1
|
Naessens F, Demuynck R, Vershinina O, Efimova I, Saviuk M, De Smet G, Mishchenko TA, Vedunova MV, Krysko O, Catanzaro E, Krysko DV. CX3CL1 release during immunogenic apoptosis is associated with enhanced anti-tumour immunity. Front Immunol 2024; 15:1396349. [PMID: 39011040 PMCID: PMC11246865 DOI: 10.3389/fimmu.2024.1396349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Immunogenic cell death (ICD) has emerged as a novel option for cancer immunotherapy. The key determinants of ICD encompass antigenicity (the presence of antigens) and adjuvanticity, which involves the release of damage-associated molecular patterns (DAMPs) and various cytokines and chemokines. CX3CL1, also known as neurotactin or fractalkine, is a chemokine involved in cellular signalling and immune cell interactions. CX3CL1 has been denoted as a "find me" signal that stimulates chemotaxis of immune cells towards dying cells, facilitating efferocytosis and antigen presentation. However, in the context of ICD, it is uncertain whether CX3CL1 is an important mediator of the effects of ICD. Methods In this study, we investigated the intricate role of CX3CL1 in immunogenic apoptosis induced by mitoxantrone (MTX) in cancer cells. The Luminex xMAP technology was used to quantify murine cytokines, chemokines and growth factors to identify pivotal regulatory cytokines released by murine fibrosarcoma MCA205 and melanoma B16-F10 cells undergoing ICD. Moreover, a murine tumour prophylactic vaccination model was employed to analyse the effect of CX3CL1 on the activation of an adaptive immune response against MCA205 cells undergoing ICD. Furthermore, thorough analysis of the TCGA-SKCM public dataset from 98 melanoma patients revealed the role of CX3CL1 and its receptor CX3CR1 in melanoma patients. Results Our findings demonstrate enhanced CX3CL1 release from apoptotic MCA205 and B16-F10 cells (regardless of the cell type) but not if they are undergoing ferroptosis or accidental necrosis. Moreover, the addition of recombinant CX3CL1 to non-immunogenic doses of MTX-treated, apoptotically dying cancer cells in the murine prophylactic tumour vaccination model induced a robust immunogenic response, effectively increasing the survival of the mice. Furthermore, analysis of melanoma patient data revealed enhanced survival rates in individuals exhibiting elevated levels of CD8+ T cells expressing CX3CR1. Conclusion These data collectively underscore the importance of the release of CX3CL1 in eliciting an immunogenic response against dying cancer cells and suggest that CX3CL1 may serve as a key switch in conferring immunogenicity to apoptosis.
Collapse
Affiliation(s)
- Faye Naessens
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Robin Demuynck
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Olga Vershinina
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Mariia Saviuk
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Greet De Smet
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elena Catanzaro
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Dmitri V. Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
2
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
3
|
Zhang C, Zhang Y, Zhuang R, Yang K, Chen L, Jin B, Ma Y, Zhang Y, Tang K. Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis. Int J Mol Sci 2024; 25:4451. [PMID: 38674036 PMCID: PMC11050295 DOI: 10.3390/ijms25084451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| |
Collapse
|
4
|
Stangret A, Sadowski KA, Jabłoński K, Kochman J, Opolski G, Grabowski M, Tomaniak M. Chemokine Fractalkine and Non-Obstructive Coronary Artery Disease-Is There a Link? Int J Mol Sci 2024; 25:3885. [PMID: 38612695 PMCID: PMC11012077 DOI: 10.3390/ijms25073885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Non-obstructive coronary artery disease (NO-CAD) constitutes a heterogeneous group of conditions collectively characterized by less than 50% narrowing in at least one major coronary artery with a fractional flow reserve (FFR) of ≤0.80 observed in coronary angiography. The pathogenesis and progression of NO-CAD are still not fully understood, however, inflammatory processes, particularly atherosclerosis and microvascular dysfunction are known to play a major role in it. Chemokine fractalkine (FKN/CX3CL1) is inherently linked to these processes. FKN/CX3CL1 functions predominantly as a chemoattractant for immune cells, facilitating their transmigration through the vessel wall and inhibiting their apoptosis. Its concentrations correlate positively with major cardiovascular risk factors. Moreover, promising preliminary results have shown that FKN/CX3CL1 receptor inhibitor (KAND567) administered in the population of patients with ST-elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI), inhibits the adverse reaction of the immune system that causes hyperinflammation. Whereas the link between FKN/CX3CL1 and NO-CAD appears evident, further studies are necessary to unveil this complex relationship. In this review, we critically overview the current data on FKN/CX3CL1 in the context of NO-CAD and present the novel clinical implications of the unique structure and function of FKN/CX3CL1 as a compound which distinctively contributes to the pathomechanism of this condition.
Collapse
Affiliation(s)
- Aleksandra Stangret
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland;
| | - Karol Artur Sadowski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Konrad Jabłoński
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Janusz Kochman
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Grzegorz Opolski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Marcin Grabowski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Mariusz Tomaniak
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| |
Collapse
|
5
|
Sharma A, Singh P, Jha R, Almatroodi SA, Alrumaihi F, Rahmani AH, Alharbi HO, Dohare R, Syed MA. Exploring the role of miR-200 family in regulating CX3CR1 and CXCR1 in lung adenocarcinoma tumor microenvironment: implications for therapeutic intervention. Sci Rep 2023; 13:16333. [PMID: 37770496 PMCID: PMC10539366 DOI: 10.1038/s41598-023-43484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common malignant subtype of lung cancer (LC). miR-200 family is one of the prime miR regulators of epithelial-mesenchymal transition (EMT) and worst overall survival (OS) in LC patients. The study aimed to identify and validate the key differentially expressed immune-related genes (DEIRGs) regulated by miR-200 family which may serve for therapeutic aspects in LUAD tumor microenvironment (TME) by affecting cancer progression, invasion, and metastasis. The study identified differentially expressed miRNAs (DEMs) in LUAD, consisting of hsa-miR-200a-3p and hsa-miR-141-5p, respectively. Two highest-degree subnetwork motifs identified from 3-node miRNA FFL were: (i) miR-200a-3p-CX3CR1-SPIB and (ii) miR-141-5p-CXCR1-TBX21. TIMER analysis showed that the expression levels of CX3CR1 and CXCR1 were significantly positively correlated with infiltrating levels of M0-M2 macrophages and natural killer T (NKT) cells. The OS of LUAD patients was significantly affected by lower expression levels of hsa-miR-200a-3p, CX3CR1 and SPIB. These DEIRGs were validated using the human protein atlas (HPA) web server. Further, we validated the regulatory role of hsa-miR-200a-3p in an in-vitro indirect co-culture model using conditioned media from M0, M1 and M2 polarized macrophages (THP-1) and LUAD cell lines (A549 and H1299 cells). The results pointed out the essential role of hsa-miR-200a-3p regulated CX3CL1 and CX3CR1 expression in progression of LC TME. Thus, the study augments a comprehensive understanding and new strategies for LUAD treatment where miR-200 family regulated immune-related genes, especially chemokine receptors, which regulate the metastasis and invasion of LUAD, leading to the worst associated OS.
