1
|
Niwata C, Nakagawa T, Naruse T, Sakuma M, Yamakado N, Akagi M, Ono S, Tobiume K, Gao J, Jimi E, Ohta K, Aikawa T. Anticancer effect of the antirheumatic drug leflunomide on oral squamous cell carcinoma by the inhibition of tumor angiogenesis. Discov Oncol 2025; 16:53. [PMID: 39815040 PMCID: PMC11735718 DOI: 10.1007/s12672-025-01763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
OBJECTIVES Leflunomide (LEF) is a conventional synthetic disease-modifying antirheumatic drug and suppresses T-cell proliferation and activity by inhibiting pyrimidine synthesis using dihydroorotase dehydrogenase (DHODH); however, several studies have demonstrated that LEF possesses anticancer and antiangiogenic effects in some malignant tumors. Therefore, we investigated the anticancer and antiangiogenic effects of LEF on oral squamous cell carcinoma (OSCC). METHODS To evaluate the inhibitory effect of LEF on OSCC, cell proliferation and wound-healing assays using human OSCC cell lines were performed. The DHODH inhibitory effect of LEF was evaluated by Western blot. To assess the suppression of pyrimidine biosynthesis induced by LEF on OSCC, cell proliferation assays with or without uridine supplementation were performed. The antiangiogenic effect of LEF was evaluated by in vitro tube formation assay using immortalized human umbilical vein endothelial cells, which were electroporatically transfected with hTERT. The tumor-suppressive effect of LEF in vivo was examined in both immunodeficient and syngeneic mice by implanting mouse OSCC cells. Tumor vascularization was evaluated by immunohistochemistry of the tumor extracted from syngeneic mice. RESULTS LEF dose-dependently inhibited OSCC proliferation and migration. LEF significantly inhibited DHODH expression, and uridine supplementation rescued the inhibitory effect of LEF. LEF dose-dependently suppressed endothelial tube formation. In the animal study, LEF significantly suppressed tumor growth in both immunodeficient and syngeneic mice. Histologically, LEF decreased DHODH expression and tumor vascularization. CONCLUSION LEF is a potent anticancer agent with antiangiogenic effects on OSCC and might be clinically applicable to OSCC by drug repositioning.
Collapse
Affiliation(s)
- Chieko Niwata
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takayuki Nakagawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Takako Naruse
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Miyuki Sakuma
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Nao Yamakado
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Misaki Akagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shigehiro Ono
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kei Tobiume
- Graduate School of Biomedical & Health Sciences (Dentistry & Oral Health Sciences), Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomonao Aikawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
2
|
Gadeval A, Anup N, Pawar B, Mule S, Otavi S, Sahu R, Kumar Tekade R. Gold-thiol-beaded albumin nanoparticles for chemo-combined pulsatile plasmonic laser therapy of Rheumatoid arthritis in rat model. Int J Pharm 2024; 667:124882. [PMID: 39471886 DOI: 10.1016/j.ijpharm.2024.124882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory immune disease that causes synovial membrane inflammation and destruction of articular cartilage. Traditionally, methotrexate is a first-line drug for RA treatment. However, its therapeutic benefits are insufficient. Pulsatile Plasmonic laser therapy (PPLT) has recently emerged as a localized and new-generation intervention for RA. This investigation reports the development of nanoGold-thiol-beaded albumin nanoparticles containing Leflunomide (GTBA-NP-L; 54 nm, PDI: 0.15 and entrapment efficiency: >90 %) for treating RA in an arthritic rat model. Upon irradiation of the plasmonic laser, the nanoGold component of GTBA-NP-L showed a local thermogenic effect (1.5 W/cm2 for 5 mins: ∼45 °C). This local thermal effect enhances drug release (1.5-fold) while co-delivering heat and antiarthritic leflunomide at inflamed RA joints site. In vitro and in vivo studies demonstrated significant antiarthritic effects of GTBA-NP-L, accompanied by reduced inflammatory stress in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells and antigen-induced arthritis (AIA) rat model. GTBA-NP-L treatment significantly reduced the cell viability (49.66 ± 2.46 %), apoptosis (83.36 ± 4.30 %), cell cycle arrest (38.28 ± 2.85 %), ROS and Nitrite stress levels (178.92 ± 19.79 %), and suppressed pro-inflammatory cytokines (TNF-α: 4.81, IL-6: 3.07 and IL-1β: 4.46-fold). In the arthritic rat, GTBA-NP-L treatment reduced inflammation, paw edema (1.89-fold), pain perception (45-48 %), and impacted hematological (Hb and RBCs: 12-15 %, WBCs: 30-32 %), serological (RF: 50-54 %, CRP: 40-47 %), and radiological parameters. Conclusively, the study demonstrates that the chemo-combined Pulsatile Plasmonic laser therapy showed superior efficacy as compared to individual treatments, suggesting GTBA-NP-L as a potential therapeutic candidate for rheumatoid arthritis.
Collapse
Affiliation(s)
- Anuradha Gadeval
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Neelima Anup
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Bhakti Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Shubham Mule
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Shivam Otavi
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Sahu
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
3
|
DeRatt LG, Zhang Z, Pietsch C, Cisar JS, Zhang X, Wang W, Tanner A, Matico R, Shaffer P, Jacoby E, Kazmi F, Shukla N, Bush TL, Patrick A, Philippar U, Attar R, Edwards JP, Kuduk SD. Discovery of JNJ-74856665: A Novel Isoquinolinone DHODH Inhibitor for the Treatment of AML. J Med Chem 2024; 67:11254-11272. [PMID: 38889244 DOI: 10.1021/acs.jmedchem.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Acute myelogenous leukemia (AML), a heterogeneous disease of the blood and bone marrow, is characterized by the inability of myeloblasts to differentiate into mature cell types. Dihydroorotate dehydrogenase (DHODH) is an enzyme well-known in the pyrimidine biosynthesis pathway and preclinical findings demonstrated that DHODH is a metabolic vulnerability in AML as inhibitors can induce differentiation across multiple AML subtypes. As a result of virtual screening and structure-based drug design approaches, a novel series of isoquinolinone DHODH inhibitors was identified. Further lead optimization afforded JNJ-74856665 as an orally bioavailable, potent, and selective DHODH inhibitor with favorable physicochemical properties selected for clinical development in patients with AML and myelodysplastic syndromes (MDS).
