similar to shRNA depletion of MSI2. Ro demonstrates in vivo inhibition of c-MYC and reduces disease burden in a murine AML leukemia model. Thus, we identify a small molecule that targets MSI's oncogenic activity. Our study provides a framework for targeting RNA binding proteins in cancer.
Collapse
Affiliation(s)
- Gerard Minuesa
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Steven K Albanese
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Wei Xie
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yaniv Kazansky
- Weill Cornell Medical College, Tri-Institutional MD-PhD Program, Rockefeller University and Sloan Kettering Institute, New York, NY, 10065, USA
| | - Daniel Worroll
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Arthur Chow
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Sun-Mi Park
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Christina Z Rotsides
- Chemical Biology Program, Sloan Kettering Institute and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - James Taggart
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrea Rizzi
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Levi N Naden
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Timothy Chou
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Saroj Gourkanti
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Maria C Passarelli
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medical College, Tri-Institutional MD-PhD Program, Rockefeller University and Sloan Kettering Institute, New York, NY, 10065, USA
| | - Lauren Fairchild
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Carolina Adura
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY, 10065, USA
| | - J Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY, 10065, USA
| | - Jessica Schulman
- Hematologic Oncology Tissue Bank, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christopher Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Minal Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph K Eibl
- Northern Ontario School of Medicine, Sudbury, ON, P3E 2C6, Canada
| | - Gregory M Ross
- Northern Ontario School of Medicine, Sudbury, ON, P3E 2C6, Canada
| | | | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Thijs Beuming
- Schrödinger, Inc., 120 West 45th Street, New York, NY, 10036, USA
| | - Dinshaw J Patel
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Yi C, Li G, Ivanov DN, Wang Z, Velasco MX, Hernández G, Kaundal S, Villarreal J, Gupta YK, Qiao M, Hubert CG, Hart MJ, Penalva LOF. Luteolin inhibits Musashi1 binding to RNA and disrupts cancer phenotypes in glioblastoma cells. RNA Biol 2018; 15:1420-1432. [PMID: 30362859 DOI: 10.1080/15476286.2018.1539607] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RNA binding proteins have emerged as critical oncogenic factors and potential targets in cancer therapy. In this study, we evaluated Musashi1 (Msi1) targeting as a strategy to treat glioblastoma (GBM); the most aggressive brain tumor type. Msi1 expression levels are often high in GBMs and other tumor types and correlate with poor clinical outcome. Moreover, Msi1 has been implicated in chemo- and radio-resistance. Msi1 modulates a range of cancer relevant processes and pathways and regulates the expression of stem cell markers and oncogenic factors via mRNA translation/stability. To identify Msi1 inhibitors capable of blocking its RNA binding function, we performed a ~ 25,000 compound fluorescence polarization screen. NMR and LSPR were used to confirm direct interaction between Msi1 and luteolin, the leading compound. Luteolin displayed strong interaction with Msi1 RNA binding domain 1 (RBD1). As a likely consequence of this interaction, we observed via western and luciferase assays that luteolin treatment diminished Msi1 positive impact on the expression of pro-oncogenic target genes. We tested the effect of luteolin treatment on GBM cells and showed that it reduced proliferation, cell viability, colony formation, migration and invasion of U251 and U343 GBM cells. Luteolin also decreased the proliferation of patient-derived glioma initiating cells (GICs) and tumor-organoids but did not affect normal astrocytes. Finally, we demonstrated the value of combined treatments with luteolin and olaparib (PARP inhibitor) or ionizing radiation (IR). Our results show that luteolin functions as an inhibitor of Msi1 and demonstrates its potential use in GBM therapy.
Collapse
Affiliation(s)
- Caihong Yi
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,b Xiangya School of Medicine , Central South University , Hunan , China
| | - Guiming Li
- c Center for Innovative Drug Discovery , University of Texas Health Science Center , San Antonio , TX , USA.,d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Dmitri N Ivanov
- d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Zhonghua Wang
- d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Mitzli X Velasco
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,e Division of Basic Research , National Institute of Cancer (INCan) , Mexico City , Mexico
| | - Greco Hernández
- e Division of Basic Research , National Institute of Cancer (INCan) , Mexico City , Mexico
| | - Soni Kaundal
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA
| | - Johanna Villarreal
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA
| | - Yogesh K Gupta
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Mei Qiao
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA
| | - Christopher G Hubert
- f Department of Stem Cell Biology and Regenerative Medicine , Cleveland Clinic , Cleveland , OH , USA
| | - Matthew J Hart
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,c Center for Innovative Drug Discovery , University of Texas Health Science Center , San Antonio , TX , USA.,d Department of Biochemistry and Structural Biology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Luiz O F Penalva
- a Greehey Children's Cancer Research Institute , University of Texas Health Science Center , San Antonio , TX , USA.,g Department of Cell Systems and Anatomy , University of Texas Health Science Center , San Antonio , TX , USA
| |
Collapse
|
18
|
Ma L, Shan Y, Ma H, Elshoura I, Nafees M, Yang K, Yin W. Identification of a novel splice variant of the human musashi-1 gene. Oncol Lett 2018; 16:5441-5448. [PMID: 30250616 DOI: 10.3892/ol.2018.9300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/28/2018] [Indexed: 11/06/2022] Open
Abstract
Musashi-1 (Msi1) is an evolutionarily conserved RNA-binding protein that has been reported to be the key regulator in malignancies and with involvement in cancer stemness. In the present study, a novel Msi1 transcript variant generated by alternative splicing was identified and termed Msi1 variant 2. This variant was observed to be ubiquitously expressed in cancerous and non-cancerous cells compared with its wild-type variant, which is preferentially expressed in cancer cells. Notably, the expression levels of Msi1 variant 2 were inversely associated with the protein expression levels of Msi1 in various cancer cells. This naturally truncated variant contains 899 nucleotides and a skipping event of exons 3 and 4, which leads to the emergence of a premature TGA stop codon in exon 5. The present results also demonstrated that hypoxia increased the resistance of H460 cells to cisplatin by suppressing the exon 3 and 4 skipping event of Msi1. In summary, the present study identified a novel splice variant of Msi1 lacking two complete RNA recognition motifs, and revealed the role of exon 3 and 4 skipping of Msi1 pre-mRNA in regulating cisplatin resistance under hypoxia. These observations indicate that targeting Msi1 alternative splicing could represent a valuable strategy to repress Msi1 signaling in tumors overexpressing this RNA-binding protein.