Collapse
Affiliation(s)
- Archana Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rishabh Jha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
6
|
Chaudhri A, Bu X, Wang Y, Gomez M, Torchia JA, Hua P, Hung SH, Davies MA, Lizee GA, von Andrian U, Hwu P, Freeman GJ. The CX3CL1-CX3CR1 chemokine axis can contribute to tumor immune evasion and blockade with a novel CX3CR1 monoclonal antibody enhances response to anti-PD-1 immunotherapy. Front Immunol 2023; 14:1237715. [PMID: 37771579 PMCID: PMC10524267 DOI: 10.3389/fimmu.2023.1237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
CX3CL1 secreted in the tumor microenvironment serves as a chemoattractant playing a critical role in metastasis of CX3CR1 expressing cancer cells. CX3CR1 can be expressed in both cancer and immune-inhibitory myeloid cells to facilitate their migration. We generated a novel monoclonal antibody against mouse CX3CR1 that binds to CX3CR1 and blocks the CX3CL1-CX3CR1 interaction. We next explored the immune evasion strategies implemented by the CX3CL1-CX3CR1 axis and find that it initiates a resistance program in cancer cells that results in 1) facilitation of tumor cell migration, 2) secretion of soluble mediators to generate a pro-metastatic niche, 3) secretion of soluble mediators to attract myeloid populations, and 4) generation of tumor-inflammasome. The CX3CR1 monoclonal antibody reduces migration of tumor cells and decreases secretion of immune suppressive soluble mediators by tumor cells. In combination with anti-PD-1 immunotherapy, this CX3CR1 monoclonal antibody enhances survival in an immunocompetent mouse colon carcinoma model through a decrease in tumor-promoting myeloid populations. Thus, this axis is involved in the mechanisms of resistance to anti-PD-1 immunotherapy and the combination therapy can overcome a portion of the resistance mechanisms to anti-PD-1.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Yunfei Wang
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Michael Gomez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - James A. Torchia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ping Hua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory A. Lizee
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ulrich von Andrian
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Patrick Hwu
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Wu CY, Peng PW, Renn TY, Lee CJ, Chang TM, Wei AIC, Liu JF. CX3CL1 induces cell migration and invasion through ICAM-1 expression in oral squamous cell carcinoma cells. J Cell Mol Med 2023. [PMID: 37082943 DOI: 10.1111/jcmm.17750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCβ/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCβ, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCβ/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.
Collapse
Affiliation(s)
- Chia-Yu Wu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Pei-Wen Peng
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ting-Yi Renn
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei City, Taiwan
| | - Tsung-Ming Chang
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| |
Collapse
|
8
|
Johnson CS, Cook LM. Osteoid cell-derived chemokines drive bone-metastatic prostate cancer. Front Oncol 2023; 13:1100585. [PMID: 37025604 PMCID: PMC10070788 DOI: 10.3389/fonc.2023.1100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
One of the greatest challenges in improving prostate cancer (PCa) survival is in designing new therapies to effectively target bone metastases. PCa regulation of the bone environment has been well characterized; however, bone-targeted therapies have little impact on patient survival, demonstrating a need for understanding the complexities of the tumor-bone environment. Many factors contribute to creating a favorable microenvironment for prostate tumors in bone, including cell signaling proteins produced by osteoid cells. Specifically, there has been extensive evidence from both past and recent studies that emphasize the importance of chemokine signaling in promoting PCa progression in the bone environment. Chemokine-focused strategies present promising therapeutic options for treating bone metastasis. These signaling pathways are complex, with many being produced by (and exerting effects on) a plethora of different cell types, including stromal and tumor cells of the prostate tumor-bone microenvironment. This review highlights an underappreciated molecular family that should be interrogated for treatment of bone metastatic prostate cancer (BM-PCa).
Collapse
Affiliation(s)
- Catherine S. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States
| | - Leah M. Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Leah M. Cook,
| |
Collapse
|
9
|
Implications of fractalkine on glial function, ablation and glial proteins/receptors/markers—understanding its therapeutic usefulness in neurological settings: a narrative review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Fractalkine (CX3CL1) is a chemokine predominantly released by neurons. As a signaling molecule, CX3CL1 facilitates talk between neurons and glia. CX3CL1 is considered as a potential target which could alleviate neuroinflammation. However, certain controversial results and ambiguous role of CX3CL1 make it inexorable to decipher the overall effects of CX3CL1 on the physiopathology of glial cells.
Main body of the abstract
Implications of cross-talk between CX3CL1 and different glial proteins/receptors/markers will give a bird eye view of the therapeutic significance of CX3CL1. Keeping with the need, this review identifies the effects of CX3CL1 on glial physiopathology, glial ablation, and gives a wide coverage on the effects of CX3CL1 on certain glial proteins/receptors/markers.
Short conclusion
Pinpoint prediction of the therapeutic effect of CX3CL1 on neuroinflammation needs further research. This is owing to certain obscure roles and implications of CX3CL1 on different glial proteins/receptors/markers, which are crucial under neurological settings. Further challenges are imposed due to the dichotomous roles played by CX3CL1. The age-old chemokine shows many newer scopes of research in near future. Thus, overall assessment of the effect of CX3CL1 becomes crucial prior to its administration in neuroinflammation.
Collapse
|
10
|
Ren Z, Chen S, Lv H, Peng L, Yang W, Chen J, Wu Z, Wan C. Effect of Bifidobacterium animalis subsp. lactis SF on enhancing the tumor suppression of irinotecan by regulating the intestinal flora. Pharmacol Res 2022; 184:106406. [PMID: 35987480 DOI: 10.1016/j.phrs.2022.106406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
The gut microbiota plays a role in tumor therapy by participating in immune regulation. Here, we demonstrated through 8-day probiotic supplementation experiments and fecal microbiota transplantation experiments that Bifidobacterium animalis subsp. lactis SF enhanced the antitumor effect of irinotecan and prevented the occurrence of intestinal damage by modulating the gut microbiota and reducing the relative abundance of pro-inflammatory microbiota. Therefore, the intestinal inflammation was inhibited, the TGF-β leakage was reduced, and the PI3K/AKT pathway activation was inhibited. Thus, the tumor apoptotic autophagy was finally promoted. Simultaneously, the reduction of TGF-β relieved the immunosuppression caused by CPT-11, promoted the differentiation of CD4+ and CD8+ T cells in tumor tissue, and consequently inhibited tumor growth and invasion. This study disclosed the mechanism of B. lactis SF assisting CPT-11 in antitumor activity and suggested that B. lactis SF plays a new role in anticancer effects as a nutritional intervention.
Collapse
Affiliation(s)
- Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Shufang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Wanyu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jiahui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| | - Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
11
|
Expression of CX3CL1 and CCL28 in Spinal Metastases of Lung Adenocarcinoma and Their Correlation with Clinical Features and Prognosis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2580419. [PMID: 35494513 PMCID: PMC9050252 DOI: 10.1155/2022/2580419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022]
Abstract
Lung adenocarcinoma is the most common non-small-cell lung cancer. In this paper, we aim to investigate the expression of chemokine ligand 1 (cx3cl1) and chemokine ligand 28 (CCL28) in spinal metastases of lung adenocarcinoma and their correlation with clinical features and prognosis. We analyzed the clinical data of 40 patients with lung adenocarcinoma and spinal metastases who underwent surgery in our hospital from January 2018 to January 2021 retrospectively. The expression levels of cx3cl1 and CCL28 in bone metastases were detected by immunohistochemistry, and the staining results were sorted and classified. Combined with the follow-up results and clinicopathological data, we statistically analyzed the expression of cx3cl1 and CCL28 in spinal bone metastases and their correlation with prognosis. Among the 40 patients with spinal metastasis of lung adenocarcinoma, 7 cases were strongly positive for cx3cl1, 25 cases were moderately positive, and 8 cases were weakly positive and negative. CCL28 was strongly positive in 9 cases, moderately positive in 26 cases, weakly positive and negative in 5 cases. The expression of cx3cl1 was correlated with ECOG score (P = 0.005) and visceral organ metastasis (P = 0.004), but not with age, sex, and the number of bone metastases (P > 0.05). The expression of CCL28 was correlated with ECOG score (P = 0.022) and visceral organ metastasis (P = 0.003), but not with age, sex, and the number of bone metastases (P > 0.05). The OS of patients with strong cx3cl1 positive was significantly shorter than that of patients with medium positive and weak positive (P < 0.001). The survival time was 10, 7, and 4 months, respectively. The OS of patients with strong positive CCL28 was significantly shorter than that of patients with medium positive and weak positive CCL28 (P = 0.004). The survival time was 12, 8, and 4 months, respectively. Univariate analysis showed that ECOG score (P < 0.001), chemotherapy (P = 0.032), visceral organ metastasis (P = 0.002), cx3cl1 expression (P < 0.001), and CCL28 expression (P = 0.004) were the risk factors of OS. Cox regression analysis showed that the expression of cx3cl1 was an independent risk factor for OS in patients with spinal metastasis of lung adenocarcinoma (P = 0.044). Cx3cl1 and CCL28 were highly/strongly positive in spinal metastases of lung adenocarcinoma. The level of cx3cl1 can be used as an index to judge the clinical prognosis of patients with spinal metastasis of lung adenocarcinoma, which can better reflect the prognosis of patients than CCL28.