Collapse
Affiliation(s)
- Lindsey G DeRatt
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Zhuming Zhang
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Christine Pietsch
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Justin S Cisar
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Xiaochun Zhang
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Weixue Wang
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Alexandra Tanner
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Rosalie Matico
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Paul Shaffer
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Edgar Jacoby
- Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Faraz Kazmi
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Neetu Shukla
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Tammy L Bush
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Aaron Patrick
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Ulrike Philippar
- Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ricardo Attar
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - James P Edwards
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Scott D Kuduk
- Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
4
|
Luo NF, Li JL, Lv J, Chen FK, Li YN, Tang M, Liu PJ. Role of sodium/iodide symporter overexpression in inhibiting thyroid cancer cell invasion and stem cell maintenance by inhibiting the β-catenin/LEF-1 pathway. Heliyon 2024; 10:e27840. [PMID: 38545139 PMCID: PMC10965522 DOI: 10.1016/j.heliyon.2024.e27840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 11/11/2024] Open
Abstract
Background In thyroid cancers, a reduction in the expression of the sodium/iodide symporter (NIS) is observed concomitant with a diminution in cancer cell differentiation. The β-catenin/LEF-1 pathway emerges as a crucial regulatory pathway influencing the functional expression of NIS in human thyroid cancer cells. Further research is required to comprehensively elucidate the role of NIS overexpression in impeding the progression of thyroid cancer cells. Methods Human papillary thyroid carcinoma (PTC) cell lines, specifically PTC-1 and KTC-1, were subjected to Scratch and Transwell assays, colony formation, and tumor sphere formation tests to investigate invasion and migration, focusing on the impact of NIS overexpression. The assessment involved the use of western blot to analyze the expression levels of β-catenin, NIS, CD133, SRY-related HMG box2 (Sox2), lymphoid enhancer-binding factor 1 (LEF-1), NANOG, octamer-binding transcription factor 4 (Oct4), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), and epithelial cellular adhesion molecule (EpCAM). Statistical analysis was conducted using SPSS version 20.0, and the graphs were developed using GraphPad Prism 7 (GraphPad Software, Inc.). Results Our observations revealed that Nthy-ori-3-1 cell lines exhibited notably higher average expression levels of NIS, yet significantly lower levels of LEF-1 and β-catenin compared to PTC-1 and KTC-1 cell lines. Furthermore, the overexpression of β-catenin resulted in reduced binding of LEF-1 to NIF promotion but concurrently increased the expression of NIS. The downregulation of NIS markedly enhanced the expression of ALDH1A1, CD133, OCT4, Nanog, SOX2, and EpCam-all of which are targets within the Wnt/β-catenin signaling pathway. Conversely, the upregulation of NIS suppressed the expression of these proteins. Moreover, cells treated with β-catenin activators demonstrated an increased capability to form more spheroids and displayed heightened aggressiveness. Conversely, the NIS overexpression (OE) group exhibited suppressed abilities in invasion and colony formation. Conclusion Thyroid cancer cells exhibit diminished expression of NIS, and the invasion and maintenance of stem cells in thyroid cancer cells were hindered by NIS OE through the inhibition of the β-catenin/LEF-1 pathway. Further research is warranted to comprehensively assess this outcome, which holds promise as a potential targeted treatment for thyroid cancer.
Collapse
Affiliation(s)
- Nan-Fang Luo
- Department of Cardiac Function, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Jia-Li Li
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Juan Lv
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Fu-Kun Chen
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Ya-Nan Li
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Ming Tang
- Department of Pathology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Peng-Jie Liu
- Department of Nuclear Medicine, The Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| |
Collapse
|
5
|
Gehlot P, Vyas VK. A Patent Review of Human Dihydroorotate Dehydrogenase (hDHODH) Inhibitors as Anticancer Agents and their Other Therapeutic Applications (1999-2022). Recent Pat Anticancer Drug Discov 2024; 19:280-297. [PMID: 37070439 DOI: 10.2174/1574892818666230417094939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/19/2023]
Abstract
Highly proliferating cells, such as cancer cells, are in high demand of pyrimidine nucleotides for their proliferation, accomplished by de novo pyrimidine biosynthesis. The human dihydroorotate dehydrogenase (hDHODH) enzyme plays a vital role in the rate-limiting step of de novo pyrimidine biosynthesis. As a recognised therapeutic target, hDHODH plays a significant role in cancer and other illness. In the past two decades, small molecules as inhibitors hDHODH enzyme have drawn much attention as anticancer agents, and their role in rheumatoid arthritis (RA), and multiple sclerosis (MS). In this patent review, we have compiled patented hDHODH inhibitors published between 1999 and 2022 and discussed the development of hDHODH inhibitors as anticancer agents. Therapeutic potential of small molecules as hDHODH inhibitors for the treatment of various diseases, such as cancer, is very well recognised. Human DHODH inhibitors can rapidly cause intracellular uridine monophosphate (UMP) depletion to produce starvation of pyrimidine bases. Normal cells can better endure a brief period of starvation without the side effects of conventional cytotoxic medication and resume synthesis of nucleic acid and other cellular functions after inhibition of de novo pathway using an alternative salvage pathway. Highly proliferative cells such as cancer cells do not endure starvation because they are in high demand of nucleotides for cell differentiation, which is fulfilled by de novo pyrimidine biosynthesis. In addition, hDHODH inhibitors produce their desired activity at lower doses rather than a cytotoxic dose of other anticancer agents. Thus, inhibition of de novo pyrimidine biosynthesis will create new prospects for the development of novel targeted anticancer agents, which ongoing preclinical and clinical experiments define. Our work brings together a comprehensive patent review of the role of hDHODH in cancer, as well as various patents related to the hDHODH inhibitors and their anticancer and other therapeutic potential. This compiled work on patented DHODH inhibitors will guide researchers in pursuing the most promising drug discovery strategies against the hDHODH enzyme as anticancer agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| |
Collapse
|
6
|
Shi ZZ, Jin X, Li WT, Tao H, Song SJ, Fan ZW, Jiang W, Liang JW, Bai J. Dihydroorotate dehydrogenase promotes cell proliferation and suppresses cell death in esophageal squamous cell carcinoma and colorectal carcinoma. Transl Cancer Res 2023; 12:2294-2307. [PMID: 37859742 PMCID: PMC10583008 DOI: 10.21037/tcr-23-136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/27/2023] [Indexed: 10/21/2023]
Abstract
Background Ferroptosis is defined as an iron-dependent non-apoptotic form of programmed cell death. Dihydroorotate dehydrogenase (DHODH) is a newly discovered anti-ferroptosis molecule independent from the well-known GPX4 and AIFM2. However, the expression pattern and especially the functional roles of DHODH during cancer cell death are generally unknown. Methods The databases of Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier Plotter, and Tumor Immune Estimation Resource (TIMER), and methods of colony formation, Cell Counting Kit-8 (CCK-8), adenosine triphosphate (ATP) detection, RNA-seq, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and western blotting were used to analyze the expression level, prognostic role, and oncogenic roles of DHODH in cancers. Results DHODH overexpression was identified in many types of cancers including esophageal carcinoma (ESCA), colon adenocarcinoma (COAD), rectum adenocarcinoma (READ), and so on. Silence and inactivation of DHODH decreased the abilities of cell proliferation, colony formation, and cellular ATP levels both in esophageal squamous cell carcinoma (ESCC) and colorectal cancer (CRC) cells. Z-VAD-FMK (an apoptosis inhibitor) partially rescued blockade of DHODH-induced death of ESCC cells, and ferroptosis inhibitors (ferrostatin-1 and liproxstatin-1) together with the necroptosis inhibitor (necrostatin-1) partially rescued inhibition of DHODH-induced death of CRC cells, respectively. Pathways including rheumatoid arthritis, salmonella infection, cytokine-cytokine receptor interaction, pertussis, and nuclear factor-κB (NF-κB) were enriched in DHODH-silenced ESCC cells. Conclusions Overexpression of DHODH augments cell proliferation and suppresses cell death in ESCC and CRC, and DHODH might be developed as a potential anticancer target.
