1
|
Gattuso G, Longo F, Spoto G, Ricci D, Lavoro A, Candido S, Di Cataldo A, Broggi G, Salvatorelli L, Magro G, Libra M, Falzone L. Diagnostic and Prognostic Significance of a Four-miRNA Signature in Colorectal Cancer. Int J Mol Sci 2025; 26:1219. [PMID: 39940987 PMCID: PMC11818852 DOI: 10.3390/ijms26031219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer and one of the leading causes of cancer death worldwide. Despite diagnostic and therapeutic advances, CRC mortality remains high, especially in industrialized countries. Numerous studies have highlighted the pathogenetic role of altered microRNA (miRNA) expression among the various factors contributing to the development and progression of colorectal cancer (CRC). However, the data regarding specific miRNAs involved in CRC pathogenesis remain inconsistent, and no miRNAs have been recognized so far as reliable or effective biomarkers for the diagnosis of this tumor type. To identify novel miRNA biomarkers in CRC, this study validated the expression levels of a four-miRNA signature predicted to be involved in CRC by analyzing both tissue and liquid biopsy samples. Our experimental and bioinformatics results highlighted the diagnostic potential of hsa-miR-21-5p, hsa-miR-503-5p, and hsa-miR-375, as well as the potential prognostic value of hsa-miR-497-5p overexpression and hsa-miR-375-3p downregulation. Overall, the results obtained suggest the diagnostic and prognostic significance of this four-miRNA signature in CRC.
Collapse
Affiliation(s)
- Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| | - Graziana Spoto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| | - Daria Ricci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Antonio Di Cataldo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.D.C.); (G.B.); (L.S.); (G.M.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.D.C.); (G.B.); (L.S.); (G.M.)
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.D.C.); (G.B.); (L.S.); (G.M.)
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.D.C.); (G.B.); (L.S.); (G.M.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (F.L.); (G.S.); (D.R.); (A.L.); (S.C.)
| |
Collapse
|
2
|
Zeng Y, Yin Y, Zhou X. Insights into Microbiota-Host Crosstalk in the Intestinal Diseases Mediated by Extracellular Vesicles and Their Encapsulated MicroRNAs. Int J Mol Sci 2024; 25:13001. [PMID: 39684711 PMCID: PMC11641152 DOI: 10.3390/ijms252313001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Microorganisms that colonize the intestine communicate with the host in various ways and affect gut function and health. Extracellular vesicles (EVs), especially their encapsulated microRNAs (miRNAs), participate in the complex and precise regulation of microbiota-host interactions in the gut. These roles make miRNAs critically important for the prevention, diagnosis, and treatment of intestinal diseases. Here, we review the current knowledge on how different sources of EVs and miRNAs, including those from diets, gut microbes, and hosts, maintain gut microbial homeostasis and improve the intestinal barrier and immune function. We further highlight the roles of EVs and miRNAs in intestinal diseases, including diarrhea, inflammatory bowel disease, and colorectal cancer, thus providing a perspective for the application of EVs and miRNAs in these diseases.
Collapse
Affiliation(s)
- Yan Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Nandwa JO, Mehmood A, Mahjabeen I, Raheem KY, Hamadou M, Raimi MZ, Kayani MA. miR-4716-3p and the target AKT2 Gene/rs2304186 SNP are associated with blood cancer pathogenesis in Pakistani population. Noncoding RNA Res 2024; 9:695-703. [PMID: 38577021 PMCID: PMC10990746 DOI: 10.1016/j.ncrna.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
AKT2 is crucial for cancer cells' invasion, metastasis, and survival. It is a possible downstream gene target of cancer glycolysis-related microRNAs. The study investigated the role of miRNA-4716-3p, rs2304186, and the AKT2 gene in blood cancer pathogenesis. RT-qPCR was used to analyze AKT2 gene mRNA and miRNA-4716-3p expression in 200 blood cancer samples and 200 healthy controls. Furthermore, Tetra-ARMS PCR was used to examine the rs2304186 AKT2 SNP in 300 patients and 290 control samples. miRNA-4716-3p was shown to be significantly downregulated (p = 0.0294), whereas mRNA expression of the AKT2 gene was found to be significantly upregulated (p = 0.0034) in blood cancer patients compared to healthy individuals. miRNA-4716-3p downregulation (p = 0.0466) was more pronounced, while AKT2 upregulation was non-significant (p = 0.1661) in untreated patients compared to chemotherapy-treated patients. Blood cancer risk was significantly associated with the rs2304186 GT genotype (p = 0.0432), TT genotype (p = 0.0502), and mutant allele (T) frequency (p = 0.0008). Polymorphism rs2304186 was associated with an increased risk of blood cancer in dominant (p = 0.0011), recessive (p = 0.0502), and additive (p = 0.0008) genetic models. The results suggested that the rs2304186 and the deregulated expression of miRNA-4716-3p and AKT2 gene at the mRNA level may significantly increase the incidence of blood cancer, particularly in the Pakistani population. Therefore, these may function as suitable biomarkers for blood cancer diagnosis and prognosis. Additional, larger-scale investigations may be required to affirm these results.
Collapse
Affiliation(s)
- Jairus Olumasai Nandwa
- Department of Biosciences, COMSATS University Islamabad, Pakistan
- Department of Public Needs Research, Integrated Cancer Research Foundation of Kenya, Kenya
- Department of Genetics, Hebrew University of Jerusalem, Israel
| | - Azhar Mehmood
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | | | - Mamoudou Hamadou
- Department of Biological Sciences, Faculty of Science, University of Maroua, Cameroon
| | | | | |
Collapse
|
4
|
Tesolato SE, González-Gamo D, Barabash A, Claver P, de la Serna SC, Domínguez-Serrano I, Dziakova J, de Juan C, Torres AJ, Iniesta P. Expression Analysis of hsa-miR-181a-5p, hsa-miR-143-3p, hsa-miR-132-3p and hsa-miR-23a-3p as Biomarkers in Colorectal Cancer-Relationship to the Body Mass Index. Cancers (Basel) 2023; 15:3324. [PMID: 37444431 DOI: 10.3390/cancers15133324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
This work aims to investigate the expression levels of four preselected miRNAs previously linked to cancer and/or obesity, with the purpose of finding potential biomarkers in the clinical management of CRC developed by patients showing different BMI values. We analyzed samples from a total of 65 subjects: 43 affected by CRC and 22 without cancer. Serum and both subcutaneous and omental adipose tissues (SAT and OAT) were investigated, as well as tumor and non-tumor colorectal tissues in the case of the CRC patients. The relative expression (2-∆∆Ct) levels of 4 miRNAs (hsa-miR-181a-5p, hsa-miR-143-3p, has-miR-132-3p and hsa-miR-23a-3p) were measured by RT-qPCR. Serum, SAT and OAT expression levels of these miRNAs showed significant differences between subjects with and without CRC, especially in the group of overweight/obese subjects. In CRC, serum levels of hsa-miR-143-3p clearly correlated with their levels in both SAT and OAT, independently of the BMI group. Moreover, hsa-miR-181a-5p could be considered as a biomarker in CRC patients with BMI ≥ 25 Kg/m2 and emerges as a tumor location marker. We conclude that both adiposity and CRC induce changes in the expression of the miRNAs investigated, and hsa-miR-143-3p and hsa-miR-181a-5p expression analysis could be useful in the clinical management of CRC.
Collapse
Affiliation(s)
- Sofía Elena Tesolato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Daniel González-Gamo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Barabash
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- CIBERDEM (Network Biomedical Research Center for Diabetes and Associated Metabolic Diseases), Carlos III Institute of Health, 28029 Madrid, Spain
- Endocrinology & Nutrition Service, San Carlos Hospital, 28040 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Paula Claver
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Sofía Cristina de la Serna
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Inmaculada Domínguez-Serrano
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Jana Dziakova
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Carmen de Juan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Antonio José Torres
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Pilar Iniesta
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
5
|
Liu Y, He L, Wang W. Systematic assessment of microRNAs associated with lung cancer and physical exercise. Front Oncol 2022; 12:917667. [PMID: 36110941 PMCID: PMC9468783 DOI: 10.3389/fonc.2022.917667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
It has long been evident that physical exercise reduces the risk of cancer and improves treatment efficacy in tumor patients, particularly in lung cancer (LC). Several molecular mechanisms have been reported, but the mechanisms related to microRNAs (miRNAs) are not well understood. MiRNAs modulated various basic biological processes by negatively regulating gene expression and can be transmitted between cells as signaling molecules. Recent studies have shown that miRNAs are actively released into the circulation during exercise, and are deeply involved in cancer pathology. Hence, the role of exercise intervention in LC treatment may be further understood by identifying miRNAs associated with LC and physical activity. Here, miRNAs expression datasets related to LC and exercise were collected to screen altered miRNAs. Further bioinformatic approaches were performed to analyze the value of the selected miRNAs. The results identified 42 marker miRNAs in LC, of which three core-miRNAs (has-miR-195, has-miR-26b, and has-miR-126) were co-regulated by exercise and cancer, mainly involved in cell cycle and immunity. Our study supports the idea that using exercise intervention as adjuvant therapy for LC patients. These core-miRNAs, which are down-regulated in cancer but elevated by exercise, may act as suppressors in LC and serve as non-invasive biomarkers for cancer prevention.
Collapse
Affiliation(s)
- Yang Liu
- Department of Central Laboratory, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Yang Liu,
| | - Libo He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wang Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Medicine, Nanchang Medical College, Nanchang, China
| |
Collapse
|
6
|
Gaballah MSA, Ali HEA, Hassan ZA, Mahgoub S, Ali HI, Rhim JS, Zerfaoui M, El Sayed KA, Stephen D, Sylvester PW, Abd Elmageed ZY. Small extracellular vesicle-associated miR-6068 promotes aggressive phenotypes of prostate cancer through miR-6068/HIC2/SIRT1 axis. Am J Cancer Res 2022; 12:4015-4027. [PMID: 36119841 PMCID: PMC9442005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023] Open
Abstract
Early diagnosis and treatment of patients with aggressive prostate cancer (PCa) remains a clinically unmet need. We aimed to determine the levels of small extracellular vesicle (sEV)-associated microRNAs (miRs); miR-4737, miR-6068, and miR-6076 in a large panel of PCa cells and delineate the biological significance of miR-6068 in promoting PCa cells. sEVs were isolated from the conditioned medium of PCa cells, followed by RNA extraction and quantitative Real-Time PCR analysis. Functional assays were performed, and the protein expression of hypermethylated in cancer 2 (HIC2), as a potential miR-6068 target gene, was evaluated in PCa tissues by immunohistochemistry. sEV-associated miR-6068, miR-4737, and miR-6076 levels displayed large and significant differences compared to normal cells. miR-6068 was explicitly upregulated in sEV of PC-3 and CWR-R1ca cells (P<0.010). Suppression of miR-6068 in CWR-R1ca cells decreased cell proliferation, colony formation, and cell migration. In contrast, upregulation of miR-6068 in RC77T/E cells decreased HIC2 levels and increased cell aggressive phenotypes. The overexpression of HIC2 in PCa tissues was primarily observed in the cytoplasm compared to benign prostatic hyperplasia (BPH) and normal tissues (P<0.0001). This study confirms the differential packaging of miR-4737, miR-6068, and miR-6076 in sEVs of PCa cells. MiR-6068 promotes PCa cells to acquire aggressive phenotypes by inhibiting the HIC2/Sirtuin 1 (SIRT1) axis.