Collapse
|
12
|
Woźny Ł, Żywiec J, Gosek K, Kuźniewicz R, Górczyńska-Kosiorz S, Trautsolt W, Śnit M, Grzeszczak W. Association of CX3CR1 Gene Polymorphisms with Fractalkine, Fractalkine Receptor, and C-Reactive Protein Levels in Patients with Kidney Failure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042202. [PMID: 33672355 PMCID: PMC7926901 DOI: 10.3390/ijerph18042202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/22/2023]
Abstract
Fractalkine (CX3CL1) is a chemokine that plays a significant role in inflammation, one of the pathophysiological processes underlying end-stage renal disease (ESRD). Genetic factors are significantly involved in cytokine expression and have been studied as potential risk factors for chronic kidney disease (CKD). Objectives: We aimed to elucidate the association of CX3CR1 gene polymorphisms rs3732378 and rs3732379 with the levels of CX3CL1, CX3CL1 receptor (CX3CR1), as well as C-reactive protein (CRP). Patients and methods: We enrolled 198 participants, including 106 patients with ESRD and 92 controls. Peripheral blood samples were collected from each patient for genetic (rs3732378 and rs3732379 polymorphisms) and immunoenzymatic (fractalkine, CX3CR1, CRP) tests. Results: CX3CR1 and CRP levels were higher in patients with ESRD than in controls (p < 0.05). Fractalkine levels were significantly higher in ESRD patients who were homozygous for the G allele of the rs3732378 polymorphism and for the C allele of the rs3732379 polymorphism than in homozygous controls. Moreover, carriers of these alleles among patients with ESRD had significantly higher CX3CR1 levels than controls. Conclusions: The G allele of the rs3732378 polymorphism and the C allele of the rs3732379 polymorphism of the CX3CR1 gene are associated with higher CX3CL1 and CX3CR1 levels. Our study suggests that CX3CR1 gene polymorphisms could be potentially involved in the pathogenesis of ESRD, but the study needs to be replicated in a larger population with a longitudinal follow-up study. Identification of genetic factors associated with inflammation in ESRD may contribute to the development of targeted gene therapies in the future.
Collapse
|
13
|
Xiong J, Guo G, Guo L, Wang Z, Chen Z, Nan Y, Cao Y, Li R, Yang X, Dong J, Jin X, Yang W, Huang Q. Amlexanox Enhances Temozolomide-Induced Antitumor Effects in Human Glioblastoma Cells by Inhibiting IKBKE and the Akt-mTOR Signaling Pathway. ACS OMEGA 2021; 6:4289-4299. [PMID: 33644550 PMCID: PMC7906592 DOI: 10.1021/acsomega.0c05399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/04/2021] [Indexed: 05/05/2023]
Abstract
Temozolomide (TMZ), as the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM), often fails to improve the prognosis of GBM patients due to the quick development of resistance. The need for more effective management of GBM is urgent. The aim of this study is to evaluate the efficacy of combined therapy with TMZ and amlexanox, a selective inhibitor of IKBKE, for GBM. We found that the combined treatment resulted in significant induction of cellular apoptosis and the inhibition of cell viability, migration, and invasion in primary glioma cells and in the human glioma cell line, U87 MG. As expected, TMZ enhanced the expression of p-AMPK and amlexanox led to the reduction of IKBKE, with no impact on p-AMPK. Furthermore, we demonstrated that compared to other groups treated with each component alone, TMZ combined with amlexanox effectively reversed the TMZ-induced activation of Akt and inhibited the phosphorylation of mTOR. In addition, the combination treatment also clearly reduced in vivo tumor volume and prolonged median survival time in the xenograft mouse model. These results suggest that amlexanox sensitized the primary glioma cells and U87 MG cells to TMZ at least partially through the suppression of IKBKE activation and the attenuation of TMZ-induced Akt activation. Overall, combined treatment with TMZ and amlexanox may provide a promising possibility for improving the prognosis of glioblastoma patients in clinical practice.
Collapse
Affiliation(s)
- Jinbiao Xiong
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
| | - Gaochao Guo
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Lianmei Guo
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Zengguang Wang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Zhijuan Chen
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Yang Nan
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Yiyao Cao
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
| | - Ruilong Li
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Xuejun Yang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Jun Dong
- Department
of Neurosurgery, The Second Affiliated Hospital
of Soochow University, Suzhou 215004, China
| | - Xun Jin
- Tianjin
Medical University Cancer Institute and Hospital, Tianjin 300052, China
- National
Clinical Research Center for Cancer, Tianjin 300052, China
- Key
Laboratory of Cancer Prevention and Therapy, Tianjin 300052, China
- Tianjin’s
Clinical Research Center for Cancer, Tianjin 300052, China
| | - Weidong Yang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- . Tel: (+86)13820763396
| | - Qiang Huang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
- . Tel: (+86)13820689221
| |
Collapse
|
14
|
Fan M, Wu J, Li X, Jiang Y, Wang X, Bie M, Weng Y, Chen S, Chen B, An L, Zhang M, Huang G, Zhu M, Shi Q. CX 3 CL1 promotes tumour cell by inducing tyrosine phosphorylation of cortactin in lung cancer. J Cell Mol Med 2021; 25:132-146. [PMID: 33191645 PMCID: PMC7810942 DOI: 10.1111/jcmm.15887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
It has been reported that chemokine CX3 CL1 can regulate various tumours by binding to its unique receptor CX3 CR1. However, the effect of CX3 CL1-CX3 CR1 on the lung adenocarcinoma and lung squamous cell carcinoma is still unclear. Here, we showed that CX3 CL1 can further invasion and migration of lung adenocarcinoma A549 and lung squamous cell carcinoma H520. In addition, Western blot and immunofluorescence test indicated CX3 CL1 up-regulated the phosphorylation level of cortactin, which is a marker of cell pseudopodium. Meanwhile, the phosphorylation levels of c-Src and c-Abl, which are closely related to the regulation of cortactin phosphorylation, are elevated. Nevertheless, the src/abl inhibitor bosutinib and mutations of cortactin phosphorylation site could inhibit the promotion effect of CX3 CL1 on invasion and migration of A549 and H520. Moreover, these results of MTT, Hoechst staining and Western blot suggested that CX3 CL1 had no effect on the proliferation and apoptosis of A549 and H520 in vitro. The effects of CX3 CL1 were also verified by the subcutaneous tumour formation in nude mice, which showed that it could promote proliferation and invasion of A549 in vivo. In summary, our results indicated that CX3 CL1 furthered invasion and migration in lung cancer cells partly via activating cortactin, and CX3 CL1 may be a potential molecule in regulating the migration and invasion of lung cancer.