Collapse
Affiliation(s)
- Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xin Jin
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wen-Ting Li
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Hao Tao
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Sheng-Jie Song
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ze-Wen Fan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wen Jiang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jian-Wei Liang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Otto-Ślusarczyk D, Graboń W, Mielczarek-Puta M, Chrzanowska A. Teriflunomide - The common drug with underestimated oxygen - Dependent anticancer potential. Biochem Biophys Rep 2021; 28:101141. [PMID: 34611552 PMCID: PMC8476349 DOI: 10.1016/j.bbrep.2021.101141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Leflunomide (LFN) is a well-known immunomodulatory and anti-inflammatory prodrug of teriflunomide (TFN). Due to pyrimidine synthesis inhibition TFN also exhibits potent anticancer effect. Because, there is the strict coupling between the pyrimidine synthesis and the mitochondrial respiratory chain, the oxygen level could modify the cytostatic TNF effect. The aim of the study was to evaluate the cytostatic effect of pharmacologically achievable teriflunomide (TFN) concentrations at physiological oxygen levels, i.e. 1% hypoxia and 10% tissue normoxia compared to 21% oxygen level occurred in routine cell culture environment. The TFN effect was evaluated using TB, MTT and FITC Annexin tests for human primary (SW480) and metastatic (SW620) colon cancer cell lines at various oxygen levels. We demonstrated significant differences between proliferation, survival and apoptosis at 1, 10 and 21% oxygen in primary and metastatic colon cancer cell lines (SW480, SW620) under TFN treatment. The cytostatic TFN effect was more pronounced at hypoxia compared to tissue and atmospheric normoxia in both cancer cell lines, however metastatic cells were more resistant to antiproliferative and proapoptotic TFN action. The early apoptosis was predominant in physiological oxygen tension while in atmospheric normoxia the late apoptosis was induced. Our findings showed that anticancer TFN effect is more strong in physiological oxygen compared to atmospheric normoxia. It suggests that results obtained from in vitro studies could be underestimated. Thus, it gives assumption for future comprehensive studies at real oxygen environment involving TNF use in combination with other antitumor agents affecting oxygen-dependent pyrimidine synthesis.
Collapse
Affiliation(s)
- Dagmara Otto-Ślusarczyk
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland
| | - Wojciech Graboń
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland
| | - Magdalena Mielczarek-Puta
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland
| |
Collapse
|
8
|
Jin L, Li Y, Pu F, Wang H, Zhang D, Bai J, Shang Y, Ma Z, Ma XX. Inhibiting pyrimidine biosynthesis impairs Peste des Petits Ruminants Virus replication through depletion of nucleoside pools and activation of cellular immunity. Vet Microbiol 2021; 260:109186. [PMID: 34333402 DOI: 10.1016/j.vetmic.2021.109186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Replication of peste des petits ruminants virus (PPRV) strongly depends on the cellular environment and resources of host cells including nucleoside pool. Thus, enzymes involved in nucleoside biosynthesis (such as pyrimidine biosynthesis pathway) are regarded as attractive targets for antiviral drug development. Here, we demonstrate that brequinar (BQR) and leflunomide (LFM) which are two specific inhibitors of DHODH enzyme and 6-azauracil (6-AU) which is an ODase enzyme inhibitor robustly inhibit PPRV replication in HEK293T cell line as well as in peripheral blood mononuclear cells isolated from goat. We further demonstrate that these agents exert anti-PPRV activity via the depletion of purimidine nucleotide. Interestingly, these inhibitors can trigger the transcription of antiviral interferon-stimulated genes (ISGs). However, the induction of ISGs is largely independent of the classical JAK-STAT pathway. Combination of BQR with interferons (IFNs) exerts enhanced ISG induction and anti-PPRV activity. Taken together, this study reveals an unconventional novel mechanism of crosstalk between nucleotide biosynthesis pathways and cellular antiviral immunity in inhibiting PPRV replication. In conclusion, targeting pyrimidine biosynthesis represents a potential strategy for developing antiviral strategies against PPRV.
Collapse
Affiliation(s)
- Li Jin
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yicong Li
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Huihui Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Derong Zhang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jialin Bai
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Xia Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| |
Collapse
|
9
|
Zhou Y, Tao L, Zhou X, Zuo Z, Gong J, Liu X, Zhou Y, Liu C, Sang N, Liu H, Zou J, Gou K, Yang X, Zhao Y. DHODH and cancer: promising prospects to be explored. Cancer Metab 2021; 9:22. [PMID: 33971967 PMCID: PMC8107416 DOI: 10.1186/s40170-021-00250-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
Human dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme catalyzing the fourth step in the de novo pyrimidine synthesis pathway. It is originally a target for the treatment of the non-neoplastic diseases involving in rheumatoid arthritis and multiple sclerosis, and is re-emerging as a validated therapeutic target for cancer therapy. In this review, we mainly unravel the biological function of DHODH in tumor progression, including its crucial role in de novo pyrimidine synthesis and mitochondrial respiratory chain in cancer cells. Moreover, various DHODH inhibitors developing in the past decades are also been displayed, and the specific mechanism between DHODH and its additional effects are illustrated. Collectively, we detailly discuss the association between DHODH and tumors in recent years here, and believe it will provide significant evidences and potential strategies for utilizing DHODH as a potential target in preclinical and clinical cancer therapies.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zeping Zuo
- The Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Chunqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Huan Liu
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaowei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Zhong W, Zhang F, Huang C, Lin Y, Huang J. Classification of Clear Cell Renal Cell Carcinoma based on Tumor Suppressor Genomic Profiling. J Cancer 2021; 12:2359-2370. [PMID: 33758612 PMCID: PMC7974878 DOI: 10.7150/jca.50462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of malignancy in adults. However, the clinical significance of tumor suppressor genes (TSG) is largely elusive. Herein, the expression profile TSGs and its clinical response in ccRCC were investigated. A total of 603 ccRCC samples from two cohorts (TCGA and ICGC) were retrieved in this study. Three molecular subtypes (C1, C2, and C3) were identified based on the TSGs expression profile in the TCGA dataset. Through Weighted Gene Correlation Network Analysis (WGCNA), six modules associated with three subtypes were identified. Pathway enrichment for the modules revealed that crucial pathways including p53 signaling and immune-related pathways were significantly enriched. We further focused on the relationship between immune infiltration level and subtypes, and found that subtype C1 was associated with higher immune infiltration level, subtype C2 was corresponding with medium immune infiltration level, whereas subtype C3 was correlated with lower immune infiltration level. Interestingly, C2 have a better survival outcome, while C1 and C3 showed a poor prognosis. Considering their survival difference, we then performed a differentially expression analysis between C2 and C1&3, and a total of 99 differentially expressed tumor suppressor genes (DETSGs) were identified. According to these DETSGs, 59 potential compounds with 28 mechanisms of action (MOA) were predicted using the Connectivity Map (CMap) database. Among these compounds, leflunomide, naftopidil, and ribavirin were the most prospective compounds for the treatment of ccRCC. In addition, we found that subtype C2 is more sensitive to sorafenib and sunitinib drugs, and C2 have more likelihood to be responded to immunotherapy. In summary, the three subtypes hinged on the tumor suppressor gene expression for ccRCC might contribute to understanding the underlying molecular mechanisms of ccRCC. Also, its potential compounds might offer guidelines for developing a novel treatment strategy of ccRCC.
