1
|
Jain SM, Nagainallur Ravichandran S, Murali Kumar M, Banerjee A, Sun-Zhang A, Zhang H, Pathak R, Sun XF, Pathak S. Understanding the molecular mechanism responsible for developing therapeutic radiation-induced radioresistance of rectal cancer and improving the clinical outcomes of radiotherapy - A review. Cancer Biol Ther 2024; 25:2317999. [PMID: 38445632 PMCID: PMC10936619 DOI: 10.1080/15384047.2024.2317999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Rectal cancer accounts for the second highest cancer-related mortality, which is predominant in Western civilizations. The treatment for rectal cancers includes surgery, radiotherapy, chemotherapy, and immunotherapy. Radiotherapy, specifically external beam radiation therapy, is the most common way to treat rectal cancer because radiation not only limits cancer progression but also significantly reduces the risk of local recurrence. However, therapeutic radiation-induced radioresistance to rectal cancer cells and toxicity to normal tissues are major drawbacks. Therefore, understanding the mechanistic basis of developing radioresistance during and after radiation therapy would provide crucial insight to improve clinical outcomes of radiation therapy for rectal cancer patients. Studies by various groups have shown that radiotherapy-mediated changes in the tumor microenvironment play a crucial role in developing radioresistance. Therapeutic radiation-induced hypoxia and functional alterations in the stromal cells, specifically tumor-associated macrophage (TAM) and cancer-associated fibroblasts (CAF), play a crucial role in developing radioresistance. In addition, signaling pathways, such as - the PI3K/AKT pathway, Wnt/β-catenin signaling, and the hippo pathway, modulate the radiation responsiveness of cancer cells. Different radiosensitizers, such as small molecules, microRNA, nanomaterials, and natural and chemical sensitizers, are being used to increase the effectiveness of radiotherapy. This review highlights the mechanism responsible for developing radioresistance of rectal cancer following radiotherapy and potential strategies to enhance the effectiveness of radiotherapy for better management of rectal cancer.
Collapse
Affiliation(s)
- Samatha M Jain
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Shruthi Nagainallur Ravichandran
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Makalakshmi Murali Kumar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Alexander Sun-Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Orebro University, Örebro, Sweden
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| |
Collapse
|
2
|
Hlavac K, Pavelkova P, Ondrisova L, Mraz M. FoxO1 signaling in B cell malignancies and its therapeutic targeting. FEBS Lett 2024. [PMID: 39533662 DOI: 10.1002/1873-3468.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
FoxO transcription factors (FoxO1, FoxO3a, FoxO4, FoxO6) are a highly evolutionary conserved subfamily of the 'forkhead' box proteins. They have traditionally been considered tumor suppressors, but FoxO1 also exhibits oncogenic properties. The complex nature of FoxO1 is illustrated by its various roles in B cell development and differentiation, immunoglobulin gene rearrangement and cell-surface B cell receptor (BCR) structure, DNA damage control, cell cycle regulation, and germinal center reaction. FoxO1 is tightly regulated at a transcriptional (STAT3, HEB, EBF, FoxOs) and post-transcriptional level (Akt, AMPK, CDK2, GSK3, IKKs, JNK, MAPK/Erk, SGK1, miRNA). In B cell malignancies, recurrent FoxO1 activating mutations (S22/T24) and aberrant nuclear export and activity have been described, underscoring the potential of its therapeutic inhibition. Here, we review FoxO1's roles across B cell and myeloid malignancies, namely acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and multiple myeloma (MM). We also discuss preclinical evidence for FoxO1 targeting by currently available inhibitors (AS1708727, AS1842856, cpd10).
Collapse
Affiliation(s)
- Krystof Hlavac
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Petra Pavelkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Laura Ondrisova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Brno, Czech Republic
| |
Collapse
|
3
|
Huang C, Zhang X, Wang S, Shen A, Xu T, Hou Y, Gao S, Xie Y, Zeng Y, Chen J, Lin R, Zhang Y, Wan C, Cai Y. PARP-2 mediates cardiomyocyte aging and damage induced by doxorubicin through SIRT1 Inhibition. Apoptosis 2024; 29:816-834. [PMID: 38281279 DOI: 10.1007/s10495-023-01929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/30/2024]
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic used as an antitumor treatment. However, its clinical application is limited due to severe side effects such as cardiotoxicity. In recent years, numerous studies have demonstrated that cellular aging has become a therapeutic target for DOX-induced cardiomyopathy. However, the underlying mechanism and specific molecular targets of DOX-induced cardiomyocyte aging remain unclear. Poly (ADP-ribose) polymerase (PARP) is a family of protein post-translational modification enzymes in eukaryotic cells, including 18 members. PARP-1, the most well-studied member of this family, has become a potential molecular target for the prevention and treatment of various cardiovascular diseases, such as DOX cardiomyopathy and heart failure. PARP-1 and PARP-2 share 69% homology in the catalytic regions. However, they do not entirely overlap in function. The role of PARP-2 in cardiovascular diseases, especially in DOX-induced cardiomyocyte aging, is less studied. In this study, we found for the first time that down-regulation of PARP-2 can inhibit DOX-induced cellular aging in cardiomyocytes. On the contrary, overexpression of PARP-2 can aggravate DOX-induced cardiomyocyte aging and injury. Further research showed that PARP-2 inhibited the expression and activity of SIRT1, which in turn was involved in the development of DOX-induced cardiomyocyte aging and injury. Our findings provide a preliminary experimental basis for establishing PARP-2 as a new target for preventing and treating DOX cardiomyopathy and related drug development.
