1
|
Hu YX, Hu C, Hu M, Gao YP, Dong WS, Li K, Ye YJ, Zhang X. The Role of FNDC4 in Inflammation and Metabolism for Various Diseases. Aging Dis 2024; 16:1471-1482. [PMID: 39325938 PMCID: PMC12096899 DOI: 10.14336/ad.2024.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/04/2024] [Indexed: 09/28/2024] Open
Abstract
Fibronectin (FN) can bind to certain integrin receptors on the cell surface through short peptide sequences, thereby transmitting extracellular stimuli to intracellular effector molecules. FNDC4 plays a similar role due to the constitution of a type III FN domain, which is a binding site for DNA, heparin, or cell surface. It mainly functions as a signal transmitter after being cleaved and secreted as the extracellular N-terminal fibronectin type III domain (sFNDC4). Emerging studies have shown that FNDC4 plays crucial roles in numerous diseases and holds significant implications for guiding clinical treatment. This review aims to summarize the different roles and the latest advances of FNDC4 in the development of various diseases, in order to provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Yu-Xin Hu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Can Hu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Research Center for Medical Imaging in Hubei Province, Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Yi-Peng Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Wen-Sheng Dong
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Kang Li
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Yun-Jia Ye
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Xin Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| |
Collapse
|
2
|
Lai G, De Grossi F, Catusi I, Pesce E, Manfrini N. Dissecting the Puzzling Roles of FAM46C: A Multifaceted Pan-Cancer Tumour Suppressor with Increasing Clinical Relevance. Cancers (Basel) 2024; 16:1706. [PMID: 38730656 PMCID: PMC11083040 DOI: 10.3390/cancers16091706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
FAM46C is a well-established tumour suppressor with a role that is not completely defined or universally accepted. Although FAM46C expression is down-modulated in several tumours, significant mutations in the FAM46C gene are only found in multiple myeloma (MM). Consequently, its tumour suppressor activity has primarily been studied in the MM context. However, emerging evidence suggests that FAM46C is involved also in other cancer types, namely colorectal, prostate and gastric cancer and squamous cell and hepatocellular carcinoma, where FAM46C expression was found to be significantly reduced in tumoural versus non-tumoural tissues and where FAM46C was shown to possess anti-proliferative properties. Accordingly, FAM46C was recently proposed to function as a pan-cancer prognostic marker, bringing FAM46C under the spotlight and attracting growing interest from the scientific community in the pathways modulated by FAM46C and in its mechanistic activity. Here, we will provide the first comprehensive review regarding FAM46C by covering (1) the intracellular pathways regulated by FAM46C, namely the MAPK/ERK, PI3K/AKT, β-catenin and TGF-β/SMAD pathways; (2) the models regarding its mode of action, specifically the poly(A) polymerase, intracellular trafficking modulator and inhibitor of centriole duplication models, focusing on connections and interdependencies; (3) the regulation of FAM46C expression in different environments by interferons, IL-4, TLR engagement or transcriptional modulators; and, lastly, (4) how FAM46C expression levels associate with increased/decreased tumour cell sensitivity to anticancer agents, such as bortezomib, dexamethasone, lenalidomide, pomalidomide, doxorubicin, melphalan, SK1-I, docetaxel and norcantharidin.
Collapse
Affiliation(s)
- Giancarlo Lai
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Federica De Grossi
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Ilaria Catusi
- SC Clinical Pathology, SS Medical Genetics Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
3
|
Wang Y, Kong Y, Yang Q, Zhong C, Zhou D. Identification of fibronectin type III domain containing 3B as a potential prognostic and therapeutic target for pancreatic cancer: a preliminary analysis. Eur J Med Res 2024; 29:221. [PMID: 38581008 PMCID: PMC10996089 DOI: 10.1186/s40001-024-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Fibronectin type III domain containing 3B (FNDC3B), a member of the fibronectin type III domain-containing protein family, has been indicated in various malignancies. However, the precise role of FNDC3B in the progression of pancreatic cancer (PC) still remains to be elucidated. METHODS In this study, we integrated data from the National Center for Biotechnology Information, the Cancer Genome Atlas, Genotype-Tissue Expression database, and Gene Expression Omnibus datasets to analyze FNDC3B expression and its association with various clinicopathological parameters. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, along with Gene Set Enrichment Analysis (GSEA), single sample Gene Set Enrichment Analysis (ssGSEA) and estimate analysis were recruited to delve into the biological function and immune infiltration based on FNDC3B expression. Additionally, the prognostic estimation was conducted using Cox analysis and Kaplan-Meier analysis. Subsequently, a nomogram was constructed according to the result of Cox analysis to enhance the prognostic ability of FNDC3B. Finally, the preliminary biological function of FNDC3B in PC cells was explored. RESULTS The study demonstrated a significantly higher expression of FNDC3B in tumor tissues compared to normal pancreatic tissues, and this expression was significantly associated with various clinicopathological parameters. GSEA revealed the involvement of FNDC3B in biological processes and signaling pathways related to integrin signaling pathway and cell adhesion. Additionally, ssGSEA analysis indicated a positive correlation between FNDC3B expression and infiltration of Th2 cells and neutrophils, while showing a negative correlation with plasmacytoid dendritic cells and Th17 cells infiltration. Kaplan-Meier analysis further supported that high FNDC3B expression in PC patients was linked to shorter overall survival, disease-specific survival, and progression-free interval. However, although univariate analysis demonstrated a significant correlation between FNDC3B expression and prognosis in PC patients, this association did not hold true in multivariate analysis. Finally, our findings highlight the crucial role of FNDC3B expression in regulating proliferation, migration, and invasion abilities of PC cells. CONCLUSION Despite limitations, the findings of this study underscored the potential of FNDC3B as a prognostic biomarker and its pivotal role in driving the progression of PC, particularly in orchestrating immune responses.
Collapse
Affiliation(s)
- Yizhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yang Kong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qifan Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Cheng Zhong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Dongkai Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
4
|
Hua K, Wu C, Lin C, Chen C. E2F1 promotes cell migration in hepatocellular carcinoma via FNDC3B. FEBS Open Bio 2024; 14:687-694. [PMID: 38403291 PMCID: PMC10988749 DOI: 10.1002/2211-5463.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
FNDC3B (fibronectin type III domain containing 3B) is highly expressed in hepatocellular carcinoma (HCC) and other cancer types, and fusion genes involving FNDC3B have been identified in HCC and leukemia. Growing evidence suggests the significance of FNDC3B in tumorigenesis, particularly in cell migration and tumor metastasis. However, its regulatory mechanisms remain elusive. In this study, we employed bioinformatic, gene regulation, and protein-DNA interaction screening to investigate the transcription factors (TFs) involved in regulating FNDC3B. Initially, 338 candidate TFs were selected based on previous chromatin immunoprecipitation (ChIP)-seq experiments available in public domain databases. Through TF knockdown screening and ChIP coupled with Droplet Digital PCR assays, we identified that E2F1 (E2F transcription factor 1) is crucial for the activation of FNDC3B. Overexpression or knockdown of E2F1 significantly impacts the expression of FNDC3B. In conclusion, our study elucidated the mechanistic link between FNDC3B and E2F1. These findings contribute to a better understanding of FNDC3B in tumorigenesis and provide insights into potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kate Hua
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chen‐Tang Wu
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chin‐Hui Lin
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chian‐Feng Chen
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
5
|
Park J, Lee HJ, Han YK, Kang K, Yi JM. Identification of DNA methylation biomarkers for evaluating cardiovascular disease risk from epigenome profiles altered by low-dose ionizing radiation. Clin Epigenetics 2024; 16:19. [PMID: 38303056 PMCID: PMC10835887 DOI: 10.1186/s13148-024-01630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Environmental exposure, medical diagnostic and therapeutic applications, and industrial utilization of radionuclides have prompted a growing focus on the risks associated with low-dose radiation (< 100 mGy). Current evidence suggests that such radiation can induce epigenetic changes. Nevertheless, whether exposure to low-dose radiation can disrupt endothelial cell function at the molecular level is unclear. Because endothelial cells play crucial roles in cardiovascular health and disease, we aimed to investigate whether low-dose radiation could lead to differential DNA methylation patterns at the genomic level in endothelial cell (EC) lines. METHODS We screened for changes in DNA methylation patterns in primary human aortic (HAECs) and coronary artery endothelial cells following exposure to low-dose ionizing radiation. Using a subset of genes altered via DNA methylation by low-dose irradiation, we performed gene ontology (GO) analysis to predict the possible biological network mediating the effect of low-dose radiation. In addition, we performed comprehensive validation using methylation and gene expression analyses, and ChIP assay to identify useful biomarkers among candidate genes for use in detecting low-dose radiation exposure in human primary normal ECs. RESULTS Low-dose radiation is sufficient to induce global DNA methylation alterations in normal EC lines. GO analysis demonstrated that these hyper- or hypo-methylated genes were linked to diverse biological pathways. Our findings indicated a robust correlation between promoter hypermethylation and transcriptional downregulation of four genes (PGRMC1, UNC119B, RERE, and FNDC3B) in response to low-dose ionizing radiation in HAECs. CONCLUSIONS Based on these findings, the identified genes can serve as potential DNA methylation biomarkers for the assessment of cardiovascular risk upon exposure to low-dose radiation.
