1
|
Nagar A, Dubey A, Sharma A, Singh M. Exploring promising natural compounds for breast cancer treatment: in silico molecular docking targeting WDR5-MYC protein interaction. J Biomol Struct Dyn 2024:1-15. [PMID: 38356140 DOI: 10.1080/07391102.2024.2317975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Cancer is an aberrant differentiation of normal cells, characterized by uncontrolled growth and the potential to acquire invasive and aggressive properties that ultimately lead to metastasis. In the realm of scientific exploration, a multitude of pathways has been investigated and targeted by researchers, among which one specific pathway is recognized as WDR5-MYC. Continuous investigations and research show that WDR5-MYC is a therapeutic target protein. Hence, the discovery of naturally occurring compounds with anticancer properties has been suggested as a rapid and efficient alternative for the development of anticancerous therapeutics. A virtual screening approach was used to identify the most potent compounds from the NP-lib database at the MTiOpenScreen webserver against WDR5-MYC. This process yielded a total of 304 identified compounds. Subsequently, after screening, four potent compounds, namely Estrone (ZINC000003869899), Ethyl-1,2-benzanthracene (ZINC000003157052), Strychnine (ZINC000000119434) and 7H-DIBENZO [C, G] CARBAZOLE (ZINC000001562130), along with a cocrystallized 5-[4-(trifluoromethyl) phenyl]-1H-tetrazole inhibitor (QBP) as a reference ligand, were considered for stringent molecular docking. Thus, each compound exhibited significant docking energy between -8.2 and -7.7 kcal/mol and molecular contacts with essential residue Asn225, Lys250, Ser267 and Lys272 in the active pocket of WDR5-MYC against the QBP inhibitor (the native ligand QBP serves as a reference in the comparative analysis of docked complexes). The results support the potent compounds for drug-likeness and strong binding affinity with WDR5-MYC protein. Further, the stability of the selected compounds was predicted by molecular dynamics simulation (100 ns) contributed by intermolecular hydrogen bonds and hydrophobic interactions. This demonstrates the potential of the selected compounds to be used against breast cancer treatment.
Collapse
Affiliation(s)
- Amka Nagar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh, India
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, India
| | - Ankur Sharma
- Strathclyde Institute of Pharmaceutical and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh, India
| |
Collapse
|
2
|
El-Tanani M, Platt-Higgins A, Nsairat H, Matalka II, Ahmed KAA, Zhang SD, Alshaer W, Awidi A, Matchett KB, Aljabali AA, Mishra V, Serrano-Aroca Á, Tambuwala MM, Rudland PS. Development and validation of Ran as a prognostic marker in stage I and stage II primary breast cancer. Life Sci 2023; 329:121964. [PMID: 37473800 DOI: 10.1016/j.lfs.2023.121964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE Existing prognostic biomarkers are inadequate for stratifying breast cancer patients with the highest risk of tumor progression at the time of diagnosis. Here, we demonstrate that the small GTPase Ran has predictive value for breast cancer (BC) patients as a whole, and for specific BC subtypes. PATIENTS AND METHODS Ran expression was quantified by immunohistochemistry in 263 patients with primary breast cancer diagnosed at the Breast Unit, Royal Liverpool Hospital. Additionally as an independent validation, we also analyzed the mRNA expressions of Ran, ER, PR, and Cerb-2, the triple-negative endocrine receptors, and their associations with patient survival in a combined patient cohorts of multiple public datasets (n = 1079). We analyzed the data with Spearman's rank correlation and Kaplan-Meier plots coupled with Wilcoxon-Gehan tests, respectively. All statistical tests were two-sided. RESULTS Ran nuclear, cytoplasmic, and total staining are substantially associated with poor survival, independent of conventional prognostic markers such as estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), and lymph node status. According to the datasets, Ran was significantly correlated with distant metastasis-free survival (DMFS) and relapse-free survival (RFS). CONCLUSION We found that Ran expression is a unique predictive biomarker for patient survival, metastasis, and tumor relapse. This biomarker could be used for diagnostic purposes, using formalin-fixed, paraffin-embedded tumor biopsy samples from breast cancer patients in the early stages.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE; Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Angela Platt-Higgins