Collapse
Affiliation(s)
- Weimin Zhong
- The Fifth Hospital of Xiamen, Xiamen 361101, Fujian Province, China
| | - Fengling Zhang
- The Fifth Hospital of Xiamen, Xiamen 361101, Fujian Province, China
| | - Chaoqun Huang
- The Fifth Hospital of Xiamen, Xiamen 361101, Fujian Province, China
| | - Yao Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Jiyi Huang
- The Fifth Hospital of Xiamen, Xiamen 361101, Fujian Province, China
| |
Collapse
|
11
|
Alamri RD, Elmeligy MA, Albalawi GA, Alquayr SM, Alsubhi SS, El-Ghaiesh SH. Leflunomide an immunomodulator with antineoplastic and antiviral potentials but drug-induced liver injury: A comprehensive review. Int Immunopharmacol 2021; 93:107398. [PMID: 33571819 PMCID: PMC7869628 DOI: 10.1016/j.intimp.2021.107398] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leflunomide (LF) represents the prototype member of dihydroorotate dehydrogenase (DHODH) enzyme inhibitors. DHODH is a mitochondrial inner membrane enzyme responsible for catalytic conversion of dihydroorotate into orotate, a rate-limiting step in the de novo synthesis of the pyrimidine nucleotides. LF produces cellular depletion of pyrimidine nucleotides required for cell growth and proliferation. Based on the affected cells the outcome can be attainable as immunosuppression, antiproliferative, and/or the recently gained attention of the antiviral potentials of LF and its new congeners. Also, protein tyrosine kinase inhibition is an additional mechanistic benefit of LF, which inhibits immunological events such as cellular expansion and immunoglobulin production with an enhanced release of immunosuppressant cytokines. LF is approved for the treatment of autoimmune arthritis of rheumatoid and psoriatic pathogenesis. Also, LF has been used off-label for the treatment of relapsing-remitting multiple sclerosis. However, LF antiviral activity is repurposed and under investigation with related compounds under a phase-I trial as a SARS CoV-2 antiviral in cases with COVID-19. Despite success in improving patients' mobility and reducing joint destruction, reported events of LF-induced liver injury necessitated regulatory precautions. LF should not be used in patients with hepatic impairment or in combination with drugs elaborating a burden on the liver without regular monitoring of liver enzymes and serum bilirubin as safety biomarkers. This study aims to review the pharmacological and safety profile of LF with a focus on the LF-induced hepatic injury from the perspective of pathophysiology and possible protective agents.
Collapse
Affiliation(s)
- Raghad D Alamri
- Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | | | | | - Sarah M Alquayr
- Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | | | - Sabah H El-Ghaiesh
- Deaprtment of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia.
| |
Collapse
|
12
|
Phan T, Nguyen VH, Buettner R, Morales C, Yang L, Wong P, Tsai W, Salazar MD, Gil Z, Diamond DJ, Rabinowitz JD, Rosen S, Melstrom LG. Inhibition of de novo pyrimidine synthesis augments Gemcitabine induced growth inhibition in an immunocompetent model of pancreatic cancer. Int J Biol Sci 2021; 17:2240-2251. [PMID: 34239352 PMCID: PMC8241727 DOI: 10.7150/ijbs.60473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Leflunomide (Lef) is an agent used in autoimmune disorders that interferes with DNA synthesis. De Novo pyrimidine synthesis is a mechanism of Gemcitabine (Gem) resistance in pancreatic cancer. This study aims to assess the efficacy and changes in the tumor microenvironment of Lef monotherapy and in combination with Gem, in a syngeneic mouse model of pancreatic cancer. Methods: MTS proliferation assays were conducted to assess growth inhibition by Gem (0-20 nM), Lef (0-40 uM) and Gem+Lef in KPC (KrasLSL.G12D/+;p53R172H/+; PdxCretg/+) cells in vitro. An in vivo heterotopic KPC model was used and cohorts were treated with: PBS (control), Gem (75 mg/kg/q3d), Lef (40 mg/kg/d), or Gem+Lef. At d28 post-treatment, tumor burden, proliferation index (Ki67), and vascularity (CD31) were measured. Changes in the frequency of peripheral and intratumoral immune cell subsets were evaluated via FACS. Liquid chromatography-mass spectrometry was used for metabolomics profiling. Results: Lef inhibits KPC cell growth and synergizes with Gem in vitro (P<0.05; Combination Index 0.44 (<1 indicates synergy). In vivo, Lef alone and in combination with Gem delays KPC tumor progression (P<0.001). CTLA-4+T cells are also significantly decreased in tumors treated with Lef, Gem or in combination (Gem+Lef) compared to controls (P<0.05). Combination therapy also decreased the Ki67 and vascularity (P<0.01). Leflunomide inhibits de novo pyrimidine synthesis both in vitro (p<0.0001) and in vivo (p<0.05). Conclusions: In this study, we demonstrated that Gem+Lef inhibits pancreatic cancer growth, decrease T cell exhaustion, vascularity and as proof of principle inhibits de novo pyrimidine synthesis. Further characterization of changes in adaptive immunity are necessary to characterize the mechanism of tumor growth inhibition and facilitate translation to a clinical trial.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
| | - Vu H. Nguyen
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Ralf Buettner
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Corey Morales
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Lifeng Yang
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul Wong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
| | - Weiman Tsai
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | | | - Ziv Gil
- Rambam Medical Center, Israel
| | - Don J Diamond
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Steven Rosen
- Department of Hematology, City of Hope National Medical Center, Duarte, CA 91010
| | - Laleh G. Melstrom
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010
- ✉ Corresponding author: Laleh Melstrom MD, City of Hope National Medical Center, Department of Surgery and Immuno-oncology, 1500 E Duarte Road, Duarte, CA 91010. E-mail: ; Phone: 626 218 0282; Fax: 626 218 1113
| |
Collapse
|
13
|
Sun Y, Deng M, Ke X, Lei X, Ju H, Liu Z, Bai X. Epidermal Growth Factor Protects Against High Glucose-Induced Podocyte Injury Possibly via Modulation of Autophagy and PI3K/AKT/mTOR Signaling Pathway Through DNA Methylation. Diabetes Metab Syndr Obes 2021; 14:2255-2268. [PMID: 34045875 PMCID: PMC8149214 DOI: 10.2147/dmso.s299562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
AIM Diabetic nephropathy (DN) is a serious health problem worldwide. Epidermal growth factor (EGF) has suggested as a potential biomarker for the progression of chronic kidney disease. In this study, we examined the effects of EGF on the high glucose (HG)-induced podocyte injury and explored the underlying molecular mechanisms. METHODS The cell proliferation, toxicity, and cell apoptosis of podocytes were determined by CCK-8 assay, lactate dehydrogenase release assay, and flow cytometry, respectively, and protein levels in the podocytes were determined by Western blot assay. Mechanistically, DNA methylation analysis, bioinformatic analysis, methylation‑specific PCR and quantitative real-time PCR were used to analyze functional pathways in differentially methylated genes and the expression of the key methylated genes in the podocytes after different interventions. RESULTS EGF treatment significantly increased the protein expression level of LC3 and decreased the protein level of P62 in HG-stimulated podocytes, which was attenuated by autophagy inhibitor, 3-methyladenine. EGF increased the cell proliferation and the protein expression levels of nephrin and synaptopodin, but reduced cell toxicity and cell apoptosis and protein expression level of cleaved caspase-3, which was partially antagonized by 3-methyladenine. DNA methylation expression profiles revealed the differential hypermethylation sites and hypomethylation sites among podocytes treated with normal glucose, HG and HG+EGF. GO enrichment analysis showed that DNA methylation was significantly enriched in negative regulation of phosphorylation, cell-cell junction and GTPase binding. KEGG pathway analysis showed that these genes were mainly enriched in PI3K-Akt, Hippo and autophagy pathways. Further validation studies revealed that six hub genes (ITGB1, GRB2, FN1, ITGB3, FZD10 and FGFR1) may be associated with the protective effects of EGF on the HG-induced podocyte injury. CONCLUSION In summary, our results demonstrated that EGF exerted protective effects on HG-induced podocytes injury via enhancing cell proliferation and inhibiting cell apoptosis. Further mechanistic studies implied that EGF-mediated protective effects in HG-stimulated podocytes may be associated with modulation of autophagy and PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yan Sun
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, People’s Republic of China