Collapse
Affiliation(s)
- Jihye Park
- Department of Microbiology, Dankook University, Cheonan, 31116, South Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea
| | - Yu Kyeong Han
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, 47392, South Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, 31116, South Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, 47392, South Korea.
| |
Collapse
|
6
|
Kwon H, Yun M, Kwon TH, Bang M, Lee J, Lee YS, Ko HY, Chong K. Fibronectin Type III Domain Containing 3B as a Potential Prognostic and Therapeutic Biomarker for Glioblastoma. Biomedicines 2023; 11:3168. [PMID: 38137388 PMCID: PMC10741045 DOI: 10.3390/biomedicines11123168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) is a representative malignant brain tumor characterized by a dismal prognosis, with survival rates of less than 2 years and high recurrence rates. Despite surgical resection and several alternative treatments, GBM remains a refractory disease due to its aggressive invasiveness and resistance to anticancer therapy. In this report, we explore the role of fibronectin type III domain containing 3B (FNDC3B) and its potential as a prognostic and therapeutic biomarker in GBM. GBM exhibited a significantly higher cancer-to-normal ratio compared to other organs, and patients with high FNDC3B expression had a poor prognosis (p < 0.01). In vitro studies revealed that silencing FNDC3B significantly reduced the expression of Survivin, an apoptosis inhibitor, and also reduced cell migration, invasion, extracellular matrix adhesion ability, and stem cell properties in GBM cells. Furthermore, we identified that FNDC3B regulates PTEN/PI3K/Akt signaling in GBM cells using MetaCore integrated pathway bioinformatics analysis and a proteome profiler phospho-kinase array with sequential western blot analysis. Collectively, our findings suggest FNDC3B as a potential biomarker for predicting GBM patient survival and for the development of treatment strategies for GBM.
Collapse
Affiliation(s)
- Hyukjun Kwon
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Minji Yun
- Photo-Theranosis and Bioinformatics for Tumor Laboratory, Research Institute for Future Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; (M.Y.); (M.B.)
| | - Taek-Hyun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University Medicine, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea; (T.-H.K.); (Y.S.L.)
| | - Minji Bang
- Photo-Theranosis and Bioinformatics for Tumor Laboratory, Research Institute for Future Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; (M.Y.); (M.B.)
| | - Jungsul Lee
- 3billion Inc., 416, Teheran-ro, Gangnam-gu, Seoul 06193, Republic of Korea;
| | - Yeo Song Lee
- Department of Neurosurgery, Korea University Guro Hospital, Korea University Medicine, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea; (T.-H.K.); (Y.S.L.)
| | - Hae Young Ko
- Photo-Theranosis and Bioinformatics for Tumor Laboratory, Research Institute for Future Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; (M.Y.); (M.B.)
| | - Kyuha Chong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea;
- Photo-Theranosis and Bioinformatics for Tumor Laboratory, Research Institute for Future Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; (M.Y.); (M.B.)
| |
Collapse
|
7
|
Zeng Q, Ji X, Li X, Tian Y. Circ_0000285 regulates nasopharyngeal carcinoma progression through miR-1278/FNDC3B axis. Hum Exp Toxicol 2023; 42:9603271221141689. [PMID: 36738165 DOI: 10.1177/09603271221141689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is cancer with high mortality and poor prognosis. Circular RNAs (circRNAs) have been identified in a wide variety of cancers. But the functional mechanism of circ_000285 in NPC remains unclear. PURPOSE To decipher the biological function and molecular mechanism of circ_000285 in NPC. METHODS Quantitative PCR (RT-qPCR) was applied for detecting the expression of circ_0000285, miR-1278, and FNDC3B. Western blot was used to measure the protein levels of Fibronectin type III domain containing 3B (FNDC3B), Bcl2 associated X (Bax), and B cell leukemia/lymphoma 2 (Bcl2). Cell proliferation, migration, and invasion were analyzed by colony formation, 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays. Cell apoptosis was detected by flow cytometry assays. ELISA assay was used to analyze Caspase-3 activity. Bioinformatics was used to predict, and the target relationship between miR-1278 and circ_0000285 or FNDC3B was verified by luciferase reporter assay. Tumor xenograft models were established to examine how circ_0000285 functions during the mediation of NPC tumor growth in vivo. RESULTS Increased circ_0000285 and FNDC3B expressions, and a decreased miR-1278 expression were observed in NPC tissues and cell lines. Knockdown of circ_0000285 inhibited NPC cell proliferation, migration, invasion, and while promoting NPC cell apoptosis in vitro. Circ_0000285 knockdown-mediated anti-tumor effects in NPC cells could be largely reversed by silencing of miR-1278 or overexpression of FNDC3B. Circ_0000285 could up-regulate FNDC3B expression by sponging miR-1278 in NPC cells. Knockdown of circ_0000285 could inhibit tumor growth in vivo. CONCLUSION Circ_0000285 upregulates FNDC3B expression by adsorbing miR-1278 to promote NPC development.
Collapse
Affiliation(s)
- Qingjiao Zeng
- Department of Otolaryngological, Xingtai People's Hospital, Xingtai, China
| | - Xiaolin Ji
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, China
| | - Xueshen Li
- Department of Otolaryngological, Xingtai People's Hospital, Xingtai, China
| | - Yanxun Tian
- Department of Otolaryngological, Xingtai People's Hospital, Xingtai, China
| |
Collapse
|
8
|
Jiang H, Chu BL, He J, Liu Z, Yang L. Expression and prognosis analyses of the fibronectin type-III domain-containing (FNDC) protein family in human cancers: A Review. Medicine (Baltimore) 2022; 101:e31854. [PMID: 36626432 PMCID: PMC9750624 DOI: 10.1097/md.0000000000031854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite advancements in early detection and treatment, cancer continues to pose a threat to human health and is the leading cause of death worldwide. According to recent research, the fibronectin type-III domain-containing (FNDC) protein family has been implicated in several different human disorders. However, little is known regarding their expression and prognostic significance in most human malignancies. We carried out a thorough cancer vs. normal expression study using the Oncomine and Tumor Immune Estimation Resource (TIMER) databases, as well as a prognostic evaluation using the Kaplan-Meier (KM) plotter and PrognoScan databases. Oncomine revealed that the mRNA expression levels of FNDC1, FNDC3A, and FNDC3B were higher in most malignancies than in normal tissues, but the mRNA expression levels of FNDC4, FNDC5, FNDC7, and FNDC8 were downregulated in most cancers when compared with normal tissues. In survival analyses based on KM Plotter and PrognoScan, all members of the FNDC family displayed significant correlations with survival outcomes in breast, gastric, and ovarian cancers. Furthermore, the whole FNDC family, except for FNDC7 and FNDC8, was found to have substantial predictive effects in lung adenocarcinoma, but not in squamous cell lung cancer. In addition, potential connections between several FNDC family members and survival results in liver and colorectal malignancies were discovered in this study. One or more members of the FNDC family demonstrated statistically significant differences in expression between cancer and normal tissues, suggesting that they could be used as prognostic biomarkers for specific cancers.