- Institute of Systems, Molecular and Integrative Biology, Cancer and Polio Research Fund Laboratories, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Hamdi Nsairat
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates; Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Khaled Abdul-Aziz Ahmed
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, University of Ulster, UK
| | - Walhan Alshaer
- Cell Therapy Center, the University of Jordan, Amman 11942, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, the University of Jordan, Amman 11942, Jordan
| | - Kyle B Matchett
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, C-TRIC, Altnagelvin Hospital Campus, Glenshane Road, Derry/Londonderry BT47 6SB, UK
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Philip S Rudland
- Institute of Systems, Molecular and Integrative Biology, Cancer and Polio Research Fund Laboratories, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
3
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Huang Y, Peng H, Zeng A, Song L. The role of peptides in reversing chemoresistance of breast cancer: current facts and future prospects. Front Pharmacol 2023; 14:1188477. [PMID: 37284316 PMCID: PMC10239817 DOI: 10.3389/fphar.2023.1188477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Breast cancer is the first malignant tumor in women, and its incidence is also increasing year by year. Chemotherapy is one of the standard therapies for breast cancer, but the resistance of breast cancer cells to chemotherapy drugs is a huge challenge for the effective treatment of breast cancer. At present, in the study of reversing the drug resistance of solid tumors such as breast cancer, peptides have the advantages of high selectivity, high tissue penetration, and good biocompatibility. Some of the peptides that have been studied can overcome the resistance of tumor cells to chemotherapeutic drugs in the experiment, and effectively control the growth and metastasis of breast cancer cells. Here, we describe the mechanism of different peptides in reversing breast cancer resistance, including promoting cancer cell apoptosis; promoting non-apoptotic regulatory cell death of cancer cells; inhibiting the DNA repair mechanism of cancer cells; improving the tumor microenvironment; inhibiting drug efflux mechanism; and enhancing drug uptake. This review focuses on the different mechanisms of peptides in reversing breast cancer drug resistance, and these peptides are also expected to create clinical breakthroughs in promoting the therapeutic effect of chemotherapy drugs in breast cancer patients and improving the survival rate of patients.
Collapse
Affiliation(s)
- Yongxiu Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyao Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Kahm YJ, Kim IG, Kim RK. RanBP1: A Potential Therapeutic Target for Cancer Stem Cells in Lung Cancer and Glioma. Int J Mol Sci 2023; 24:ijms24076855. [PMID: 37047826 PMCID: PMC10095367 DOI: 10.3390/ijms24076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Cancer stem cells (CSCs) are known to be one of the factors that make cancer treatment difficult. Many researchers are thus conducting research to efficiently destroy CSCs. Therefore, we sought to suggest a new target that can efficiently suppress CSCs. In this study, we observed a high expression of Ran-binding protein 1 (RanBP1) in lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). Upregulated RanBP1 expression is strongly associated with the expression of CSC marker proteins and CSC regulators. In addition, an elevated RanBP1 expression is strongly associated with a poor patient prognosis. CSCs have the ability to resist radiation, and RanBP1 regulates this ability. RanBP1 also affects the metastasis-associated epithelial–mesenchymal transition (EMT) phenomenon. EMT marker proteins and regulatory proteins are affected by RanBP1 expression, and cell motility was regulated according to RanBP1 expression. The cancer microenvironment influences cancer growth, metastasis, and cancer treatment. RanBP1 can modulate the cancer microenvironment by regulating the cytokine IL-18. Secreted IL-18 acts on cancer cells and promotes cancer malignancy. Our results reveal, for the first time, that RanBP1 is an important regulator in LCSCs and GSCs, suggesting that it holds potential for use as a potential therapeutic target.