Collapse
Affiliation(s)
- Chaoming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shulin Wang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511500, Qingyuan, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Tianfen Xu
- Department of Medical Genetics and Cell Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yanhong Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongwan Xie
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiayu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Runxiang Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Zhang W, Zhou R, Liu X, You L, Chen C, Ye X, Liu J, Liang Y. Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review). Int J Oncol 2023; 63:126. [PMID: 37711063 PMCID: PMC10609468 DOI: 10.3892/ijo.2023.5574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Cancer stem cells (CSCs) constitute a specific subset of cells found within tumors that are responsible for initiating, advancing and resisting traditional cancer treatments. M2 macrophages, also known as alternatively activated macrophages, contribute to the development and progression of cancer through their involvement in promoting angiogenesis, suppressing the immune system, supporting tumor growth and facilitating metastasis. Exosomes, tiny vesicles released by cells, play a crucial role in intercellular communications and have been shown to be associated with cancer development and progression by influencing the immune response; thus, they may serve as markers for diagnosis and prognosis. Currently, investigating the impact of exosomes derived from M2 macrophages on the maintenance of CSCs is a crucial area of research with the aim of developing novel therapeutic strategies to target this process and improve outcomes for individuals with cancer. Understanding the biological functions of exosomes derived from M2 macrophages and their involvement in cancer may lead to the formulation of novel diagnostic tools and treatments for this disease. By targeting M2 macrophages and the exosomes they secrete, promising prospects emerge for cancer treatment, given their substantial contribution to cancer development and progression. Further research is required to fully grasp the intricate interactions between CSCs, M2 macrophages and exosomes in cancer, and to identify fresh targets for cancer therapy. The present review explores the pivotal roles played by exosomes derived from M2 cells in maintaining the stem‑like properties of cancer cells.
Collapse
Affiliation(s)
- Weiqiong Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Ruiping Zhou
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Xin Liu
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Lin You
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Chang Chen
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Xiaoling Ye
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Jie Liu
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Youde Liang
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
- Department of Stomatology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518081, P.R. China
| |
Collapse
|
5
|
Pintor S, Lopez A, Flores D, Lozoya B, Soti B, Pokhrel R, Negrete J, Persans MW, Gilkerson R, Gunn B, Keniry M. FOXO1 promotes the expression of canonical WNT target genes in examined basal-like breast and glioblastoma multiforme cancer cells. FEBS Open Bio 2023; 13:2108-2123. [PMID: 37584250 PMCID: PMC10626282 DOI: 10.1002/2211-5463.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023] Open
Abstract
Basal-like breast cancer (BBC) and glioblastoma multiforme (GBM) are aggressive cancers associated with poor prognosis. BBC and GBM have stem cell-like gene expression signatures, which are in part driven by forkhead box O (FOXO) transcription factors. To gain further insight into the impact of FOXO1 in BBC, we treated BT549 cells with AS1842856 and performed RNA sequencing. AS1842856 binds to unphosphorylated FOXO1 and inhibits its ability to directly bind to DNA. Gene Set Enrichment Analysis indicated that a set of WNT pathway target genes, including lymphoid enhancer-binding factor 1 (LEF1) and transcription factor 7 (TCF7), were robustly induced after AS1842856 treatment. These same genes were also induced in GBM cell lines U87MG, LN18, LN229, A172, and DBTRG upon AS1842856 treatment. By contrast, follow-up RNA interference (RNAi) targeting of FOXO1 led to reduced LEF1 and TCF7 gene expression in BT549 and U87MG cells. In agreement with RNAi experiments, CRISPR Cas9-mediated FOXO1 disruption reduced the expression of canonical WNT genes LEF1 and TCF7 in U87MG cells. The loss of TCF7 gene expression in FOXO1 disruption mutants was restored by exogenous expression of the DNA-binding-deficient FOXO1-H215R. Therefore, FOXO1 induces TCF7 in a DNA-binding-independent manner, similar to other published FOXO1-activated genes such as TCF4 and hes family bHLH transcription factor 1. Our work demonstrates that FOXO1 promotes canonical WNT gene expression in examined BBC and GBM cells, similar to results found in Drosophila melanogaster, T-cell development, and murine acute myeloid leukemia models.
Collapse
Affiliation(s)
- Shania Pintor
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Alma Lopez
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - David Flores
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Brianda Lozoya
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Bipul Soti
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Rishi Pokhrel
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Joaquin Negrete
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Michael W. Persans
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Robert Gilkerson
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
- Medical Laboratory SciencesThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Bonnie Gunn
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| | - Megan Keniry
- Department of BiologyThe University of Texas Rio Grande ValleyEdinburgTXUSA
| |
Collapse
|
6
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Mota M, Sweha S, Pun M, Natarajan S, Ding Y, Chung C, Hawes D, Yang F, Judkins A, Samajdar S, Cao X, Xiao L, Parolia A, Chinnaiyan A, Venneti S. Targeting SWI/SNF ATPases in H3.3K27M diffuse intrinsic pontine gliomas. Proc Natl Acad Sci U S A 2023; 120:e2221175120. [PMID: 37094128 PMCID: PMC10161095 DOI: 10.1073/pnas.2221175120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
Diffuse midline gliomas (DMGs) including diffuse intrinsic pontine gliomas (DIPGs) bearing lysine-to-methionine mutations in histone H3 at lysine 27 (H3K27M) are lethal childhood brain cancers. These tumors harbor a global reduction in the transcriptional repressive mark H3K27me3 accompanied by an increase in the transcriptional activation mark H3K27ac. We postulated that H3K27M mutations, in addition to altering H3K27 modifications, reprogram the master chromatin remodeling switch/sucrose nonfermentable (SWI/SNF) complex. The SWI/SNF complex can exist in two main forms termed BAF and PBAF that play central roles in neurodevelopment and cancer. Moreover, BAF antagonizes PRC2, the main enzyme catalyzing H3K27me3. We demonstrate that H3K27M gliomas show increased protein levels of the SWI/SNF complex ATPase subunits SMARCA4 and SMARCA2, and the PBAF component PBRM1. Additionally, knockdown of mutant H3K27M lowered SMARCA4 protein levels. The proteolysis targeting chimera (PROTAC) AU-15330 that simultaneously targets SMARCA4, SMARCA2, and PBRM1 for degradation exhibits cytotoxicity in H3.3K27M but not H3 wild-type cells. AU-15330 lowered chromatin accessibility measured by ATAC-Seq at nonpromoter regions and reduced global H3K27ac levels. Integrated analysis of gene expression, proteomics, and chromatin accessibility in AU-15330-treated cells demonstrated reduction in the levels of FOXO1, a key member of the forkhead family of transcription factors. Moreover, genetic or pharmacologic targeting of FOXO1 resulted in cell death in H3K27M cells. Overall, our results suggest that H3K27M up-regulates SMARCA4 levels and combined targeting of SWI/SNF ATPases in H3.3K27M can serve as a potent therapeutic strategy for these deadly childhood brain tumors.