Collapse
Affiliation(s)
- Hui Jiang
- Biobank of Pathology Department, Suining Central Hospital, Suining, Sichuan, China
| | - Bo Ling Chu
- Biobank of Pathology Department, Suining Central Hospital, Suining, Sichuan, China
| | - Jiao He
- Department of Pathology, Suining Central Hospital, Suining, Sichuan, China
| | - Zhi Liu
- Department of Pathology, Suining Central Hospital, Suining, Sichuan, China
| | - Ling Yang
- Department of Pathology, Suining Central Hospital, Suining, Sichuan, China
- * Correspondence: Ling Yang, Department of Pathology, Suining Central Hospital, 127 Desheng West Road, Suining, Sichuan 629000, China (e-mail: )
| |
Collapse
|
9
|
Chen X, Li G, Zhong G, Chen J, Feng L, Zhang T, Tang Z. Long Non-Coding RNA DUXAP8 Acts as an Oncogene in Sinonasal Squamous Cell Carcinoma Through miR-584-5p/FNDC3B Pathway. Am J Rhinol Allergy 2022. [DOI: 10.110.1177/19458924221104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sinonasal squamous cell carcinoma (SNSCC) is one of the least frequent carcinomas in the head and neck and accounts for 60% to 75% of sinonasal malignancies. The role of long non-coding RNAs (lncRNAs) in cancer development has drawn great attention over the years. The current study intended to assess the role and specific mechanism of lncRNA double homeobox A pseudogene 8 (DUXAP8) in SNSCC. Quantitative real-time PCR (qRT-PCR) analysis was implemented to assess the expression level of DUXAP8, microRNA-584-5p (miR-584-5p), and fibronectin type III domain containing 3B (FNDC3B). Proliferation assays included colony formation assay, Cell Counting Kit-8 (CCK-8) assay, and 5-ethynyl-2′-deoxyuridine (EdU) assay. Transwell assays were implemented to monitor cell migration and invasion. Cell apoptosis was evaluated via terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) and JC-1 experiments. Mechanism experiments included RNA pull-down assay, RNA binding protein immunoprecipitation (RIP) assay, and luciferase reporter assay. DUXAP8 is overexpressed in SNSCC cells. Functionally, DUXAP8 silencing suppresses the malignant progression of SNSCC. Furthermore, DUXAP8 up-regulates the expression of FNDC3B via sponging miR-584-5p. Rescue experiments demonstrated that DUXAP8 mediates the progression of SNSCC via up-regulating FNDC3B expression. In conclusion, DUXAP8 acts as an oncogene in SNSCC, which may be a new molecular marker for SNSCC.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Otolaryngology, Head and Neck Surgery, Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Guidi Li
- Department of Otolaryngology, Head and Neck Surgery, Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Guanzhong Zhong
- Department of Otolaryngology, Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Junyong Chen
- Department of Otolaryngology, Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Lijun Feng
- Department of Otolaryngology, Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Tao Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhi Tang
- Department of Otolaryngology, Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| |
Collapse
|
10
|
Hu H, Zhang T, Wu Y, Deng M, Deng H, Yang X. Cross-regulation between microRNAs and key proteins of signaling pathways in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2022; 16:753-765. [PMID: 35833844 DOI: 10.1080/17474124.2022.2101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a subtype of primary liver cancer and a major cause of death. Although miRNA plays an important role in hepatocellular carcinoma, the specific regulatory network remains unclear. Therefore, this paper comprehensively describes the miRNA-related signaling pathways in HCC and the possible interactions among different signaling pathways. The aim is to lay the foundation for the discovery of new molecular targets and multi-target therapy. AREAS COVERED Based on miRNA, HCC, and signaling pathways, the literature was searched on Web of Science and PubMed. Then, common targets between different signaling pathways were found from KEGG database, and possible cross-regulation mechanisms were further studied. In this review, we elaborated from two aspects, respectively, laying a foundation for studying the regulatory mechanism and potential targets of miRNA in HCC. EXPERT OPINION Non-coding RNAs have become notable molecules in cancer research in recent years, and many types of targeted drugs have emerged. From the outset, molecular targets and signal pathways are interlinked, which suggests that signal pathways and regulatory networks should be concerned in basic research, which also provides a strong direction for future mechanism research.
Collapse
Affiliation(s)
- Haihong Hu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Taolan Zhang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiwen Wu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Meina Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Huiling Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Yang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, China
| |
Collapse
|
11
|
Chen X, Li G, Zhong G, Chen J, Feng L, Zhang T, Tang Z. Long Non-Coding RNA DUXAP8 Acts as an Oncogene in Sinonasal Squamous Cell Carcinoma Through miR-584-5p/FNDC3B Pathway. Am J Rhinol Allergy 2022; 36:708-718. [PMID: 35695194 DOI: 10.1177/19458924221104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sinonasal squamous cell carcinoma (SNSCC) is one of the least frequent carcinomas in the head and neck and accounts for 60% to 75% of sinonasal malignancies. The role of long non-coding RNAs (lncRNAs) in cancer development has drawn great attention over the years. The current study intended to assess the role and specific mechanism of lncRNA double homeobox A pseudogene 8 (DUXAP8) in SNSCC. Quantitative real-time PCR (qRT-PCR) analysis was implemented to assess the expression level of DUXAP8, microRNA-584-5p (miR-584-5p), and fibronectin type III domain containing 3B (FNDC3B). Proliferation assays included colony formation assay, Cell Counting Kit-8 (CCK-8) assay, and 5-ethynyl-2'-deoxyuridine (EdU) assay. Transwell assays were implemented to monitor cell migration and invasion. Cell apoptosis was evaluated via terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) and JC-1 experiments. Mechanism experiments included RNA pull-down assay, RNA binding protein immunoprecipitation (RIP) assay, and luciferase reporter assay. DUXAP8 is overexpressed in SNSCC cells. Functionally, DUXAP8 silencing suppresses the malignant progression of SNSCC. Furthermore, DUXAP8 up-regulates the expression of FNDC3B via sponging miR-584-5p. Rescue experiments demonstrated that DUXAP8 mediates the progression of SNSCC via up-regulating FNDC3B expression. In conclusion, DUXAP8 acts as an oncogene in SNSCC, which may be a new molecular marker for SNSCC.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Otolaryngology, Head and Neck Surgery, 477688Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Guidi Li
- Department of Otolaryngology, Head and Neck Surgery, 477688Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Guanzhong Zhong
- Department of Otolaryngology, Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Junyong Chen
- Department of Otolaryngology, Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Lijun Feng
- Department of Otolaryngology, Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Tao Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhi Tang
- Department of Otolaryngology, Xingtan Hospital Affiliated to Shunde Hospital of Southern Medical University, Foshan, Guangdong Province, China
| |
Collapse
|
12
|
lncRNA LINC00355 Acts as a Novel Biomarker and Promotes Glioma Biological Activities via the Regulation of miR-1225/FNDC3B. DISEASE MARKERS 2021; 2021:1683129. [PMID: 34603558 PMCID: PMC8486503 DOI: 10.1155/2021/1683129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
Background Accumulating evidence has implicated long noncoding RNAs (lncRNAs) in glioma progression. Here, we aimed to explore the potential roles of a novel lncRNA, LINC00355, in glioma and to clarify the underlying mechanisms. Methods RT-PCR was used to examine the relative expressions of LINC00355 in glioma cell lines and specimen samples. The clinicopathological and prognostic significances of LINC00355 in glioma patients were statistically analyzed. To determine cell activities, CCK-8, clonogenic assays, flow cytometry, migration, and invasion assays were performed. Moreover, the potential mechanisms of LINC00355 were investigated by bioinformatics assays and luciferase reporter assays. Results LINC00355 expression was increased in glioma cell lines and specimens, and higher LINC00355 expression predicted advanced clinical progress and reduced overall survival and disease-free survival in glioma patients. Functionally, LINC00355 depletion promoted cell proliferation, invasion, and migration in glioma cells and induced apoptosis of glioma cells, whereas LINC00355 upregulation resulted in the opposite effects in vitro. Mechanistic assays revealed that LINC00355 as a sponge for miR-1225 repressed fibronectin type III domain-containing 3B (FNDC3B) expressions. Conclusion Our findings revealed the tumor-promotive roles of LINC00355 in the progression of glioma, indicating that LINC00355 exhibited ceRNA functions via modulating miR-1225/FNDC3B axis.
Collapse
|
13
|
Li Y, Tang Y, Li Z, Hou G, Du X. CircSOS2 promotes cervical squamous cell carcinoma by regulation of proliferation, cell cycle, apoptosis, migration, invasion, and glycolysis by targeting miR-543/FNDC3B axis. Arch Biochem Biophys 2021; 708:108925. [PMID: 34023283 DOI: 10.1016/j.abb.2021.108925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND Cervical squamous cell carcinoma (SCC) is a common subtype of cervical cancer. Circular RNAs (circRNAs) have been demonstrated as vital regulators in gene regulation and malignant tumor progression. Therefore, the precise role of circular RNA salt overly-sensitive 2 (circSOS2) was investigated in SCC. METHODS The relative expression levels of circSOS2, microRNA-543 (miR-543), and Fibronectin type III domain containing 3B (FNDC3B) were determined by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assays. The correlation between percent survival times of SCC patients and circSOS2 level was presented by Kaplan-Meier Plotter analysis. The cell proliferation was measured by MTT and colony-forming assays. Flow cytometry assay was used to assess apoptosis and cell cycle distribution. The migration and invasion were measured by transwell assay. The glycolysis was analyzed by extracellular acidification rate (ECAR) assay, Glucose Assay Kit, and Lactate Assay Kit. The interaction relationship between miR-543 and circSOS2 or FNDC3B was analyzed by dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. A xenograft experiment was established to clarify the functional role of circSOS2 inhibition in viv. RESULTS CircSOS2 was highly expressed in SCC tissues and cells; besides, its expression level was closely associated with poor prognosis. Loss-of-functional experiments revealed that suppression of circSOS2 repressed proliferation, cell cycle process, migration, invasion, and glycolysis while induced apoptosis in SCC cells, which was overturned by inhibition of miR-543. In addition, miR-543 was downregulated and negatively correlated with circSOS2 expression in SCC tissues. We also found that overexpression of miR-543 impeded proliferation, cell cycle process, migration, invasion, and glycolysis while induced apoptosis in SCC cells by targeting FNDC3B. The silencing of circSOS2 impeded tumorigenesis in vivo. CONCLUSION CircSOS2 conferred an oncogenic function in SCC by regulation of proliferation, cell cycle, apoptosis, migration, invasion, and glycolysis of SCC cells, which was contributed to its interactions with miR-543 and FNDC3B.