Collapse
Affiliation(s)
- Yeon-Jee Kahm
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon 34057, Republic of Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon 34057, Republic of Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Rae-Kwon Kim
- Department of Radiation Biology, Environmental Safety Assessment Research Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon 34057, Republic of Korea
- Department of Radiation Science and Technology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
El-Tanani M, Nsairat H, Mishra V, Mishra Y, Aljabali AAA, Serrano-Aroca Á, Tambuwala MM. Ran GTPase and Its Importance in Cellular Signaling and Malignant Phenotype. Int J Mol Sci 2023; 24:ijms24043065. [PMID: 36834476 PMCID: PMC9968026 DOI: 10.3390/ijms24043065] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Ran is a member of the Ras superfamily of proteins, which primarily regulates nucleocytoplasmic trafficking and mediates mitosis by regulating spindle formation and nuclear envelope (NE) reassembly. Therefore, Ran is an integral cell fate determinant. It has been demonstrated that aberrant Ran expression in cancer is a result of upstream dysregulation of the expression of various factors, such as osteopontin (OPN), and aberrant activation of various signaling pathways, including the extracellular-regulated kinase/mitogen-activated protein kinase (ERK/MEK) and phosphatidylinositol 3-kinase/Protein kinase B (PI3K/Akt) pathways. In vitro, Ran overexpression has severe effects on the cell phenotype, altering proliferation, adhesion, colony density, and invasion. Therefore, Ran overexpression has been identified in numerous types of cancer and has been shown to correlate with tumor grade and the degree of metastasis present in various cancers. The increased malignancy and invasiveness have been attributed to multiple mechanisms. Increased dependence on Ran for spindle formation and mitosis is a consequence of the upregulation of these pathways and the ensuing overexpression of Ran, which increases cellular dependence on Ran for survival. This increases the sensitivity of cells to changes in Ran concentration, with ablation being associated with aneuploidy, cell cycle arrest, and ultimately, cell death. It has also been demonstrated that Ran dysregulation influences nucleocytoplasmic transport, leading to transcription factor misallocation. Consequently, patients with tumors that overexpress Ran have been shown to have a higher malignancy rate and a shorter survival time compared to their counterparts.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Correspondence:
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
7
|
Matrix metalloproteinase 2 is a target of the RAN-GTP pathway and mediates migration, invasion and metastasis in human breast cancer. Life Sci 2022; 310:121046. [PMID: 36209829 DOI: 10.1016/j.lfs.2022.121046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022]
|
8
|
Sellin M, Berg S, Hagen P, Zhang J. The molecular mechanism and challenge of targeting XPO1 in treatment of relapsed and refractory myeloma. Transl Oncol 2022; 22:101448. [PMID: 35660848 PMCID: PMC9166471 DOI: 10.1016/j.tranon.2022.101448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Significant progress has been made on the treatment of MM during past two decades. Acquired drug-resistance continues to drive early relapse in primary refractory MM. XPO1 over-expression and cargo mislocalization are associated with drug-resistance. XPO1 inhibitor selinexor restores drug sensitivity to subsets of RR-MM cells.
Multiple myeloma (MM) treatment regimens have vastly improved since the introduction of immunomodulators, proteasome inhibitors, and anti-CD38 monoclonal antibodies; however, MM is considered an incurable disease due to inevitable relapse and acquired drug resistance. Understanding the molecular mechanism by which drug resistance is acquired will help create novel strategies to prevent relapse and help develop novel therapeutics to treat relapsed/refractory (RR)-MM patients. Currently, only homozygous deletion/mutation of TP53 gene due to “double-hits” on Chromosome 17p region is consistently associated with a poor prognosis. The exciting discovery of XPO1 overexpression and mislocalization of its cargos in the RR-MM cells has led to a novel treatment options. Clinical studies have demonstrated that the XPO1 inhibitor selinexor can restore sensitivity of RR-MM to PIs and dexamethasone. We will elaborate on the problems of MM treatment strategies and discuss the mechanism and challenges of using XPO1 inhibitors in RR-MM therapies while deliberating potential solutions.