Collapse
Affiliation(s)
- Mengtian Fan
- Ministry of Education Key Laboratory of Diagnostic MedicineSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic MedicineSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Xian Li
- Department of PathologyThe first Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yingjiu Jiang
- Cardiothoracic Surgery of the First Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Xiaowen Wang
- Cardiothoracic Surgery of the First Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Mengjun Bie
- Cardiothoracic Surgery of the First Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic MedicineSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Sicheng Chen
- Cardiothoracic Surgery of the First Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Bin Chen
- Ministry of Education Key Laboratory of Diagnostic MedicineSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Liqin An
- Ministry of Education Key Laboratory of Diagnostic MedicineSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Menghao Zhang
- Ministry of Education Key Laboratory of Diagnostic MedicineSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Gaigai Huang
- Ministry of Education Key Laboratory of Diagnostic MedicineSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Mengying Zhu
- Ministry of Education Key Laboratory of Diagnostic MedicineSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic MedicineSchool of Laboratory MedicineChongqing Medical UniversityChongqingChina
| |
Collapse
|
15
|
Chao CC, Lee WF, Yang WH, Lin CY, Han CK, Huang YL, Fong YC, Wu MH, Lee IT, Tsai YH, Tang CH, Liu JF. IGFBP-3 stimulates human osteosarcoma cell migration by upregulating VCAM-1 expression. Life Sci 2020; 265:118758. [PMID: 33188835 DOI: 10.1016/j.lfs.2020.118758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
AIMS Insulin-like growth factor (IGF) signaling has been documented in several human malignancies and is thought to contribute to cellular differentiation and migration, as well as malignant progression. A major binding molecule of IGF, IGF-binding protein 3 (IGFBP-3), regulates multiple IGF effects. Here, we focused on the effect of IGFBP-3 in the motility of osteosarcoma cells and examined signaling regulation. MATERIALS AND METHODS Using a human osteosarcoma tissue array, immunohistochemical staining determined levels of IGFBP-3 expression in osteosarcoma tissue and in normal tissue. The wound healing migration assay, Transwell migration assay, luciferase reporter assay, immunofluorescence staining, Western blot and real-time quantitative PCR were performed to examine whether IGFBP-3 facilitates VCAM-1-dependent migration of osteosarcoma cells. KEY FINDINGS In this study, we found significantly higher IGFBP-3 levels in osteosarcoma tissue compared with normal healthy tissue. IGFBP-3 treatment of two human osteosarcoma cell lines promoted cell migration and upregulated levels of VCAM-1 expression via PI3K/Akt and AP-1 signaling. SIGNIFICANCE IGFBP-3 appears to be a novel therapeutic target in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Chia-Chia Chao
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hung Yang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan; Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chih-Yang Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Min-Huan Wu
- Bachelor of Science in Senior Wellness and Sports Science (SWSS), Tunghai University, Taichung, Taiwan; Tunghai University Sports Recreation and Health Management Degree Program (SRHM), Tunghai University, Taichung, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Hsin Tsai
- Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan.
| |
Collapse
|
16
|
Li N, Jiang P, Chen A, Luo X, Jing Y, Yang L, Kang D, Chen Q, Liu J, Chang J, Jellusova J, Miller H, Westerberg L, Wang CY, Gong Q, Liu C. CX3CR1 positively regulates BCR signaling coupled with cell metabolism via negatively controlling actin remodeling. Cell Mol Life Sci 2020; 77:4379-4395. [PMID: 32016488 PMCID: PMC11105092 DOI: 10.1007/s00018-019-03416-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022]
Abstract
As an important chemokine receptor, the role of CX3CR1 has been studied extensively on the migration of lymphocytes including T and B cells. Although CX3CR1+ B cells have immune suppressor properties, little is known about its role on the regulation of BCR signaling and B cell differentiation as well as the underlying molecular mechanism. We have used CX3CR1 KO mice to study the effect of CX3CR1 deficiency on BCR signaling and B cell differentiation. Interestingly, we found that proximal BCR signaling, such as the activation of CD19, BTK and SHIP was reduced in CX3CR1 KO B cells upon antigenic stimulation. However, the activation of mTORC signaling was enhanced. Mechanistically, we found that the reduced BCR signaling in CX3CR1 KO B cells was due to reduced BCR clustering, which is caused by the enhanced actin accumulation by the plasma membrane via increased activation of WASP. This caused an increased differentiation of MZ B cells in CX3CR1 KO mice and an enhanced generation of plasma cells (PC) and antibodies. Our study shows that CX3CR1 regulates BCR signaling via actin remodeling and affects B cell differentiation and the humoral immune response.
Collapse
Affiliation(s)
- Na Li
- Clinical Molecular Immunology Center, Department of Immunology, School of Medicine, Yangtze University, Jingzhou, 434023, China
| | - Panpan Jiang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anwei Chen
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xi Luo
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yukai Jing
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danqing Kang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiuyue Chen
- Clinical Molecular Immunology Center, Department of Immunology, School of Medicine, Yangtze University, Jingzhou, 434023, China
| | - Ju Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiang Chang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Julia Jellusova
- BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, 79104, Freiburg Im Breisgau, Baden-Württemberg, Germany
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Bethesda, MT, 59840, USA
| | - Lisa Westerberg
- Department of Microbiology Tumor and Cell Biology, KarolinskaInstitutet, Stockholm, 17177, Sweden
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quan Gong
- Clinical Molecular Immunology Center, Department of Immunology, School of Medicine, Yangtze University, Jingzhou, 434023, China.
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Wu W, Ren F, Guo M, Yang J, Xiao Y, Liu W. Increased expression of CX3CL1 and CX3CR1 in papillary thyroid carcinoma. Histol Histopathol 2020; 35:1189-1196. [PMID: 32975307 DOI: 10.14670/hh-18-265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CX3CL1 and its receptor CX3CR1 axis are involved in the development, progression and metastasis of many types of cancers. It has been reported that CX3CL1 and CX3CR1 expression was upregulated in some solid tumors. However, their roles in thyroid cancer remain unknown. In the present study, we investigated the expression of CX3CL1 and CX3CR1 in human papillary thyroid carcinoma (PTC) and their clinical significance. In this study, using immunohistochemistry, we examined the expression of CX3CL1 and CX3CR1 in the tissues of 26 human PTC (including 17 classical or conventional (CPTC) and 9 follicular (FVPTC) variants of PTC; 15 cases without and 11 cases with lymph node metastasis) and 10 cases of nodular goiter (NG). Compared to NG, a significant increase in the expression of CX3CL1 and CX3CR1 was found in PTC overall, as well as in CPTC and FVPTC separately. Higher CX3CL1 expression was found in CPTC than in FVPTC, but there was no significant difference in CX3CR1 expression between these subtypes of PTC. When analyzing their expressions in PTC without and with lymph node metastasis, an increased expression of CX3CL1 and CX3CR1 was observed when compared to NG respectively. There was however no significant difference in CX3CL1 and CX3CR1 expressions in PTC without lymph node metastasis when compared to PTC with lymph node metastasis. Furthermore, when compared to NG, an increased expression of CX3CL1 was correlated with an increased expression of CX3CR1 in PTC. Our data indicate that CX3CL1 and CX3CR1 can be used as tumor markers for PTC and may be potential novel targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Wei Wu
- School of Humanities and Management, Jinzhou Medical University, Jinzhou, Liaoning, China.,Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, Liaoning, China.,Liaoning Province Key Laboratory of Human Phenome Research (LPKL-HPR), Jinzhou, Liaoning, China
| | - Fu Ren
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, Liaoning, China.,Liaoning Province Key Laboratory of Human Phenome Research (LPKL-HPR), Jinzhou, Liaoning, China.,Department of Anatomy, School of Basic Medical Sciences of Shenyang Medical College, Shenyang, Liaoning, China
| | - Miao Guo
- Department of Clinical Laboratory, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jing Yang
- Department of Pathology, College of Basic Medical Sciences of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yanjie Xiao
- Department of Epidemiology, Public Health College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Liu
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, Liaoning, China.,Liaoning Province Key Laboratory of Human Phenome Research (LPKL-HPR), Jinzhou, Liaoning, China.
| |
Collapse
|
18
|
Bone Microenvironment and Osteosarcoma Metastasis. Int J Mol Sci 2020; 21:ijms21196985. [PMID: 32977425 PMCID: PMC7582690 DOI: 10.3390/ijms21196985] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
The bone microenvironment is an ideal fertile soil for both primary and secondary tumors to seed. The occurrence and development of osteosarcoma, as a primary bone tumor, is closely related to the bone microenvironment. Especially, the metastasis of osteosarcoma is the remaining challenge of therapy and poor prognosis. Increasing evidence focuses on the relationship between the bone microenvironment and osteosarcoma metastasis. Many elements exist in the bone microenvironment, such as acids, hypoxia, and chemokines, which have been verified to affect the progression and malignance of osteosarcoma through various signaling pathways. We thoroughly summarized all these regulators in the bone microenvironment and the transmission cascades, accordingly, attempting to furnish hints for inhibiting osteosarcoma metastasis via the amelioration of the bone microenvironment. In addition, analysis of the cross-talk between the bone microenvironment and osteosarcoma will help us to deeply understand the development of osteosarcoma. The cellular and molecular protagonists presented in the bone microenvironment promoting osteosarcoma metastasis will accelerate the exploration of novel therapeutic strategies towards osteosarcoma.