Collapse
Affiliation(s)
- Yingming Li
- Department of Obstetrics and Gynecology, Weihai Center Hospital, Weihai, Shandong, China
| | - Yan Tang
- Department of Obstetrics and Gynecology, Weihai Center Hospital, Weihai, Shandong, China
| | - Zhaoyi Li
- Shandong First Medical University, Taian, Shandong, China
| | - Guoqi Hou
- Department of Obstetrics and Gynecology, Weihai Center Hospital, Weihai, Shandong, China
| | - Xiulan Du
- Department of Obstetrics and Gynecology, Weihai Center Hospital, Weihai, Shandong, China.
| |
Collapse
|
14
|
Zhou X, Li Y, Wu C, Yu W, Cheng F. Novel lncRNA XLOC_032768 protects against renal tubular epithelial cells apoptosis in renal ischemia-reperfusion injury by regulating FNDC3B/TGF-β1. Ren Fail 2021; 42:994-1003. [PMID: 32972270 PMCID: PMC7534267 DOI: 10.1080/0886022x.2020.1818579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Renal ischemia–reperfusion injury is a leading cause of acute kidney injury, but its underlying mechanism remains poorly understood and effective therapies are still lacking. Here, we identified lncRNA XLOC_032768 as a novel target in renal ischemia–reperfusion injury by analyzing differentially expressed genes of the transcriptome data. PCR results show that XLOC_032768 was markedly downregulated in the kidney during renal ischemia–reperfusion in mice and in cultured kidney cells during hypoxia. Upon induction in vitro, XLOC_032768 overexpression repressed the expression of fibronectin type III domain containing 3B (FNDC3B) and tubular epithelial cells apoptosis. Administration of XLOC_032768 preserved FNDC3B expression and attenuated renal tubular epithelial cells apoptosis, resulting in protection against kidney injury in mice. Knockdown of FNDC3B markedly reduced the expression of TGF-β1 and apoptosis of renal tubular cells. Thus, XLOC_032768/FNDC3B/TGF-β1signaling pathway in ischemia–reperfusion injury may be targeted for therapy.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongwei Li
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Cheng Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Chen Y, Chen S, Lu J, Yuan D, He L, Qin P, Tan H, Xu L. MicroRNA-363-3p promote the development of acute myeloid leukemia with RUNX1 mutation by targeting SPRYD4 and FNDC3B. Medicine (Baltimore) 2021; 100:e25807. [PMID: 33950983 PMCID: PMC8104143 DOI: 10.1097/md.0000000000025807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Runt-related transcription factor 1 (RUNX1) is one of the most frequently mutated genes in most of hematological malignancies, especially in acute myeloid leukemia. In the present study, we aimed to identify the key genes and microRNAs based on acute myeloid leukemia with RUNX1 mutation. The newly finding targeted genes and microRNA associated with RUNX1 may benefit to the clinical treatment in acute myeloid leukemia. MATERIAL/METHODS The gene and miRNA expression data sets relating to RUNX1 mutation and wild-type adult acute myeloid leukemia (AML) patients were downloaded from The Cancer Genome Atlas database. Differentially expressed miRNAs and differentially expressed genes (DEGs) were identified by edgeR of R platform. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed by Metascape and Gene set enrichment analysis. The protein-protein interaction network and miRNA-mRNA regulatory network were performed by Search Tool for the Retrieval of Interacting Genes database and Cytoscape software. RESULTS A total of 27 differentially expressed miRNAs (25 upregulated and 2 downregulated) and 561 DEGs (429 upregulated and 132 downregulated) were identified. Five miRNAs (miR-151b, miR-151a-5p, let-7a-2-3p, miR-363-3p, miR-20b-5p) had prognostic significance in AML. The gene ontology analysis showed that upregulated DEGs suggested significant enrichment in MHC class II protein complex, extracellular structure organization, blood vessel development, cell morphogenesis involved in differentiation, embryonic morphogenesis, regulation of cell adhesion, and so on. Similarly, the downregulated DEGs were mainly enriched in secretory granule lumen, extracellular structure organization. In the gene set enrichment analysis of Kyoto Encyclopedia of Genes and Genomes pathways, the RUNX1 mutation was associated with adherent junction, WNT signaling pathway, JAK-STAT signaling pathway, pathways in cancer, cell adhesion molecules CAMs, MAPK signaling pathway. Eleven genes (PPBP, APP, CCR5, HLA-DRB1, GNAI1, APLNR, P2RY14, C3AR1, HTR1F, CXCL12, GNG11) were simultaneously identified by hub gene analysis and module analysis. MicroRNA-363-3p may promote the development of RUNX1 mutation AML, targeting SPRYD4 and FNDC3B. In addition, the RUNX1 mutation rates in patient were obviously correlated with age, white blood cell, FAB type, risk(cyto), and risk(molecular) (P < .05). CONCLUSION Our findings have indicated that multiple genes and microRNAs may play a crucial role in RUNX1 mutation AML. MicroRNA-363-3p may promote the development of RUNX1 mutation AML by targeting SPRYD4 and FNDC3B.
Collapse
Affiliation(s)
- Yimin Chen
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
- Department of Urology and Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology
| | - Shuyi Chen
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
- Department of Urology and Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology
| | - Jielun Lu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Danyun Yuan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
- Department of Urology and Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology
| | - Lang He
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
- Department of Urology and Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology
| | - Pengfei Qin
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
| | - Huo Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
| | - Lihua Xu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University
- Department of Urology and Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology
| |
Collapse
|
16
|
The Interaction of the Tumor Suppressor FAM46C with p62 and FNDC3 Proteins Integrates Protein and Secretory Homeostasis. Cell Rep 2021; 32:108162. [PMID: 32966780 DOI: 10.1016/j.celrep.2020.108162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
FAM46C is a non-canonical poly(A) polymerase uniquely mutated in up to 20% of multiple myeloma (MM) patients, implying a tissue-specific tumor suppressor function. Here, we report that FAM46C selectively stabilizes mRNAs encoding endoplasmic reticulum (ER)-targeted proteins, thereby concertedly enhancing the expression of proteins that control ER protein import, folding, N-glycosylation, and trafficking and boosting protein secretion. This role requires the interaction with the ER membrane resident proteins FNDC3A and FNDC3B. In MM cells, FAM46C expression raises secretory capacity beyond sustainability, inducing ROS accumulation, ATP shortage, and cell death. FAM46C activity is regulated through rapid proteasomal degradation or the inhibitory interaction with the ZZ domain of the autophagic receptor p62 that hinders its association with FNDC3 proteins via sequestration in p62+ aggregates. Altogether, our data disclose a p62/FAM46C/FNDC3 circuit coordinating sustainable secretory activity and survival, providing an explanation for the MM-specific oncosuppressive role of FAM46C and uncovering potential therapeutic opportunities against cancer.
Collapse
|
17
|
Martin AM, Cassirer EF, Waits LP, Plowright RK, Cross PC, Andrews KR. Genomic association with pathogen carriage in bighorn sheep ( Ovis canadensis). Ecol Evol 2021; 11:2488-2502. [PMID: 33767816 PMCID: PMC7981200 DOI: 10.1002/ece3.7159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/03/2022] Open
Abstract
Genetic composition can influence host susceptibility to, and transmission of, pathogens, with potential population-level consequences. In bighorn sheep (Ovis canadensis), pneumonia epidemics caused by Mycoplasma ovipneumoniae have been associated with severe population declines and limited recovery across North America. Adult survivors either clear the infection or act as carriers that continually shed M. ovipneumoniae and expose their susceptible offspring, resulting in high rates of lamb mortality for years following the outbreak event. Here, we investigated the influence of genomic composition on persistent carriage of M. ovipneumoniae in a well-studied bighorn sheep herd in the Wallowa Mountains of Oregon, USA. Using 10,605 SNPs generated using RADseq technology for 25 female bighorn sheep, we assessed genomic diversity metrics and employed family-based genome-wide association methodologies to understand variant association and genetic architecture underlying chronic carriage. We observed no differences among genome-wide diversity metrics (heterozygosity and allelic richness) between groups. However, we identified two variant loci of interest and seven associated candidate genes, which may influence carriage status. Further, we found that the SNP panel explained ~55% of the phenotypic variance (SNP-based heritability) for M. ovipneumoniae carriage, though there was considerable uncertainty in these estimates. While small sample sizes limit conclusions drawn here, our study represents one of the first to assess the genomic factors influencing chronic carriage of a pathogen in a wild population and lays a foundation for understanding genomic influence on pathogen persistence in bighorn sheep and other wildlife populations. Future research should incorporate additional individuals as well as distinct herds to further explore the genomic basis of chronic carriage.