Collapse
Affiliation(s)
- Lin Ma
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Yating Shan
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Heliang Ma
- Department of Radiology, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Ihab Elshoura
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Muhammad Nafees
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Kaiyong Yang
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210046, P.R. China
| |
Collapse
|
19
|
Lan L, Liu H, Smith AR, Appelman C, Yu J, Larsen S, Marquez RT, Wu X, Liu FY, Gao P, Gowthaman R, Karanicolas J, De Guzman RN, Rogers S, Aubé J, Neufeld KL, Xu L. Natural product derivative Gossypolone inhibits Musashi family of RNA-binding proteins. BMC Cancer 2018; 18:809. [PMID: 30097032 PMCID: PMC6086024 DOI: 10.1186/s12885-018-4704-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Musashi (MSI) family of RNA-binding proteins is best known for the role in post-transcriptional regulation of target mRNAs. Elevated MSI1 levels in a variety of human cancer are associated with up-regulation of Notch/Wnt signaling. MSI1 binds to and negatively regulates translation of Numb and APC (adenomatous polyposis coli), negative regulators of Notch and Wnt signaling respectively. METHODS Previously, we have shown that the natural product (-)-gossypol as the first known small molecule inhibitor of MSI1 that down-regulates Notch/Wnt signaling and inhibits tumor xenograft growth in vivo. Using a fluorescence polarization (FP) competition assay, we identified gossypolone (Gn) with a > 20-fold increase in Ki value compared to (-)-gossypol. We validated Gn binding to MSI1 using surface plasmon resonance, nuclear magnetic resonance, and cellular thermal shift assay, and tested the effects of Gn on colon cancer cells and colon cancer DLD-1 xenografts in nude mice. RESULTS In colon cancer cells, Gn reduced Notch/Wnt signaling and induced apoptosis. Compared to (-)-gossypol, the same concentration of Gn is less active in all the cell assays tested. To increase Gn bioavailability, we used PEGylated liposomes in our in vivo studies. Gn-lip via tail vein injection inhibited the growth of human colon cancer DLD-1 xenografts in nude mice, as compared to the untreated control (P < 0.01, n = 10). CONCLUSION Our data suggest that PEGylation improved the bioavailability of Gn as well as achieved tumor-targeted delivery and controlled release of Gn, which enhanced its overall biocompatibility and drug efficacy in vivo. This provides proof of concept for the development of Gn-lip as a molecular therapy for colon cancer with MSI1/MSI2 overexpression.
Collapse
Affiliation(s)
- Lan Lan
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Hao Liu
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
- Current address: School of Pharmacy, Southwest Medical University, Luzhou City, China
| | - Amber R Smith
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Carl Appelman
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Jia Yu
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Sarah Larsen
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Rebecca T Marquez
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Xiaoqing Wu
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Frank Y Liu
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Philip Gao
- Protein Production Group, NIH COBRE in Protein Structure and Function, Lawrence, USA
| | - Ragul Gowthaman
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, USA
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Roberto N De Guzman
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Steven Rogers
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey Aubé
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Kristi L Neufeld
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA
| | - Liang Xu
- Departments of Molecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, KS, 66045-7534, USA.
- Department of Radiation Oncology, University of Kansas Cancer Center, Kansas City, Kansas, USA.