Collapse
Affiliation(s)
- Mateus Mota
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
| | - Stefan R. Sweha
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
| | - Matt Pun
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI48109
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI48109
| | - Siva Kumar Natarajan
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
| | - Yujie Ding
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
| | - Chan Chung
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu42988, Korea
| | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA90027
| | - Fusheng Yang
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA90027
| | - Alexander R. Judkins
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, CA90027
| | - Susanta Samajdar
- Aurigene Discovery Technologies, Bengaluru, Karnataka560100, India
| | - Xuhong Cao
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI48109
- HHMI, University of Michigan Medical School, Ann Arbor, MI48109
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI48109
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
8
|
Flores D, Lopez A, Udawant S, Gunn B, Keniry M. The FOXO1 inhibitor AS1842856 triggers apoptosis in glioblastoma multiforme and basal-like breast cancer cells. FEBS Open Bio 2023; 13:352-362. [PMID: 36602390 PMCID: PMC9900086 DOI: 10.1002/2211-5463.13547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Basal-like breast cancer (BBC) and glioblastoma multiforme (GBM) are poor-prognosis cancers that lack effective targeted therapies and harbor embryonic stem gene expression signatures. Recently, our group and others found that forkhead box transcription factor FOXO1 promotes stem gene expression in BBC and GBM cell lines. Given the critical role of cancer stem cells in promoting cancer progression, we examined the impact of FOXO1 inhibition with AS1842856 (a cell-permeable small molecule that directly binds to unphosphorylated FOXO1 protein to block transcriptional regulation) on BBC and GBM cell viability. We treated a set of BBC and GBM cancer cell lines with increasing concentrations of AS1842856 and found reduced colony formation. Treatment of BBC and GBM cancer cells with AS1842856 led to increases in FAS (FAS cell surface death receptor) and BIM (BCL2L11) gene expression, as well as increased positivity for markers for apoptosis such as annexin V and propidium iodide. Treatment with another FOXO1 inhibitor AS1708727 or FOXO1 RNAi also led to FAS induction. This work is the first to show that targeting BBC and GBM with FOXO1 inhibition leads to apoptosis. These novel findings may ultimately expand the repertoire of therapies for poor-prognosis cancers.
Collapse
Affiliation(s)
- David Flores
- Department of BiologyUniversity of Texas‐Rio Grande ValleyEdinburgTXUSA
| | - Alma Lopez
- Department of BiologyUniversity of Texas‐Rio Grande ValleyEdinburgTXUSA
| | - Shreya Udawant
- Department of BiologyUniversity of Texas‐Rio Grande ValleyEdinburgTXUSA
| | - Bonnie Gunn
- Department of BiologyUniversity of Texas‐Rio Grande ValleyEdinburgTXUSA
| | - Megan Keniry
- Department of BiologyUniversity of Texas‐Rio Grande ValleyEdinburgTXUSA
| |
Collapse
|
9
|
Lee HS, Lee IH, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. Unveiling the Mechanism of the Traditional Korean Medicinal Formula FDY003 on Glioblastoma Through a Computational Network Pharmacology Approach. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is the most common type of primary malignant tumor that develops in the brain, with 0.21 million new cases per year globally and a median survival period of less than 2 years after diagnosis. Traditional Korean medicines have been increasingly suggested as effective and safe therapeutic strategies for GBM. However, their pharmacological effects and mechanistic characteristics remain to be studied. In this study, we employed a computational network pharmacological approach to determine the effects and mechanisms of the traditional Korean medicinal formula FDY003 on GBM. We found that FDY003 treatment decreased the viability of human GBM cells and increased their response to chemotherapeutics. We identified 10 potential active pharmacological compounds of FDY003 and 67 potential GBM-related target genes and proteins. The GBM-related targets of FDY003 were signaling components of various crucial GBM-associated pathways, such as PI3K-Akt, focal adhesion, MAPK, HIF-1, FoxO, Ras, and TNF. These pathways are functional regulators for the determination of cell growth and proliferation, survival and death, and cell division cycle of GBM cells. Together, the overall analyses contribute to the pharmacological basis for the anti-GBM roles of FDY003 and its systematic mechanisms.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | | | - Minho Jung
- Forest Hospital, Seoul, Republic of Korea
| | | | | | - Dae-Yeon Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| |
Collapse
|
10
|
Oost MJ, Ijaz A, van Haarlem DA, van Summeren K, Velkers FC, Kraneveld AD, Venema K, Jansen CA, Pieters RHH, Ten Klooster JP. Chicken-derived RSPO1 and WNT3 contribute to maintaining longevity of chicken intestinal organoid cultures. Sci Rep 2022; 12:10563. [PMID: 35732901 PMCID: PMC9217957 DOI: 10.1038/s41598-022-14875-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Intestinal organoids are advanced cellular models, which are widely used in mammalian studies to mimic and study in vivo intestinal function and host–pathogen interactions. Growth factors WNT3 and RSPO1 are crucial for the growth of intestinal organoids. Chicken intestinal organoids are currently cultured with mammalian Wnt3a and Rspo1, however, maintaining their longevity has shown to be challenging. Based on the limited homology between mammalian and avian RSPO1, we expect that chicken-derived factors are required for the organoid cultures. Isolated crypts from embryonic tissue of laying hens were growing in the presence of chicken WNT3 and RSPO1, whereas growth in the presence of mammalian Wnt3a and Rspo1 was limited. Moreover, the growth was increased by using Prostaglandin E2 (PGE2) and a Forkhead box O1-inhibitor (FOXO1-inhibitor), allowing to culture these organoids for 15 passages. Furthermore, stem cells maintained their ability to differentiate into goblets, enterocytes and enteroendocrine cells in 2D structures. Overall, we show that chicken intestinal organoids can be cultured for multiple passages using chicken-derived WNT3 and RSPO1, PGE2, and FOXO1-inhibitor.