Collapse
Affiliation(s)
- Alynn M. Martin
- United States Geological SurveyNorthern Rocky Mountain Science CenterBozemanMTUSA
| | | | | | - Raina K. Plowright
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Paul C. Cross
- United States Geological SurveyNorthern Rocky Mountain Science CenterBozemanMTUSA
| | - Kimberly R. Andrews
- Institute for Bioinformatics and Evolutionary Studies (IBEST)University of IdahoMoscowIDUSA
| |
Collapse
|
18
|
Wang GH, Wang LY, Zhang C, Zhang P, Wang CH, Cheng S. MiR-1225-5p acts as tumor suppressor in glioblastoma via targeting FNDC3B. Open Med (Wars) 2020; 15:872-881. [PMID: 33336045 PMCID: PMC7712056 DOI: 10.1515/med-2020-0156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 11/15/2022] Open
Abstract
This study attempted to research the molecular mechanism underlying the inhibitory role of miR-1225-5p in the malignant progression of glioblastoma. Bioinformatics analyses based on the gene expression omnibus (GEO) and Chinese glioma genome atlas (CGGA) databases showed that miR-1225-5p, as a favorable prognostic factor, was expressed at low levels in glioblastoma, and its expression was also related to WHO grade and age. The subsequent CCK-8 assay indicated that miR-1225-5p might prevent the malignant progression of glioblastoma, which was represented by that miR-1225-5p mimic reduced the viability of glioblastoma cells. Then, we predicted that FNDC3B might be a potential target gene of miR-1225-5p, and it was negatively correlated with the level of miR-1225-5p, which were confirmed by dual-luciferase reporter assay, qRT-PCR and western blot assays. Moreover, based on the analyses of the cancer genome atlas (TCGA), Oncomine and CGGA databases, FNDC3B was enriched in glioblastoma and high expression of FNDC3B led to poor prognosis. Finally, CCK8 and transwell experiments showed that the ability of miR-1225-5p to inhibit glioblastoma cell viability, invasion and migration was at least partially achieved by targeting FNDC3B. In general, these results revealed that the miR-1225-5p/FNDC3B axis contributes to inhibiting the malignant phenotype of glioblastoma cells, which lays a foundation for molecular diagnosis and treatment of glioblastoma.
Collapse
Affiliation(s)
- Guo-Hua Wang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Liang-Yan Wang
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong , 261000, People's Republic of China
| | - Cui Zhang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Peng Zhang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Chuan-Hui Wang
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| | - Shuai Cheng
- Department of Neurosurgery, Sunshine Union Hospital of Shandong Province, No. 9000 Yingqian Street, Weifang, Shandong, 261000, People's Republic of China
| |
Collapse
|
19
|
Huang N, Fan X, Zaleta-Rivera K, Nguyen TC, Zhou J, Luo Y, Gao J, Fang RH, Yan Z, Chen ZB, Zhang L, Zhong S. Natural display of nuclear-encoded RNA on the cell surface and its impact on cell interaction. Genome Biol 2020; 21:225. [PMID: 32907628 PMCID: PMC7488101 DOI: 10.1186/s13059-020-02145-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Compared to proteins, glycans, and lipids, much less is known about RNAs on the cell surface. We develop a series of technologies to test for any nuclear-encoded RNAs that are stably attached to the cell surface and exposed to the extracellular space, hereafter called membrane-associated extracellular RNAs (maxRNAs). RESULTS We develop a technique called Surface-seq to selectively sequence maxRNAs and validate two Surface-seq identified maxRNAs by RNA fluorescence in situ hybridization. To test for cell-type specificity of maxRNA, we use antisense oligos to hybridize to single-stranded transcripts exposed on the surface of human peripheral blood mononuclear cells (PBMCs). Combining this strategy with imaging flow cytometry, single-cell RNA sequencing, and maxRNA sequencing, we identify monocytes as the major type of maxRNA+ PBMCs and prioritize 11 candidate maxRNAs for functional tests. Extracellular application of antisense oligos of FNDC3B and CTSS transcripts inhibits monocyte adhesion to vascular endothelial cells. CONCLUSIONS Collectively, these data highlight maxRNAs as functional components of the cell surface, suggesting an expanded role for RNA in cell-cell and cell-environment interactions.
Collapse
Affiliation(s)
- Norman Huang
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Xiaochen Fan
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Tri C Nguyen
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Jie Gao
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Zhangming Yan
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Liangfang Zhang
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
20
|
Li YQ, Chen Y, Xu YF, He QM, Yang XJ, Li YQ, Hong XH, Huang SY, Tang LL, Liu N. FNDC3B 3'-UTR shortening escapes from microRNA-mediated gene repression and promotes nasopharyngeal carcinoma progression. Cancer Sci 2020; 111:1991-2003. [PMID: 32232887 PMCID: PMC7293090 DOI: 10.1111/cas.14394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative polyadenylation (APA), which induces shortening of the 3'-UTR, is emerging as an important feature in cancer development and progression. Nevertheless, the effects and mechanisms of APA-induced 3'-UTR shortening in nasopharyngeal carcinoma (NPC) remain largely unclear. Fibronectin type III domain containing 3B (FNDC3B) tended to use proximal polyadenylation site and produce shorter 3'-UTR according to our previous sequencing study. Herein, we found that FNDC3B with shorter 3'-UTR could escape from miRNA-mediated gene repression, and caused its increased expression in NPC. Knocking down of FNDC3B inhibited NPC cell proliferation, migration, invasion, and metastasis in vitro and in vivo. Overexpression of FNDC3B, especially those with shorter 3'-UTR, promoted NPC progression. Furthermore, the mechanism study revealed that FNDC3B could bind to and stabilize myosin heavy chain 9 (MYH9) to activate the Wnt/β-catenin signaling pathway. In addition, MYH9 could reverse the inhibitory effects of FNDC3B knockdown in NPC. Altogether, our results suggested that the 3'-UTR shortening of FNDC3B mRNA mediated its overexpression in NPC and promoted NPC progression by targeting MYH9. This newly identified FNDC3B-MYH9-Wnt/β-catenin axis could represent potential targets for individualized treatment in NPC.
Collapse
Affiliation(s)
- Ying-Qing Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya-Fei Xu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, China
| | - Qing-Mei He
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Jing Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hong Hong
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling-Long Tang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Na Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
21
|
Li Y, Yang J, Wang H, Qiao W, Guo Y, Zhang S, Guo Y. FNDC3B, Targeted by miR-125a-5p and miR-217, Promotes the Proliferation and Invasion of Colorectal Cancer Cells via PI3K/mTOR Signaling. Onco Targets Ther 2020; 13:3501-3510. [PMID: 32431508 PMCID: PMC7201223 DOI: 10.2147/ott.s226520] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Fibronectin type III domain containing 3B (FNDC3B) acts as an oncogene in various cancers, and abnormal expression of FNDC3B has been found in colorectal cancer (CRC). Our study aimed to illustrate the role of FNDC3B in CRC development. Methods Through RT-qPCR and western blotting assays, the mRNA and protein expressions of target genes were measured. CCK-8 and MTT methods were used to detect cell proliferation. Invasion ability was determined using Transwell assay. TargetScan platform and luciferase reporter gene assay were performed to predict and validate the bindings between FNDC3B and miR-125a-5p or miR-217. Besides, the expression correlation was measured by Pearson's Correlation analysis. Results We found that FNDC3B was significantly upregulated in CRC tissues and tumor cell lines, and high expression of FNDC3B predicted a poor survival outcome. The bindings between FNDC3B and miR-125a-5p and miR-217 were respectively at the motifs of CUCAGGG and AUGCAGU. MiR-125a-5p and miR-217 were downregulated in CRC tissues, and both were negatively correlated with FNDC3B expression. Subsequently, the downregulated miR-125a-5p and miR-217 were confirmed as contributors FNDC3B upregulation in CRC. A loss-of-function assay demonstrated that FNDC3B knockdown inhibited the proliferation of CRC cells, while FNDC3B overexpression promoted the proliferation and invasion of tumor cells. Besides, we validated that PI3K/mTOR signaling was involved in the regulation of FNDC3B on the proliferation and invasion of CRC cells. Conclusion Generally, our findings demonstrated that FNDC3B facilitated cell proliferation and invasion via PI3K/mTOR signaling, and further promoted CRC progression. The novel miR-125a-5p/FNDC3B and miR-217/FNDC3B axes might be new targets for CRC prognosis and therapy.