| |
Collapse
|
20
|
Testa U, Castelli G, Pelosi E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers (Basel) 2018; 10:E248. [PMID: 30060526 PMCID: PMC6116004 DOI: 10.3390/cancers10080248] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer causes the largest number of cancer-related deaths in the world. Most (85%) of lung cancers are classified as non-small-cell lung cancer (NSCLC) and small-cell lung cancer (15%) (SCLC). The 5-year survival rate for NSCLC patients remains very low (about 16% at 5 years). The two predominant NSCLC histological phenotypes are adenocarcinoma (ADC) and squamous cell carcinoma (LSQCC). ADCs display several recurrent genetic alterations, including: KRAS, BRAF and EGFR mutations; recurrent mutations and amplifications of several oncogenes, including ERBB2, MET, FGFR1 and FGFR2; fusion oncogenes involving ALK, ROS1, Neuregulin1 (NRG1) and RET. In LSQCC recurrent mutations of TP53, FGFR1, FGFR2, FGFR3, DDR2 and genes of the PI3K pathway have been detected, quantitative gene abnormalities of PTEN and CDKN2A. Developments in the characterization of lung cancer molecular abnormalities provided a strong rationale for new therapeutic options and for understanding the mechanisms of drug resistance. However, the complexity of lung cancer genomes is particularly high, as shown by deep-sequencing studies supporting the heterogeneity of lung tumors at cellular level, with sub-clones exhibiting different combinations of mutations. Molecular studies performed on lung tumors during treatment have shown the phenomenon of clonal evolution, thus supporting the occurrence of a temporal tumor heterogeneity.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
21
|
Liu L, Qiu F, Chen J, Wu D, Nong Q, Zhou Y, Lu J. Functional Polymorphism in the MSI1 Gene Promoter Confers a Decreased Risk of Lung Cancer in Chinese by Reducing MSI1 Expression. Curr Genomics 2018; 19:375-383. [PMID: 30065613 PMCID: PMC6030856 DOI: 10.2174/1389202919666171128151544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/12/2016] [Accepted: 01/29/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Musashi1 (MSI1) is a characteristic stem cell marker that regulates the balance between cell self-renewal and differentiation. Evidence has identified MSI1 as a pivotal oncogenic regulator in diverse malignancies. However, little evidence uncovers the role of genetic variations of MSI1 gene in cancer etiology. Objective: The aim of this study was to investigate the association between genetic variants in the MSI1 gene and lung cancer risk. Methods: Based on a two-stage retrospective study with a total of 1559 patients with lung cancer and 1667 healthy controls, we evaluated the relevance between three putative functional SNPs in the MSI1 promoter (i.e., -2696T>C[rs7959801], -2297T>C[rs3742038] and -1081C>T[rs34570155]) and lung cancer risk. Results: We found that the SNP rs7959801T>C was significantly associated with lung cancer susceptibility. Compared to those with rs7959801TT wild-genotype, individuals with CT/CC variant genotypes exerted consistently beneficial roles in lung cancer risk in the discovery set (adjusted odd ratios [OR] = 0.67; 95% confidence interval [CI] = 0.57-0.80), and in the validation set (OR=0.69; 95%CI=0.54-0.88). Functional assays indicated that the allele transformation from T to C in rs7959801 of MSI1 gene arrestingly decreased its transcription activity in vitro. Furthermore, the expression levels of MSI1 were significantly lower in the patients with CT/CC variants than in those who were with TT genotype. Conclusion: Our findings suggested that the rs7959801T>C polymorphism in the MSI1 promoter conferred a decreased risk to lung cancer by reducing the expression of MSI1 and it may be a promising indicator for lung cancer predisposition.
Collapse
Affiliation(s)
- Lin Liu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Fuman Qiu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Jiansong Chen
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Di Wu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Qingqing Nong
- Department of Environmental Health, Guangxi Medical University, 22 Shuangyong road, Nanning530021, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, 199 Renai road, Suzhou215123, China
| | - Jiachun Lu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| |
Collapse
|
22
|
Odle AK, Beneš H, Melgar Castillo A, Akhter N, Syed M, Haney A, Allensworth-James M, Hardy L, Winter B, Manoharan R, Syed R, MacNicol MC, MacNicol AM, Childs GV. Association of Gnrhr mRNA With the Stem Cell Determinant Musashi: A Mechanism for Leptin-Mediated Modulation of GnRHR Expression. Endocrinology 2018; 159:883-894. [PMID: 29228137 PMCID: PMC5776477 DOI: 10.1210/en.2017-00586] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
Abstract
The cyclic expression of pituitary gonadotropin-releasing hormone receptors (GnRHRs) may be an important checkpoint for leptin regulatory signals. Gonadotrope Lepr-null mice have reduced GnRHR levels, suggesting these receptors may be leptin targets. To determine if leptin stimulated GnRHR directly, primary pituitary cultures or pieces were exposed to 1 to 100 nM leptin. Leptin increased GnRHR protein levels and the percentages of gonadotropes that bound biotinylated analogs of gonadotropin-releasing hormone (bio-GnRH) but had no effect on Gnrhr messenger RNA (mRNA). An in silico analysis revealed three consensus Musashi (MSI) binding elements (MBEs) for this translational control protein in the 3' untranslated region (UTR) of Gnrhr mRNA. Several experiments determined that these Gnrhr mRNA MBE were active: (1) RNA electrophoretic mobility shift assay analyses showed that MSI1 specifically bound Gnrhr mRNA 3'-UTR; (2) RNA immunoprecipitation of pituitary fractions with MSI1 antibody pulled down a complex enriched in endogenous MSI protein and endogenous Gnrhr mRNA; and (3) fluorescence reporter assays showed that MSI1 repressed translation of the reporter coupled to the Gnrhr 3'-UTR. In vitro, leptin stimulation of pituitary pieces reduced Msi1 mRNA in female pituitaries, and leptin stimulation of pituitary cultures reduced MSI1 proteins selectively in gonadotropes identified by binding to bio-GnRH. These findings show that leptin's direct stimulatory actions on gonadotrope GnRHR correlate with a direct inhibition of expression of the posttranscriptional regulator MSI1. We also show MSI1 interaction with the 3'-UTR of Gnrhr mRNA. These findings now open the door to future studies of leptin-modulated posttranscriptional pathways.