Collapse
Affiliation(s)
- Mark Sellin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, USA
| | - Stephanie Berg
- Loyola University Chicago, Department of Cancer Biology and Internal Medicine, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Maywood, IL, USA.
| | - Patrick Hagen
- Department of Medicine, Division of Hematology/Oncology, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, USA
| |
Collapse
|
9
|
Elsheikh S, Kouzoukakis I, Fielden C, Li W, Lashin SE, Khair N, Raposo TP, Fadhil W, Rudland P, Aleskandarany M, Patel P, El-Tanani M, Ilyas M. Ran GTPase is an independent prognostic marker in malignant melanoma which promotes tumour cell migration and invasion. J Clin Pathol 2022; 75:24-29. [PMID: 33234696 DOI: 10.1136/jclinpath-2020-206871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
AIMS Ran GTPase is involved in nucleocytoplasmic shuttling of proteins and is overexpressed in several cancers. The expression of Ran in malignant melanoma (MM) and its functional activity have not been described and were investigated in this study. METHODS The prognostic value of Ran expression was tested in a series of 185 primary cutaneous MM cases using immunohistochemistry. The functional activity of Ran was investigated in the two melanoma cell lines. Ran expression was knocked down using two siRNAs and the effect on the expression of the c-Met oncogene, a potential downstream target of Ran, was tested. Functional effects of Ran knockdown on cell motility and cell proliferation were also assessed. RESULTS Positive Ran expression was seen in 12.4% of MM and was associated with advanced clinical stage and greater Breslow thickness. Positive expression was an independent marker of shorter overall survival (p=0.023). Knockdown of Ran results in decreased expression of c-Met and the downstream c-met signalling targets ERK1/2. There was a significant reduction in cell migration (p<0.001) and cell invasion (p<0.001). c-Met knockdown decreased the expression of Ran through MAPK and PI3K-AKT in A375 cell line, inhibited the cell viability and migration of both A375 and G361 melanoma cell lines while invasion was enhanced. CONCLUSION Ran is a poor prognostic marker in cutaneous MM. It upregulates expression of the oncogene c-Met and, possibly through this, it promotes cell motility which may in turn promote metastasis.
Collapse
Affiliation(s)
- Somaia Elsheikh
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham, UK
- Cellular Pathology Department, Nottingham University Hospitals NHS Trust, Nottingham, Nottingham, UK
- Pathology Department, Menoufia University Faculty of Medicine, Shebin El-Kom, Egypt
| | - Ilias Kouzoukakis
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham, UK
| | - Catherine Fielden
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham, UK
| | - Wei Li
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham, UK
| | - Shaimaa Elsaid Lashin
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham, UK
- Dermatology, Menoufia University Faculty of Medicine, Shebin El-Kom, Egypt
| | - Nadia Khair
- Histology, Menoufia University Faculty of Medicine, Shebin El-Kom, Egypt
| | | | - Wakkas Fadhil
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham, UK
| | - Philip Rudland
- School of Biological Sciences, University of Liverpool, Liverpool, UK
| | | | - Poulam Patel
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham, UK
| | - Mohamed El-Tanani
- School of Chemistry and Biosciences, University of Bradford, Bradford, West Yorkshire, UK
| | - Mohammad Ilyas
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Tai CS, Lan KC, Wang E, Chan FE, Hsieh MT, Huang CW, Weng SL, Chen PC, Chen WL. Nanotopography as Artificial Microenvironment for Accurate Visualization of Metastasis Development via Simulation of ECM Dynamics. NANO LETTERS 2021; 21:1400-1411. [PMID: 33522822 DOI: 10.1021/acs.nanolett.0c04209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metastatic progression is mediated by complex interactions between deregulated extracellular matrix (ECM) and cancer cells and remains a major challenge in cancer management. To investigate the role of ECM dynamics in promoting metastasis development, we developed an artificial microenvironment (AME) platform comprised of nanodot arrays of increasing diameter. Cells cultured on the platform showed increasing signs of mesenchymal-like cell transition as AME diameter increased, suggesting accurate simulation of ECM-mediated gene regulation. Gene expression was analyzed to determine genes significant to transition, which were then used to select appropriate small molecule drugs for time course treatments. Our results suggest that the platform can identify critical target genes as well as possible drug candidates. Overall, the AME platform allows for the study of intricate ECM-induced gene expression trends across metastasis development that would otherwise be difficult to visualize in vivo and may open new avenues toward successful personalized cancer management.