Collapse
|
19
|
Liu XC, Xu L, Cai YL, Zheng ZY, Dai EN, Sun S. MiR-1207-5p/CX3CR1 axis regulates the progression of osteoarthritis via the modulation of the activity of NF-κB pathway. Int J Rheum Dis 2020; 23:1057-1065. [PMID: 32597559 DOI: 10.1111/1756-185x.13898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/29/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent chronic diseases characterized by formation of osteophytes and degradation of articular cartilage. Previous evidence has identified the regulatory effects of microRNAs (miRNAs) in OA. The goal of this study is to clearly explore the biological function of miR-1207-5p in OA. METHODS MiR-1207-5p and C-X3-C motif chemokine receptor 1 (CX3CR1) expression in OA cartilages were revealed by accessing to Gene Expression Omnibus database. In vitro OA model was established by lipopolysaccharide (LPS) stimulation. Western blot and quantitative real-time polymerase chain reaction were conducted to detect the expression level of genes. Cell counting kit-8 (CCK-8) and flow cytometric experiments were performed to investigate the proliferation and apoptosis capacities of CHON-001 cells. Bioinformatics analysis was applied to predict the binding site of miR-1207-5p and CX3CR1, the connections of which were ascertained using luciferase reporter assay. RESULTS MiR-1207-5p expression was decreased while CX3CR1 was increased in OA cartilages. Up-regulation of miR-1207-5p alleviated the LPS-induced damage in the view of cell proliferation, apoptosis and extracellular matrix (ECM) degradation. A target of miR-1207-5p CX3CR1, its down-regulation intensified the impacts of miR-1207-5p mimic, promoted proliferation and mitigated apoptosis. LPS exposure increased the protein expression of the phosphorylated IκBα and P65, and this phenomena was reversed due to miR-1207-5p up-regulation and CX3CR1 knockdown. The treatment of Betulinic acid (BA; an activator of nuclear factor-κB pathway) reversed the miR-1207-5p mimic-induced inhibitory effect on apoptosis in LPS-treated CHON-001. CONCLUSION Our results highlight that miR-1207-5p can prevent CHON-001 from LPS-stimulated injury, providing a novel biomarker for OA progression and further advancing treatment of OA.
Collapse
Affiliation(s)
- Xiao-Chen Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Liang Xu
- Department of Orthopedic Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Department of Orthopedics, Shandong Chest Hospital, Jinan, Shandong, China
| | - Yu-Li Cai
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhi-Yong Zheng
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - E-Nuo Dai
- Department of Orthopedic Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21124449. [PMID: 32585812 PMCID: PMC7352203 DOI: 10.3390/ijms21124449] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022] Open
Abstract
The consequences of prostate cancer metastasis remain severe, with huge impact on the mortality and overall quality of life of affected patients. Despite the convoluted interplay and cross talk between various cell types and secreted factors in the metastatic process, cytokine and chemokines, along with their receptors and signaling axis, constitute important factors that help drive the sequence of events that lead to metastasis of prostate cancer. These proteins are involved in extracellular matrix remodeling, epithelial-mesenchymal-transition, angiogenesis, tumor invasion, premetastatic niche creation, extravasation, re-establishment of tumor cells in secondary organs as well as the remodeling of the metastatic tumor microenvironment. This review presents an overview of the main cytokines/chemokines, including IL-6, CXCL12, TGFβ, CXCL8, VEGF, RANKL, CCL2, CX3CL1, IL-1, IL-7, CXCL1, and CXCL16, that exert modulatory roles in prostate cancer metastasis. We also provide extensive description of their aberrant expression patterns in both advanced disease states and metastatic sites, as well as their functional involvement in the various stages of the prostate cancer metastatic process.
Collapse
|
21
|
Fractalkine/CX3CL1 in Neoplastic Processes. Int J Mol Sci 2020; 21:ijms21103723. [PMID: 32466280 PMCID: PMC7279446 DOI: 10.3390/ijms21103723] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Fractalkine/CX3C chemokine ligand 1 (CX3CL1) is a chemokine involved in the anticancer function of lymphocytes-mainly NK cells, T cells and dendritic cells. Its increased levels in tumors improve the prognosis for cancer patients, although it is also associated with a poorer prognosis in some types of cancers, such as pancreatic ductal adenocarcinoma. This work focuses on the 'hallmarks of cancer' involving CX3CL1 and its receptor CX3CR1. First, we describe signal transduction from CX3CR1 and the role of epidermal growth factor receptor (EGFR) in this process. Next, we present the role of CX3CL1 in the context of cancer, with the focus on angiogenesis, apoptosis resistance and migration and invasion of cancer cells. In particular, we discuss perineural invasion, spinal metastasis and bone metastasis of cancers such as breast cancer, pancreatic cancer and prostate cancer. We extensively discuss the importance of CX3CL1 in the interaction with different cells in the tumor niche: tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC) and microglia. We present the role of CX3CL1 in the development of active human cytomegalovirus (HCMV) infection in glioblastoma multiforme (GBM) brain tumors. Finally, we discuss the possible use of CX3CL1 in immunotherapy.
Collapse
|
22
|
Yi L, Liang Y, Zhao Q, Wang H, Dong J. CX3CL1 Induces Vertebral Microvascular Barrier Dysfunction via the Src/P115-RhoGEF/ROCK Signaling Pathway. Front Cell Neurosci 2020; 14:96. [PMID: 32390803 PMCID: PMC7193116 DOI: 10.3389/fncel.2020.00096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Trans-endothelial migration (TEM) of cancer cells is a critical step in metastasis. Micro-vascular barrier disruptions of distant organs play important roles in tumor cells TEM. The spine is a preferred site for multiple cancer cell metastases. Our previous study found that vertebral spongy bone was rich in CX3CL1 and that CX3CL1 can attract fractalkine receptor-expressing tumor cells to the spine. In the present study, we determined whether CX3CL1 was involved in vertebral micro-vascular barrier disruption and promoted tumor cell TEM after circulating tumor cells were arrested in the vertebral micro-vasculature. We examined the role of CX3CL1 in the barrier function of vertebral micro-vascular endothelial cells (VMECs) and explored the molecular mechanisms of CX3CL1-induced VMEC barrier disruption. Our results demonstrated that CX3CL1 led to F-actin formation and ZO-1 disruption in VMECs and induced the vertebral micro-vascular barrier disruption. Importantly, we found that the activation of the Src/P115-RhoGEF/ROCK signaling pathway plays an important role in CX3CL1-induced VMEC stress fiber formation, ZO-1 disruption and then vertebral micro-vascular barrier hyper-permeability. Inhibiting Src/P115-RhoGEF/ROCK signaling in VMECs effectively blocked CX3CL1-induced vertebral vascular endothelial dysfunction and subsequent tumor cell TEM. The results of this study and our previous study indicate that in addition to its chemotaxis, CX3CL1 plays a critical role in regulating vertebral micro-vascular barrier function and tumor cell TEM. CX3CL1 induced VMECs stress fiber formation, ZO-1 disruption and then vascular endothelial hyperpermeability via activation of the Src/P115-RhoGEF/ROCK signaling pathway. The inhibition of the Src/P115-RhoGEF/ROCK signaling pathway in VMECs effectively blocked tumor cells TEMs in vertebral spongy bone and maybe a potential therapeutic strategy for spine metastases in the future.