Collapse
Affiliation(s)
- Angela K. Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Helen Beneš
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Andrea Melgar Castillo
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Noor Akhter
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Mohsin Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melody Allensworth-James
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Linda Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Benjamin Winter
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ragul Manoharan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Raiyan Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melanie C. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Angus M. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gwen V. Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
23
|
MacNicol MC, Cragle CE, McDaniel FK, Hardy LL, Wang Y, Arumugam K, Rahmatallah Y, Glazko GV, Wilczynska A, Childs GV, Zhou D, MacNicol AM. Evasion of regulatory phosphorylation by an alternatively spliced isoform of Musashi2. Sci Rep 2017; 7:11503. [PMID: 28912529 PMCID: PMC5599597 DOI: 10.1038/s41598-017-11917-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023] Open
Abstract
The Musashi family of RNA binding proteins act to promote stem cell self-renewal and oppose cell differentiation predominantly through translational repression of mRNAs encoding pro-differentiation factors and inhibitors of cell cycle progression. During tissue development and repair however, Musashi repressor function must be dynamically regulated to allow cell cycle exit and differentiation. The mechanism by which Musashi repressor function is attenuated has not been fully established. Our prior work indicated that the Musashi1 isoform undergoes site-specific regulatory phosphorylation. Here, we demonstrate that the canonical Musashi2 isoform is subject to similar regulated site-specific phosphorylation, converting Musashi2 from a repressor to an activator of target mRNA translation. We have also characterized a novel alternatively spliced, truncated isoform of human Musashi2 (variant 2) that lacks the sites of regulatory phosphorylation and fails to promote translation of target mRNAs. Consistent with a role in opposing cell cycle exit and differentiation, upregulation of Musashi2 variant 2 was observed in a number of cancers and overexpression of the Musashi2 variant 2 isoform promoted cell transformation. These findings indicate that alternately spliced isoforms of the Musashi protein family possess distinct functional and regulatory properties and suggest that differential expression of Musashi isoforms may influence cell fate decisions.
Collapse
Affiliation(s)
- Melanie C MacNicol
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,University of Arkansas for Medical Science, Center for Translational Neuroscience, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Chad E Cragle
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - F Kennedy McDaniel
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Linda L Hardy
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Yan Wang
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510182, PR China
| | - Karthik Arumugam
- University of Arkansas for Medical Sciences, Department of Physiology and Biophysics, 4301 W. Markham, Little Rock, 72205, AR, USA.,Center for Genomic Regulation, Department of Gene Regulation, Stem Cells and Cancer, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Yasir Rahmatallah
- University of Arkansas for Medical Sciences, Department of Biomedical Informatics, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Galina V Glazko
- University of Arkansas for Medical Sciences, Department of Biomedical Informatics, 4301 W. Markham, Little Rock, 72205, AR, USA
| | | | - Gwen V Childs
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,University of Arkansas for Medical Science, Center for Translational Neuroscience, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Daohong Zhou
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Angus M MacNicol
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA. .,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, United States.
| |
Collapse
|
24
|
Niu J, Zhao X, Liu Q, Yang J. Knockdown of MSI1 inhibited the cell proliferation of human osteosarcoma cells by targeting p21 and p27. Oncol Lett 2017; 14:5271-5278. [PMID: 29113163 PMCID: PMC5661380 DOI: 10.3892/ol.2017.6870] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 07/13/2017] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is the most common type of primary bone cancer in children and adolescents, but its mechanism remains unclear. Musashi RNA-binding protein 1 (MSI1) is highly expressed in certain cancer types and functions as a putative progenitor/stem cell marker. In the present study, it was demonstrated that MSI1 expression in osteosarcoma tissue was higher compared with in the paraneoplastic tissue samples. Knockdown of MSI1 using shRNA in MG-63 and HOS cells inhibited cell proliferation in vitro and tumor formation in vivo, suggesting that MSI1 serves an essential role in osteosarcomagenesis. Further investigations demonstrated that the knockdown of MSI1 leads to the cell cycle arrest at G0/G1 phase, and the upregulation of p21 and p27 protein expression in osteosarcoma cells. Additionally, luciferase assays demonstrated that MSI1 can bind to the 3′ untranslated regions of p21 and p27 mRNA. In conclusion, the results of the present study suggest that the knockdown of MSI11 can suppress cell proliferation of osteosarcoma by targeting p21 and p27 and subsequently inhibiting cell cycle progression.