Collapse
Affiliation(s)
- Chun-San Tai
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Kuan-Chun Lan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Erick Wang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Fu-Erh Chan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ming-Ting Hsieh
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ching-Wen Huang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
- Institute of Material Science and Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Wen Liang Chen
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
11
|
Zhou J, Tan Y, Zhang Y, Tong A, Shen X, Sun X, Jia D, Sun Q. GEF-independent Ran activation shifts a fraction of the protein to the cytoplasm and promotes cell proliferation. MOLECULAR BIOMEDICINE 2020; 1:18. [PMID: 35006421 PMCID: PMC8607414 DOI: 10.1186/s43556-020-00011-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
Ran (Ras-related nuclear protein) plays several important roles in nucleo-cytoplasmic transport, mitotic spindle formation, nuclear envelope/nuclear pore complex assembly, and other functions in the cytoplasm, as well as in cellular transformation when switched on. Unlike other members of the GTPase superfamily, Ran binds more tightly to GDP than to GTP due to the presence of an auto-inhibitory C-terminal tail. Multiple missense mutations in the C-terminus of Ran occur in cancers, but their biological significance remains unclear. Here, the quantitative GDP/GTP binding preference of four engineered mutations with unstable C-termini was analyzed using a devised mant-GDP dissociation assay. The results showed that the impact of different C-terminal mutations depends on multiple factors. Although these mutants were more GTP-loaded in human cells, they were shown to be more cytoplasmic, and to support nuclear transport with minimally or partially reduced efficiency. Further, several Ran cancer mutants were compromised in autoinhibition, slightly more GTP-bound, more cytoplasmic, and enhanced the proliferation of A549 and HeLa cells in vitro. Thus, our work reveals a new route of Ran activation independent of guanine nucleotide exchange factor (GEF), which may account for the hyper-proliferation induced by Ran cancer mutations.
Collapse
Affiliation(s)
- Jinhan Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuping Tan
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuqing Zhang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Aiping Tong
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xiaofei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Sun
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
12
|
XPO1E571K Mutation Modifies Exportin 1 Localisation and Interactome in B-cell Lymphoma. Cancers (Basel) 2020; 12:cancers12102829. [PMID: 33007990 PMCID: PMC7600770 DOI: 10.3390/cancers12102829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Almost 25% of patients with either primary mediastinal B-cell lymphoma (PMBL) or classical Hodgkin lymphoma (cHL) possess a recurrent mutation of the XPO1 gene encoding the major nuclear export protein. The aim of our study was to assess the molecular function of the mutant XPO1 protein. Using several cell models (including CRISPR–Cas9 edited cells) and high throughput techniques, we determined that the export capacity of the mutant XPO1 was not altered. However, mutant XPO1 accumulated in the cytoplasm due to its binding to importin β1 (or IPO1). The targeting of XPO1 is largely efficient for fighting haemopathies. The inhibition of IPO1 could open new therapeutic perspectives for B-cell lymphomas. Abstract The XPO1 gene encodes exportin 1 (XPO1) that controls the nuclear export of cargo proteins and RNAs. Almost 25% of primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) cases harboured a recurrent XPO1 point mutation (NM_003400, chr2:g61718472C>T) resulting in the E571K substitution within the hydrophobic groove of the protein, the site of cargo binding. We investigated the impact of the XPO1E571K mutation using PMBL/cHL cells having various XPO1 statuses and CRISPR–Cas9-edited cells in which the E571K mutation was either introduced or knocked-out. We first confirmed that the mutation was present in both XPO1 mRNA and protein. We observed that the mutation did not modify the export capacity but rather the subcellular localisation of XPO1 itself. In particular, mutant XPO1 bound to importin β1 modified the nuclear export/import dynamics of relevant cargoes.