Collapse
Affiliation(s)
- Miriam J Oost
- Centre for Healthy Eating and Food Innovation, Faculty of Science and Engineering, Maastricht University, Campus Venlo, Venlo, The Netherlands
| | - Adil Ijaz
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Daphne A van Haarlem
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kitty van Summeren
- Innovative Testing in Life Sciences and Chemistry, Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Francisca C Velkers
- Division Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Faculty of Science and Engineering, Maastricht University, Campus Venlo, Venlo, The Netherlands
| | - Christine A Jansen
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Animal Sciences, Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Raymond H H Pieters
- Innovative Testing in Life Sciences and Chemistry, Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands.,Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jean Paul Ten Klooster
- Innovative Testing in Life Sciences and Chemistry, Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
11
|
van Noorden CJ, Breznik B, Novak M, van Dijck AJ, Tanan S, Vittori M, Bogataj U, Bakker N, Khoury JD, Molenaar RJ, Hira VV. Cell Biology Meets Cell Metabolism: Energy Production Is Similar in Stem Cells and in Cancer Stem Cells in Brain and Bone Marrow. J Histochem Cytochem 2022; 70:29-51. [PMID: 34714696 PMCID: PMC8721571 DOI: 10.1369/00221554211054585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Energy production by means of ATP synthesis in cancer cells has been investigated frequently as a potential therapeutic target in this century. Both (an)aerobic glycolysis and oxidative phosphorylation (OXPHOS) have been studied. Here, we review recent literature on energy production in glioblastoma stem cells (GSCs) and leukemic stem cells (LSCs) versus their normal counterparts, neural stem cells (NSCs) and hematopoietic stem cells (HSCs), respectively. These two cancer stem cell types were compared because their niches in glioblastoma tumors and in bone marrow are similar. In this study, it became apparent that (1) ATP is produced in NSCs and HSCs by anaerobic glycolysis, whereas fatty acid oxidation (FAO) is essential for their stem cell fate and (2) ATP is produced in GSCs and LSCs by OXPHOS despite the hypoxic conditions in their niches with FAO and amino acids providing its substrate. These metabolic processes appeared to be under tight control of cellular regulation mechanisms which are discussed in depth. However, our conclusion is that systemic therapeutic targeting of ATP production via glycolysis or OXPHOS is not an attractive option because of its unwanted side effects in cancer patients.
Collapse
Affiliation(s)
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | | | - Miloš Vittori
- Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Bogataj
- Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia,Department of Medical Oncology
| | - Vashendriya V.V. Hira
- Vashendriya V.V. Hira, Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia. E-mail:
| |
Collapse
|
12
|
Yilmaz UC, Bagca BG, Karaca E, Durmaz A, Durmaz B, Aykut A, Kayalar H, Avci CB, Susluer SY, Pariltay E, Gunduz C, Cogulu O. Propolis Extract Regulate microRNA Expression in Glioblastoma and Brain Cancer Stem Cells. Anticancer Agents Med Chem 2021; 22:378-389. [PMID: 33949939 DOI: 10.2174/1871520621666210504082528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Grade IV gliomas are classified as glioblastoma (GBM), which is the most malignant brain cancer type. Various genetic and epigenetic mechanisms play a role in the initiation and progression of GBM. MicroRNAs (miRNAs) are small, non-coding RNA molecules that are the main epigenetic regulatory RNA class. They play variable roles in both physiological and pathological conditions, including GBM pathogenesis, by regulating expression levels of the target genes. Brain cancer stem cells (BCSCs) are subpopulations of brain cancer mass that are responsible for poor prognosis, including therapy resistance and relapse. Epigenetic regulation mediated by miRNAs is also a critical component of BCSC self-renewal and differentiation properties. Propolis is a resinous substance that is collected by honey bees from various plant sources. The flavonoids content of propolis varies, depending on the region collected andthe extraction method. Although the effects of propolis that have been collected from different sources on the miRNA expression levels in the glioblastoma cells have been shown, the effects on the BCSCs are not known yet. OBJECTIVE The aim of this study is to evaluate the effects of Aydın, a city in western Turkey, propolis, on miRNA expression levels of BCSCs and GBM cells. METHODS Aydin propolis was dissolved in 60% ethanol, and after evaporation, distilled water was added to prepare the propolis stock solution. The flavonoids content of the Aydin propolis was determined by MS Q-TOF analysis. Commercially obtained U87MG, GBM cell line, and BCSCs were used as in vitro brain cancer models. The cytotoxic and apoptotic effects of Aydın propolis were determined via WST-1 assay and Annexin V test, respectively. The miRNA expression profile was investigated via the real-time qRT-PCR method, and fold changes were calculated by using the 2-∆∆Ct method compared to untreated control cells. The miRNA-mRNA-pathway interactions, including significantly altered miRNAs, were determined using different bioinformatics tools and databases. RESULTS Quercetin 3-methyl ether was determined as the major component of the Aydin propolis. Aydin propolis did not show significant cytotoxic and apoptotic effects on both GBM and BCSCs up to 2mg/ml concentration. Aydin propolis treatment decreased the expression of nine and five miRNAs in the U87MG 2.13 to 5.65 folds and BCSCs 2.02 to 12.29 folds, respectively. Moreover, 10 miRNAs 2.22 to 10.56 folds were upregulated in propolis treated GBM cells compared to the control group, significantly (p<0.05). In the study, the potential roles of two new miRNAs, whose regulations in glioma were not previously defined, were identified. One of these miR-30d-5p, a novel potential oncomiR in GBM was 2.46 folds downregulated in Aydin propolis treated GBM cells. The other one is miR-335-5p which is a potential tumor suppressor miR in GBM, was 5.66 folds upregulated in Aydin propolis treated GBM cells. FOXO pathway and its upstream and downstream regulators and critically neuronal developmental regulators NOTCH and WNT pathways were determined as the most deregulated pathways in Aydin propolis treated cells. CONCLUSION The determination of the anti-cancer effect of Aydın propolis on the miRNA expression of GBM, especially on cancer stem cells, may contribute to the elucidation of brain cancer genetics by supporting further analyses.