Collapse
Affiliation(s)
- Jianbing Niu
- Department of Bone and Joint Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Xiulian Zhao
- Department of Kidney and Chinese Medicine, Shandong Jinxiang County People's Hospital, Jinxiang, Shandong 272200, P.R. China
| | - Qingsheng Liu
- Department of Bone and Joint Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jinsan Yang
- Department of Bone and Joint Surgery, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
25
|
Qin G, Lian J, Yue D, Chen X, Nan S, Qi Y, Li B, Cui G, Li X, Zhao S, Zhang Y. Musashi1, a potential prognostic marker in esophageal squamous cell carcinoma. Oncol Rep 2017; 38:1724-1732. [PMID: 28713964 PMCID: PMC5549024 DOI: 10.3892/or.2017.5809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 06/21/2017] [Indexed: 12/11/2022] Open
Abstract
Esophageal cancer ranks as the sixth leading cause of cancer-related deaths worldwide. Cancer stemness is mainly considered to be the key factor for cancer recurrence particularly in esophageal cancer. It is important to identify cancer stem cell markers as targets in future therapies. The present study aimed to investigate the expression of putative cancer stem cell-related marker musashi1 (Msi1) and assess the correlation with clinicopathologcal status of esophageal squamous cell carcinoma (ESCC) cases. We then clarified the role of Msi1 in esophageal cancer cells during proliferation, apoptosis, sphere formation and migration. Finally, we investigated the relationship of Msi1 with the prognosis of ESCC patients. ESCC tissue samples from 93 patients and 20 paired histologically normal tissues were procured for immunohistochemical analysis. We analyzed the characteristics of Msi1, using sphere formation and anchorage independent growth. Moreover, using flow cytometry and Cell Counting Kit-8 (CCK-8) assay, we investigated the role of Msi1 in cancer cell proliferation and apoptosis. Furthermore, we clarified the role of Msi1 in the process of sphere formation and migration of ESCC cells through knockdown of Msi1 expression by siRNA in ESCC cell lines. The results revealed that there was a higher expression of Msi1 in ESCC specimens compared with normal tissues. In addition, Msi1 expression was significantly associated with clinical stage and lymph node metastasis. Most importantly, the increased immunocytochemical staining of Msi1 in spheroid cells revealed the stemness characteristics of Msi1 in ESCC. In addition, we found that silencing of Msi1 decreased cell proliferation, migration and induced apoptosis in TE-7 and KYSE70 cells. Furthermore, downregulation of Msi1 attenuated the sphere formation ability of ESCC cells. Patients with higher expression of Msi1 had a shorter survival. In conclusion, Msi1 acts as a stemness-associated gene in esophageal cancer cell lines and could serve as a prognostic marker in patients with ESCC.
Collapse
Affiliation(s)
- Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Jingyao Lian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Dongli Yue
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Shufeng Nan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Bing Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Guanghui Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
26
|
Abstract
Cancer stem cells (CSCs), with their self-renewal ability and multilineage differentiation potential, are a critical subpopulation of tumor cells that can drive tumor initiation, growth, and resistance to therapy. Like embryonic and adult stem cells, CSCs express markers that are not expressed in normal somatic cells and are thus thought to contribute towards a 'stemness' phenotype. This review summarizes the current knowledge of stemness-related markers in human cancers, with a particular focus on important transcription factors, protein surface markers and signaling pathways.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Yvonne Li
- Dana Farber cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
27
|
Shou Z, Jin X, He X, Zhao Z, Chen Y, Ye M, Yao J. Overexpression of Musashi-1 protein is associated with progression and poor prognosis of gastric cancer. Oncol Lett 2017; 13:3556-3566. [PMID: 28521458 PMCID: PMC5431268 DOI: 10.3892/ol.2017.5879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Musashi-1, an evolutionally conserved RNA-binding protein, has been implicated in the promotion of pathological stem cell proliferation, including tumorigenesis. The objective of the present study was to evaluate the expression of Musashi-1 protein and its implications in the progression and prognosis of gastric cancer. The expression level of Musashi-1 protein in gastric cancer was determined by western blotting and immunohistochemistry, and compared with the clinicopathological parameters. The present study revealed that the expression level of Musashi-1 protein in gastric cancer was significantly upregulated and correlated with the tumor size, tumor-node-metastasis (TNM) stage, Lauren classification, depth of invasion, vessel invasion, lymph node metastasis and distant metastasis. The mean survival time for patients with low expression levels of Musashi-1 was significantly longer compared with patients with high expression levels of Musashi-1. For each TNM stage, the mean survival time for patients with a low Musashi-1 expression levels was also significantly longer compared with patients with a high Musashi-1 expression level. Notably, TNM stage II patients with a low Musashi-1 expression level demonstrated a longer mean survival time compared with TNM stage I patients with high Musashi-1 expression level (56.8 vs. 42.3 months; P=0.001), and TNM stage III patients with low Musashi-1 expression level exhibited a longer mean survival time compared with TNM stage II patients with a high Musashi-1 expression level (44.0 vs. 33.8 months; P=0.034). Multivariate Cox's regression test demonstrated that Musashi-1 protein expression level was an independent prognostic indicator for the survival rate of the patients with gastric cancer. The results of the present study highlighted an important role for Musashi-1 protein in the progression of gastric cancer. The detection of the Musashi-1 protein expression level alone or in combination with TNM staging may aid the prediction of the prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Zhangxuan Shou
- Department of Pharmaceutical Sciences, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xue Jin
- Department of Pharmaceutical Sciences, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhongsheng Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Meihua Ye
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jiong Yao
- Department of Medical Records and Statistics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
28
|
de Araujo PR, Gorthi A, da Silva AE, Tonapi SS, Vo DT, Burns SC, Qiao M, Uren PJ, Yuan ZM, Bishop AJR, Penalva LOF. Musashi1 Impacts Radio-Resistance in Glioblastoma by Controlling DNA-Protein Kinase Catalytic Subunit. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2271-8. [PMID: 27470713 PMCID: PMC5012509 DOI: 10.1016/j.ajpath.2016.05.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/13/2016] [Indexed: 12/30/2022]
Abstract
The conserved RNA-binding protein Musashi1 (MSI1) has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation and as a key oncogenic factor in numerous solid tumors, including glioblastoma. To explore the potential use of MSI1 targeting in therapy, we studied MSI1 in the context of radiation sensitivity. Knockdown of MSI1 led to a decrease in cell survival and an increase in DNA damage compared to control in cells treated with ionizing radiation. We subsequently examined mechanisms of double-strand break repair and found that loss of MSI1 reduces the frequency of nonhomologous end-joining. This phenomenon could be attributed to the decreased expression of DNA-protein kinase catalytic subunit, which we have previously identified as a target of MSI1. Collectively, our results suggest a role for MSI1 in double-strand break repair and that its inhibition may enhance the effect of radiotherapy.