| | - Ming Deng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, 518057, People’s Republic of China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, 518057, People’s Republic of China
| | - Xiangyang Lei
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Hao Ju
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Zhiming Liu
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Xiaosu Bai
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
- Department of General Practice; Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
- Correspondence: Xiaosu Bai Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, No. 2, Jianshe East Road, Bao’an District, Shenzhen, 518109, People’s Republic of ChinaTel +86-755-27741585 Email
| |
Collapse
|
14
|
Construction and Validation of Predictive Model to Identify Critical Genes Associated with Advanced Kidney Disease. Int J Genomics 2020; 2020:7524057. [PMID: 33274190 PMCID: PMC7676934 DOI: 10.1155/2020/7524057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background Chronic kidney disease (CKD) is characterized by progressive renal function loss, which may finally lead to end-stage renal disease (ESRD). The study is aimed at identifying crucial genes related to CKD progressive and constructing a disease prediction model to investigate risk factors. Methods GSE97709 and GSE37171 datasets were downloaded from the GEO database including peripheral blood samples from subjects with CKD, ESRD, and healthy controls. Differential expressed genes (DEGs) were identified and functional enrichment analysis. Machine learning algorithm-based prediction model was constructed to identify crucial functional feature genes related to ESRD. Results A total of 76 DEGs were screened from CDK vs. normal samples while 10,114 DEGs were identified from ESRD vs. CDK samples. For numerous genes related to ESRD, several GO biological terms and 141 signaling pathways were identified including markedly upregulated olfactory transduction and downregulated platelet activation pathway. The DEGs were clustering in three modules according to WGCNA access, namely, ME1, ME2, and ME3. By construction of the XGBoost model and dataset validation, we screened cohorts of genes associated with progressive CKD, such as FZD10, FOXD4, and FAM215A. FZD10 represented the highest score (F score = 21) in predictive model. Conclusion Our results demonstrated that FZD10, FOXD4, PPP3R1, and UCP2 might be critical genes in CKD progression.
Collapse
|
15
|
|
16
|
Mechanism of miRNA-based Aconitum leucostomum Worosch. Monomer inhibition of bone marrow-derived dendritic cell maturation. Int Immunopharmacol 2020; 88:106791. [PMID: 32871480 DOI: 10.1016/j.intimp.2020.106791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022]
Abstract
Delvestidine (DLTD) is a monomeric compound isolated from Aconitum leucostomum Worosch, a widely used medicine for local treatment of rheumatoid arthritis (RA). Studies have shown that Aconitum leucostomum Worosch. can inhibit maturation of bone marrow-derived dendritic cells (BMDCs). Further, microRNAs (miRNAs) have regulatory effects on DC maturity and function. However, the mechanism underlying DLTD effects on DC maturity and RA remains to be elucidated. This study investigated whether DLTD-mediated inhibition of DC maturation is regulated by miRNAs. LPS-induced mature BMDCs were treated with DLTD for 48 h. CD80 and CD86 expression on BMDCs was detected by flow cytometry, and levels of inflammatory factors IL-6, IL-23, IL-1β, and TNF-α were detected by ELISA and PCR. Further, gene expression and miRNA expression profiles were investigated by bioinformatics analysis and verified by PCR. DLTD was found to inhibit CD80 and CD86 expression on the surface of BMDCs and secretion of inflammatory factors IL-6, IL-23, IL-1β, and TNF-α. In total, 54 differentially expressed miRNAs were detected, including 29 up-regulated and 25 down-regulated miRNAs after DLTD treatment. Analysis of biological information revealed that the differentially expressed target genes mainly regulated biological processes, including cell differentiation, cell cycle, and protein kinase complexes. Additionally, miR-511-3p downstream targets Calcr, Fzd10, and Eps8, were closely related to BMDCs maturation. DLTD may induce BMDCs maturity through regulation of miRNAs that affect Calcr, Fzd10, and Eps8 gene signals.
Collapse
|
17
|
Cheng L, Wang H, Wang Z, Huang H, Zhuo D, Lin J. Leflunomide Inhibits Proliferation and Induces Apoptosis via Suppressing Autophagy and PI3K/Akt Signaling Pathway in Human Bladder Cancer Cells. Drug Des Devel Ther 2020; 14:1897-1908. [PMID: 32546957 PMCID: PMC7244359 DOI: 10.2147/dddt.s252626] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Bladder cancer is a lethal human malignancy. Currently, treatment for bladder cancer is limited. The anti-tumor effects of leflunomide have attracted much more concern in multiple human cancers. MATERIALS AND METHODS This study evaluated the anti-tumor effects of leflunomide on cell viability, colony formation, apoptosis, and cell cycle in two human bladder carcinoma cell lines, 5637 and T24. Meanwhile, the underlying mechanism including PI3K/Akt signaling pathway and autophagy modulation was also identified. RESULTS Leflunomide markedly inhibited the growth of both bladder cancer cell lines and induced apoptosis and cell cycle arrest in S phase. The phosphorylation levels of Akt and P70S6K in both cell lines were significantly down-regulated with leflunomide treatment. Furthermore, the deceased formation of autophagosomes and the accumulation of LC3II and P62 suggested the blockade of autophagy by leflunomide. Modulation of autophagy with rapamycin and chloroquine markedly attenuated and enhanced the cytostatic effects of leflunomide, respectively. CONCLUSION Leflunomide significantly reduced the cell viability of bladder cancer cells via inducing apoptosis and cell cycle arrest and suppressing the PI3K/Akt signaling pathway. In addition, the blockade of autophagy was observed, and autophagy inhibition enhanced leflunomide-mediating anti-tumor effects. Our data presented here offer novel ideas for comprehensive therapeutic regimes on bladder cancer.
Collapse
Affiliation(s)
- Li Cheng
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Hao Wang
- Department of Geriatrics, Peking University First Hospital, Beijing, People’s Republic of China
| | - Zicheng Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Dong Zhuo
- Department of Urology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Deng H, Zheng M, Hu Z, Zeng X, Kuang N, Fu Y. Effects of daphnetin on the autophagy signaling pathway of fibroblast-like synoviocytes in rats with collagen-induced arthritis (CIA) induced by TNF-α. Cytokine 2020; 127:154952. [DOI: 10.1016/j.cyto.2019.154952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
WITHDRAWN: Effects of daphnetin on the autophagy signaling pathway of fibroblast-like synoviocytes in rats with collagen-induced arthritis (CIA) induced by TNF-α. Cytokine X 2019; 1:100015. [DOI: 10.1016/j.cytox.2019.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Yu M, Nguyen ND, Huang Y, Lin D, Fujimoto TN, Molkentine JM, Deorukhkar A, Kang Y, San Lucas FA, Fernandes CJ, Koay EJ, Gupta S, Ying H, Koong AC, Herman JM, Fleming JB, Maitra A, Taniguchi CM. Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer. JCI Insight 2019; 5:126915. [PMID: 31335325 DOI: 10.1172/jci.insight.126915] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) requires mitochondrial oxidative phosphorylation (OXPHOS) to fuel its growth, however, broadly inhibiting this pathway might also disrupt essential mitochondrial functions in normal tissues. PDAC cells exhibit abnormally fragmented mitochondria that are essential to its oncogenicity, but it was unclear if this mitochondrial feature was a valid therapeutic target. Here, we present evidence that normalizing the fragmented mitochondria of pancreatic cancer via the process of mitochondrial fusion reduces OXPHOS, which correlates with suppressed tumor growth and improved survival in preclinical models. Mitochondrial fusion was achieved by genetic or pharmacologic inhibition of dynamin related protein-1 (Drp1) or through overexpression of mitofusin-2 (Mfn2). Notably, we found that oral leflunomide, an FDA-approved arthritis drug, promoted a two-fold increase in Mfn2 expression in tumors and was repurposed as a chemotherapeutic agent, improving the median survival of mice with spontaneous tumors by 50% compared to vehicle. We found that the chief tumor suppressive mechanism of mitochondrial fusion was enhanced mitophagy, which proportionally reduced mitochondrial mass and ATP production. These data suggest that mitochondrial fusion is a specific and druggable regulator of pancreatic cancer growth that could be rapidly translated to the clinic.