Collapse
Affiliation(s)
- Ugur C Yilmaz
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| | - Bakiye G Bagca
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Emin Karaca
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Asude Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Burak Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Ayca Aykut
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Husniye Kayalar
- Ege University, Faculty of Pharmacy, Department of Pharmacognosy, Izmir, Turkey
| | - Cigir B Avci
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Sunde Y Susluer
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Erhan Pariltay
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Cumhur Gunduz
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Ozgur Cogulu
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| |
Collapse
|
13
|
Hypoxia Transcriptomic Modifications Induced by Proton Irradiation in U87 Glioblastoma Multiforme Cell Line. J Pers Med 2021; 11:jpm11040308. [PMID: 33923454 PMCID: PMC8073933 DOI: 10.3390/jpm11040308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
In Glioblastoma Multiforme (GBM), hypoxia is associated with radioresistance and poor prognosis. Since standard GBM treatments are not always effective, new strategies are needed to overcome resistance to therapeutic treatments, including radiotherapy (RT). Our study aims to shed light on the biomarker network involved in a hypoxic (0.2% oxygen) GBM cell line that is radioresistant after proton therapy (PT). For cultivating cells in acute hypoxia, GSI’s hypoxic chambers were used. Cells were irradiated in the middle of a spread-out Bragg peak with increasing PT doses to verify the greater radioresistance in hypoxic conditions. Whole-genome cDNA microarray gene expression analyses were performed for samples treated with 2 and 10 Gy to highlight biological processes activated in GBM following PT in the hypoxic condition. We describe cell survival response and significant deregulated pathways responsible for the cell death/survival balance and gene signatures linked to the PT/hypoxia configurations assayed. Highlighting the molecular pathways involved in GBM resistance following hypoxia and ionizing radiation (IR), this work could suggest new molecular targets, allowing the development of targeted drugs to be suggested in association with PT.
Collapse
|
14
|
Zhang J, Wang L, Xu J, Tang Y, Huang B, Chen Z, Zhang T, Shen HM, Wu Y, Xia D. Bone marrow stromal cell-derived growth inhibitor serves as a stress sensor to induce autophagy. FEBS Lett 2020; 594:1248-1260. [PMID: 31945190 DOI: 10.1002/1873-3468.13732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022]
Abstract
Autophagy is an evolutionarily conserved stress response that promotes the lysosomal degradation of intracellular components. The bone marrow stromal cell-derived growth inhibitor (BDGI) functions as a stress sensor which is upregulated by oxidative stress and DNA damage. However, the role of BDGI in autophagic response to certain stresses remains unknown. Here, our results demonstrate that BDGI defines the impact of autophagy induction under stresses. Overexpression of BDGI promotes, while knockdown of BDGI impairs, autophagy. Mechanistically, BDGI localizes to the nucleus and interacts with the transcription factor transcription factor EB to increase the expression of multiple autophagy- and lysosome-related genes. In addition, BDGI regulates autophagy in a p53-dependent manner. Furthermore, BDGI-induced autophagy enables cell survival under stress conditions. Taken together, our study demonstrates that BDGI is a stress sensor that positively regulates autophagy.
Collapse
Affiliation(s)
- Jianbin Zhang
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, Clinical Research Institute, Zhejiang Provincial People's Hospital,, People's Hospital of Hangzhou Medical College, China
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jian Xu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Central Library, School of Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University, Hangzhou, China
| | - Yancheng Tang
- School of Chinese Medicine, Hong Kong Baptist University, China
| | - Bo Huang
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhifeng Chen
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Li Y, Liu X, Lin X, Zhao M, Xiao Y, Liu C, Liang Z, Lin Z, Yi R, Tang Z, Liu J, Li X, Jiang Q, Li L, Xie Y, Liu Z, Fang W. Chemical compound cinobufotalin potently induces FOXO1-stimulated cisplatin sensitivity by antagonizing its binding partner MYH9. Signal Transduct Target Ther 2019; 4:48. [PMID: 31754475 PMCID: PMC6861228 DOI: 10.1038/s41392-019-0084-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
In this study, we present novel molecular mechanisms by which FOXO1 functions as a tumor suppressor to prevent the pathogenesis of nasopharyngeal carcinoma (NPC). First, we observed that FOXO1 not only controlled tumor stemness and metastasis, but also sensitized NPC cells to cisplatin (DDP) in vitro and in vivo. Mechanistic studies demonstrated that FOXO1-induced miR-200b expression through the GSK3β/β-catenin/TCF4 network-mediated stimulation of ZEB1, which reduced tumor stemness and the epithelial-mesenchymal transition (EMT) signal. Furthermore, we observed FOXO1 interaction with MYH9 and suppression of MYH9 expression by modulating the PI3K/AKT/c-Myc/P53/miR-133a-3p pathway. Decreased MYH9 expression not only reduced its interactions with GSK3β, but also attenuated TRAF6 expression, which then decreased the ubiquitin-mediated degradation of GSK3β protein. Increased GSK3β expression stimulated the β-catenin/TCF4/ZEB1/miR-200b network, which increased the downstream tumor stemness and EMT signals. Subsequently, we observed that chemically synthesized cinobufotalin (CB) strongly increased FOXO1-induced DDP chemosensitivity by reducing MYH9 expression, and the reduction in MYH9 modulated GSK3β/β-catenin and its downstream tumor stemness and EMT signal in NPC. In clinical samples, the combination of low FOXO1 expression and high MYH9 expression indicated the worst overall survival rates. Our studies demonstrated that CB potently induced FOXO1-mediated DDP sensitivity by antagonizing its binding partner MYH9 to modulate tumor stemness in NPC.