Collapse
Affiliation(s)
- Patricia Rosa de Araujo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Acarizia E da Silva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Sonal S Tonapi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Dat T Vo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Suzanne C Burns
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Mei Qiao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Philip J Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California
| | - Zhi-Min Yuan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| |
Collapse
|
29
|
Yang RH, Tian RF, Ren QL, Chui HY, Guo ST, Zhang XD, Song X. Serum protein profiles of patients with lung cancer of different histological types. Asia Pac J Clin Oncol 2015; 12:70-6. [PMID: 26668125 DOI: 10.1111/ajco.12441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/27/2015] [Accepted: 10/11/2015] [Indexed: 12/24/2022]
Abstract
AIMS To compare serum protein expression profiles between lung cancer patients and healthy individuals, and to examine whether there are differences in serum protein expression profiles among patients with lung cancers of different histological types and whether the characteristic expression of serum proteins may assist in differential diagnosis of various subtypes of lung cancers. METHODS Blood samples were collected from 123 lung cancer patients before commencement of treatment who attended Shanxi Cancer Hospital, China, between 2008 and 2013. Blood samples from 60 healthy individuals were also collected in the same period. Serum protein expression profiles were analyzed using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. The differences in the serum protein spectrums of lung cancer patients with different histological subtypes were analyzed by one-way Analysis of Variance and receiver operating characteristic curves. RESULTS A cluster of 48 protein mass-to-change ratio (M/Z) peaks was differentially expressed between sera of lung cancer patients and healthy individuals. The M/Z 1205, 4673, 1429 and 4279 peaks were differentially expressed among patients with lung squamous cell carcinomas, adenocarcinomas and small-cell lung carcinomas. CONCLUSION These results reinforce the notion that profiling of serum proteins may be of diagnostic value in lung cancer, and suggest that the differences in serum protein profiles may be useful in differential diagnosis of lung cancers of varying histological subtypes.
Collapse
Affiliation(s)
| | - Rui Fen Tian
- Pulmonary Oncology, Shanxi Cancer Hospital and Institute, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiao Li Ren
- Pulmonary Oncology, Shanxi Cancer Hospital and Institute, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong Ying Chui
- Pulmonary Oncology, Shanxi Cancer Hospital and Institute, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | | | - Xu Dong Zhang
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Xia Song
- Pulmonary Oncology, Shanxi Cancer Hospital and Institute, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
30
|
Cambuli FM, Correa BR, Rezza A, Burns SC, Qiao M, Uren PJ, Kress E, Boussouar A, Galante PAF, Penalva LOF, Plateroti M. A Mouse Model of Targeted Musashi1 Expression in Whole Intestinal Epithelium Suggests Regulatory Roles in Cell Cycle and Stemness. Stem Cells 2015; 33:3621-34. [PMID: 26303183 DOI: 10.1002/stem.2202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/30/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022]
Abstract
The intestinal epithelium is very peculiar for its continuous cell renewal, fuelled by multipotent stem cells localized within the crypts of Lieberkühn. Several lines of evidence have established the evolutionary conserved RNA-binding protein Musashi1 as a marker of adult stem cells, including those of the intestinal epithelium, and revealed its roles in stem cell self-renewal and cell fate determination. Previous studies from our laboratories have shown that Musashi1 controls stem cell-like features in medulloblastoma, glioblastoma, and breast cancer cells, and has pro-proliferative and pro-tumorigenic properties in intestinal epithelial progenitor cells in vitro. To undertake a detailed study of Musashi1's function in the intestinal epithelium in vivo, we have generated a mouse model, referred to as v-Msi, overexpressing Musashi1 specifically in the entire intestinal epithelium. Compared with wild type litters, v-Msi1 mice exhibited increased intestinal crypt size accompanied by enhanced proliferation. Comparative transcriptomics by RNA-seq revealed Musashi1's association with gut stem cell signature, cell cycle, DNA replication, and drug metabolism. Finally, we identified and validated three novel mRNA targets that are stabilized by Musashi1, Ccnd1 (Cyclin D1), Cdk6, and Sox4. In conclusion, the targeted expression of Musashi1 in the intestinal epithelium in vivo increases the cell proliferation rate and strongly suggests its action on stem cells activity. This is due to the modulation of a complex network of gene functions and pathways including drug metabolism, cell cycle, and DNA synthesis and repair.