Collapse
|
13
|
Haggag Y, Abu Ras B, El-Tanani Y, Tambuwala MM, McCarron P, Isreb M, El-Tanani M. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin Drug Deliv 2020; 17:1655-1669. [PMID: 32841584 DOI: 10.1080/17425247.2020.1813714] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Multidrug resistance (MDR) limits the beneficial outcomes of conventional breast cancer chemotherapy. Ras-related nuclear protein (Ran-GTP) plays a key role in these resistance mechanisms, assisting cancer cells to repair damage to DNA. Herein, we investigate the co-delivery of Ran-RCC1 inhibitory peptide (RAN-IP) and doxorubicin (DOX) to breast cancer cells using liposomal nanocarriers. RESEARCH DESIGN A liposomal delivery system, co-encapsulating DOX, and RAN-IP, was prepared using a thin-film rehydration technique. Dual-loaded liposomes were optimized by systematic modification of formulation variables. Real-Time-Polymerase Chain Reaction was used to determine Ran-GTP mRNA expression. In vitro cell lines were used to evaluate the effect of loaded liposomes on the viability of breast and lung cancer cell lines. In vivo testing was performed on a murine Solid Ehrlich Carcinoma model. RESULTS RAN-IP reversed the Ran-expression-mediated MDR by inhibiting the Ran DNA damage repair function. Co-administration of RAN-IP enhanced sensitivity of DOX in breast cancer cell lines. Finally, liposome-mediated co-delivery with RAN-IP improved the anti-tumor effect of DOX in tumor-bearing mice when compared to single therapy. CONCLUSIONS This study is the first to show the simultaneous delivery of RAN-IP and DOX using liposomes can be synergistic with DOX and lead to tumor regression in vitro and in vivo.
Collapse
Affiliation(s)
- Yusuf Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University , Tanta, Egypt
| | - Bayan Abu Ras
- School of Pharmacy and Clinical Sciences, University of Bradford , Bradford, UK
| | - Yahia El-Tanani
- School of Pharmacy and Clinical Sciences, University of Bradford , Bradford, UK
| | | | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University , UK
| | - Mohammed Isreb
- School of Pharmacy and Clinical Sciences, University of Bradford , Bradford, UK
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University , Amman, Jordan.,Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford , Bradford, UK
| |
Collapse
|
14
|
Azizian NG, Li Y. XPO1-dependent nuclear export as a target for cancer therapy. J Hematol Oncol 2020; 13:61. [PMID: 32487143 PMCID: PMC7268335 DOI: 10.1186/s13045-020-00903-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
Cellular homeostasis requires the proper nuclear-cytoplasmic partitioning of large molecules, which is often deregulated in cancer. XPO1 is an export receptor responsible for the nuclear-cytoplasmic transport of hundreds of proteins and multiple RNA species. XPO1 is frequently overexpressed and/or mutated in human cancers and functions as an oncogenic driver. Suppression of XPO1-mediated nuclear export, therefore, presents a unique therapeutic strategy. In this review, we summarize the physiological functions of XPO1 as well as the development of various XPO1 inhibitors and provide an update on the recent clinical trials of the SINE compounds. We also discuss potential future research directions on the molecular function of XPO1 and the clinical application of XPO1 inhibitors.