Collapse
Affiliation(s)
- YongHao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian Lin
- Cancer Institute, Southern Medical University, 510515 Guangzhou, China
| | - Menyang Zhao
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Yanyi Xiao
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Chen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zixi Liang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zelong Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Renhui Yi
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zibo Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Jiahao Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Xin Li
- Cancer Institute, Southern Medical University, 510515 Guangzhou, China
| | - Qingping Jiang
- Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, 510150 Guangzhou, China
| | - Libo Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Yinyin Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 511436 Guangzhou, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| |
Collapse
|
16
|
Libby CJ, McConathy J, Darley-Usmar V, Hjelmeland AB. The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology. Cancer Res 2019; 80:5-16. [PMID: 31575548 DOI: 10.1158/0008-5472.can-19-1169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/04/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of intratumoral heterogeneity in cancer continues to evolve, with current models incorporating single-cell signatures to explore cell-cell interactions and differentiation state. The transition between stem and differentiation states in nonneoplastic cells requires metabolic plasticity, and this plasticity is increasingly recognized to play a central role in cancer biology. The insights from hematopoietic and neural stem cell differentiation pathways were used to identify cancer stem cells in leukemia and gliomas. Similarly, defining metabolic heterogeneity and fuel-switching signals in nonneoplastic stem cells may also give important insights into the corresponding molecular mechanisms controlling metabolic plasticity in cancer. These advances are important, because metabolic adaptation to anticancer therapeutics is rooted in this inherent metabolic plasticity and is a therapeutic challenge to be overcome.
Collapse
Affiliation(s)
- Catherine J Libby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
17
|
Sharifi Z, Abdulkarim B, Meehan B, Rak J, Daniel P, Schmitt J, Lauzon N, Eppert K, Duncan HM, Petrecca K, Guiot MC, Jean-Claude B, Sabri S. Mechanisms and Antitumor Activity of a Binary EGFR/DNA-Targeting Strategy Overcomes Resistance of Glioblastoma Stem Cells to Temozolomide. Clin Cancer Res 2019; 25:7594-7608. [PMID: 31540977 DOI: 10.1158/1078-0432.ccr-19-0955] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/21/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastoma (GBM) is a fatal primary malignant brain tumor. GBM stem cells (GSC) contribute to resistance to the DNA-damaging chemotherapy, temozolomide. The epidermal growth factor receptor (EGFR) displays genomic alterations enabling DNA repair mechanisms in half of GBMs. We aimed to investigate EGFR/DNA combi-targeting in GBM. EXPERIMENTAL DESIGN ZR2002 is a "combi-molecule" designed to inflict DNA damage through its chlorethyl moiety and induce irreversible EGFR tyrosine kinase inhibition. We assessed its in vitro efficacy in temozolomide-resistant patient-derived GSCs, mesenchymal temozolomide-sensitive and resistant in vivo-derived GSC sublines, and U87/EGFR isogenic cell lines stably expressing EGFR/wild-type or variant III (EGFRvIII). We evaluated its antitumor activity in mice harboring orthotopic EGFRvIII or mesenchymal TMZ-resistant GSC tumors. RESULTS ZR2002 induced submicromolar antiproliferative effects and inhibited neurosphere formation of all GSCs with marginal effects on normal human astrocytes. ZR2002 inhibited EGF-induced autophosphorylation of EGFR, downstream Erk1/2 phosphorylation, increased DNA strand breaks, and induced activation of wild-type p53; the latter was required for its cytotoxicity through p53-dependent mechanism. ZR2002 induced similar effects on U87/EGFR cell lines and its oral administration significantly increased survival in an orthotopic EGFRvIII mouse model. ZR2002 improved survival of mice harboring intracranial mesenchymal temozolomide-resistant GSC line, decreased EGFR, Erk1/2, and AKT phosphorylation and was detected in tumor brain tissue by MALDI imaging mass spectrometry. CONCLUSIONS These findings provide the molecular basis of binary EGFR/DNA targeting and uncover the oral bioavailability, blood-brain barrier permeability, and antitumor activity of ZR2002 supporting potential evaluation of this first-in-class drug in recurrent GBM.