Collapse
Affiliation(s)
- F M Cambuli
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - B R Correa
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA.,Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - A Rezza
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - S C Burns
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA
| | - M Qiao
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA
| | - P J Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - E Kress
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - A Boussouar
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - P A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - L O F Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - M Plateroti
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| |
Collapse
|
31
|
Msi1 promotes tumor growth and cell proliferation by targeting cell cycle checkpoint proteins p21, p27 and p53 in cervical carcinomas. Oncotarget 2015; 5:10870-85. [PMID: 25362645 PMCID: PMC4279416 DOI: 10.18632/oncotarget.2539] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/28/2014] [Indexed: 01/08/2023] Open
Abstract
Musashi RNA-binding protein1 (Msi1), a member of the RNA-binding protein family, has been reported to be a diagnostic marker and potential therapeutic target in some cancers, its function in cervical cancer remains unknown. In this study, we found Msi1 was highly expressed in cervical cancer tissues, and over-expressing Msi1 in cervical cancer cells enhanced tumor formation and cell proliferation and accelerated cells into the S phase. Whereas, down-regulating Msi1 by shRNA in cervical cancer cells inhibited tumor formation and cell proliferation and slowed cell into the S phase, suggesting that Msi1 might act as cell cycle regulator. Immunohistochemistry assay showed the negative correlation between Msi1 and p21, p27 and p53, suggesting that Msi1 might regulate these cycle regulators in cervical cancer. Moreover, the expression of the p21, p27 and p53 proteins were down-regulated in Msi1 overexpressing cervical cancer cells and up-regulated in shMsi1 cervical cancer cells. Luciferase assays and RNA-protein binding assays confirmed that Msi1 could bind to the mRNA 3′UTRs of p21, p27 and p53 and suppress the translation of these proteins. Our findings provide new evidence that Msi1 might promote cell proliferation by accelerating the cell cycle by directly targeting p21, p27 and p53.
Collapse
|
32
|
Han Y, Ye A, Zhang Y, Cai Z, Wang W, Sun L, Jiang S, Wu J, Yu K, Zhang S. Musashi-2 Silencing Exerts Potent Activity against Acute Myeloid Leukemia and Enhances Chemosensitivity to Daunorubicin. PLoS One 2015; 10:e0136484. [PMID: 26308531 PMCID: PMC4550418 DOI: 10.1371/journal.pone.0136484] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022] Open
Abstract
RNA-binding protein Musashi-2 (Msi2) is known to play a critical role in leukemogenesis and contributes to poor clinical prognosis in acute myeloid leukemia (AML). However, the effect of Msi2 silencing on treatment for AML still remains poorly understood. In this study, we used lentivirus-mediated RNA interference targeting Msi2 to investigate the resulting changes in cellular processes and the underlying mechanisms in AML cell lines as well as primary AML cells isolated from AML patients. We found that Msi2 was highly expressed in AML cells, and its depletion inhibited Ki-67 expression and resulted in decreased in vitro and in vivo proliferation. Msi2 silencing induced cell cycle arrest in G0/G1 phase, with decreased Cyclin D1 and increased p21 expression. Msi2 silencing induced apoptosis through down-regulation of Bcl-2 expression and up-regulation of Bax expression. Suppression of Akt, Erk1/2 and p38 phosphorylation also contributed to apoptosis mediated by Msi2 silencing. Finally, Msi2 silencing in AML cells also enhanced their chemosensitivity to daunorubicin. Conclusively, our data suggest that Msi2 is a promising target for gene therapy to optimize conventional chemotherapeutics in AML treatment.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Cell Cycle Checkpoints/drug effects
- Cell Proliferation/drug effects
- Daunorubicin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Gene Silencing
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yixiang Han
- Laboratory of Internal Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Aifang Ye
- Laboratory of Internal Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Yan Zhang
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Zhimin Cai
- Laboratory of Internal Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Wei Wang
- Department of Hematology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Lan Sun
- Department of Hematology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Songfu Jiang
- Department of Hematology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Jianbo Wu
- Laboratory of Internal Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Kang Yu
- Department of Hematology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Shenghui Zhang
- Department of Hematology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
- * E-mail:
| |
Collapse
|
33
|
MacNicol MC, Cragle CE, Arumugam K, Fosso B, Pesole G, MacNicol AM. Functional Integration of mRNA Translational Control Programs. Biomolecules 2015. [PMID: 26197342 PMCID: PMC4598765 DOI: 10.3390/biom5031580] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease.
Collapse
Affiliation(s)
- Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Chad E Cragle
- Interdisciplinary BioSciences Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Bruno Fosso
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari 70126, Italy.
| | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari 70126, Italy.
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari 70125, Italy.
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
34
|
RNA-Binding Protein Musashi1 Is a Central Regulator of Adhesion Pathways in Glioblastoma. Mol Cell Biol 2015; 35:2965-78. [PMID: 26100017 DOI: 10.1128/mcb.00410-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/10/2015] [Indexed: 12/14/2022] Open
Abstract
The conserved RNA-binding protein Musashi1 (MSI1) has emerged as a key oncogenic factor in numerous solid tumors, including glioblastoma. However, its mechanism of action has not yet been established comprehensively. To identify its target genes comprehensively and determine the main routes by which it influences glioblastoma phenotypes, we conducted individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP) experiments. We confirmed that MSI1 has a preference for UAG sequences contained in a particular structural context, especially in 3' untranslated regions. Although numerous binding sites were also identified in intronic sequences, our RNA transcriptome sequencing analysis does not favor the idea that MSI1 is a major regulator of splicing in glioblastoma cells. MSI1 target mRNAs encode proteins that function in multiple pathways of cell proliferation and cell adhesion. Since these associations indicate potentially new roles for MSI1, we investigated its impact on glioblastoma cell adhesion, morphology, migration, and invasion. These processes are known to underpin the spread and relapse of glioblastoma, in contrast to other tumors where metastasis is the main driver of recurrence and progression.