Collapse
Affiliation(s)
- Yilong Li
- First Department of General Surgery, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi, People's Republic of China
| | - Jie Yang
- First Department of General Surgery, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi, People's Republic of China
| | - Hengyang Wang
- First Department of General Surgery, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi, People's Republic of China
| | - Wei Qiao
- First Department of General Surgery, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi, People's Republic of China
| | - Yongfeng Guo
- First Department of General Surgery, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi, People's Republic of China
| | - Shengtao Zhang
- First Department of General Surgery, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi, People's Republic of China
| | - Yajuan Guo
- First Department of General Surgery, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi, People's Republic of China
| |
Collapse
|
22
|
Geoffroy MC, de Thé H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers (Basel) 2020; 12:E967. [PMID: 32295268 PMCID: PMC7226009 DOI: 10.3390/cancers12040967] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most acute promyelocytic leukemia (APL) are caused by PML-RARA, a translocation-driven fusion oncoprotein discovered three decades ago. Over the years, several other types of rare X-RARA fusions have been described, while recently, oncogenic fusion proteins involving other retinoic acid receptors (RARB or RARG) have been associated to very rare cases of acute promyelocytic leukemia. PML-RARA driven pathogenesis and the molecular basis for therapy response have been the focus of many studies, which have now converged into an integrated physio-pathological model. The latter is well supported by clinical and molecular studies on patients, making APL one of the rare hematological disorder cured by targeted therapies. Here we review recent data on APL-like diseases not driven by the PML-RARA fusion and discuss these in view of current understanding of "classic" APL pathogenesis and therapy response.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Hugues de Thé
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Biochimie, Hôpital St-Louis, 75010 Paris, France
- Collège de France, PSL Research University, INSERM U1050, CNRS UMR 7241, 75005 Paris, France
| |
Collapse
|
23
|
Liu Q, Cai Y, Xiong H, Deng Y, Dai X. CCRDB: a cancer circRNAs-related database and its application in hepatocellular carcinoma-related circRNAs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5520605. [PMID: 31219565 PMCID: PMC6585150 DOI: 10.1093/database/baz063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/30/2019] [Accepted: 04/09/2019] [Indexed: 01/28/2023]
Abstract
Circular RNAs (circRNAs) are widely expressed in human cells and tissues and can form a covalently closed exon circularization, which have stable patterns and play important regulatory roles in physiological or pathological process. There is still lack of a comprehensively disease-related knowledge base for in-depth analysis of circRNAs. In this paper, a cancer circRNAs-related database (CCRDB) was established. The CCRDB’s initial circRNAs data were collected by sequencing experimental data of 10 samples from 5 patients with hepatocellular carcinoma (HCC), where a total of 11 501 circRNAs were found and can easily be expanded by collecting and analyzing external data sources such as circBASE (1). Using CCRDB, we have further studied the relationships between circRNAs and HCC and found that circRNAs (hsa_circ_ 0002130, hsa_circ_0084615, hsa_circ_0001445, hsa_circ_0001727 and hsa_circ_0001361) and the corresponding genes ID [C3 (2, 3), ASPH (4), SMARCA5 (5), ZKSCAN1 (6) and FNDC3B (7)], respectively, might be the potential biomarker targets for HCC. Furthermore, our experiment also found that some new circRNAs chromosome sites chr12:23998917 24048958 and chr16:72090429 72093087 and the corresponding genes ID (SOX5 (8) and HP (9), respectively), might be the potential biomarker targets for HCC. These results indicate that CCRDB can effectively reveal the relationships between circRNAs and HCC. As the first circRNAs database to provide analysis and comparison functions, it is of great significance for researchers to further study the rules of circRNAs, to understand the causes of circRNAs in disease discovery and to find target genes for therapeutic approaches.
Collapse
Affiliation(s)
- Qingyu Liu
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanning Cai
- Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong, China
| | - Haiquan Xiong
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yiyun Deng
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xianhua Dai
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Han B, Wang H, Zhang J, Tian J. FNDC3B is associated with ER stress and poor prognosis in cervical cancer. Oncol Lett 2019; 19:406-414. [PMID: 31897153 PMCID: PMC6924122 DOI: 10.3892/ol.2019.11098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023] Open
Abstract
Currently, the occurrence and mortality rate of cervical cancer is high, particularly in low-to-middle-income countries. Therefore, the development of novel diagnostic and treatment strategies for cervical cancer is urgently required. The aim of the present study was to assess the prognostic significance of fibronectin type III domain containing 3B (FNDC3B) expression in patients with cervical cancer and to determine the underlying mechanism of FNDC3 in tumor development. Analysis of the ONCOMINE database revealed that FNDC3B was significantly upregulated in cervical cancer tissue compared with normal tissue. Additionally, FNDC3B expression data and the clinical characteristics of patients with cervical cancer were obtained from the cBioPortal database. Correlations between FNDC3B expression and overall survival were subsequently investigated. The results revealed that increased FNDC3B expression was significantly correlated with a lower overall survival in patients with cervical cancer. A co-expression network was subsequently constructed to elucidate the function of FNDC3B in cervical cancer. Co-expression genes for FNDC3B were obtained from the cBioPortal database and were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The results demonstrated that the genes were enriched in pathways associated with migration, invasion, endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Furthermore, immunofluorescence results obtained from the Human Protein Atlas revealed that the FNDC3B protein was localized to the ER. The results revealed that upregulated FNDC3B expression may be a biomarker for poor prognosis for patients with cervical cancer. Additionally, the results revealed that FNDC3B may serve an oncogenic role in cancer development via ER stress, UPR, cell migration and invasion. However, further studies are required to determine the exact molecular mechanism of FNDC3B in the development of cervical cancer and to assess its potential as a novel therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Bing Han
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai, Shandong 264005, P.R. China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai, Shandong 264005, P.R. China
| | - Jianzhao Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Jingwei Tian
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai, Shandong 264005, P.R. China
| |
Collapse
|
25
|
Hlady RA, Zhao X, Pan X, Yang JD, Ahmed F, Antwi SO, Giama NH, Patel T, Roberts LR, Liu C, Robertson KD. Genome-wide discovery and validation of diagnostic DNA methylation-based biomarkers for hepatocellular cancer detection in circulating cell free DNA. Theranostics 2019; 9:7239-7250. [PMID: 31695765 PMCID: PMC6831291 DOI: 10.7150/thno.35573] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is growing in incidence but treatment options remain limited, particularly for late stage disease. As liver cirrhosis is the principal risk state for HCC development, markers to detect early HCC within this patient population are urgently needed. Perturbation of epigenetic marks, such as DNA methylation (5mC), is a hallmark of human cancers, including HCC. Identification of regions with consistently altered 5mC levels in circulating cell free DNA (cfDNA) during progression from cirrhosis to HCC could therefore serve as markers for development of minimally-invasive screens of early HCC diagnosis and surveillance. Methods: To discover DNA methylation derived biomarkers of HCC in the background of liver cirrhosis, we profiled genome-wide 5mC landscapes in patient cfDNA using the Infinium HumanMethylation450k BeadChip Array. We further linked these findings to primary tissue data available from TCGA and other public sources. Using biological and statistical frameworks, we selected CpGs that robustly differentiated cirrhosis from HCC in primary tissue and cfDNA followed by validation in an additional independent cohort. Results: We identified CpGs that segregate patients with cirrhosis, from patients with HCC within a cirrhotic liver background, through genome-wide analysis of cfDNA 5mC landscapes. Lasso regression analysis pinpointed a panel of probes in our discovery cohort that were validated in two independent datasets. A panel of five CpGs (cg04645914, cg06215569, cg23663760, cg13781744, and cg07610777) yielded area under the receiver operating characteristic (AUROC) curves of 0.9525, 0.9714, and 0.9528 in cfDNA discovery and tissue validation cohorts 1 and 2, respectively. Validation of a 5-marker panel created from combining hypermethylated and hypomethylated CpGs in an independent cfDNA set by bisulfite pyrosequencing yielded an AUROC of 0.956, compared to the discovery AUROC of 0.996. Conclusion: Our finding that 5mC markers derived from primary tissue did not perform well in cfDNA, compared to those identified directly from cfDNA, reveals potential advantages of starting with cfDNA to discover high performing markers for liquid biopsy development.
Collapse
Affiliation(s)
- Ryan A. Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xia Zhao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xiaoyu Pan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ju Dong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fowsiyo Ahmed
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel O. Antwi
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Nasra H. Giama
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Keith D. Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Kong D, Ma W, Zhang D, Cui Q, Wang K, Tang J, Liu Z, Wu G. EYA1 promotes cell migration and tumor metastasis in hepatocellular carcinoma. Am J Transl Res 2019; 11:2328-2338. [PMID: 31105839 PMCID: PMC6511787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Hepatocellular carcinoma (HCC) patients are at high risk for both local recurrence and distant metastasis and tightly associated with poor prognosis. Exploring the molecular mechanism will provide a new opportunity in developing personal treatment for advanced HCC patients. As a critical member of the Retinal Determination Gene Network (RDGN), EYA1 has been identified as a tumor promoter in various cancers; however, its role in HCC has never been investigated. The present study was aimed to explore the role of EYA1 in HCC development. By analyzing public microarray datasets, we found that the EYA1 mRNA level was enhanced in HCC, which was significantly correlated with an aggressive phenotype and poor prognosis. Besides, EYA1 was coordinated with the fibronectin type III domain containing 3B (FNDC3B) to promote the migration and invasion of HCC cells. Western blot assays indicated that EYA1 not only increased the abundance of FNDC3B but also contributed to Epithelial-Mesenchymal Transition (EMT)-like phenotype change, like increased N-cadherin and decreased E-cadherin expression. Collectively, this study suggested that EYA1 activated FNDC3B to promote the migration and invasion in HCC. The aberrant expressions of EYA1 and FNDC3B may become the poor predictors for HCC patients.