Collapse
Affiliation(s)
- Zeinab Sharifi
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Bassam Abdulkarim
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Brian Meehan
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Janusz Rak
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Paul Daniel
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Julie Schmitt
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Nidia Lauzon
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Kolja Eppert
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Heather M Duncan
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Bertrand Jean-Claude
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Siham Sabri
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada. .,Department of Pathology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Minafra L, Porcino N, Bravatà V, Gaglio D, Bonanomi M, Amore E, Cammarata FP, Russo G, Militello C, Savoca G, Baglio M, Abbate B, Iacoviello G, Evangelista G, Gilardi MC, Bondì ML, Forte GI. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci Rep 2019; 9:11134. [PMID: 31366901 PMCID: PMC6668411 DOI: 10.1038/s41598-019-47553-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
In breast cancer (BC) care, radiotherapy is considered an efficient treatment, prescribed both for controlling localized tumors or as a therapeutic option in case of inoperable, incompletely resected or recurrent tumors. However, approximately 90% of BC-related deaths are due to the metastatic tumor progression. Then, it is strongly desirable to improve tumor radiosensitivity using molecules with synergistic action. The main aim of this study is to develop curcumin-loaded solid nanoparticles (Cur-SLN) in order to increase curcumin bioavailability and to evaluate their radiosensitizing ability in comparison to free curcumin (free-Cur), by using an in vitro approach on BC cell lines. In addition, transcriptomic and metabolomic profiles, induced by Cur-SLN treatments, highlighted networks involved in this radiosensitization ability. The non tumorigenic MCF10A and the tumorigenic MCF7 and MDA-MB-231 BC cell lines were used. Curcumin-loaded solid nanoparticles were prepared using ethanolic precipitation and the loading capacity was evaluated by UV spectrophotometer analysis. Cell survival after treatments was evaluated by clonogenic assay. Dose–response curves were generated testing three concentrations of free-Cur and Cur-SLN in combination with increasing doses of IR (2–9 Gy). IC50 value and Dose Modifying Factor (DMF) was measured to quantify the sensitivity to curcumin and to combined treatments. A multi-“omic” approach was used to explain the Cur-SLN radiosensitizer effect by microarray and metobolomic analysis. We have shown the efficacy of the Cur-SLN formulation as radiosensitizer on three BC cell lines. The DMFs values, calculated at the isoeffect of SF = 50%, showed that the Luminal A MCF7 resulted sensitive to the combined treatments using increasing concentration of vehicled curcumin Cur-SLN (DMF: 1,78 with 10 µM Cur-SLN.) Instead, triple negative MDA-MB-231 cells were more sensitive to free-Cur, although these cells also receive a radiosensitization effect by combination with Cur-SLN (DMF: 1.38 with 10 µM Cur-SLN). The Cur-SLN radiosensitizing function, evaluated by transcriptomic and metabolomic approach, revealed anti-oxidant and anti-tumor effects. Curcumin loaded- SLN can be suggested in future preclinical and clinical studies to test its concomitant use during radiotherapy treatments with the double implications of being a radiosensitizing molecule against cancer cells, with a protective role against IR side effects.
Collapse
Affiliation(s)
- Luigi Minafra
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Nunziatina Porcino
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Valentina Bravatà
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy.
| | - Daniela Gaglio
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Marcella Bonanomi
- SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Erika Amore
- Istituto per lo Studio dei Materiali Nanostrutturati-Consiglio Nazionale delle Ricerche (ISMN-CNR), Palermo, Italy
| | - Francesco Paolo Cammarata
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Giorgio Russo
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Carmelo Militello
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Gaetano Savoca
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Margherita Baglio
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| | - Boris Abbate
- Medical Physics Department, ARNAS-Civico Hospital, Palermo, Italy
| | | | | | - Maria Carla Gilardi
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Luisa Bondì
- Istituto per lo Studio dei Materiali Nanostrutturati-Consiglio Nazionale delle Ricerche (ISMN-CNR), Palermo, Italy
| | - Giusi Irma Forte
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, (PA), Italy
| |
Collapse
|
19
|
Zhou L, Tang H, Wang F, Chen L, Ou S, Wu T, Xu J, Guo K. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma. Mol Med Rep 2018; 18:4185-4196. [PMID: 30132538 PMCID: PMC6172372 DOI: 10.3892/mmr.2018.9411] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most common type of malignant tumor of the central nervous system. The prognosis of patients with GBM is very poor, with a survival time of ~15 months. GBM is highly heterogeneous and highly aggressive. Surgical removal of intracranial tumors does provide a good advantage for patients as there is a high rate of recurrence. The understanding of this type of cancer needs to be strengthened, and the aim of the present study was to identify gene signatures present in GBM and uncover their potential mechanisms. The gene expression profiles of GSE15824 and GSE51062 were downloaded from the Gene Expression Omnibus database. Normalization of the data from primary GBM samples and normal samples in the two databases was conducted using R software. Then, joint analysis of the data was performed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, and the protein‑protein interaction (PPI) network of the differentially expressed genes (DEGs) was constructed using Cytoscape software. Identification of prognostic biomarkers was conducted using UALCAN. In total, 9,341 DEGs were identified in the GBM samples, including 9,175 upregulated genes and 166 downregulated genes. The top 1,000 upregulated DEGs and all of the downregulated DEGs were selected for GO, KEGG and prognostic biomarker analyses. The GO results showed that the upregulated DEGs were significantly enriched in biological processes (BP), including immune response, cell division and cell proliferation, and the downregulated DEGs were also significantly enriched in BP, including cell growth, intracellular signal transduction and signal transduction by protein phosphorylation. KEGG pathway analysis showed that the upregulated DEGs were enriched in circadian entrainment, cytokine‑cytokine receptor interaction and maturity onset diabetes of the young, while the downregulated DEGs were enriched in the TGF‑β signaling pathway, MAPK signaling pathway and pathways in cancer. All of the downregulated genes and the top 1,000 upregulated genes were selected to establish the PPI network, and the sub‑networks revealed that these genes were involved in significant pathways, including olfactory transduction, neuroactive ligand‑receptor interaction and viral carcinogenesis. In total, seven genes were identified as good prognostic biomarkers. In conclusion, the identified DEGs and hub genes contribute to the understanding of the molecular mechanisms underlying the development of GBM and they may be used as diagnostic and prognostic biomarkers and molecular targets for the treatment of patients with GBM in the future.
Collapse
Affiliation(s)
- Lingqi Zhou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hai Tang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Wang
- Department of Molecular Diagnostics, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Lizhi Chen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shanshan Ou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tong Wu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jie Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
20
|
Gene expression profiling in colon of mice exposed to food additive titanium dioxide (E171). Food Chem Toxicol 2017; 111:153-165. [PMID: 29128614 DOI: 10.1016/j.fct.2017.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Dietary factors that may influence the risks of colorectal cancer, including specific supplements, are under investigation. Previous studies showed the capacity of food additive titanium dioxide (E171) to induce DNA damage in vitro and facilitate growth of colorectal tumours in vivo. This study aimed to investigate the molecular mechanisms behind these effects after E171 exposure. BALB/c mice were exposed by gavage to 5 mg/kgbw/day of E171 for 2, 7, 14, and 21 days. Transcriptome changes were studied by whole genome mRNA microarray analysis on the mice's distal colons. In addition, histopathological changes as well as a proliferation marker were analysed. The results showed significant gene expression changes in the olfactory/GPCR receptor family, oxidative stress, the immune system and of cancer related genes. Transcriptome analysis also identified genes that thus far have not been included in known biological pathways and can induce functional changes by interacting with other genes involved in different biological pathways. Histopathological analysis showed alteration and disruption in the normal structure of crypts inducing a hyperplastic epithelium. At cell proliferation level, no consistent increase over time was observed. These results may offer a mechanistic framework for the enhanced tumour growth after ingestion of E171 in BALB/c mice.