Collapse
Affiliation(s)
- Mohamed S A Gaballah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M UniversityCollege Station 77843, USA
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan UniversityHelwan, Cairo 11795, Egypt
| | - Hamdy E A Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M UniversityCollege Station 77843, USA
| | - Zeinab A Hassan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan UniversityHelwan, Cairo 11795, Egypt
| | - Shahenda Mahgoub
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan UniversityHelwan, Cairo 11795, Egypt
| | - Hamid I Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M UniversityCollege Station 77843, USA
| | - Johng S Rhim
- Department of Surgery, Uniformed Services University of The Health SciencesBethesda, MD 20814, USA
| | - Mourad Zerfaoui
- Department of Surgery, Tulane University School of MedicineNew Orleans, LA 70112, USA
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at MonroeMonroe, LA 71203, USA
| | - David Stephen
- Department of Pathology, Edward Via College of Osteopathic MedicineAuburn, LA 36832, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at MonroeMonroe, LA 71203, USA
| | - Zakaria Y Abd Elmageed
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M UniversityCollege Station 77843, USA
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at MonroeMonroe, LA 71203, USA
| |
Collapse
|
7
|
Sun L, Cai H, Zhou T, Xiang H, Long L. Verbascoside enhances radiosensitivity of hepatocellular carcinoma cells through regulating miR-101-3p/Wee1 axis. Drug Dev Res 2022; 83:891-899. [PMID: 35080031 DOI: 10.1002/ddr.21914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 12/24/2022]
Abstract
Verbascoside is a kind of phenylpropanoid glycoside derived from multiple medicinal plants, exerting anti-tumor effects in diverse human malignancies. However, the function of Verbascoside on the radiosensitivity of hepatocellular carcinoma (HCC) cells remains unknown. Human Huh7 and HepG2 cell lines were treated with Verbascosideis, and cell viability was detected with cell counting kit-8 (CCK-8) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect miR-101-3p expression, and Western blot was used to quantify the expression of WEE1 G2 checkpoint kinase (WEE1). Then, CCK-8 and flow cytometry assays were used to detect the proliferation and apoptosis of HCC cells after Verbascoside and X-ray combined treatment, and the expressions of WEE1 and apoptosis-related proteins Bax and Bcl-2 were detected by Western blot. Verbascoside could improve the radiosensitivity of HCC cells in a dose-dependent manner. Verbascoside increased the expression of miR-101-3p but reduced WEE1 expression in HCC cells. Additionally, WEE1 was identified as a target of miR-101-3p. MiR-101-3p inhibition or WEE1 overexpression could reverse the effect of Verbascoside on the viability and apoptosis of HCC cells. Verbascoside increases the radiosensitivity of hepatocellular carcinoma cells via modulating miR-101-3p/WEE1 axis.
Collapse
Affiliation(s)
- Lin Sun
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Huangxing Cai
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Tengchao Zhou
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Hua Xiang
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Lin Long
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha, Hunan, China
| |
Collapse
|
8
|
Piechowska A, Kruszniewska-Rajs C, Kimsa-Dudek M, Kołomańska M, Strzałka-Mrozik B, Gola J, Głuszek S. The role of miR-370 and miR-138 in the regulation of BMP2 suppressor gene expression in colorectal cancer: preliminary studies. J Cancer Res Clin Oncol 2022; 148:1569-1582. [PMID: 35292840 DOI: 10.1007/s00432-022-03977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/06/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is the fourth-most common cancer worldwide and the second most common cancer cause of death in the world. The components of the TGFβ-signalling pathway, which are often affected by miRNAs, are involved in the regulation of apoptosis and cell cycle. Therefore, in the current study, the expression of BMP2 gene in CRC tissues at different clinical stages compared to the non-tumour tissues has been assessed. Moreover, the plasma BMP2 protein concentration in the same group of CRC patients has been validated. Due to the constant necessity to conduct further research of the correlation between specific miRNAs and mRNAs in CRC, in silico analysis has been performed to select miRNAs that regulate BMP2 mRNA. METHODS The cDNA samples from tumor and non-tumor tissue were used in a qPCR reaction to determine the mRNA expression of the BMP2 gene and the expression of selected miRNAs. The concentration of BMP2 protein in plasma samples was also measured. RESULTS It was indicated that BMP2 was downregulated in CRC tissue. Moreover, miR-370 and miR-138 expression showed an upward trend. Decreased BMP2 with accompanied increasing miR-370 and miR-138 expression was relevant to the malignant clinicopathological features of CRC and consequently poor patient prognosis. CONCLUSION Our data suggest that miR-370 with its clear expression in plasma samples may be a potential diagnostic marker to determine the severity of the disease in patients at a later stage of colorectal cancer.
Collapse
Affiliation(s)
- Agnieszka Piechowska
- Department of Surgical Medicine With the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Magdalena Kołomańska
- Department of Anatomy, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Barbara Strzałka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland.
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200, Sosnowiec, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine With the Laboratory of Medical Genetics, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland.,Department of Clinic General Oncological and Endocrinological Surgery, Regional Hospital, Kielce, Poland
| |
Collapse
|
9
|
Nomiri S, Hoshyar R, Chamani E, Rezaei Z, Salmani F, Larki P, Tavakoli T, Gholipour F, Tabrizi NJ, Derakhshani A, Santarpia M, Franchina T, Brunetti O, Silvestris N, Safarpour H. Prediction and validation of GUCA2B as the hub-gene in colorectal cancer based on co-expression network analysis: In-silico and in-vivo study. Biomed Pharmacother 2022; 147:112691. [PMID: 35151227 DOI: 10.1016/j.biopha.2022.112691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several serious attempts to treat colorectal cancer have been made in recent decades. However, no effective treatment has yet been discovered due to the complexities of its etiology. METHODS we used Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules, hub-genes, and mRNA-miRNA regulatory networks associated with CRC. Next, enrichment analysis of modules has been performed using Cluepedia. Next, quantitative real-time PCR (RT-qPCR) was used to validate the expression of selected hub-genes in CRC tissues. RESULTS Based on the WGCNA results, the brown module had a significant positive correlation (r = 0.98, p-value=9e-07) with CRC. Using the survival and DEGs analyses, 22 genes were identified as hub-genes. Next, three candidate hub-genes were selected for RT-qPCR validation, and 22 pairs of cancerous and non-cancerous tissues were collected from CRC patients referred to the Gastroenterology and Liver Clinic. The RT-qPCR results revealed that the expression of GUCA2B was significantly reduced in CRC tissues, which is consistent with the results of differential expression analysis. Finally, top miRNAs correlated with GUCA2B were identified, and ROC analyses revealed that GUCA2B has a high diagnostic performance for CRC. CONCLUSIONS The current study discovered key modules and GUCA2B as a hub-gene associated with CRC, providing references to understand the pathogenesis and be considered a novel candidate to CRC target therapy.
Collapse
Affiliation(s)
- Samira Nomiri
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhane Hoshyar
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Elham Chamani
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Fatemeh Salmani
- Department of Epidemiology and Biostatistics, Social Determinants of Health Research Center, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Pegah Larki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahmine Tavakoli
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faranak Gholipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Tindara Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, Bari, Italy.
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
10
|
Moazzendizaji S, Sevbitov A, Ezzatifar F, Jalili HR, Aalii M, Hemmatzadeh M, Aslani S, Gholizadeh Navashenaq J, Safari R, Hosseinzadeh R, Rahmany MR, Mohammadi H. microRNAs: Small molecules with a large impact on colorectal cancer. Biotechnol Appl Biochem 2021; 69:1893-1908. [PMID: 34550619 DOI: 10.1002/bab.2255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) accounts for one of the main cancer-related mortality and morbidity worldwide. The molecular mechanisms of CRC development have been broadly investigated and, over the last decade, it has become evident that aberrant transcription of microRNAs (miRNAs), a class of small, noncoding RNA molecules, has a significant role in the inception and promotion of CRC. In the involved tissues of CRC, the transcription profile of miRNAs is modulated, and their expression templates are related with prognosis, diagnosis, and treatment outcomes. Here, in the current review, we attempted to discuss the latest information regarding the aberrantly expressed miRNAs in CRC and the advantages of utilizing miRNAs as biomarkers for early diagnosis and prognosis of CRC as well as potential therapeutic application. The effect of miRNAs involved in various signaling pathways, primarily p53, EGFR, Wnt, and TGF-β pathways, was clarified.
Collapse
Affiliation(s)
- Sahand Moazzendizaji
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Andrey Sevbitov
- Head of Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Jalili
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Morteza Aalii
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roghaiyeh Safari
- Molecular and Cellular Epigenetics (GIGA), University of Liege, Sart-Tilman Liège, Belgium.,13. Molecular and Cellular Biology (TERRA), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rahmany
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
11
|
Fuso P, Di Salvatore M, Santonocito C, Guarino D, Autilio C, Mulè A, Arciuolo D, Rinninella A, Mignone F, Ramundo M, Di Stefano B, Orlandi A, Capoluongo E, Nicolotti N, Franceschini G, Sanchez AM, Tortora G, Scambia G, Barone C, Cassano A. Let-7a-5p, miR-100-5p, miR-101-3p, and miR-199a-3p Hyperexpression as Potential Predictive Biomarkers in Early Breast Cancer Patients. J Pers Med 2021; 11:816. [PMID: 34442460 PMCID: PMC8400663 DOI: 10.3390/jpm11080816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The aim of this study is to identify miRNAs able to predict the outcomes in breast cancer patients after neoadjuvant chemotherapy (NAC). PATIENTS AND METHODS We retrospectively analyzed 24 patients receiving NAC and not reaching pathologic complete response (pCR). miRNAs were analyzed using an Illumina Next-Generation-Sequencing (NGS) system. RESULTS Event-free survival (EFS) and overall survival (OS) were significantly higher in patients with up-regulation of let-7a-5p (EFS p = 0.006; OS p = 0.0001), mirR-100-5p (EFS s p = 0.01; OS p = 0.03), miR-101-3p (EFS p = 0.05; OS p = 0.01), and miR-199a-3p (EFS p = 0.02; OS p = 0.01) in post-NAC samples, independently from breast cancer subtypes. At multivariate analysis, only let-7a-5p was significantly associated with EFS (p = 0.009) and OS (p = 0.0008). CONCLUSION Up-regulation of the above miRNAs could represent biomarkers in breast cancer.