Collapse
Affiliation(s)
- Meifang Yu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas D Nguyen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanqing Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tara N Fujimoto
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jessica M Molkentine
- Department of Radiation Oncology, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Conrad J Fernandes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Sonal Gupta
- Department of Pathology.,Department of Translational Molecular Pathology, and
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Anirban Maitra
- Department of Pathology.,Department of Translational Molecular Pathology, and
| | - Cullen M Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Radiation Oncology
| |
Collapse
|
21
|
Buettner R, Morales C, Wu X, Sanchez JF, Li H, Melstrom LG, Rosen ST. Leflunomide Synergizes with Gemcitabine in Growth Inhibition of PC Cells and Impairs c-Myc Signaling through PIM Kinase Targeting. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:149-158. [PMID: 31211245 PMCID: PMC6562366 DOI: 10.1016/j.omto.2019.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
The immunosuppressive agent leflunomide has been used in the treatment of over 300,000 patients with rheumatoid arthritis. Its active metabolite, teriflunomide (Ter), directly inhibits dihydroorotate dehydrogenase (DHODH), an enzyme involved in nucleoside synthesis. We report that Ter not only shows in vitro anti-proliferative activity in pancreatic cancer (PC) cells as a single agent but also synergizes with the chemotherapeutic gemcitabine (Gem) in growth inhibition of PC cells. The growth-inhibitory effects of Ter are not solely caused by inhibition of DHODH. Through a kinase screening approach, we identified the PIM-3 serine-threonine kinase as a novel direct target. Subsequent dose-response kinase assays showed that Ter directly inhibited all three PIM family members, with the highest activities against PIM-3 and -1. The PIM-3 kinase was the PIM family member most often associated with PC oncogenesis and was also the kinase inhibited the most by Ter among more than 600 kinases investigated. Ter in PC cells induced changes in phosphorylation and expression of PIM downstream targets, consistent with the effects achieved by overexpression or downregulation of PIM-3. Finally, pharmacological inhibition of PIM proteins not only diminished PC cell proliferation, but also small-molecule pan-PIM and PIM-3 inhibitors synergized with Gem in growth inhibition of PC cells.
Collapse
Affiliation(s)
- Ralf Buettner
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Corey Morales
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - James F Sanchez
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hongzhi Li
- Department of Computational Therapeutics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Laleh G Melstrom
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
22
|
Yang W, Han J, Ma J, Feng Y, Hou Q, Wang Z, Yu T. Prediction of key gene function in spinal muscular atrophy using guilt by association method based on network and gene ontology. Exp Ther Med 2019; 17:2561-2566. [PMID: 30906446 PMCID: PMC6425128 DOI: 10.3892/etm.2019.7216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Guilt by association (GBA) algorithm has been widely used to predict gene functions statistically, and a network-based approach may increase the confidence and veracity of identifying molecular signatures for diseases. The aim of the present study was to suggest a gene ontology (GO)-based method by integrating the GBA algorithm and network, to identify key gene functions for spinal muscular atrophy (SMA). The inference of predicting key gene functions was comprised of four steps, preparing gene lists and sets; extracting differentially expressed genes (DEGs) using microarray data [linear models for microarray data (limma)] package; constructing a co-expression matrix on gene lists using the Spearman correlation coefficient method; and predicting gene functions by GBA algorithm. Ultimately, key gene functions were predicted according to the area under the curve (AUC) index for GO terms and the GO terms with AUC >0.7 were determined as the optimal gene functions for SMA. A total of 484 DEGs and 466 background GO terms were regarded as gene lists and sets for the subsequent analyses, respectively. The predicted results obtained from the network-based GBA approach showed 141 gene sets had a good classified performance with AUC >0.5. Most significantly, 3 gene sets with AUC >0.7 were denoted as seed gene functions for SMA, including cell morphogenesis, which is involved in differentiation and ossification. In conclusion, we have predicted 3 key gene functions for SMA compared with control utilizing network-based GBA algorithm. The findings may provide great insights to reveal pathological and molecular mechanism underlying SMA.
Collapse
Affiliation(s)
- Wenjiu Yang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jing Han
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinfeng Ma
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yujie Feng
- Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Qingxian Hou
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhijie Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tengbo Yu
- Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
23
|
Novel AR-12 derivatives, P12-23 and P12-34, inhibit flavivirus replication by blocking host de novo pyrimidine biosynthesis. Emerg Microbes Infect 2018; 7:187. [PMID: 30459406 PMCID: PMC6246607 DOI: 10.1038/s41426-018-0191-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022]
Abstract
The genus Flavivirus contains many important pathogens, including dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV). AR-12 is a celecoxib-derived anticancer agent that possesses antiviral activity against a broad range of viruses. We pharmacologically exploited this unique activity to develop additional antiviral agents, resulting in the production of the AR-12 derivatives P12-23 and P12-34. At nanomolar concentrations, these compounds were effective in suppressing DENV, ZIKV and JEV replication, exhibiting 10-fold improvements in the efficacy and selectivity indices as compared to AR-12. Regarding the mode of antiviral action, P12-23 and P12-34 inhibited viral RNA replication but had no effect on viral binding, entry or translation. Moreover, these AR-12 derivatives co-localized with mitochondrial markers, and their antiviral activity was lost in mitochondria-depleted cells. Interestingly, exogenous uridine or orotate, the latter being a metabolite of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH), abolished the antiviral activity of AR-12 and its derivatives. As DHODH is a key enzyme in the de novo pyrimidine biosynthesis pathway, these AR-12 derivatives may act by targeting pyrimidine biosynthesis in host cells to inhibit viral replication. Importantly, treatment with P12-34 significantly improved the survival of mice that were subcutaneously challenged with DENV. Thus, P12-34 may warrant further evaluation as a therapeutic to control flaviviral outbreaks.