Collapse
Affiliation(s)
- Lei Yi
- Department of Burn and Plastic Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quanming Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Houlei Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Curtaz CJ, Schmitt C, Herbert SL, Feldheim J, Schlegel N, Gosselet F, Hagemann C, Roewer N, Meybohm P, Wöckel A, Burek M. Serum-derived factors of breast cancer patients with brain metastases alter permeability of a human blood-brain barrier model. Fluids Barriers CNS 2020; 17:31. [PMID: 32321535 PMCID: PMC7178982 DOI: 10.1186/s12987-020-00192-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The most threatening metastases in breast cancer are brain metastases, which correlate with a very poor overall survival, but also a limited quality of life. A key event for the metastatic progression of breast cancer into the brain is the migration of cancer cells across the blood-brain barrier (BBB). METHODS We adapted and validated the CD34+ cells-derived human in vitro BBB model (brain-like endothelial cells, BLECs) to analyse the effects of patient serum on BBB properties. We collected serum samples from healthy donors, breast cancer patients with primary cancer, and breast cancer patients with, bone, visceral or cerebral metastases. We analysed cytokine levels in these sera utilizing immunoassays and correlated them with clinical data. We used paracellular permeability measurements, immunofluorescence staining, Western blot and mRNA analysis to examine the effects of patient sera on the properties of BBB in vitro. RESULTS The BLECs cultured together with brain pericytes in transwells developed a tight monolayer with a correct localization of claudin-5 at the tight junctions (TJ). Several BBB marker proteins such as the TJ proteins claudin-5 and occludin, the glucose transporter GLUT-1 or the efflux pumps PG-P and BCRP were upregulated in these cultures. This was accompanied by a reduced paracellular permeability for fluorescein (400 Da). We then used this model for the treatment with the patient sera. Only the sera of breast cancer patients with cerebral metastases had significantly increased levels of the cytokines fractalkine (CX3CL1) and BCA-1 (CXCL13). The increased levels of fractalkine were associated with the estrogen/progesterone receptor status of the tumour. The treatment of BLECs with these sera selectively increased the expression of CXCL13 and TJ protein occludin. In addition, the permeability of fluorescein was increased after serum treatment. CONCLUSION We demonstrate that the CD34+ cell-derived human in vitro BBB model can be used as a tool to study the molecular mechanisms underlying cerebrovascular pathologies. We showed that serum from patients with cerebral metastases may affect the integrity of the BBB in vitro, associated with elevated concentrations of specific cytokines such as CX3CL1 and CXCL13.
Collapse
Affiliation(s)
- Carolin J Curtaz
- Department of Gynecology and Obstetrics, University of Würzburg, Würzburg, Germany
| | - Constanze Schmitt
- Department of Anaesthesia and Critical Care, University of Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | | | - Jonas Feldheim
- Department of Neurosurgery, Tumour Biology Laboratory, University of Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of Surgery I, University of Würzburg, Würzburg, Germany
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory, Université d'Artois, UR, 2465, Lens, France
| | - Carsten Hagemann
- Department of Neurosurgery, Tumour Biology Laboratory, University of Würzburg, Würzburg, Germany
| | - Norbert Roewer
- Department of Anaesthesia and Critical Care, University of Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesia and Critical Care, University of Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University of Würzburg, Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesia and Critical Care, University of Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| |
Collapse
|
24
|
CX3CL1 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:1-12. [PMID: 32060841 DOI: 10.1007/978-3-030-36667-4_1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CX3CL1 (Fractalkine) is a multifunctional inflammatory chemokine with a single receptor CX3CR1. The biological effects elicited by CX3CL1 on surrounding cells vary depending on a number of factors including its structure, the expression pattern of CX3CR1, and the cell type. For instance, the transmembrane form of CX3CL1 primarily serves as an adhesion molecule, but when cleaved to a soluble form, CX3CL1 predominantly functions as a chemotactic cytokine (Fig. 1.1). However, the biological functions of CX3CL1 also extend to immune cell survival and retention. The pro-inflammatory nature of CX3CR1-expressing immune cells place the CX3CL1:CX3CR1 axis as a central player in multiple inflammatory disorders and position this chemokine pathway as a potential therapeutic target. However, the emerging role of this chemokine pathway in the maintenance of effector memory cytotoxic T cell populations implicates it as a key chemokine in anti-viral and anti-tumor immunity, and therefore an unsuitable therapeutic target in inflammation. The reported role of CX3CL1 as a key regulator of cytotoxic T cell-mediated immunity is supported by several studies that demonstrate CX3CL1 as an important TIL-recruiting chemokine and a positive prognostic factor in colorectal, breast, and lung cancer. Such reports are conflicting with an overwhelming number of studies demonstrating a pro-tumorigenic and pro-metastatic role of CX3CL1 across multiple blood and solid malignancies.This chapter will review the unique structure, function, and biology of CX3CL1 and address the diversity of its biological effects in the immune system and the tumor microenvironment. Overall, this chapter highlights how we have just scratched the surface of CX3CL1's capabilities and suggests that further in-depth and mechanistic studies incorporating all CX3CL1 interactions must be performed to fully appreciate its role in cancer and its potential as a therapeutic target.
Collapse
|
25
|
Epithelial-Mesenchymal Transition in Skin Cancers: A Review. Anal Cell Pathol (Amst) 2019; 2019:3851576. [PMID: 31934531 PMCID: PMC6942705 DOI: 10.1155/2019/3851576] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/07/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is involved in physiologic processes such as embryogenesis and wound healing. A similar mechanism occurs in some tumors where cells leave the epithelial layer and gain mesenchymal particularities in order to easily migrate to other tissues. This process can explain the invasiveness and aggressiveness of these tumors which metastasize, by losing the epithelial phenotype (loss of E-cadherin, desmoplakin, and laminin-1) and acquiring mesenchymal markers (N-cadherin). Complex changes and interactions happen between the tumor cells and the microenvironment involving different pathways, transcription factors, altered expression of adhesion molecules, reorganization of cytoskeletal proteins, production of ECM-degrading enzymes, and changes in specific microRNAs. The purpose of this review is to determine particularities of the EMT process in the most common malignant cutaneous tumors (squamous cell carcinoma, basal cell carcinoma, and melanoma) which still have an increasingly high incidence. More studies are required on this topic in order to establish clear correlations. High costs related to skin cancer therapies in general as well as high impact on patients' quality of life demand finding new, reliable prognostic and therapeutic markers with significant public health impact.