Collapse
Affiliation(s)
- Paola Fuso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (P.F.); (A.M.); (D.A.); (G.S.)
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
| | - Mariantonietta Di Salvatore
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Comprehensive Cancer Center, Medical Oncology Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Concetta Santonocito
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Laboratory of Clinical Molecular Biology, Department of Biochemistry and Clinical Biochemistry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Donatella Guarino
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Laboratory of Clinical Molecular Biology, Department of Biochemistry and Clinical Biochemistry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Research Institute, Universidad Complutense, Av. Sèneca, 2, 28040 Madrid, Spain;
| | - Antonino Mulè
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (P.F.); (A.M.); (D.A.); (G.S.)
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Department of Pathologic Anatomy, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Damiano Arciuolo
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (P.F.); (A.M.); (D.A.); (G.S.)
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Department of Pathologic Anatomy, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Antonina Rinninella
- Department of Science and Innovation Technology, University of Piemonte Orientale, V.le Teresa Michel 11, 15121 Alessandria, Italy; (A.R.); (F.M.)
| | - Flavio Mignone
- Department of Science and Innovation Technology, University of Piemonte Orientale, V.le Teresa Michel 11, 15121 Alessandria, Italy; (A.R.); (F.M.)
| | - Matteo Ramundo
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Comprehensive Cancer Center, Medical Oncology Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Brunella Di Stefano
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Comprehensive Cancer Center, Medical Oncology Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Armando Orlandi
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Comprehensive Cancer Center, Medical Oncology Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Ettore Capoluongo
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Biotecnologie Avanzate, Università Federico II-CEINGE, Corso Umberto I 40, 80138 Naples, Italy
| | - Nicola Nicolotti
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Medical Management, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Gianluca Franceschini
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Multidisciplinary Breast Center, Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Alejandro Martin Sanchez
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Multidisciplinary Breast Center, Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giampaolo Tortora
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Comprehensive Cancer Center, Medical Oncology Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giovanni Scambia
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (P.F.); (A.M.); (D.A.); (G.S.)
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
| | - Carlo Barone
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
| | - Alessandra Cassano
- Faculty of Medicine and Surgery, Università Cattolica Del Sacro Cuore, Largo F. Vito 8, 00168 Rome, Italy; (C.S.); (D.G.); (M.R.); (B.D.S.); (A.O.); (E.C.); (N.N.); (G.F.); (A.M.S.); (G.T.); (C.B.); (A.C.)
- Comprehensive Cancer Center, Medical Oncology Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
12
|
Eslamizadeh S, Zare AA, Talebi A, Tabaeian SP, Eshkiki ZS, Heydari-Zarnagh H, Akbari A. Differential Expression of miR-20a and miR-145 in Colorectal Tumors as Potential Location-specific miRNAs. Microrna 2020; 10:66-73. [PMID: 33349227 DOI: 10.2174/2211536609666201221123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs), as tissue specific regulators of gene transcription, may be served as biomarkers for Colorectal Cancer (CRC). OBJECTIVE This study aimed to investigate the potential role of the cancer-related hsa-miRNAs as biomarkers in Colon Cancer (CC) and Rectal Cancer (RC). METHODS A total of 148 CRC samples (74 rectum and 74 colon) and 74 adjacent normal tissues were collected to examine the differential expression of selected ten hsa-miRNAs using quantitative Reverse Transcriptase PCR (qRT-PCR). RESULTS The significantly elevated levels of miR-21, miR-133b, miR-18a, miR-20a, and miR-135b, and decreased levels of miR-34a, miR-200c, miR-145, and let-7g were detected in colorectal tumors compared to the healthy tissues (P<0.05). Hsa-miR-20a was significantly overexpressed in rectum compared to colon (p =0.028) from a cut-off value of 3.15 with a sensitivity of 66% and a specificity of 60% and an AUC value of 0.962. Also, hsa-miR-145 was significantly overexpressed in colon compared to the rectum (p =0.02) from a cut-off value of 3.9 with a sensitivity of 55% and a specificity of 61% and an AUC value of 0.91. CONCLUSION In conclusion, hsa-miR-20a and hsa-miR-145, as potential tissue-specific biomarkers for distinguishing RC and CC, improve realizing the molecular differences between these local tumors.
Collapse
Affiliation(s)
- Sara Eslamizadeh
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Zare
- Young Researchers and Elites club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Atefeh Talebi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hafez Heydari-Zarnagh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Wu HB, Huang SS, Lu CG, Tian SD, Chen M. CircAPLP2 regulates the proliferation and metastasis of colorectal cancer by targeting miR-101-3p to activate the Notch signalling pathway. Am J Transl Res 2020; 12:2554-2569. [PMID: 32655790 PMCID: PMC7344090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, and it has a poor prognosis. Emerging evidence shows that circular RNAs (circRNAs) may act as good therapeutic targets for cancers due to their abundance and stability. However, their regulatory role in CRC needs further investigation. This study revealed that circAPLP2 was upregulated and miR-101-3p was downregulated in CRC tissues and cells compared to normal controls. Knockdown of circAPLP2 and overexpression of miR-101-3p inhibited the cell proliferation, migration and invasion and induced the apoptosis of CRC cells. circAPLP2 acted as a miR-101-3p sponge to upregulate its target gene Notch1, which activated cascades of proliferation- and metastasis-related proteins (c-Myc, cyclin D1, MMP-2 and MMP-9). Additionally, knockdown of circAPLP2 suppressed tumour growth and liver metastases of CRC in nude mice. Taken together, these results indicate that circAPLP2 promotes proliferation and metastasis by targeting miR-101-3p to activate the Notch signalling pathway in CRC, which provides new insights into the mechanisms underlying CRC malignancy and suggests a new therapeutic target.
Collapse
Affiliation(s)
- Han-Bing Wu
- Department of Oncology, The First People’s Hospital of Huaihua CityHuaihua 418000, Hunan, P. R. China
| | - Shi-Si Huang
- Department of Oncology, Central South University Xiangya School of Medicine Affiliated Haikou HospitalHaikou 570208, P. R. China
| | - Chang-Geng Lu
- Department of Oncology, The First People’s Hospital of Huaihua CityHuaihua 418000, Hunan, P. R. China
| | - Shao-Dong Tian
- Department of Oncology, The First People’s Hospital of Huaihua CityHuaihua 418000, Hunan, P. R. China
| | - Ming Chen
- Department of Gastroenterology, The First People’s Hospital of Huaihua CityHuaihua 418000, Hunan, P. R. China
| |
Collapse
|
14
|
Sousa D, Matthiesen R, Lima RT, Vasconcelos MH. Deep Sequencing Analysis Reveals Distinctive Non-Coding RNAs When Comparing Tumor Multidrug-Resistant Cells and Extracellular Vesicles with Drug-Sensitive Counterparts. Cancers (Basel) 2020; 12:cancers12010200. [PMID: 31947507 PMCID: PMC7016831 DOI: 10.3390/cancers12010200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is one of the main limitations of cancer treatment. The overexpression of drug-efflux pumps, such as P-glycoprotein (P-gp), is a major cause of MDR. Importantly, different studies have shown that extracellular vesicles (EVs) participate in the communication between MDR cells and drug-sensitive counterparts, promoting dissemination of the MDR phenotype. In the present work, we aimed to identify RNA species present in MDR cells and in EVs released by those cells, which may be associated with the MDR phenotype. The RNA content from two pairs (leukemia and lung cancer) of MDR (P-gp overexpressing) cells and their drug-sensitive counterparts, as well as from their EVs, was analyzed by deep sequencing. Our results showed distinctive transcripts for MDR cells and their EVs, when compared with their drug-sensitive counterparts. Remarkably, two pseudogenes (a novel pseudogene and RNA 5.8S ribosomal pseudogene 2) were found to be increased in EVs released by MDR cells in both leukemia and lung cancer models. Moreover, six miRs (miR-204-5p, miR-139-5p, miR-29c-5p, miR-551b-3p, miR-29b-2-5p, and miR-204-3p) exhibited altered levels in lung cancer MDR cells and their EVs. This study provides insights into the contribution of EVs to MDR.
Collapse
Affiliation(s)
- Diana Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (D.S.); (R.T.L.)
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
- Correspondence: (R.M.); (M.H.V.); Tel.: +351-939-218-696 (R.M.); +351-225-570-772 (M.H.V.)
| | - Raquel T. Lima
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (D.S.); (R.T.L.)
- Department of Pathology, FMUP—Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - M. Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (D.S.); (R.T.L.)