Collapse
Affiliation(s)
- Deguang Kong
- Department of General Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Weijie Ma
- Department of General Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, P. R. China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Kun Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, P. R. China
| | - Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Zhisu Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University169 Donghu Road, Wuhan 430071, P. R. China
| |
Collapse
|
27
|
Expression Analysis of Fibronectin Type III Domain-Containing (FNDC) Genes in Inflammatory Bowel Disease and Colorectal Cancer. Gastroenterol Res Pract 2019; 2019:3784172. [PMID: 31093274 PMCID: PMC6481110 DOI: 10.1155/2019/3784172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background Fibronectin type III domain-containing (FNDC) proteins fulfill manifold functions in tissue development and regulation of cellular metabolism. FNDC4 was described as anti-inflammatory factor, upregulated in inflammatory bowel disease (IBD). FNDC signaling includes direct cell-cell interaction as well as release of bioactive peptides, like shown for FNDC4 or FNDC5. The G-protein-coupled receptor 116 (GPR116) was found as a putative FNDC4 receptor. We here aim to comprehensively analyze the mRNA expression of FNDC1, FNDC3A, FNDC3B, FNDC4, FNDC5, and GPR116 in nonaffected and affected mucosal samples of patients with IBD or colorectal cancer (CRC). Methods Mucosa samples were obtained from 30 patients undergoing diagnostic colonoscopy or from surgical resection of IBD or CRC. Gene expression was determined by quantitative real-time PCR. In addition, FNDC expression data from publicly available Gene Expression Omnibus (GEO) data sets (GDS4296, GDS4515, and GDS5232) were analyzed. Results Basal mucosal expression revealed higher expression of FNDC3A and FNDC5 in the ileum compared to colonic segments. FNDC1 and FNDC4 were significantly upregulated in IBD. None of the investigated FNDCs was differentially expressed in CRC, just FNDC3A trended to be upregulated. The GEO data set analysis revealed significantly downregulated FNDC4 and upregulated GPR116 in microsatellite unstable (MSI) CRCs. The expression of FNDCs and GPR116 was independent of age and sex. Conclusions FNDC1 and FNDC4 may play a relevant role in the pathobiology of IBD, but none of the investigated FNDCs is regulated in CRC. GPR116 may be upregulated in advanced or MSI CRC. Further studies should validate the altered FNDC expression results on protein levels and examine the corresponding functional consequences.
Collapse
|
28
|
Bian T, Zheng L, Jiang D, Liu J, Zhang J, Feng J, Zhang Q, Qian L, Qiu H, Liu Y, Yao S. Overexpression of fibronectin type III domain containing 3B is correlated with epithelial-mesenchymal transition and predicts poor prognosis in lung adenocarcinoma. Exp Ther Med 2019; 17:3317-3326. [PMID: 30988707 PMCID: PMC6447801 DOI: 10.3892/etm.2019.7370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/11/2018] [Indexed: 12/25/2022] Open
Abstract
Fibronectin (FN) type III domain containing 3B (FNDC3B), a member of the FN family, regulates the invasion and metastasis of cells in numerous tumor types. However, the mechanisms through which FNDC3B regulates carcinogenesis in lung adenocarcinoma (LADC) tissues have remained elusive. The present study revealed that the protein levels of FNDC3B and vimentin were significantly elevated in LADC tissues compared with those in normal lung tissues. By contrast, the expression of E-cadherin was decreased in LADC tissues compared with that in normal lung tissues. Furthermore, the aberrant expression of FNDC3B and epithelial-mesenchymal transition (EMT) markers was significantly associated with histological differentiation, lymph node metastasis and tumor-nodes-metastasis stage. Kaplan-Meier analysis indicated that a high expression of FNDC3B may be associated with poor overall survival of patients with LADC. In addition, overexpression of FNDC3B promoted the protein expression of EMT-associated genes in the A549 lung adenocarcinoma cell line. In conclusion, the present results support the notion that FNDC3B acts as an oncogene in LADC; it may serve a pivotal role in the development and progression of LADC and may participate in the regulation of the EMT.
Collapse
Affiliation(s)
- Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Liangfeng Zheng
- Central Laboratory, Affiliated Hai'an Hospital of Nantong University, Hai'an, Jiangsu 226600, P.R. China
| | - Daishan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jia Feng
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qing Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hongmei Qiu
- Department of Respiration, Nantong Geriatric Rehabilitation Hospital, Branch of Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Sumei Yao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
29
|
Syed A, Lukacsovich T, Pomeroy M, Bardwell AJ, Decker GT, Waymire KG, Purcell J, Huang W, Gui J, Padilla EM, Park C, Paul A, Pham TBT, Rodriguez Y, Wei S, Worthge S, Zebarjedi R, Zhang B, Bardwell L, Marsh JL, MacGregor GR. Miles to go (mtgo) encodes FNDC3 proteins that interact with the chaperonin subunit CCT3 and are required for NMJ branching and growth in Drosophila. Dev Biol 2018; 445:37-53. [PMID: 30539716 DOI: 10.1016/j.ydbio.2018.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/01/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022]
Abstract
Analysis of mutants that affect formation and function of the Drosophila larval neuromuscular junction (NMJ) has provided valuable insight into genes required for neuronal branching and synaptic growth. We report that NMJ development in Drosophila requires both the Drosophila ortholog of FNDC3 genes; CG42389 (herein referred to as miles to go; mtgo), and CCT3, which encodes a chaperonin complex subunit. Loss of mtgo function causes late pupal lethality with most animals unable to escape the pupal case, while rare escapers exhibit an ataxic gait and reduced lifespan. NMJs in mtgo mutant larvae have dramatically reduced branching and growth and fewer synaptic boutons compared with control animals. Mutant larvae show normal locomotion but display an abnormal self-righting response and chemosensory deficits that suggest additional functions of mtgo within the nervous system. The pharate lethality in mtgo mutants can be rescued by both low-level pan- and neuronal-, but not muscle-specific expression of a mtgo transgene, supporting a neuronal-intrinsic requirement for mtgo in NMJ development. Mtgo encodes three similar proteins whose domain structure is most closely related to the vertebrate intracellular cytosolic membrane-anchored fibronectin type-III domain-containing protein 3 (FNDC3) protein family. Mtgo physically and genetically interacts with Drosophila CCT3, which encodes a subunit of the TRiC/CCT chaperonin complex required for maturation of actin, tubulin and other substrates. Drosophila larvae heterozygous for a mutation in CCT3 that reduces binding between CCT3 and MTGO also show abnormal NMJ development similar to that observed in mtgo null mutants. Hence, the intracellular FNDC3-ortholog MTGO and CCT3 can form a macromolecular complex, and are both required for NMJ development in Drosophila.
Collapse
Affiliation(s)
- Adeela Syed
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Tamás Lukacsovich
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Miles Pomeroy
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - A Jane Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Gentry Thomas Decker
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA
| | - Katrina G Waymire
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Judith Purcell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Weijian Huang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - James Gui
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Emily M Padilla
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Cindy Park
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Antor Paul
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Thai Bin T Pham
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Yanete Rodriguez
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Stephen Wei
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Shane Worthge
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Ronak Zebarjedi
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Bing Zhang
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA.
| | - Grant R MacGregor
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA.
| |
Collapse
|
30
|
Luo G, Li R, Li Z. CircRNA circFNDC3B promotes esophageal cancer progression via cell proliferation, apoptosis, and migration regulation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4188-4196. [PMID: 31949813 PMCID: PMC6962785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/10/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Esophageal cancer is one of the most common malignant tumors threatening human health worldwide. Circular RNAs (circRNAs) are a large group of covalently closed continuous loops that are prevalently expressed in human cells and might be applied as novel esophageal cancer biomarkers. PURPOSE To investigate the expression of a novel circular RNA, circFNDC3B, in esophageal cancer, as well as determine its function in the regulation of esophageal cell proliferation, apoptosis, migration, and invasion. METHODS Quantitative RT-PCR using circular RNA-specific primers was performed to analyze the existence and expressional change of circFNDC3B in esophageal cancer tissues. The esophageal cancer cell lines ECA109 and KYSE150 with inhibited circFNDC3B expression by gene silencing were subjected to proliferation analysis with the MTS method, FITC Annexin V apoptosis detection, and a proliferation and invasion evaluation using a transwell system. RESULTS circFNDC3B was specifically up-regulated in esophageal cancer tissues. Esophageal cancer cell lines ECA109 and KYSE150 with decreased circFNDC3B expression by gene silencing showed inhibited proliferation, increased apoptosis, and weakened migration and invasion abilities. CONCLUSION The circFNDC3B encoded by two FNDC3B gene exons is an important regulator of esophageal cancer progression.