Collapse
|
26
|
Singh SK, Mishra MK, Singh R. Hypoxia-inducible factor-1α induces CX3CR1 expression and promotes the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. J Ovarian Res 2019; 12:42. [PMID: 31077234 PMCID: PMC6511167 DOI: 10.1186/s13048-019-0517-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Chemokines are involved in the homing of various cancer cells, including those of ovarian cancer (OvCa), to distant organs. They may also promote or inhibit cancer progression and metastasis. Hypoxia, a common phenomenon in malignant tumors, promotes cell proliferation regulated by HIF-1α. Hypoxia-induced genes are involved in metastasis-associated functions and in the epithelial-to-mesenchymal transition (EMT). Results Tissue microarrays of human OvCa showed elevated expression of CX3CR1 and HIF-1α compared to normal cells, and their levels were higher in adenocarcinoma stages II and III. To substantiate these observations, we performed studies using OvCa cells. Following exposure to hypoxia, OVCAR-3, SW 626, and TOV-112D cells showed high expression of CX3CR1, a transmembrane protein involved in the adhesion and migration of leukocytes, causing an increased chemotactic response to CX3CL1, the ligand for CX3CR1. As determined by flow cytometry, immunofluorescence, RT-PCR, and western blots, there were higher expressions of CX3CR1 and HIF-1α in OvCa cell lines exposed to hypoxia. Further, OvCa cells expressing CX3CR1 were sensitive to the CX3CL1 ligand. Chemotaxis based on chemokine receptors was influential in elevating the expression of EMT markers and matrix metalloproteinases, which are involved in the progression and metastasis of cancer cells. Conclusions In OvCa cells, CX3CR1 was upregulated in a process involving hypoxia-mediated regulation of HIF-1α. The elevated levels of CX3CR1, which were sensitive to CX3CL1, increased EMT markers that led to the progression and metastasis of OvCa. Thus, CX3CR1 and HIF-1α are suitable targets for treatment of OvCa.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, USA
| | - Manoj Kumar Mishra
- Department of Biological Sciences, Alabama State University, 915 S Jackson Street, Montgomery, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, USA.
| |
Collapse
|
27
|
Zhang Z, Li P, Li T, Zhao C, Wang G. Velvet Antler compounds targeting major cell signaling pathways in osteosarcoma - a new insight into mediating the process of invasion and metastasis in OS. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractVelvet antler is the only renewable bone tissue of mammalian animals, which consists of a variety of growth factors, amino acids and polypeptides. But the mechanism of high-speed proliferation without carcinogenesis is still mystifying. The previous study of this work found that the velvet antler peptides (VAP) could not only inhibit the proliferation and migration of osteosarcoma cell lines MG-63 and U2OS, but also induced U2OS apoptosis and inhibited MG-63 epithelial-mesenchymal transition (EMT) through TGF-β and Notch pathways. These results lead us to conclude that VAP has the potential ability to mediate osteosarcoma cells by regulating related signaling pathways and growth factors. Therefore, finding a new appropriate inhibitor for OS is a valuable research direction, which will give patients a better chance to receive proper therapy. From an applied perspective, this review summarized the effects of velvet antler, genes, growth factors and research progress of relative pathways and genes of osteosarcoma, which are poised to help link regenerative molecular biology and regenerative medicine in osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Zhengyao Zhang
- School of Life Science and Medicine, Dalian University of Technology, DaGong Road, PanjinLiaoning 124221, China
| | - Pengfei Li
- School of Life Science and Medicine, Dalian University of Technology, DaGong Road, PanjinLiaoning 124221, China
| | - Tie Li
- Acupuncture and Tuina Institute, Changchun University of Chinese Medicine, ChangchunJilin 130021, China
| | - Changwei Zhao
- Department of Orthopedics, Changchun University of Chinese Medicine, ChangchunJilin 130021, China
| | - Guoxiang Wang
- Cancer Center, The First Hospital of Jilin University, ChangchunJilin 130021, China
| |
Collapse
|
28
|
Li ZR, Jiang Y, Hu JZ, Chen Y, Liu QZ. SOX2 knockdown inhibits the migration and invasion of basal cell carcinoma cells by targeting the SRPK1-mediated PI3K/AKT signaling pathway. Oncol Lett 2019; 17:1617-1625. [PMID: 30675221 PMCID: PMC6341784 DOI: 10.3892/ol.2018.9810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common type of human skin cancer, which is driven by the aberrant activation of Hedgehog signaling. Previous evidence indicated that sex determining region Y-box 2 (SOX2) is associated with the tumor metastasis. However, the expression and role of SOX2 in BCC remain unknown. Therefore, the aim of the current study was to analyze the possible mechanism of SOX2 in the progression of BCC. The levels of SOX2 in BCC cells were detected by reverse transcription-quantitative polymerase chain reaction. Transwell assays were also used to determine the migration and invasion of BCC cells. Immunoblotting and immunofluorescence were used for analyzing the role of SOX2 knockdown in the serine-arginine protein kinase 1 (SRPK1)-mediated phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway in BCC cells. The results demonstrated that SOX2 is overexpressed in BCC tissues and cells. In addition, SOX2 knockdown inhibited the migration and invasion of BCC cells, and the epithelial-mesenchymal transition (EMT) progress of BCC cells. It was also observed that SOX2 knockdown decreased SRPK1 expression, which further led to the downregulation of PI3K and AKT expression levels in BCC cells. Furthermore, SRPK1 transfection or PI3K/AKT pathway activation abolished the inhibitory effects of SOX2 knockdown on the migration, invasion and EMT progress of BCC cells. In conclusion, these results indicated that SOX2 may potentially serve as a target for BCC therapy by targeting the SRPK1-mediated PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Zhuo-Ran Li
- Department of Dermatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yong Jiang
- Department of Dermatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jian-Zhong Hu
- Department of Dermatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Chen
- Department of Orthopedics Institute, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Quan-Zhong Liu
- Department of Dermatology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
29
|
Wang A, Yang T, Zhang L, Jia L, Wu Q, Yao S, Xu J, Yang H. IP3-Mediated Calcium Signaling Is Involved in the Mechanism of Fractalkine-Induced Hyperalgesia Response. Med Sci Monit 2018; 24:8804-8811. [PMID: 30517088 PMCID: PMC6290586 DOI: 10.12659/msm.913787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Fractalkine is widely expressed throughout the brain and spinal cord, where it can exert effects on pain enhancement and hyperalgesia by activating microglia through CX3C chemokine receptor 1 (CX3CR1), which triggers the release of several pro-inflammatory cytokines in the spinal cord. Fractalkine has also been shown to increase cytosolic calcium ([Ca2+]i) in microglia. Material/Methods Based on the characteristics of CX3CR1, a G protein-coupled receptor, we explored the role of inositol 1,4,5-trisphosphate (IP3) signaling in fractalkine-induced inflammatory response in BV-2 cells in vitro. The effect and the underlying mechanism induced by fractalkine in the brain were observed using a mouse model with intracerebroventricular (i.c.v.) injection of exogenous fractalkine. Results [Ca2+]i was significantly increased and IL-1β and TNF-α levels were higher in the fractalkine-treated cell groups than in the farctalkine+ 2-APB groups. We found that i.c.v. injection of fractalkine significantly increased p-p38MAPK, IL-1β, and TNF-α expression in the brain, while i.c.v. injection of a fractalkine-neutralizing antibody (anti-CX3CR1), trisphosphate receptor (IP3R) antagonist (2-APB), or p38MAPK inhibitor (SB203580) prior to fractalkine addition yielded an effective and reliable anti-allodynia effect, following the reduction of p-p38MAPK, IL-1β, and TNF-α expression. Conclusions Our results suggest that fractalkine leads to hyperalgesia, and the underlying mechanism may be associated with IP3/p38MAPK-mediated calcium signaling and its phlogogenic properties.
Collapse
Affiliation(s)
- Aitao Wang
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China (mainland)
| | - Tingting Yang
- Key Laboratory of Antibody Technique of National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Lingli Zhang
- Department of Ophthalmology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China (mainland)
| | - Lizhou Jia
- Key Laboratory of Antibody Technique of National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jianjun Xu
- Department of Anesthesiology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang, China (mainland)
| | - Hongxin Yang
- Department of Pharmacy, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|
30
|
Liu P, Liang Y, Jiang L, Wang H, Wang S, Dong J. CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int J Oncol 2018; 53:1544-1556. [PMID: 30066854 PMCID: PMC6086625 DOI: 10.3892/ijo.2018.4487] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Chemokines serve important roles in the development of cancer. C-X3-C motif chemokine ligand 1 (CX3CL1) has been demonstrated to promote metastases in different types of tumors. The authors' previous studies demonstrated that the CX3CL1 (also termed fractalkine)/steroid receptor coactivator (Src)/focal adhesion kinase (FAK) signaling pathway is associated with spinal metastasis. In the present study, it was observed that CX3CL1/C-X3-C motif chemokine receptor 1 (CX3CR1) was overexpressed in prostate cancer tissues with spinal metastasis compared with primary tumors. Overexpression of CX3CR1 induced cell proliferation, migration and invasion, and inhibited cellular apoptosis. However, repression of CX3CR1 reduced cell proliferation, migration and invasion, and increased cellular apoptosis. In addition, the Src/FAK pathway was activated by CX3CL1, which depends on the Tyr992 residue of epidermal growth factor receptor (EGFR) for phosphorylation. The inhibitors of these kinases repressed the cell migration induced by CX3CL1 or CX3CR1 overexpression. Furthermore, overexpression of CX3CR1 induced the spinal metastasis of prostate cancer in an in vivo mouse model. Therefore, CX3CL1 and its regulation of the EGFR, Src and FAK pathways may be potential targets for the early prevention of spinal metastasis in prostate cancer.