Collapse
|
21
|
Choi Y, Park J, Ko YS, Kim Y, Pyo JS, Jang BG, Kim MA, Lee JS, Chang MS, Lee BL. FOXO1 reduces tumorsphere formation capacity and has crosstalk with LGR5 signaling in gastric cancer cells. Biochem Biophys Res Commun 2017; 493:1349-1355. [PMID: 28970066 DOI: 10.1016/j.bbrc.2017.09.163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) is a major of cause of cancer-related death and is characterized by its heterogeneity and molecular complexity. FOXO1 is a transcription factor that plays a key role in GC growth and metastasis. However, the implication of FOXO1 in GC cell stemness has been elusive. This study, for the first time, demonstrates that FOXO1 regulates GC cell stemness in association with LGR5. FOXO1 expression was significantly lower in GC tumorsphere cells than in adherent GC cells. FOXO1 silencing and overexpression promoted and inhibited the tumorsphere formation capacity of GC cells, respectively. Additionally, there was an inverse correlation between FOXO1 and GC stem cell marker LGR5 in human GC specimens. Further in vitro and in vivo experiments showed that negative crosstalk between these two molecules exists and that LGR5 silencing reversed the FOXO1 shRNA-induced tumorsphere formation even without FOXO1 restoration. Taken together, our results suggest that FOXO1 inhibits the self-renewal capacity of GC cells through interaction with LGR5. Thus, FOXO1/LGR5 signaling pathway may provide a novel targeted therapy for GC.
Collapse
Affiliation(s)
- Yiseul Choi
- Department of Tumor Biology (Cancer Research Institute), Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jinju Park
- Department of Tumor Biology (Cancer Research Institute), Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Young San Ko
- Department of Forensic Medicine, National Forensic Service Busan Institute, Yangsan 50612, South Korea
| | - Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, South Korea
| | - Bo Gun Jang
- Department of Pathology, Jeju National University Hospital, Jeju 63241, South Korea
| | - Min A Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jae-Seon Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, South Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Byung Lan Lee
- Department of Tumor Biology (Cancer Research Institute), Seoul National University College of Medicine, Seoul 03080, South Korea; Department of Anatomy, Seoul National University College of Medicine, Seoul 03080, South Korea; Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
22
|
Qian Z, Ren L, Wu D, Yang X, Zhou Z, Nie Q, Jiang G, Xue S, Weng W, Qiu Y, Lin Y. Overexpression of FoxO3a is associated with glioblastoma progression and predicts poor patient prognosis. Int J Cancer 2017; 140:2792-2804. [PMID: 28295288 DOI: 10.1002/ijc.30690] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
Forkhead transcription factor FoxO3a has been reported to have ambiguous functions and distinct mechanisms in various solid tumors, including glioblastoma (GBM). Although a preliminary analysis of a small sample of patients indicated that FoxO3a aberrations in glioma might be related to aggressive clinical behavior, the clinical significance of FoxO3a in glioblastoma remains unclear. We investigated the expression of FoxO3a in a cohort of 91 glioblastoma specimens and analyzed the correlations of protein expression with patient prognosis. Furthermore, the functional impact of FoxO3a on GBM progression and the underlying mechanisms of FoxO3a regulation were explored in a series of in vitro and in vivo assays. FoxO3a expression was elevated in glioblastoma tissues, and high nuclear FoxO3a expression in human GBM tissues was associated with poor prognosis. Moreover, knockdown of FoxO3a significantly reduced the colony formation and invasion ability of GBM cells, whereas overexpression of FoxO3a promoted the colony formation and invasion ability. The results of in vivo GBM models further confirmed that FoxO3a knockdown inhibited GBM progression. More, the pro-oncogenic effects of FoxO3a in GBM were mediated by the activation of c-Myc, microtubule-associated protein 1 light chain 3 beta (LC3B) and Beclin1 in a mixed-lineage leukemia 2 (MLL2)-dependent manner. These findings suggest that high FoxO3a expression is associated with glioblastoma progression and that FoxO3a independently indicates poor prognosis in patients. FoxO3a might be a novel prognostic biomarker or a potential therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Zhongrun Qian
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Dingchang Wu
- Department of Clinical Laboratory, Longyan First Hospital, Fujian Medical University, Longyan, China
| | - Xi Yang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyi Zhou
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Quanmin Nie
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gan Jiang
- Department of Pharmacology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuanglin Xue
- Department of Neurosurgery, Longyan First Hospital, Fujian Medical University, Longyan, China
| | - Weiji Weng
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Qiu
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications. Neurotherapeutics 2017; 14:372-384. [PMID: 28374184 PMCID: PMC5398995 DOI: 10.1007/s13311-017-0524-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.
Collapse
Affiliation(s)
- Tamara J Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case, Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Stephen M Dombrowski
- Department of Neurological Surgery, Section of Pediatric Neurosurgical Oncology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
24
|
Brucker DP, Maurer GD, Harter PN, Rieger J, Steinbach JP. FOXO3a orchestrates glioma cell responses to starvation conditions and promotes hypoxia-induced cell death. Int J Oncol 2016; 49:2399-2410. [DOI: 10.3892/ijo.2016.3760] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/21/2016] [Indexed: 11/06/2022] Open
|