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
- Correspondence: (R.M.); (M.H.V.); Tel.: +351-939-218-696 (R.M.); +351-225-570-772 (M.H.V.)
| |
Collapse
|
15
|
Sastre D, Baiochi J, de Souza Lima IM, Canto de Souza F, Corveloni AC, Thomé CH, Faça VM, Schiavinato JLDS, Covas DT, Panepucci RA. Focused screening reveals functional effects of microRNAs differentially expressed in colorectal cancer. BMC Cancer 2019; 19:1239. [PMID: 31864341 PMCID: PMC6925883 DOI: 10.1186/s12885-019-6468-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is still a leading cause of death worldwide. Recent studies have pointed to an important role of microRNAs in carcinogenesis. Several microRNAs are described as aberrantly expressed in CRC tissues and in the serum of patients. However, functional outcomes of microRNA aberrant expression still need to be explored at the cellular level. Here, we aimed to investigate the effects of microRNAs aberrantly expressed in CRC samples in the proliferation and cell death of a CRC cell line. METHODS We transfected 31 microRNA mimics into HCT116 cells. Total number of live propidium iodide negative (PI-) and dead (PI+) cells were measured 4 days post-transfection by using a high content screening (HCS) approach. HCS was further used to evaluate apoptosis (via Annexin V and PI staining), and to discern between intrinsic and extrinsic apoptotic pathways, by detecting cleaved Caspase 9 and 8, respectively. To reveal mRNA targets and potentially involved mechanisms, we performed microarray gene expression and functional pathway enrichment analysis. Quantitative PCR and western blot were used to validate potential mRNA targets. RESULTS Twenty microRNAs altered the proliferation of HCT116 cells in comparison to control. miR-22-3p, miR-24-3p, and miR-101-3p significantly repressed cell proliferation and induced cell death. Interestingly, all anti-proliferative microRNAs in our study had been previously described as poorly expressed in the CRC samples. Predicted miR-101-3p targets that were also downregulated by in our microarray were enriched for genes associated with Wnt and cancer pathways, including MCL-1, a member of the BCL-2 family, involved in apoptosis. Interestingly, miR-101-3p preferentially downregulated the long anti-apoptotic MCL-1 L isoform, and reduced cell survival specifically by activating the intrinsic apoptosis pathway. Moreover, miR-101-3p also downregulated IL6ST, STAT3A/B, and MYC mRNA levels, genes associated with stemness properties of CRC cells. CONCLUSIONS microRNAs upregulated in CRC tend to induce proliferation in vitro, whereas microRNAs poorly expressed in CRC halt proliferation and induce cell death. We provide novel evidence linking preferential inhibition of the anti-apoptotic MCL-1 L isoform by miR-101-3p and consequent activation of the intrinsic apoptotic pathway as potential mechanisms for its antitumoral activity, likely due to the inhibition of the IL-6/JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Danuta Sastre
- Laboratory of Human and Medical Genetics, Federal University of Pará, Rua Augusto Corrêa, 01. Guamá., Belém, Pará CEP 66075-110 Brazil
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - João Baiochi
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Ildercilio Mota de Souza Lima
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Felipe Canto de Souza
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Amanda Cristina Corveloni
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Carolina Hassib Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP 14049-900 Brazil
| | - Vitor Marcel Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP 14049-900 Brazil
| | - Josiane Lilian dos Santos Schiavinato
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Dimas Tadeu Covas
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Rodrigo Alexandre Panepucci
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| |
Collapse
|
16
|
Soleimani A, Rahmani F, Saeedi N, Ghaffarian R, Khazaei M, Ferns GA, Avan A, Hassanian SM. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem 2019; 120:19245-19253. [PMID: 31512778 DOI: 10.1002/jcb.29268] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death worldwide. Dysregulation of RAS/MAPK signaling axis is frequently found in CRC patients. The RAS/MAPK axis regulates cancer cell proliferation, apoptosis, inflammation, migration, and metastasis. Oncogenic or tumor-suppressor microRNAs (miRNAs) for RAS/MAPK signaling play a key role in the pathogenesis of CRC and are considered as novel potential biomarkers for diagnosis and prognosis of human malignancies. This review summarizes the current knowledge of mechanisms of action of RAS/MAPK miRNAs in the development and progression of CRC for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nikoo Saeedi
- Student Research Committee, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Rana Ghaffarian
- Student Research Committee, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Chinami M, Iwabuchi K, Muto Y, Uchida Y, Arita R, Shuraim RA, Adra CN. Assessment by miRNA microarray of an autologous cancer antigen-pulsed adoptive immune ensemble cell therapy (AC-ACT) approach; demonstrated induction of anti-oncogenic and anti-PD-L1 miRNAs. Clin Case Rep 2019; 7:2156-2164. [PMID: 31788270 PMCID: PMC6878052 DOI: 10.1002/ccr3.2343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 11/11/2022] Open
Abstract
A 60-year-old woman with stage IV rectal cancer received adoptive cell therapy with autologous cancer antigen (AC-ACT) causing induction of anti-oncogenic and anti-PD-L1 miRNAs as assessed by miRNA microarray. More than 1 year after AC-ACT, metastases have been arrested, and the patient reports good quality of life.
Collapse
Affiliation(s)
| | | | - Yoshiteru Muto
- The Research Institute of Health Rehabilitation of TokyoTokyoJapan
| | - Yasuhiko Uchida
- The Research Institute of Health Rehabilitation of TokyoTokyoJapan
| | - Ryu Arita
- Fukuoka MSC Medical ClinicsFukuokaJapan
| | | | - Chaker N. Adra
- BFSR InstituteFukuokaJapan
- The Adra InstituteBoston, MAUSA
| |
Collapse
|
18
|
Perilli L, Tessarollo S, Albertoni L, Curtarello M, Pastò A, Brunetti E, Fassan M, Rugge M, Indraccolo S, Amadori A, Bortoluzzi S, Zanovello P. Silencing of miR-182 is associated with modulation of tumorigenesis through apoptosis induction in an experimental model of colorectal cancer. BMC Cancer 2019; 19:821. [PMID: 31429725 PMCID: PMC6700772 DOI: 10.1186/s12885-019-5982-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND miR-182-5p (miR-182) is an oncogenic microRNA (miRNA) found in different tumor types and one of the most up-regulated miRNA in colorectal cancer (CRC). Although this microRNA is expressed in the early steps of tumor development, its role in driving tumorigenesis is unclear. METHODS The effects of miR-182 silencing on transcriptomic profile were investigated using two CRC cell lines characterized by different in vivo biological behavior, the MICOL-14h-tert cell line (dormant upon transfer into immunodeficient hosts) and its tumorigenic variant, MICOL-14tum. Apoptosis was studied by annexin/PI staining and cleaved Caspase-3/PARP analysis. The effect of miR-182 silencing on the tumorigenic potential was addressed in a xenogeneic model of MICOL-14tum transplant. RESULTS Endogenous miR-182 expression was higher in MICOL-14tum than in MICOL-14h-tert cells. Interestingly, miR-182 silencing had a strong impact on gene expression profile, and the positive regulation of apoptotic process was one of the most affected pathways. Accordingly, annexin/PI staining and caspase-3/PARP activation demonstrated that miR-182 treatment significantly increased apoptosis, with a prominent effect in MICOL-14tum cells. Moreover, a significant modulation of the cell cycle profile was exerted by anti-miR-182 treatment only in MICOL-14tum cells, where a significant increase in the fraction of cells in G0/G1 phases was observed. Accordingly, a significant growth reduction and a less aggressive histological aspect were observed in tumor masses generated by in vivo transfer of anti-miR-182-treated MICOL-14tum cells into immunodeficient hosts. CONCLUSIONS Altogether, these data indicate that increased miR-182 expression may promote cell proliferation, suppress the apoptotic pathway and ultimately confer aggressive traits on CRC cells.
Collapse
Affiliation(s)
- Lisa Perilli
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Sofia Tessarollo
- Genetics and Molecular Biology Unit, ULSS 8 Berica, Vicenza, Italy
| | - Laura Albertoni
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Matteo Curtarello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Anna Pastò
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Efrem Brunetti
- Department of Surgery, Oncology and Gastroenterology, Immunology & Oncology Section, University of Padova, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Massimo Rugge
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| | - Alberto Amadori
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, Immunology & Oncology Section, University of Padova, Padua, Italy
| | | | - Paola Zanovello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, Immunology & Oncology Section, University of Padova, Padua, Italy
| |
Collapse
|
19
|
Jahangiri Moez M, Bjeije H, Soltani BM. Hsa-miR-5195-3P induces downregulation of TGFβR1, TGFβR2, SMAD3 and SMAD4 supporting its tumor suppressive activity in HCT116 cells. Int J Biochem Cell Biol 2019; 109:1-7. [DOI: 10.1016/j.biocel.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 11/24/2022]
|
20
|
Mullany LE, Slattery ML. The functional role of miRNAs in colorectal cancer: insights from a large population-based study. Cancer Biol Med 2019; 16:211-219. [PMID: 31516743 PMCID: PMC6713639 DOI: 10.20892/j.issn.2095-3941.2018.0514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Identification of causal microRNAs (miRNAs) in colorectal cancer (CRC) is elusive, due to our lack of understanding of how specific miRNAs affect biological pathways and outcomes. An miRNA can regulate many mRNAs and an mRNA can be associated with many miRNAs; appreciation of these complex networks in which miRNAs operate is necessary to transition from identifying dysregulated miRNAs to identifying individual miRNAs or groups of miRNAs that are suitable for therapeutic purposes. The aim of the paper is to compile results from a population-based study (n = 1,954 cases with matched carcinoma/normal tissue) of miRNAs in CRC. The information gained allows for cohesive and comprehensive insight into miRNAs and CRC in terms of function and impact. Comparison of miRNA expression with mRNA expression from nine signaling pathways in carcinogenic processes allowed us to identify miRNA targets within a biological context. MiRNAs that directly influence mRNA expression may be effective biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Lila E Mullany
- Department of Internal Medicine, University of Utah, Salt Lake City 84108, UT, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City 84108, UT, USA
| |
Collapse
|
21
|
Liu L, Meng T, Yang XH, Sayim P, Lei C, Jin B, Ge L, Wang HJ. Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Cancer Biomark 2018; 22:283-299. [PMID: 29630521 DOI: 10.3233/cbm-171011] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND LncRNA and microRNA play an important role in the development of human cancers; they can act as a tumor suppressor gene or an oncogene. LncRNA GAS5, originating from the separation from tumor suppressor gene cDNA subtractive library, is considered as an oncogene in several kinds of cancers. The expression of miR-221 affects tumorigenesis, invasion and metastasis in multiple types of human cancers. However, there's very little information on the role LncRNA GAS5 and miR-221 play in CRC. Therefore, we conducted this study in order to analyze the association of GAS5 and miR-221 with the prognosis of CRC and preliminary study was done on proliferation, metastasis and invasion of CRC cells. In the present study, we demonstrate the predictive value of long non-coding RNA GAS5 (lncRNA GAS5) and mircoRNA-221 (miR-221) in the prognosis of colorectal cancer (CRC) and their effects on CRC cell proliferation, migration and invasion. METHODS One hundred and fifty-eight cases with CRC patients and 173 cases of healthy subjects that with no abnormalities, who've been diagnosed through colonoscopy between January 2012 and January 2014 were selected for the study. After the clinicopathological data of the subjects, tissue, plasma and exosomes were collected, lncRNA GAS5 and miR-221 expressions in tissues, plasma and exosomes were measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The diagnostic values of lncRNA GAS5 and miR-221 expression in tissues, plasma and exosomes in patients with CRC were analyzed using receiver operating characteristic curve (ROC). Lentiviral vector was constructed for the overexpression of lncRNA GAS5, and SW480 cell line was used for the transfection of the experiment and assigned into an empty vector and GAS5 groups. The cell proliferation, migration and invasion were tested using a cell counting kit-8 assay and Transwell assay respectively. RESULTS The results revealed that LncRNA GAS5 was upregulated while the miR-221 was downregulated in the tissues, plasma and exosomes of patients with CRC. The results of ROC showed that the expressions of both lncRNA GAS5 and miR-221 in the tissues, plasma and exosomes had diagnostic value in CRC. While the LncRNA GAS5 expression in tissues, plasma and exosomes were associated with the tumor node metastasis (TNM) stage, Dukes stage, lymph node metastasis (LNM), local recurrence rate and distant metastasis rate, the MiR-221 expression in tissues, plasma and exosomes were associated with tumor size, TNM stage, Dukes stage, LNM, local recurrence rate and distant metastasis rate. LncRNA GAS5 and miR-221 expression in tissues, plasma and exosomes were found to be independent prognostic factors for CRC. Following the overexpression of GAS5, the GAS5 expressions was up-regulated and miR-221 expression was down-regulated; the rate of cell proliferation, migration and invasion were decreased.