Collapse
|
24
|
Madak JT, Bankhead A, Cuthbertson CR, Showalter HD, Neamati N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol Ther 2018; 195:111-131. [PMID: 30347213 DOI: 10.1016/j.pharmthera.2018.10.012] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Identified as a hallmark of cancer, metabolic reprogramming allows cancer cells to rapidly proliferate, resist chemotherapies, invade, metastasize, and survive a nutrient-deprived microenvironment. Rapidly growing cells depend on sufficient concentrations of nucleotides to sustain proliferation. One enzyme essential for the de novo biosynthesis of pyrimidine-based nucleotides is dihydroorotate dehydrogenase (DHODH), a known therapeutic target for multiple diseases. Brequinar, leflunomide, and teriflunomide, all of which are potent DHODH inhibitors, have been clinically evaluated but failed to receive FDA approval for the treatment of cancer. Inhibition of DHODH depletes intracellular pyrimidine nucleotide pools and results in cell cycle arrest in S-phase, sensitization to current chemotherapies, and differentiation in neural crest cells and acute myeloid leukemia (AML). Furthermore, DHODH is a synthetic lethal susceptibility in several oncogenic backgrounds. Therefore, DHODH-targeted therapy has potential value as part of a combination therapy for the treatment of cancer. In this review, we focus on the de novo pyrimidine biosynthesis pathway as a target for cancer therapy, and in particular, DHODH. In the first part, we provide a comprehensive overview of this pathway and its regulation in cancer. We further describe the relevance of DHODH as a target for cancer therapy using bioinformatic analyses. We then explore the preclinical and clinical results of pharmacological strategies to target the de novo pyrimidine biosynthesis pathway, with an emphasis on DHODH. Finally, we discuss potential strategies to harness DHODH as a target for the treatment of cancer.
Collapse
Affiliation(s)
- Joseph T Madak
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christine R Cuthbertson
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| | - Nouri Neamati
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Leflunomide attenuates oxidative stress in fetal human lung endothelial cells via superoxide dismutase 2 and catalase. Biochem Biophys Res Commun 2018; 503:2009-2014. [PMID: 30077371 DOI: 10.1016/j.bbrc.2018.07.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022]
Abstract
Hyperoxia-induced oxidative stress contributes to the pathogenesis of bronchopulmonary dysplasia (BPD), the most common respiratory morbidity of preterm infants. Importantly, the disease lack specific therapies and is associated with long-term cardio-pulmonary and neurodevelopmental morbidities, signifying the need to discover novel therapies and decrease the disease burden. We and others have demonstrated that leflunomide, a food and drug administration approved drug to treat humans with rheumatoid arthritis, increases the expression of the anti-oxidant enzymes, NAD(P)H quinone dehydrogenase 1 (NQO1), catalase, and superoxide dismutase (SOD). However, whether this drug can decrease oxidative stress in fetal human pulmonary arterial endothelial cells (HPAECs) is unknown. Therefore, we tested the hypothesis that leflunomide will decrease hyperoxia-induced oxidative stress by upregulating these anti-oxidant enzymes in HPAECs. Leflunomide decreased hydrogen peroxide (H2O2) levels and increased the mRNA and protein levels of catalase, NQO1, and SOD2 in HPAECs at basal conditions. Further, leflunomide-treated cells continued to have decreased H2O2 and increased SOD2 levels upon hyperoxia exposure. Leflunomide did not affect the expression of other anti-oxidant enzymes, including hemoxygenase-1 and SOD1. AhR-knockdown experiments suggested that leflunomide regulated NQO1 levels via AhR-dependent mechanisms and H2O2, catalase, and SOD2 levels via AhR-independent mechanisms. Collectively, the results support the hypothesis that leflunomide decreases oxidative stress in HPAECs via SOD2-and catalase-dependent, but AhR- and NQO1-independent mechanisms. Our findings indicate that leflunomide is a potential drug for the management of BPD in preterm infants.
Collapse
|
26
|
Leflunomide counter akt s cardiac hypertrophy. Clin Sci (Lond) 2018; 132:1069-1073. [PMID: 29802211 DOI: 10.1042/cs20180228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy (CH) is a major independent risk factor for heart failure and mortality. However, therapeutic interventions that target hypertrophy signaling in a load-independent way are unavailable. In a recent issue of Clinical Science (vol. 132, issue 6, 685-699), Ma et al. describe that the anti-inflammatory drug leflunomide markedly antagonized CH, dysfunction, and fibrosis induced by aortic banding or angiotensin-II in mice or by agonists in cultured cells. Unexpectedly, this occurred not via anti-inflammatory mechanisms but rather via inhibtion of Akt (protein kinase B, PKB) signaling. We further discuss the mechanisms underlying Akt activation and its effects on CH and review possible mechanisms of leflunomide effects. Despite some caveats, the availability of such a newly repurposed compound to treat CH can be a relevant advance.
Collapse
|
27
|
Sun J, Mu Y, Jiang Y, Song R, Yi J, Zhou J, Sun J, Jiao X, Prinz RA, Li Y, Xu X. Inhibition of p70 S6 kinase activity by A77 1726 induces autophagy and enhances the degradation of superoxide dismutase 1 (SOD1) protein aggregates. Cell Death Dis 2018; 9:407. [PMID: 29540819 PMCID: PMC5851998 DOI: 10.1038/s41419-018-0441-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
Autophagy plays a central role in degrading misfolded proteins such as mutated superoxide dismutase 1 (SOD1), which forms aggregates in motor neurons and is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). Autophagy is activated when UNC-51-like kinase 1 (ULK1) is phosphorylated at S555 and activated by AMP-activated protein kinase (AMPK). Autophagy is suppressed when ULK1 is phosphorylated at S757 by the mechanistic target of rapamycin (mTOR). Whether p70 S6 kinase 1 (S6K1), a serine/threonine kinase downstream of mTOR, can also regulate autophagy remains uncertain. Here we report that inhibition of S6K1 by A77 1726, the active metabolite of an anti-inflammatory drug leflunomide, induced mTOR feedback activation and ULK1S757 phosphorylation in NSC34 cells, a hybrid mouse motoneuron cell line. Unexpectedly, A77 1726 did not suppress but rather induced autophagy by increasing AMPKT172 and ULK1S555 phosphorylation. Similar observations were made with PF-4708671, a specific S6K1 inhibitor, or with S6K1 siRNA. Further studies showed that A77 1726 induced AMPK phosphorylation by activating the TGF-β-activated kinase 1 (TAK1). Functional studies revealed that A77 1726 induced co-localization of mutant SOD1G93A protein aggregates with autophagosomes and accelerated SOD1G93A protein degradation, which was blocked by inhibition of autophagy through autophagy-related protein 7 (ATG7) siRNA. Our study suggests that S6K1 inhibition induces autophagy through TAK1-mediated AMPK activation in NSC34 cells, and that blocking S6K1 activity by a small molecule inhibitor such as leflunomide may offer a new strategy for ALS treatment.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Yarong Mu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Yuanyuan Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Jianxin Yi
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Jingsong Zhou
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, 60201, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiulong Xu
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
- Department of Cell and Molecular Medicine Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
28
|
Xu X, Sun J, Song R, Doscas ME, Williamson AJ, Zhou J, Sun J, Jiao X, Liu X, Li Y. Inhibition of p70 S6 kinase (S6K1) activity by A77 1726, the active metabolite of leflunomide, induces autophagy through TAK1-mediated AMPK and JNK activation. Oncotarget 2018; 8:30438-30454. [PMID: 28389629 PMCID: PMC5444754 DOI: 10.18632/oncotarget.16737] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
mTOR activation suppresses autophagy by phosphorylating ULK1 at S757 and suppressing its enzymatic activity. Here we report that feedback activation of mTOR in the PI-3 kinase pathway by two p70 S6 kinase (S6K1) inhibitors (PF-4708671 and A77 1726, the active metabolite of an immunosuppressive drug leflunomide) or by S6K1 knockdown did not suppress but rather induced autophagy. Suppression of S6K1 activity led to the phosphorylation and activation of AMPK, which then phosphorylated ULK1 at S555. While mTOR feedback activation led to increased phosphorylation of ULK1 at S757, this modification did not the disrupt ULK1-AMPK interaction nor dampen ULK1 S555 phosphorylation and the induction of autophagy. In addition, inhibition of S6K1 activity led to JNK activation, which also contributed to autophagy. 5Z-7-oxozeaenol, a specific inhibitor of TAK1, or TAK1 siRNA blocked A77 1726-induced activation of AMPK and JNK, and LC3 lipidation. Taken together, our study establishes S6K1 as a key player in the PI-3 kinase pathway to suppress autophagy through inhibiting AMPK and JNK in a TAK1-dependent manner.