Collapse
Affiliation(s)
- Nancy G Azizian
- Center for Immunotherapy Research, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Yulin Li
- Center for Immunotherapy Research, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
15
|
Boudhraa Z, Carmona E, Provencher D, Mes-Masson AM. Ran GTPase: A Key Player in Tumor Progression and Metastasis. Front Cell Dev Biol 2020; 8:345. [PMID: 32528950 PMCID: PMC7264121 DOI: 10.3389/fcell.2020.00345] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Ran (Ras-related nuclear protein) GTPase is a member of the Ras superfamily. Like all the GTPases, Ran cycles between an active (GTP-bound) and inactive (GDP-bound) state. However, Ran lacks the CAAX motif at its C-terminus, a feature of other small GTPases that ensures a plasma membrane localization, and largely traffics between the nucleus and the cytoplasm. Ran regulates nucleo-cytoplasmic transport of molecules through the nuclear pore complex and controls cell cycle progression through the regulation of microtubule polymerization and mitotic spindle formation. The disruption of Ran expression has been linked to cancer at different levels - from cancer initiation to metastasis. In the present review, we discuss the contribution of Ran in the acquisition of three hallmarks of cancer, namely, proliferative signaling, resistance to apoptosis, and invasion/metastasis, and highlight its prognostic value in cancer patients. In addition, we discuss the use of this GTPase as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Zied Boudhraa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada.,Division of Gynecologic Oncology, Université de Montréal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
16
|
Zhong Y, Cao L, Ma H, Wang Q, Wei P, Yang J, Mo Y, Cao L, Shuai C, Peng S. Lin28A Regulates Stem-like Properties of Ovarian Cancer Cells by Enriching RAN and HSBP1 mRNA and Up-regulating its Protein Expression. Int J Biol Sci 2020; 16:1941-1953. [PMID: 32398961 PMCID: PMC7211169 DOI: 10.7150/ijbs.43504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC) is one of the malignant tumors that seriously threaten women's health, with the highest mortality rate in gynecological malignancies. The prognosis of patients with advanced OC is still poor, and the 5-year survival rate is only 20-30%. Therefore, how to improve the early diagnosis rate and therapeutic effect are urgent for patients with OC. In this research, we found that Lin28A can promote the expression of stem cell marker molecules CD133, CD44, OCT4 and Nanog. We later confirmed that Lin28A can enrich the mRNA of ras-related nuclear protein (RAN) and heat shock factor binding protein 1 (HSBP1) through RIP assay, and that Lin28A can regulate their protein expression. We also identified that RAN and HSBP1 are highly expressed in OC tissues, and that they are significantly positively correlated with the expression of Lin28A and negatively correlated with the survival prognosis of OC patients. After stable knockdown of RAN or HSBP1 in OC cells with high expression of Lin28A, the expression of the stem cell marker molecules such as OCT4, CD44 and Nanog are reduced. And after knocking down of RAN or HSBP1 in Lin28A highly expressed OC cells, the survival and invasion of OC cells and tumor size of OC xenograft in nude mice were markedly inhibited and apoptosis was increased. Our data also showed that knock down of RAN or HSBP1 can inhibit the invasion ability of OC cells by decreasing the expression of N-cadherin, Vimentin and promoting the expression of E-cadherin. Meanwhile, knockdown of RAN or HSBP1 induced cell apoptosis by inhibiting the expression of PARP. Our results indicated that Lin28A could regulate the biological behaviors in OC cells through RAN/HSBP1. These findings suggest that Lin28A/RAN/HSBP1 can be used as a marker for diagnosis and prognosis of OC patients, and RAN/HSBP1 may be a potential new target for gene therapy of OC.