Collapse
|
22
|
Mullany LE, Herrick JS, Sakoda LC, Samowitz W, Stevens JR, Wolff RK, Slattery ML. MicroRNA-messenger RNA interactions involving JAK-STAT signaling genes in colorectal cancer. Genes Cancer 2018; 9:232-246. [PMID: 30603058 PMCID: PMC6305104 DOI: 10.18632/genesandcancer.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
JAK-STAT signaling influences many downstream processes that, unchecked, contribute to carcinogenesis and metastasis. MicroRNAs (miRNAs) are hypothesized as a mechanism to prevent uncontrolled growth from continuous JAK-STAT activation. We investigated differential expression between paired carcinoma and normal colorectal mucosa of messenger RNAs (mRNAs) and miRNAs using RNA-Seq and Agilent Human miRNA Microarray V19.0 data, respectively, using a negative binomial mixed effects model to test 122 JAK-STAT-signaling genes in 217 colorectal cancer (CRC) cases. Overall, 42 mRNAs were differentially expressed with a fold change of >1.50 or <0.67, remaining significant with a false discovery rate of < 0.05; four were dysregulated in microsatellite stable (MSS) tumors, eight were for microsatellite unstable (MSI)-specific tumors. Of these 54 mRNAs, 17 were associated with differential expression of 46 miRNAs, comprising 116 interactions: 16 were significant overall, one for MSS tumors only. Twenty of the 29 interactions with negative beta coefficients involved miRNA seed sequence matches with mRNAs, supporting miRNA-mediated mRNA repression; 17 of these mRNAs encode for receptor molecules. Receptor molecule degradation is an established JAK-STAT signaling control mechanism; our results suggest that miRNAs facilitate this process. Interactions involving positive beta coefficients may illustrate downstream effects of disrupted STAT activity, and subsequent miRNA upregulation.
Collapse
Affiliation(s)
- Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Wade Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| | - Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, Utah
| |
Collapse
|
23
|
Herrera M, Llorens C, Rodríguez M, Herrera A, Ramos R, Gil B, Candia A, Larriba MJ, Garre P, Earl J, Rodríguez-Garrote M, Caldés T, Bonilla F, Carrato A, García-Barberán V, Peña C. Differential distribution and enrichment of non-coding RNAs in exosomes from normal and Cancer-associated fibroblasts in colorectal cancer. Mol Cancer 2018; 17:114. [PMID: 30075793 PMCID: PMC6091058 DOI: 10.1186/s12943-018-0863-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
Abstract
Exosome production from cancer-associated fibroblasts seems to be an important driver of tumor progression. We report the first in-depth biotype characterization of ncRNAs, analyzed by Next Generation Sequencing and Bioinformatics, expressed in established primary human normal and cancer-associated fibroblasts (CAFs) from cancer and normal mucosa tissues from 9 colorectal cancer patients, and/or packaged in their derived exosomes. Differential representation and enrichment analyses based on these ncRNAs revealed a significant number of differences between the ncRNA content of exosomes and the expression patterns of the normal and cancer-associated fibroblast cells. ncRNA regulatory elements are specifically packaged in CAF-derived exosomes, supporting a specific cross-talk between CAFs and colon cancer cells and/or other stromal cells, mediated by exosomes. These sncRNAs are potential biomarkers present in cancer-associated fibroblast-derived exosomes, which should thereby contribute to developing new non-invasive diagnostic, prognostic and predictive methods for clinical applications in management of cancer patients.
Collapse
Affiliation(s)
- Mercedes Herrera
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Llorens
- Biotechvana, Scientific Park, University of Valencia, Valencia, Spain
| | - Marta Rodríguez
- Department of Molecular Cell Biology, Institute for Cancer Research, University Hospital-The Norwegian Radium Hospital, and Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Pathology Department, Fundación Instituto de Investigación Jiménez Díaz, CIBERONC, Madrid, Spain
| | - Alberto Herrera
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain
| | - Ricardo Ramos
- Unidad de Genómica, Campus de Cantoblanco, Scientific Park of Madrid, Madrid, Spain
| | - Beatriz Gil
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.,Grupo de Investigación de oncología traslacional, Departamento de tumores digestivos, Hospital doce de Octubre, Madrid, Spain
| | - Antonio Candia
- Pathology Department, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, CIBERONC, Madrid, Spain
| | - Pilar Garre
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos. Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Julie Earl
- Medical Oncology Department, Ramón y Cajal University Hospital, IRYCIS, CIBERONC, Alcalá University, Madrid, Spain
| | - Mercedes Rodríguez-Garrote
- Medical Oncology Department, Ramón y Cajal University Hospital, IRYCIS, CIBERONC, Alcalá University, Madrid, Spain
| | - Trinidad Caldés
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos. Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
| | | | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal University Hospital, IRYCIS, CIBERONC, Alcalá University, Madrid, Spain
| | - Vanesa García-Barberán
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain. .,Laboratorio de Oncología Molecular, Hospital Clínico San Carlos. Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain.
| | - Cristina Peña
- Department of Medical Oncology, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain. .,Medical Oncology Department, Ramón y Cajal University Hospital, IRYCIS, CIBERONC, Alcalá University, Madrid, Spain.
| |
Collapse
|
24
|
Pellatt AJ, Mullany LE, Herrick JS, Sakoda LC, Wolff RK, Samowitz WS, Slattery ML. The TGFβ-signaling pathway and colorectal cancer: associations between dysregulated genes and miRNAs. J Transl Med 2018; 16:191. [PMID: 29986714 PMCID: PMC6038278 DOI: 10.1186/s12967-018-1566-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
Abstract
Background The TGFβ-signaling pathway plays an important role in the pathogenesis of colorectal cancer (CRC). Loss of function of several genes within this pathway, such as bone morphogenetic proteins (BMPs) have been seen as key events in CRC progression. Methods In this study we comprehensively evaluate differential gene expression (RNASeq) of 81 genes in the TGFβ-signaling pathway and evaluate how dysregulated genes are associated with miRNA expression (Agilent Human miRNA Microarray V19.0). We utilize paired carcinoma and normal tissue from 217 CRC cases. We evaluate the associations between differentially expressed genes and miRNAs and sex, age, disease stage, and survival months. Results Thirteen genes were significantly downregulated and 14 were significantly upregulated after considering fold change (FC) of > 1.50 or < 0.67 and multiple comparison adjustment. Bone morphogenetic protein genes BMP5, BMP6, and BMP2 and growth differentiation factor GDF7 were downregulated. BMP4, BMP7, INHBA (Inhibin beta A), TGFBR1, TGFB2, TGIF1, TGIF2, and TFDP1 were upregulated. In general, genes with the greatest dysregulation, such as BMP5 (FC 0.17, BMP6 (FC 0.25), BMP2 (FC 0.32), CDKN2B (FC 0.32), MYC (FC 3.70), BMP7 (FC 4.17), and INHBA (FC 9.34) showed dysregulation in the majority of the population (84.3, 77.4, 81.1, 80.2, 82.0, 51.2, and 75.1% respectively). Four genes, TGFBR2, ID4, ID1, and PITX2, were un-associated or slightly upregulated in microsatellite-stable (MSS) tumors while downregulated in microsatellite-unstable (MSI) tumors. Eight dysregulated genes were associated with miRNA differential expression. E2F5 and THBS1 were associated with one or two miRNAs; RBL1, TGFBR1, TGIF2, and INHBA were associated with seven or more miRNAs with multiple seed-region matches. Evaluation of the joint effects of mRNA:miRNA identified interactions that were stronger in more advanced disease stages and varied by survival months. Conclusion These data support an interaction between miRNAs and genes in the TGFβ-signaling pathway in association with CRC risk. These interactions are associated with unique clinical characteristics that may provide targets for further investigations. Electronic supplementary material The online version of this article (10.1186/s12967-018-1566-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
25
|
Slattery ML, Mullany LE, Wolff RK, Sakoda LC, Samowitz WS, Herrick JS. The p53-signaling pathway and colorectal cancer: Interactions between downstream p53 target genes and miRNAs. Genomics 2018; 111:762-771. [PMID: 29860032 DOI: 10.1016/j.ygeno.2018.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION We examined expression of genes in the p53-signaling pathway. We determine if genes that have significantly different expression in carcinoma tissue compared to normal mucosa also have significantly differentially expressed miRNAs. We utilize a sample of 217 CRC cases. METHODS We focused on fold change (FC) > 1.50 or <0.67 for genes and miRNAs, that were statistically significant after adjustment for multiple comparisons. We evaluated the linear association between the differential expression of miRNA and mRNA. miRNA:mRNA seed-region matches also were determined. RESULTS Eleven dysregulated genes were associated with 37 dysregulated miRNAs; all were down-stream from the TP53 gene. MiR-150-5p (HR = 0.82) and miR-196b-5p (HR 0.73) significantly reduced the likelihood of dying from CRC when miRNA expression increased in rectal tumors. CONCLUSIONS Our data suggest that activation of p53 from cellular stress, could target downstream genes that in turn could influence cell cycle arrest, apoptosis, and angiogenesis through mRNA:miRNA interactions.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States.
| | - Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| |
Collapse
|
26
|
Zhu D, Sun Y, Zhang D, Dong M, Jiang G, Zhang X, Zhou J. miR‑1 inhibits the progression of colon cancer by regulating the expression of vascular endothelial growth factor. Oncol Rep 2018; 40:589-598. [PMID: 29845255 PMCID: PMC6072287 DOI: 10.3892/or.2018.6463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNA (miR)-1 is associated with various human malignancies through repressing tumor growth, migration and angiogenesis. Recently, high-throughput transcriptional profiling confirmed that miR-1 is markedly downregulated in metastatic colorectal cancer; however, its biological functions and the specific underlying mechanisms in colorectal cancer (CRC) require further investigation. In this study, the expression of miR-1 in 111 CRC and paired normal tissue samples was measured using quantitative polymerase chain reaction analysis, and the association between miR-1 expression and clinical characteristics was evaluated. miR-1 was found to be significantly downregulated in CRC tissues compared with paired normal tissues, and in CRC cell lines compared with non-cancer cells (P<0.001), and was negatively associated with tumor size (P=0.001), differentiation (P=0.011), lymph node metastasis (P=0.001) and TNM stage (P=0.001). Further experiments revealed that miR-1 inhibited the migration and invasion of HCT116 and ClonA1 cells, and inhibited cell proliferation by affecting the cell cycle. Vascular endothelial growth factor (VEGF) was found to be a potential target of miR-1 by biological prediction, and further investigation confirmed that miR-1 significantly inhibited the expression and paracrine function of VEGF. In CRC tissues, the expression of VEGF was negatively correlated with miR-1. The low expression of miR-1 in CRC may be one of the reasons for the abnormally high expression of VEGF; the upregulation of miR-1 expression may inhibit cancer progression by downregulating VEGF. These findings indicate that treatment with miR-1 may be a novel method of tumor suppression, and provide a theoretical and experimental basis for the further targeted treatment of CRC through the regulation of miR-1 and VEGF expression.