Collapse
|
35
|
Smith AR, Marquez RT, Tsao WC, Pathak S, Roy A, Ping J, Wilkerson B, Lan L, Meng W, Neufeld KL, Sun XF, Xu L. Tumor suppressive microRNA-137 negatively regulates Musashi-1 and colorectal cancer progression. Oncotarget 2015; 6:12558-73. [PMID: 25940441 PMCID: PMC4494958 DOI: 10.18632/oncotarget.3726] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/04/2015] [Indexed: 01/22/2023] Open
Abstract
Stem cell marker, Musashi-1 (MSI1) is over-expressed in many cancer types; however the molecular mechanisms involved in MSI1 over-expression are not well understood. We investigated the microRNA (miRNA) regulation of MSI1 and the implications this regulation plays in colorectal cancer. MicroRNA miR-137 was identified as a MSI1-targeting microRNA by immunoblotting and luciferase reporter assays. MSI1 protein was found to be highly expressed in 79% of primary rectal tumors (n=146), while miR-137 expression was decreased in 84% of the rectal tumor tissues (n=68) compared to paired normal mucosal samples. In addition to reduced MSI1 protein, exogenous expression of miR-137 inhibited cell growth, colony formation, and tumorsphere growth of colon cancer cells. Finally, in vivo studies demonstrated that induction of miR-137 can decrease growth of human colon cancer xenografts. Our results demonstrate that miR-137 acts as a tumor-suppressive miRNA in colorectal cancers and negatively regulates oncogenic MSI1.
Collapse
Affiliation(s)
- Amber R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Rebecca T. Marquez
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Wei-Chung Tsao
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Surajit Pathak
- Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alexandria Roy
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Jie Ping
- Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Bailey Wilkerson
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Wenjian Meng
- Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kristi L. Neufeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, KS, USA
| | - Xiao-Feng Sun
- Department of Oncology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
- Department of Radiation Oncology, The Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
36
|
MacNicol AM, Hardy LL, Spencer HJ, MacNicol MC. Neural stem and progenitor cell fate transition requires regulation of Musashi1 function. BMC DEVELOPMENTAL BIOLOGY 2015; 15:15. [PMID: 25888190 PMCID: PMC4369890 DOI: 10.1186/s12861-015-0064-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/26/2015] [Indexed: 12/28/2022]
Abstract
Background There is increasing evidence of a pivotal role for regulated mRNA translation in control of developmental cell fate transitions. Physiological and pathological stem and progenitor cell self-renewal is maintained by the mRNA-binding protein, Musashi1 through repression of translation of key mRNAs encoding cell cycle inhibitory proteins. The mechanism by which Musashi1 function is modified to allow translation of these target mRNAs under conditions that require inhibition of cell cycle progression, is unknown. Results In this study, we demonstrate that differentiation of primary embryonic rat neural stem/progenitor cells (NSPCs) or human neuroblastoma SH-SY5Y cells results in the rapid phosphorylation of Musashi1 on the evolutionarily conserved site serine 337 (S337). Phosphorylation of this site has been shown to be required for cell cycle control during the maturation of Xenopus oocytes. S337 phosphorylation in mammalian NSPCs and human SH-SY5Y cells correlates with the de-repression and translation of a Musashi reporter mRNA and with accumulation of protein from the endogenous Musashi target mRNA, p21WAF1/CIP1. Inhibition of Musashi regulatory phosphorylation, through expression of a phospho-inhibitory mutant Musashi1 S337A or over-expression of the wild-type Musashi, blocked differentiation of both NSPCs and SH-SY5Y cells. Musashi1 was similarly phosphorylated in NSPCs and SH-SY5Y cells under conditions of nutrient deprivation-induced cell cycle arrest. Expression of the Musashi1 S337A mutant protein attenuated nutrient deprivation-induced NSPC and SH-SY5Y cell death. Conclusions Our data suggest that in response to environmental cues that oppose cell cycle progression, regulation of Musashi function is required to promote target mRNA translation and cell fate transition. Forced modulation of Musashi1 function may present a novel therapeutic strategy to oppose pathological stem cell self-renewal.
Collapse
Affiliation(s)
- Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 814, Little Rock, AR, 72205, USA. .,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, USA.
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 814, Little Rock, AR, 72205, USA.
| | - Horace J Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, USA.
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 814, Little Rock, AR, 72205, USA. .,Center for Translational Neuroscience, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, USA.
| |
Collapse
|
37
|
Msi1 confers resistance to TRAIL by activating ERK in liver cancer cells. FEBS Lett 2015; 589:897-903. [DOI: 10.1016/j.febslet.2015.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/03/2015] [Accepted: 02/23/2015] [Indexed: 01/06/2023]
|
38
|
Bish R, Vogel C. RNA binding protein-mediated post-transcriptional gene regulation in medulloblastoma. Mol Cells 2014; 37:357-64. [PMID: 24608801 PMCID: PMC4044306 DOI: 10.14348/molcells.2014.0008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma.
Collapse
Affiliation(s)
- Rebecca Bish
- New York University, Center for Genomics and Systems Biology, New York, NY,
USA
| | - Christine Vogel
- New York University, Center for Genomics and Systems Biology, New York, NY,
USA
| |
Collapse
|