Collapse
Affiliation(s)
- Gang Luo
- Graduate School, Southern Medical UniversityGuangzhou, Guangdong Province, China
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong General HospitalGuangzhou, Guangdong Province, China
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s HospitalQingyuan, Guangdong Province, China
| | - Ruifeng Li
- Graduate School, Southern Medical UniversityGuangzhou, Guangdong Province, China
- Department of Gastroenterology, Guangdong Academy of Medical Sciences, Guangdong General HospitalGuangzhou, Guangdong Province, China
| | - Zijun Li
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of GeriatricsGuangzhou, Guangdong, China
- Southern Medical University Second Clinical Medical CollegeGuangzhou, Guangdong, China
| |
Collapse
|
31
|
Geddes VEV, de Oliveira AS, Tanuri A, Arruda E, Ribeiro-Alves M, Aguiar RS. MicroRNA and cellular targets profiling reveal miR-217 and miR-576-3p as proviral factors during Oropouche infection. PLoS Negl Trop Dis 2018; 12:e0006508. [PMID: 29813068 PMCID: PMC5993330 DOI: 10.1371/journal.pntd.0006508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 06/08/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Oropouche Virus is the etiological agent of an arbovirus febrile disease that affects thousands of people and is widespread throughout Central and South American countries. Although isolated in 1950’s, still there is scarce information regarding the virus biology and its prevalence is likely underestimated. In order to identify and elucidate interactions with host cells factors and increase the understanding about the Oropouche Virus biology, we performed microRNA (miRNA) and target genes screening in human hepatocarcinoma cell line HuH-7. Cellular miRNAs are short non-coding RNAs that regulates gene expression post-transcriptionally and play key roles in several steps of viral infections. The large scale RT-qPCR based screening found 13 differentially expressed miRNAs in Oropouche infected cells. Further validation confirmed that miR-217 and miR-576-3p were 5.5 fold up-regulated at early stages of virus infection (6 hours post-infection). Using bioinformatics and pathway enrichment analysis, we predicted the cellular targets genes for miR-217 and miR-576-3p. Differential expression analysis of RNA from 95 selected targets revealed genes involved in innate immunity modulation, viral release and neurological disorder outcomes. Further analysis revealed the gene of decapping protein 2 (DCP2), a previous known restriction factor for bunyaviruses transcription, as a miR-217 candidate target that is progressively down-regulated during Oropouche infection. Our analysis also showed that activators genes involved in innate immune response through IFN-β pathway, as STING (Stimulator of Interferon Genes) and TRAF3 (TNF-Receptor Associated Factor 3), were down-regulated as the infection progress. Inhibition of miR-217 or miR-576-3p restricts OROV replication, decreasing viral RNA (up to 8.3 fold) and virus titer (3 fold). Finally, we showed that virus escape IFN-β mediated immune response increasing the levels of cellular miR-576-3p resulting in a decreasing of its partners STING and TRAF3. We concluded stating that the present study, the first for a Peribunyaviridae member, gives insights in its prospective pathways that could help to understand virus biology, interactions with host cells and pathogenesis, suggesting that the virus escapes the antiviral cellular pathways increasing the expression of cognates miRNAs. Oropouche Virus causes typical arboviral febrile illness and is widely distributed in tropical region of Americas, mainly Amazon region, associated with cases of encephalitis. 500,000 people are estimated to be infected with Oropouche worldwide and some states in Brazil detected higher number of cases among other arboviruses such as Dengue and Chikungunya. As much as climate change, human migration and vector and host availability might increase the risk of virus transmission. Despite its estimated high prevalence in Central and South America populations, the literature concerning the main aspects of viral biology remain scarce and began to be investigated only in the last two decades. Nonetheless, little is known about virus-host cell interactions and pathogenesis. Virus infection regulates cellular pathways either promoting its replication or escaping from immune response through microRNAs. Knowing which microRNAs and target genes are modulated in infection could give us new insights to understand multiple aspects of infection. Here, we depicted candidate miRNAs, genes and pathways affected by Oropouche Virus infection in hepatocyte cells. We hope this work serve as guideline for prospective studies in order to assess the complexity regarding the orthobunyaviruses infections.
Collapse
Affiliation(s)
- Victor Emmanuel Viana Geddes
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anibal Silva de Oliveira
- Departamento de Biologia Celular e Molecular, Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eurico Arruda
- Departamento de Biologia Celular e Molecular, Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Santana Aguiar
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
32
|
Qin G, Dang M, Gao H, Wang H, Luo F, Chen R. Deciphering the protein–protein interaction network regulating hepatocellular carcinoma metastasis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [DOI: 10.1016/j.bbapap.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Shimizu D, Inokawa Y, Sonohara F, Inaoka K, Nomoto S. Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors. Oncol Rep 2017; 37:2527-2542. [DOI: 10.3892/or.2017.5541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
34
|
Ganapathiraju MK, Karunakaran KB, Correa-Menéndez J. Predicted protein interactions of IFITMs may shed light on mechanisms of Zika virus-induced microcephaly and host invasion. F1000Res 2016; 5:1919. [PMID: 29333229 PMCID: PMC5747333 DOI: 10.12688/f1000research.9364.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 06/16/2024] Open
Abstract
After the first reported case of Zika virus (ZIKV) in Brazil, in 2015, a significant increase in the reported cases of microcephaly was observed. Microcephaly is a neurological condition in which the infant's head is significantly smaller with complications in brain development. Recently, two small membrane-associated interferon-inducible transmembrane proteins (IFITM1 and IFITM3) have been shown to repress members of the flaviviridae family which includes ZIKV. However, the exact mechanisms leading to the inhibition of the virus are yet unknown. Here, we assembled an interactome of IFITM1 and IFITM3 with known protein-protein interactions (PPIs) collected from publicly available databases and novel PPIs predicted using the High-confidence Protein-Protein Interaction Prediction (HiPPIP) model. We analyzed the functional and pathway associations of the interacting proteins, and found that there are several immunity pathways (toll-like receptor signaling, cd28 signaling in T-helper cells, crosstalk between dendritic cells and natural killer cells), neuronal pathways (axonal guidance signaling, neural tube closure and actin cytoskeleton signaling) and developmental pathways (neural tube closure, embryonic skeletal system development) that are associated with these interactors. Our novel PPIs associate cilia dysfunction in ependymal cells to microcephaly, and may also shed light on potential targets of ZIKV for host invasion by immunosuppression and cytoskeletal rearrangements. These results could help direct future research in elucidating the mechanisms underlying host defense to ZIKV and other flaviviruses.
Collapse
Affiliation(s)
- Madhavi K. Ganapathiraju
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalyani B. Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
35
|
Ganapathiraju MK, Karunakaran KB, Correa-Menéndez J. Predicted protein interactions of IFITMs may shed light on mechanisms of Zika virus-induced microcephaly and host invasion. F1000Res 2016; 5:1919. [PMID: 29333229 PMCID: PMC5747333 DOI: 10.12688/f1000research.9364.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/22/2022] Open
Abstract
After the first reported case of Zika virus (ZIKV) in Brazil, in 2015, a significant increase in the reported cases of microcephaly was observed. Microcephaly is a neurological condition in which the infant’s head is significantly smaller with complications in brain development. Recently, two small membrane-associated interferon-inducible transmembrane proteins (IFITM1 and IFITM3) have been shown to repress members of the flaviviridae family which includes ZIKV. However, the exact mechanisms leading to the inhibition of the virus are yet unknown. Here, we assembled an interactome of IFITM1 and IFITM3 with known protein-protein interactions (PPIs) collected from publicly available databases and novel PPIs predicted using the High-confidence Protein-Protein Interaction Prediction (HiPPIP) model. We analyzed the functional and pathway associations of the interacting proteins, and found that there are several immunity pathways (toll-like receptor signaling, cd28 signaling in T-helper cells, crosstalk between dendritic cells and natural killer cells), neuronal pathways (axonal guidance signaling, neural tube closure and actin cytoskeleton signaling) and developmental pathways (neural tube closure, embryonic skeletal system development) that are associated with these interactors. Our novel PPIs associate cilia dysfunction in ependymal cells to microcephaly, and may also shed light on potential targets of ZIKV for host invasion by immunosuppression and cytoskeletal rearrangements. These results could help direct future research in elucidating the mechanisms underlying host defense to ZIKV and other flaviviruses.
Collapse
Affiliation(s)
- Madhavi K Ganapathiraju
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|