Collapse
Affiliation(s)
- Dehua Zhu
- Department of General Surgery, Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yefei Sun
- Department of General Surgery, Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Danhua Zhang
- Department of General Surgery, Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ming Dong
- Department of General Surgery, Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guiyang Jiang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiupeng Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning, P.R. China
| | - Jianping Zhou
- Department of General Surgery, Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
27
|
Liu W, Song Y, Zhang C, Gao P, Huang B, Yang J. The protective role of all-transretinoic acid (ATRA) against colorectal cancer development is achieved via increasing miR-3666 expression and decreasing E2F7 expression. Biomed Pharmacother 2018; 104:94-101. [PMID: 29772445 DOI: 10.1016/j.biopha.2018.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is one of the most common malignancies with high morbidity and mortality rates worldwide. This study aimed to investigate whether miR-3666 was involved in inhibitory effects of all-transretinoic acid (ATRA) on the development of colorectal cancer (CRC). MATERIAL AND METHODS Surgical specimens of CRC tissues and adjacent non-tumor mucosa were collected for determining miR-3666 expression. Human CRC HCT116 cells were treated with different doses of ATRA (10, 20, 40, and 60 μM, respectively) and/or transfected with miR-3666 mimic, miR-3666 inhibitor, E2F7 siRNAs or their controls, respectively. After different treatments, cell viability, apoptosis, migration and invasion were detected. The regulatory relationship between miR-3666 and E2F7 was investigated. Furthermore, the association between MAPK/ERK pathway and ATRA or miR-3666/E2F7 was explored. RESULTS The miR-3666 was lowly expressed in CRC tissues, while E2F7 was highly expressed. ATRA decreased HCT116 cell viability, migration, and invasion, and induced apoptosis, indicating that ATRA inhibited the malignant behaviors of HCT116 cells. Moreover, ATRA increased miR-3666 expression, and effects of ATRA on the malignant behaviors of HCT116 cells were achieved by positive regulating miR-3666 expression. Furthermore, E2F7 was a target gene of miR-3666, and knockdown of E2F7 reversed the combined effects of ATRA and miR-3666 inhibitor on the malignant behaviors of HCT116 cells. Besides, ATRA inhibited the activation of MAPK/ERK signaling pathway, which was reversed by inhibition of miR-3666. CONCLUSIONS Our results reveal that ATRA protects against CRC development possible via increasing miR-3666 expression and decreasing E2F7 expression. MiR-3666/E2F7 may play a key role in regulating the inhibitory effects of ATRA on HCT116 cells via suppressing the activation of MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Weihong Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China; The Libraries of Dali University, Dali, Yunnan, 671003, China
| | - Yanqiu Song
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China
| | - Bisheng Huang
- Department of Agriculture and biological Science, Dali University, Dali, Yunnan, 671003, China
| | - Jianfang Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan, 671000, China; School of Foreign Languages, Dali University, Dali, Yunnan, 671003, China.
| |
Collapse
|
28
|
Grassi A, Perilli L, Albertoni L, Tessarollo S, Mescoli C, Urso EDL, Fassan M, Rugge M, Zanovello P. A coordinate deregulation of microRNAs expressed in mucosa adjacent to tumor predicts relapse after resection in localized colon cancer. Mol Cancer 2018; 17:17. [PMID: 29386021 PMCID: PMC5791208 DOI: 10.1186/s12943-018-0770-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
Up to 20% of colorectal cancer (CRC) node-negative patients develop loco-regional or distant recurrences within 5 years from surgery. No predictive biomarker able to identify the node-negative subjects at high risk of relapse after curative treatment is presently available.Forty-eight localized (i.e. stage I-II) colon cancer patients who underwent radical tumor resection were considered. The expression of five miRNAs, involved in CRC progression, was investigated by qRT-PCR in both tumor tissue and matched normal colon mucosa.Interestingly, we found that the coordinate deregulation of four miRNAs (i.e. miR-18a, miR-21, miR-182 and miR-183), evaluated in the normal mucosa adjacent to tumor, is predictive of relapse within 55 months from curative surgery.Our results, if confirmed in independent studies, may help to identify high-risk patients who could benefit most from adjuvant therapy. Moreover, this work highlights the importance of extending the search for tissue biomarkers also to the tumor-adjacent mucosa.
Collapse
Affiliation(s)
- Angela Grassi
- Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy.
| | - Lisa Perilli
- Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| | - Laura Albertoni
- Surgical Pathology and Cytopathology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Sofia Tessarollo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Claudia Mescoli
- Surgical Pathology and Cytopathology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| | | | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Massimo Rugge
- Surgical Pathology and Cytopathology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Paola Zanovello
- Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| |
Collapse
|
29
|
Farhana L, Banerjee HN, Verma M, Majumdar APN. Role of Microbiome in Carcinogenesis Process and Epigenetic Regulation of Colorectal Cancer. Methods Mol Biol 2018; 1856:35-55. [PMID: 30178245 DOI: 10.1007/978-1-4939-8751-1_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Epigenetic changes during the development of colorectal cancer (CRC) play a significant role. Along with factors such as diet, lifestyle, and genetics, oncogenic infection, bacteria alone or whole microbiome, has been associated with this tumor type. How gut microbiome contributes to CRC pathogenesis in the host is not fully understood. Most of the epigenetic studies in CRC have been conducted in populations infected with Helicobacter pylori. In the current review, we summarize how the gut microbiota contributes in colon carcinogenesis and the potential role of epigenetic mechanism in gene regulation. We discuss microbiota-mediated initiation and progression of colon tumorigenesis and have also touched upon the role of microbial metabolites as an initiator or an inhibitor for procarcinogenic or antioncogenic activities. The hypothesis of gut microbiota associated CRC revealed the dynamic and complexity of microbial interaction in initiating the development of CRC. In the multifaceted processes of colonic carcinogenesis, gradual alteration of microbiota along with their microenvironment and the potential oncopathogenic microbes mediated modulation of cancer therapy and other factors involved in microbiome dysbiosis leading to the CRC have also been discussed. This review provides a comprehensive summary of the mechanisms of CRC development, the role of microbiome or single bacterial infection in regulating the processes of carcinogenesis, and the intervention by novel therapeutics. Epigenetic mechanism involved in CRC is also discussed.
Collapse
Affiliation(s)
- Lulu Farhana
- Veterans Affairs Medical Center, Research Service, Detroit, MI, USA
- Department of Internal Medicine, Wayne State University, Detroit, MI, USA
| | | | - Mukesh Verma
- Epidemiology and Genomics Research Program, National Cancer Institute, Rockville, MD, USA
| | - Adhip P N Majumdar
- Veterans Affairs Medical Center, Research Service, Detroit, MI, USA.
- Department of Internal Medicine, Wayne State University, Detroit, MI, USA.
- Karmanos Cancer Institute, Wayne State University-School of Medicine, Detroit, MI, USA.
| |
Collapse
|
30
|
Yang X, Pang YY, He RQ, Lin P, Cen JM, Yang H, Ma J, Chen G. Diagnostic value of strand-specific miRNA-101-3p and miRNA-101-5p for hepatocellular carcinoma and a bioinformatic analysis of their possible mechanism of action. FEBS Open Bio 2017; 8:64-84. [PMID: 29321958 PMCID: PMC5757177 DOI: 10.1002/2211-5463.12349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/08/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
There is accumulating evidence that miRNA might serve as potential diagnostic and prognostic markers for various types of cancer. Hepatocellular carcinoma (HCC) is the most common type of malignant lesion but the significance of miRNAs in HCC remains largely unknown. The present study aimed to establish the diagnostic value of miR-101-3p/5p in HCC and then further investigate the prospective molecular mechanism via a bioinformatic analysis. First, the miR-101 expression profiles and parallel clinical parameters from 362 HCC patients and 50 adjacent non-HCC tissue samples were downloaded from The Cancer Genome Atlas (TCGA). Second, we aggregated all miR-101-3p/5p expression profiles collected from published literature and the Gene Expression Omnibus and TCGA databases. Subsequently, target genes of miR-101-3p and miR-101-5p were predicted by using the miRWalk database and then overlapped with the differentially expressed genes of HCC identified by natural language processing. Finally, bioinformatic analyses were conducted with the overlapping genes. The level of miR-101 was significantly lower in HCC tissues compared with adjacent non-HCC tissues (P < 0.001), and the area under the curve of the low miR-101 level for HCC diagnosis was 0.925 (P < 0.001). The pooled summary receiver operator characteristic (SROC) of miR-101-3p was 0.86, and the combined SROC curve of miR-101-5p was 0.80. Bioinformatic analysis showed that the target genes of both miR-101-3p and miR-101-5p are involved in several pathways that are associated with HCC. The hub genes for miR-101-3p and miR-101-5p were also found. Our results suggested that both miR-101-3p and miR-101-5p might be potential diagnostic markers in HCC, and that they exert their functions via targeting various prospective genes in the same pathways.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Yu-Yan Pang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Rong-Quan He
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Peng Lin
- Department of Ultrasonography First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Jie-Mei Cen
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Hong Yang
- Department of Ultrasonography First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Jie Ma
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Gang Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| |
Collapse
|
31
|
Stevens JR, Herrick JS, Wolff RK, Slattery ML. Identifying factors associated with the direction and significance of microRNA tumor-normal expression differences in colorectal cancer. BMC Cancer 2017; 17:707. [PMID: 29084506 PMCID: PMC5663119 DOI: 10.1186/s12885-017-3690-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023] Open
Abstract
Background microRNAs are small non-protein-coding RNA molecules that regulate gene expression, and have a potential epigenetic role in disease progression and survival of colorectal cancer. In terms of tumor-normal expression differences, many microRNAs exhibit evidence of being up-regulated in some subjects but down-regulated in others, or are dysregulated only for a subset of the population. We present and implement an approach to identify factors (lifestyle, tumor molecular phenotype, and survival-related) that are associated with the direction and/or significance of these microRNAs’ tumor-normal expression differences in colorectal cancer. Methods Using expression data for 1394 microRNAs and 1836 colorectal cancer subjects (each with both tumor and normal samples), we perform a dip test to identify microRNAs with multimodal distributions of tumor-normal expression differences. For proximal, distal, and rectal tumor sites separately, these microRNAs are tested for tumor-normal differential expression using a signed rank test, both overall and within levels of each lifestyle, tumor molecular phenotype, and survival-related factor. Appropriate adjustments are made to control the overall FDR. Results We identify hundreds of microRNAs whose direction and/or significance of tumor-normal differential expression is associated with one or more lifestyle, tumor molecular phenotype, or survival-related factors. Conclusions The results of this study demonstrate the benefit to colorectal cancer researchers to consider multiple subject-level factors when studying dysregulation of microRNAs, whose tumor-related changes in expression can be associated with multiple factors. Our results will serve as a publicly-available resource to provide clarifying information about various factors associated with the direction and significance of tumor-normal differential expression of microRNAs in colorectal cancer. Electronic supplementary material The online version of this article (10.1186/s12885-017-3690-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, USA.