Collapse
Affiliation(s)
- Peng Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yun Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Houlei Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shengxing Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
31
|
Wang L, Ying R, Jiang H, Jin Q, Kuang J, Zhang Z, Shi Y, Cai D, Yang R. Aspirin modulates the inflammatory response in a thrombus‑stimulated LMVEC model. Int J Mol Med 2018; 41:3253-3266. [PMID: 29568915 PMCID: PMC5881641 DOI: 10.3892/ijmm.2018.3561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/09/2018] [Indexed: 11/05/2022] Open
Abstract
The purpose of the present study was to examine whether aspirin interferes with the inflammatory response in a thrombus‑stimulated lung microvascular endothelial cell (LMVEC) model. The LMVECs were randomly divided into eight groups: Normal group (group N), model group (group M), model + ASP group (group M+A), model+CX3CL1‑short hairpin (sh)RNA group (group M+SH), model + CX3CL1‑overexpression vector group (group M+CX3), model + ASP + shRNA group (group M+A+SH), model + ASP + CX3CL1‑overexpression vector group (group M+A+CX3), and normal + virus control group (group N+V). The endothelial cells were cultured, and a thrombus was added to the cells. Briefly, 12 h following the precipitation of the thrombus, data from ELISA, reverse transcription‑quantitative polymerase chain reaction analysis and confocal microscopy revealed that the levels of tumor necrosis factor (TNF)‑α, interleukin (IL)‑6, CX3C chemokine ligand 1 (CX3CL1), CX3C chemokine receptor 1 (CX3CR1) and nuclear factor‑κB (NF‑κB) in group M were increased, compared with those in group N (P<0.01). These levels, with the exception of TNF‑α, were significantly lower in group M+SH, compared with those in group M (P<0.01). Furthermore, the levels of IL‑6 in groups M+A, M+CX3 and M+A+CX3 were decreased, compared with those in group M (P<0.01); the level of TNF‑α in group M+A+SH was decreased, compared with that in group M (P<0.01); the level of CX3CR1 waslower in groups M+A and M+A+SH, compared with that in group M (P<0.01), and the level of NF‑κB in group M+SH was decreased, compared with the level in group M and group M+A (P<0.05). In conclusion, the thrombus‑stimulated LMVEC model exhibited induced production of TNF‑α, IL‑6, CX3CL, CX3CR1, NF‑κB and intercellular adhesion molecule‑1. Furthermore, it was confirmed that the signaling pathways involving CX3CL1‑NF‑κB, IL‑6 and TNF‑α were partly inhibited by aspirin.
Collapse
Affiliation(s)
- Lingcong Wang
- Department of ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Rongbiao Ying
- Department of Surgical Oncology, Tumor Hospital of Taizhou, Wenling, Zhejiang 317502, P.R. China
| | - Huifang Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Qun Jin
- Department of Pneumology, Zhejiang University International Hospital, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Jing Kuang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhirong Zhang
- Department of ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ying Shi
- Department of ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Danli Cai
- Department of ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ruhui Yang
- Lishui University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
32
|
Liu Y, Sun W, Ma X, Hao Y, Liu G, Hu X, Shang H, Wu P, Zhao Z, Liu W. Logistic regression analysis for the identification of the metastasis-associated signaling pathways of osteosarcoma. Int J Mol Med 2018; 41:1233-1244. [PMID: 29328361 PMCID: PMC5819903 DOI: 10.3892/ijmm.2018.3360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common histological type of primary bone cancer. The present study was designed to identify the key genes and signaling pathways involved in the metastasis of OS. Microarray data of GSE39055 were downloaded from the Gene Expression Omnibus database, which included 19 OS biopsy specimens before metastasis (control group) and 18 OS biopsy specimens after metastasis (case group). After the differentially expressed genes (DEGs) were identified using the Linear Models for Microarray Analysis package, hierarchical clustering analysis and unsupervised clustering analysis were performed separately, using orange software and the self-organization map method. Based upon the Database for Annotation, Visualization and Integrated Discovery tool and Cytoscape software, enrichment analysis and protein-protein interaction (PPI) network analysis were conducted, respectively. After function deviation scores were calculated for the significantly enriched terms, hierarchical clustering analysis was performed using Cluster 3.0 software. Furthermore, logistic regression analysis was used to identify the terms that were significantly different. Those terms that were significantly different were validated using other independent datasets. There were 840 DEGs in the case group. There were various interactions in the PPI network [including intercellular adhesion molecule-1 (ICAM1), transforming growth factor β1 (TGFB1), TGFB1-platelet-derived growth factor subunit B (PDGFB) and PDGFB-platelet-derived growth factor receptor-β (PDGFRB)]. Regulation of cell migration, nucleotide excision repair, the Wnt signaling pathway and cell migration were identified as the terms that were significantly different. ICAM1, PDGFB, PDGFRB and TGFB1 were identified to be enriched in cell migration and regulation of cell migration. Nucleotide excision repair and the Wnt signaling pathway were the metastasis-associated pathways of OS. In addition, ICAM1, PDGFB, PDGFRB and TGFB1, which were involved in cell migration and regulation of cell migration may affect the metastasis of OS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xiaojun Ma
- Department of Orthopaedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yuedong Hao
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Gang Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaohui Hu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Houlai Shang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Pengfei Wu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zexue Zhao
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Weidong Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
33
|
Stout MC, Narayan S, Pillet ES, Salvino JM, Campbell PM. Inhibition of CX 3CR1 reduces cell motility and viability in pancreatic adenocarcinoma epithelial cells. Biochem Biophys Res Commun 2017; 495:2264-2269. [PMID: 29274778 DOI: 10.1016/j.bbrc.2017.12.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 12/27/2022]
Abstract
Increased expression of the chemokine CX3CL1 and its sole receptor, CX3CR1 have been correlated with poor pancreatic cancer patient survival and time to recurrence, as well as with pancreatic perineural invasion. We have previously shown that metastasis of prostate and breast cancer is in part driven by CX3CL1, and have developed small molecule inhibitors against the CX3CR1 receptor that diminish metastatic burden. Here we ask if inhibition of this chemokine receptor affects the phenotype of PDAC tumor cells. Our findings demonstrate that motility, invasion, and contact-independent growth of PDAC cells all increase following CX3CL1 exposure, and that antagonism of CX3CR1 by the inhibitor JMS-17-2 reduces each of these phenotypes and correlates with a downregulation of AKT phosphorylation. These data suggest that PDAC tumor cell migration and growth, elements critical in metastatic progression, may susceptible to pharmacologic intervention.
Collapse
Affiliation(s)
- Matthew C Stout
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, 245 North 15th Street, MS 488, Philadelphia, PA 19102, USA.
| | - Shilpa Narayan
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, 245 North 15th Street, MS 488, Philadelphia, PA 19102, USA.
| | - Emily S Pillet
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, 245 North 15th Street, MS 488, Philadelphia, PA 19102, USA.
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program, Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| | - Paul M Campbell
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, 245 North 15th Street, MS 488, Philadelphia, PA 19102, USA.
| |
Collapse
|