Collapse
Affiliation(s)
- Xiulong Xu
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P. R. China.,College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P. R. China.,Department of Anatomy and Cell Biology Rush University Medical Center, Chicago, IL 60612, USA.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University Yangzhou 225009, Jiangsu Province, China
| | - Jing Sun
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P. R. China.,College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P. R. China
| | - Ruilong Song
- Core Facility, Yangzhou University, Yangzhou 225009, Jiangsu Province, P. R. China
| | - Michelle E Doscas
- Department of Anatomy and Cell Biology Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Jingsong Zhou
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University Yangzhou 225009, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Xiufan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, China.,Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
29
|
Sinnberg T, Levesque MP, Krochmann J, Cheng PF, Ikenberg K, Meraz-Torres F, Niessner H, Garbe C, Busch C. Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype. Mol Cancer 2018; 17:59. [PMID: 29454361 PMCID: PMC5816360 DOI: 10.1186/s12943-018-0773-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 01/04/2023] Open
Abstract
Background During embryonic development Wnt family members and bone morphogenetic proteins (BMPs) cooperatively induce epithelial-mesenchymal transition (EMT) in the neural crest. Wnt and BMPs are reactivated during malignant transformation in melanoma. We previously demonstrated that the BMP-antagonist noggin blocked the EMT phenotype of melanoma cells in the neural crest and malignant invasion of melanoma cells in the chick embryo; vice-versa, malignant invasion was induced in human melanocytes in vivo by pre-treatment with BMP-2. Results Although there are conflicting results in the literature about the role of β-catenin for invasion of melanoma cells, we found Wnt/β-catenin signaling to be analogously important for the EMT-like phenotype of human metastatic melanoma cells in the neural crest and during invasion: β-catenin was frequently expressed at the invasive front of human primary melanomas and Wnt3a expression was inversely correlated with survival of melanoma patients. Accordingly, cytoplasmic β-catenin levels were increased during invasion of melanoma cells in the rhombencephalon of the chick embryo. Fibroblast derived Wnt3a reduced melanoma cell adhesion and enhanced migration, while the β-catenin inhibitor PKF115–584 increased adhesion and reduced migration in vitro and in the chick embryonic neural crest environment in vivo. Similarly, knockdown of β-catenin impaired intradermal melanoma cell invasion and PKF115–584 efficiently reduced liver metastasis in a chick chorioallantoic membrane model. Our observations were accompanied by specific alterations in gene expression which are linked to overall survival of melanoma patients. Conclusion We present a novel role for Wnt-signaling in neural crest like melanoma cell invasion and metastasis, stressing the crucial role of embryonic EMT-inducing neural crest signaling for the spreading of malignant melanoma. Electronic supplementary material The online version of this article (10.1186/s12943-018-0773-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Sinnberg
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany.
| | - Mitchell P Levesque
- Department of Dermatology, Universitaets Spital Zürich, Gloriastrasse 31, 8091, Zürich, Switzerland
| | - Jelena Krochmann
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Phil F Cheng
- Department of Dermatology, Universitaets Spital Zürich, Gloriastrasse 31, 8091, Zürich, Switzerland
| | - Kristian Ikenberg
- Institute of Clinical Pathology, University Hospital Zürich, Schmelzbergstrasse 12, 8091, Zürich, Switzerland
| | - Francisco Meraz-Torres
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Heike Niessner
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Claus Garbe
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany
| | - Christian Busch
- Center for Dermatooncology, Department of Dermatology, University Hospital Tübingen, University of Tübingen, Liebermeisterstr.25, 72076, Tübingen, Germany. .,Dermateam, Bankstrasse 4, 8400, Winterthur, Switzerland.
| |
Collapse
|
30
|
Zhang C, Chu M. Leflunomide: A promising drug with good antitumor potential. Biochem Biophys Res Commun 2018; 496:726-730. [PMID: 29357281 DOI: 10.1016/j.bbrc.2018.01.107] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023]
Abstract
Leflunomide, an inhibitor of dihydroorotase dehydrogenase and thereby pyrimidine synthesis, was approved for treatment of rheumatoid arthritis in 1998. During the following years, leflunomide was used in various preclinical studies as a potential cancer treatment; at the same time, more mechanisms underlying the anticancer effect of leflunomide were identified. Thus, leflunomide has been identified as a potent anticancer drug. This article summarizes the mechanisms as well as results of leflunomide in the evolving field of cancer therapy.
Collapse
Affiliation(s)
- Chunying Zhang
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu St., Nan Gang District, Harbin, China
| | - Maolin Chu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu St., Nan Gang District, Harbin, China.
| |
Collapse
|
31
|
Zhang X, Yang M, Shi H, Hu J, Wang Y, Sun Z, Xu S. Reduced E-cadherin facilitates renal cell carcinoma progression by WNT/β-catenin signaling activation. Oncotarget 2017; 8:19566-19576. [PMID: 28223537 PMCID: PMC5386706 DOI: 10.18632/oncotarget.15361] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/16/2017] [Indexed: 01/02/2023] Open
Abstract
Reduced expression of E-cadherin was observed in renal cell carcinoma (RCC). However, its potential clinical value and correlation with WNT/β-catenin signaling in RCC progression was still unclear. Immunohistochemical staining was performed in RCC tissue microarray to examine the expression status and prognosis value of E-cadherin and β-catenin. The potential role of E-cadherin in β-catenin translocation was analyzed with immunobloting assays. A significant negative correlation was observed between E-cadherin and β-catenin expression in RCC tissues. E-cadherin inhibits β-catenin translocation from membrane to cytoplasm in RCC tissues, which was an important step for WNT/β-catenin signaling. Reduced E-cadherin expression was associated with poor prognosis. More importantly, E-cadherin-/β-catenin+ was an independent detrimental factor for survival estimation of RCC patients. Reduced E-cadherin expression in RCC promoted cancer progression via WNT/β-catenin signaling pathway activation. E-cadherin/β-catenin provides a valuable prognosis marker for RCC, which may be an effective target for RCC therapy.
Collapse
Affiliation(s)
- Xinqi Zhang
- Emergency Department, General Hospital of Jinan Military Area, Jinan, Shandong, 250031, China
| | - Mingxi Yang
- Department of Urology, Guizhou Provincial People's Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, 550002, China
| | - Hua Shi
- Department of Urology, Guizhou Provincial People's Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, 550002, China
| | - Jianxin Hu
- Department of Urology, Guizhou Provincial People's Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, 550002, China
| | - Yuanlin Wang
- Department of Urology, Guizhou Provincial People's Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, 550002, China
| | - Zhaolin Sun
- Department of Urology, Guizhou Provincial People's Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, 550002, China
| | - Shuxiong Xu
- Department of Urology, Guizhou Provincial People's Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, 550002, China
| |
Collapse
|