| | - Jennifer S Herrick
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Logan, USA
| | - Roger K Wolff
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Logan, USA
| | - Martha L Slattery
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Logan, USA
| |
Collapse
|
32
|
Hou Y, Li L, Ju Y, Lu Y, Chang L, Xiang X. MiR-101-3p Regulates the Viability of Lung Squamous Carcinoma Cells via Targeting EZH2. J Cell Biochem 2017; 118:3142-3149. [PMID: 27966775 DOI: 10.1002/jcb.25836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
Abstract
The aim of this study was to investigate the effects of miR-101-3p on the viability, migration, invasion, and mitosis of lung squamous carcinoma cells by inhibiting EZH2. In this study, RT-qPCR was used to detect the expression of miR-101-3p and EZH2 in both tissues and cells at RNA level. The dual luciferase reporter gene system was used to determine whether there was targeting relationship between miR-101-3p and EZH2-3'UTR. Western Blot was used to detect the expression of EZH2 as well as the proliferation and invasion related proteins. The CCK-8 assay, Transwell invasion assay, wound healing assay and flow cytometry were conducted to test the cell viability, invasion, migration and apoptosis. The results of RT-qPCR and Western blot showed that miR-101-3p was low-expressed and EZH2 was overexpressed in lung squamous cell carcinoma tissues and cells. Meanwhile the Western blot confirmed the effects of EZH2 expression on the proliferation and invasion of carcinoma cells. The results of luciferase assay and RT-qPCR showed that miR-101-3p had a negative regulation effect on EZH2. The CCK-8 assay, Transwell invasion assay, wound healing assay and flow cytometry results showed that the inhibition of EZH2 or the up-regulation of miR-101-3p inhibited the viability, migration, invasion and cell cycle but promoted cell apoptosis of lung squamous cell carcinoma. MiR-101-3p could inhibit the viability, migration, invasion, and cell cycle of lung squamous carcinoma cells by inhibiting the EZH2. J. Cell. Biochem. 118: 3142-3149, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, P.R.China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, P.R.China
| | - Yunhe Ju
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, P.R.China
| | - Yulin Lu
- Nursing School, Kunming Medical University, Kunming 650118, P.R.China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, P.R.China
| | - Xudong Xiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, P.R.China
| |
Collapse
|
33
|
Slattery ML, Pellatt AJ, Lee FY, Herrick JS, Samowitz WS, Stevens JR, Wolff RK, Mullany LE. Infrequently expressed miRNAs influence survival after diagnosis with colorectal cancer. Oncotarget 2017; 8:83845-83859. [PMID: 29137387 PMCID: PMC5663559 DOI: 10.18632/oncotarget.19863] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Half of miRNAs expressed in colorectal tissue are expressed < 50% of the population. Many infrequently expressed miRNAs have low levels of expression. We hypothesize that less frequently expressed miRNAs, when expressed at higher levels, influence both disease stage and survival after diagnosis with colorectal cancer (CRC); low levels of expression may be background noise. We examine 304 infrequently expressed miRNAs in 1893 population-based cases of CRC with paired carcinoma and normal mucosa miRNA profiles. We evaluate miRNAs with disease stage and survival after adjusting for age, study center, sex, MSI status, and AJCC stage. These miRNAs were further evaluated with RNA-Seq data to identify miRNA::mRNA associations that may provide insight into the functionality of miRNAs. Eleven miRNAs were associated with advanced disease stage among colon cancer patients (Q value = 0.10). Eight infrequently expressed miRNAs influenced survival if highly expressed in overall CRC. Of these, five increased likelihood of dying if they were highly expressed, i.e. miR-124-3p, miR-143-5p, miR-145-3p, miR31-5p, and miR-99b-5p, while three were associated with better survival if highly expressed, i.e. miR-362-5p, miR-374a-5p, and miR-590-5p. Thirteen miRNAs infrequently expressed in colon-specific carcinoma tissue were associated with CRC survival if highly expressed. Evaluation of miRNAs::mRNA associations showed that mRNA expression influenced by infrequently expressed miRNA contributed to networks and pathways shown to influence disease progression and prognosis. Our large study enabled us to examine the implications of infrequently expressed miRNAs after removal of background noise. These results require replication in other studies. Confirmation of our findings in other studies could lead to important markers for prognosis.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Lila E Mullany
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
34
|
Long non-coding RNA NEAT1 regulates epithelial membrane protein 2 expression to repress nasopharyngeal carcinoma migration and irradiation-resistance through miR-101-3p as a competing endogenous RNA mechanism. Oncotarget 2017; 8:70156-70171. [PMID: 29050268 PMCID: PMC5642543 DOI: 10.18632/oncotarget.19596] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/29/2017] [Indexed: 02/05/2023] Open
Abstract
The altered expression of long non-coding RNAs (lncRNAs) is often related to carcinogenesis, metastasis and resistance to radiation or chemotherapy. In the current study, cDNA microarray analysis found that NEAT1 expression was reduced in nasopharyngeal carcinoma (NPC) patients and that it regulated NPC progression. However, the detailed mechanisms of NEAT1 in NPC were unclear. NEAT1 repressed NPC cell growth, invasion and radiation resistance in vitro and tumor metastasis in vivo. In addition, the results of an approach integrating bioinformatics, luciferase reporter assays and RNA immunoprecipitation indicated that NEAT1 antagonized miR-101-3p through a competing endogenous RNA (ceRNA) mechanism and that the interaction between NEAT1 and EMP2 was miR-101-3p dependent. Our results showed a novel connection of NEAT1, miR-101-3p and EMP2 in NPC migration and radiation resistance.
Collapse
|
35
|
Ma X, Bai J, Xie G, Liu Y, Shuai X, Tao K. Prognostic significance of microRNA-101 in solid tumor: A meta-analysis. PLoS One 2017; 12:e0180173. [PMID: 28742860 PMCID: PMC5526582 DOI: 10.1371/journal.pone.0180173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/12/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-101 has been reported as an important factor in carcinogenesis of several malignant tumors. However, its actual role in prognosis among solid malignancies remains unclear. Accordingly, we performed this meta-analysis aiming to identify prognostic significance of miR-101 in solid tumor. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for overall survival (OS) or disease-free survival (DFS)/metastasis-free survival (MFS)/progression-free survival (PFS)/relapse-free survival (RFS)/time-to progression (TTP) were estimated with random effects or fixed effects models on the basis of heterogeneity. Subgroup analysis, sensitive analysis and meta-regression analysis were also conducted to clarify the possible confounding factors and investigate the source of heterogeneity. Publication bias was evaluated by using Begg’s and Egger’s tests. A total of 21 studies containing 3753 cases were selected into our quantitative analysis via electronic database search. A lower expression of miR-101 was significantly associated with worse OS (HR = 0.66, 95%CI [0.52–0.85], P = 0.001) and PFS (HR = 0.70, 95%CI [0.51–0.95], P = 0.023) in patients with solid tumor. The under-expression of miRNA-101 is a credible indicator of poorer prognosis in several of solid malignancies.
Collapse
Affiliation(s)
- Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jie Bai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Gengchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Yulin Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xiaoming Shuai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
36
|
Hu J, Wu C, Zhao X, Liu C. The prognostic value of decreased miR-101 in various cancers: a meta-analysis of 12 studies. Onco Targets Ther 2017; 10:3709-3718. [PMID: 28769574 PMCID: PMC5533486 DOI: 10.2147/ott.s141652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A consensus regarding the prognostic value of decreased miR-101 in human cancers has not been reached. This study aimed to comprehensively investigate the internal associations between loss of miR-101 expression and prognostic implications in patients with cancer. MATERIALS AND METHODS All relevant literature in electronic databases, including PubMed, ISI Web of Science, and Embase, up to March 1, 2017 were searched. Correlations between decreased miR-101 and clinicopathological parameters were defined by odds ratios (ORs). The degree of association between reduced miR-101 and survival outcome was evaluated by pooled hazard ratios (HRs) and relevant 95% CIs. RESULTS Twelve eligible studies with 2,088 patients were included in this meta-analysis. Decreased miR-101 expression was closely connected with poor overall survival, with a pooled HR of 2.15 (95% CI 1.71-2.7, P<0.001). This correlation was also revealed when stratified analysis was conducted with respect to ethnicity, cancer type, sample size, specimen source, and analysis model. However, decreased miR-101 was not associated with disease-free survival, recurrence-free survival, or progression-free survival, with a pooled HR of 1.59 (95% CI 0.83-3.03, P=0.128), despite a positive trend. In addition, reduced miR-101 was intimately related to poorer tumor differentiation (OR 2.17, 95% CI 1.14-4.13; P=0.019), advanced tumor classification (OR 5.25, 95% CI 3.39-8.12; P<0.001), and higher TNM stage (OR 6.18, 95% CI 3.79-10.09; P<0.001). CONCLUSION Our findings suggest that loss of miR-101 expression is correlated with worse overall survival in a variety of cancers, and could serve as a predictive indicator for clinicopathological features. Furthermore, miR-101 may become a feasible therapeutic target in most human cancers.
Collapse
Affiliation(s)
- Jianpei Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueying Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaodong Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Conde-Muiño R, Cano C, Sánchez-Martín V, Herrera A, Comino A, Medina PP, Palma P, Cuadros M. Preoperative chemoradiotherapy for rectal cancer: the sensitizer role of the association between miR-375 and c-Myc. Oncotarget 2017; 8:82294-82302. [PMID: 29137264 PMCID: PMC5669890 DOI: 10.18632/oncotarget.19393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Administration of chemoradiation before tumor resection has revolutionized the management of locally advanced rectal cancer, but many patients have proven resistant to this preoperative therapy. Our group recently reported a negative correlation between c-Myc gene expression and this resistance. In the present study, integrated analysis of miRNA and mRNA expression profiles was conducted in 45 pre-treatment rectal tumors in order to analyze the expressions of miRNAs and c-Myc and their relationship with clinicopathological factors and patient survival. Twelve miRNAs were found to be differentially expressed by responders and non-responders to the chemoradiation. Functional classification revealed an association between the differentially expressed miRNAs and c-Myc. Quantitative real-time PCR results showed that miRNA-148 and miRNA-375 levels were both significantly lower in responders than in non-responders. Notably, a significant negative correlation was found between miRNA-375 expression and c-Myc expression. According to these findings, miRNA-375 and its targeted c-Myc may be useful as a predictive biomarker of the response to neoadjuvant treatment in patients with locally advanced rectal cancer.
Collapse
Affiliation(s)
- Raquel Conde-Muiño
- Division of Colon & Rectal Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Victoria Sánchez-Martín
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - Antonio Herrera
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Ana Comino
- Division of Colon & Rectal Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - Pedro P Medina
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Pablo Palma
- Division of Colon & Rectal Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - Marta Cuadros
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| |
Collapse
|
38
|
Slattery ML, Herrick JS, Stevens JR, Wolff RK, Mullany LE. An Assessment of Database-Validated microRNA Target Genes in Normal Colonic Mucosa: Implications for Pathway Analysis. Cancer Inform 2017; 16:1176935117716405. [PMID: 28690395 PMCID: PMC5484592 DOI: 10.1177/1176935117716405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/28/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Determination of functional pathways regulated by microRNAs (miRNAs), while an essential step in developing therapeutics, is challenging. Some miRNAs have been studied extensively; others have limited information. In this study, we focus on 254 miRNAs previously identified as being associated with colorectal cancer and their database-identified validated target genes. METHODS We use RNA-Seq data to evaluate messenger RNA (mRNA) expression for 157 subjects who also had miRNA expression data. In the replication phase of the study, we replicated associations between 254 miRNAs associated with colorectal cancer and mRNA expression of database-identified target genes in normal colonic mucosa. In the discovery phase of the study, we evaluated expression of 18 miR-NAs (those with 20 or fewer database-identified target genes along with miR-21-5p, miR-215-5p, and miR-124-3p which have more than 500 database-identified target genes) with expression of 17 434 mRNAs to identify new targets in colon tissue. Seed region matches between miRNA and newly identified targeted mRNA were used to help determine direct miRNA-mRNA associations. RESULTS From the replication of the 121 miRNAs that had at least 1 database-identified target gene using mRNA expression methods, 97.9% were expressed in normal colonic mucosa. Of the 8622 target miRNA-mRNA associations identified in the database, 2658 (30.2%) were associated with gene expression in normal colonic mucosa after adjusting for multiple comparisons. Of the 133 miRNAs with database-identified target genes by non-mRNA expression methods, 97.2% were expressed in normal colonic mucosa. After adjustment for multiple comparisons, 2416 miRNA-mRNA associations remained significant (19.8%). Results from the discovery phase based on detailed examination of 18 miRNAs identified more than 80 000 miRNA-mRNA associations that had not previously linked to the miRNA. Of these miRNA-mRNA associations, 15.6% and 14.8% had seed matches for CRCh38 and CRCh37, respectively. CONCLUSIONS Our data suggest that miRNA target gene databases are incomplete; pathways derived from these databases have similar deficiencies. Although we know a lot about several miRNAs, little is known about other miRNAs in terms of their targeted genes. We encourage others to use their data to continue to further identify and validate miRNA-targeted genes.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Jennifer S Herrick
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | - John R Stevens
- Department of Mathematics & Statistics, Utah State University, Logan, UT, USA
| | - Roger K Wolff
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Lila E Mullany
- Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
39
|
Li Y, Sun Z, Liu B, Shan Y, Zhao L, Jia L. Tumor-suppressive miR-26a and miR-26b inhibit cell aggressiveness by regulating FUT4 in colorectal cancer. Cell Death Dis 2017. [PMID: 28640257 PMCID: PMC5520934 DOI: 10.1038/cddis.2017.281] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastasis is a multistep molecular network process, which is the major cause of death in patients with colorectal cancer (CRC). MicroRNAs (miRNAs) play pivotal roles in tumorigenesis as either tumor suppressors or oncogenes. Increased expression of fucosyltransferase4 (FUT4) has been reported to be associated with the invasive and metastatic properties of CRC. Here to identify potential key miRNAs and their target genes for colorectal cancer (CRC), we compared miRNA expression profiles between metastatic CRC cell SW620 and primary CRC cell SW480. Microarray analysis revealed that there were 85 differentially expressed miRNAs in SW620 cells with highly metastatic potential compared to SW480 cells with lowly metastatic potential. The expression of miR-26a and miR-26b were lower in SW620 cells than in SW480 cells, as well as downregulated in tumor tissues than in adjacent normal tissues of CRC patients. By applying bioinformatic approaches for the prediction of miRNA targeting 3'-UTR of FUT4, we identified FUT4 as one of the miR-26a/26b-targeted genes, while the expression of the target gene exhibited patterns opposite to that of miR-26a/26b in CRC cell lines, tumor tissues and corresponding adjacent tissues. Forced miR-26a/26b expression affected migratory behavior of CRC cells and FUT4 expression, while altered expression of FUT4 in CRC cell lines modulated progression upon transfection with miR-26a/26b mimic or inhibiter. FUT4 also regulated directly aggressiveness of SW620 and SW480 cells. Moreover, statistical analyses revealed that low miR-26a/26b levels and high expression of FUT4 were positively correlated with poor overall survival. The identified CRC-restricted miR-26a and miR-26b might be implicated in cancer progression via their target gene FUT4, suggesting their potential usage in CRC treatment.
Collapse
Affiliation(s)
- Yang Li
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| | - Zheng Sun
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Liaoning Province, Dalian 116044, China
| |
Collapse
|
40
|
Wang T, Jiang Y, Chu L, Wu T, You J. Alpinumisoflavone suppresses tumour growth and metastasis of clear-cell renal cell carcinoma. Am J Cancer Res 2017; 7:999-1015. [PMID: 28469971 PMCID: PMC5411806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 06/07/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer. The present study is aimed to investigate the role of alpinumisoflavone (AIF), a naturally occurring flavonoid compound, in ccRCC and the underlying mechanism. In this study, miR-101 has been identified as a novel therapeutic target, which exerts anti-tumor effect on ccRCC by directly targeting RLIP76. Moreover, our results showed that AIF was able to increase the expression of miR-101 by suppressing Akt signalling. Our findings in this study provided experimental evidence that AIF has the potential to be used as an agent in the treatment of ccRCC.
Collapse
Affiliation(s)
- Tingting Wang
- Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of MedicineShanghai 200011, China
| | - Yuhua Jiang
- Tumor Hospital of QingdaoShandong 266042, China
| | - Lei Chu
- Tumor Hospital of QingdaoShandong 266042, China
| | - Tianhui Wu
- Qingdao 5th People’s HospitalQingdao 266002, Shandong, China
| | - Jie You
- Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of MedicineShanghai 200011, China
| |
Collapse
|
41
|
Mullany LE, Herrick JS, Wolff RK, Stevens JR, Slattery ML. Association of cigarette smoking and microRNA expression in rectal cancer: Insight into tumor phenotype. Cancer Epidemiol 2016; 45:98-107. [PMID: 27780077 DOI: 10.1016/j.canep.2016.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/27/2016] [Accepted: 10/17/2016] [Indexed: 02/08/2023]
Abstract
Smoking is known to influence messenger RNA (mRNA) expression in colorectal cancer (CRC) cases. As microRNAs (miRNAs) are known repressors of mRNAs, we hypothesize that smoking may influence miRNA expression, thus altering mRNA expression. Our sample consisted of 1447 CRC cases that had normal colorectal mucosa and carcinoma miRNA data and lifestyle data. We examined current smoking, current versus never and former versus never (C/F/N) smoking1, and pack-years smoked with miRNA expression in normal mucosa as well as differential miRNA expression between paired normal and carcinoma tissue for colon and rectal tissue to determine associations between smoking and miRNA expression. We adjusted for multiple comparisons using the Benjamini Hochberg false discovery rate (FDR). Significant associations were seen for rectal differential miRNA expression only. We analyzed miRNAs significantly associated with smoking with CIMP and MSI status, using a polytomous logistic regression. Two hundred and thirty-one miRNAs were differentially expressed with current smoking, 172 with C/F/N, and 206 with pack-years smoked; 111 were associated with all three. Forty-three miRNAs were unique to current smoking, 14 were unique to C/F/N and 57 were unique to pack years smoked. Of the 306 unique miRNAs associated with cigarette smoking, 41 were inversely associated and 200 were directly associated with CIMP high or MSI tumor molecular phenotype for either colon or rectal cancer. Our results suggest that cigarette smoking can alter miRNA expression and, given associations with CIMP high and MSI tumor molecular phenotype, it is possible that smoking influences tumor phenotype through altered miRNA expression.
Collapse
Affiliation(s)
- Lila E Mullany
- Department of Internal Medicine, University of Utah, 383 Colorow Bldg., Salt Lake City, UT 84108, USA.
| | - Jennifer S Herrick
- Department of Internal Medicine, University of Utah, 383 Colorow Bldg., Salt Lake City, UT 84108, USA.
| | - Roger K Wolff
- Department of Internal Medicine, University of Utah, 383 Colorow Bldg., Salt Lake City, UT 84108, USA.
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, 3900 Old Main Hill, Logan, UT 84322, USA.
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, 383 Colorow Bldg., Salt Lake City, UT 84108, USA.
| |
Collapse
|