Collapse
Affiliation(s)
- Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Lanqin Cao
- The department of gynecology of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haotian Ma
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Qian Wang
- The department of gynecology of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pingpin Wei
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Juan Yang
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yuqing Mo
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Lihua Cao
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Ganzhou, 341000, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine; School of basic Medical Science, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| |
Collapse
|
17
|
Zhang C, Zhao X, Du W, Shen J, Li S, Li Z, Wang Z, Liu F. Ran promotes the proliferation and migration ability of head and neck squamous cell carcinoma cells. Pathol Res Pract 2020; 216:152951. [PMID: 32334891 DOI: 10.1016/j.prp.2020.152951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 11/17/2022]
Abstract
HNSCC is an aggressive tumor that often recurrence and metastasis. Although the treatment of HNSCC has improved over the past few decades, it is easy to recurrence even after comprehensive treatment. Ran is a small Ras-related GTPase belonging to the Ras superfamily. Recently, Ran has been proven to be an important oncogene involved in the metastatic progression of many human cancers. But there is seldom research on HNSCC about Ran. This study revealed the relationship between Ran expression and HNSCC characteristics, investigated the expression and role of Ran in HNSCC tissues and cells by means of immunohistochemistry, qRT-PCR, CCK-8, FCM and transwell migration assays. The results indicated that HNSCC tissues had significantly higher Ran expression than adjacent non-tumor tissues. The overall survival rate was significantly lower in patients with Ran-positive tumors than in those with Ran-negative tumors. Moreover, Ran was positively correlated with tumor grade, lymph node metastasis and recurrence. Ran was also high expressed in the HNSCC cell lines (PCI-37B and SCC9) and down regulated of Ran could evidently inhibit their proliferation, migration and down-regulate of Met protein. In conclusion, our findings suggested Ran could promote the proliferation and migration ability of HNSCC cells. Ran may play an important role in the development of HNSCC and may serve as a novel prognostic indicator of HNSCC.
Collapse
Affiliation(s)
- Chong Zhang
- Center for Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Xida Zhao
- Department of Periodontics and Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Weidong Du
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Jing Shen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Siqi Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Zijia Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Zengxu Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Fayu Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China.
| |
Collapse
|
18
|
Lee Y, Ahn EH, Ryu CS, Kim JO, An HJ, Cho SH, Kim JH, Kim YR, Lee WS, Kim NK. Association between microRNA machinery gene polymorphisms and recurrent implantation failure. Exp Ther Med 2020; 19:3113-3123. [PMID: 32226488 PMCID: PMC7092926 DOI: 10.3892/etm.2020.8556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the potential association of five miRNA machinery gene polymorphisms (DICER1 rs3742330A>G, DROSHA rs10719T>C, RAN rs14035C>T, XPO5 rs11077A>C and DGCR8 rs417309G>A) with recurrent implantation failure (RIF), a clinical condition in which good-quality embryos repeatedly fail to implant following two or more in vitro fertilization cycles, and its associated risk factors in Korean women. Therefore, the present study performed genotype analysis and assessed the frequency of these miRNA gene polymorphisms in patients diagnosed with RIF (n=119) and randomly selected controls (n=210) with at least one live birth and no history of pregnancy loss. The DROSHA rs10719T>C and RAN rs14035C>T polymorphisms were identified to be significantly associated with decreased prevalence of RIF. Additionally, the DROSHA rs10719 TC and the RAN rs14035 CT genotypes were present at significantly lower frequencies in the RIF group than in the control group (adjusted odds ratio=0.550; 95% CI, 0.339-0.893; P=0.016; and adjusted odds ratio=0.590; 95% CI, 0.363-0.958; P=0.033, respectively). Furthermore, the combined RAN rs14035 CT+TT genotype was observed to be associated with decreased RIF prevalence (adjusted odds ratio=0.616; 95% CI, 0.386-0.982; P=0.042). Genotype combination analysis for the various miRNA polymorphisms revealed that the DROSHA TC genotype exhibited a highly significant negative association with RIF prevalence when combined with the RAN CT genotype (adjusted odds ratio=0.314; 95% CI, 0.147-0.673; P=0.003; false discovery rate-adjusted P=0.023). The present study revealed an association between the DROSHA rs10719 and RAN rs14035 3'UTR polymorphisms and decreased risk of RIF in Korean women, which suggests that these gene polymorphisms could represent potential markers for predicting RIF risk.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea.,CHA Fertility Center, Seoul Station, Seoul 04637, Republic of Korea
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi 13497, Republic of Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi 13497, Republic of Korea
| | - Woo Sik Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| |
Collapse
|
19
|
Jain N, Das B, Mallick B. Restoration of microRNA-197 expression suppresses oncogenicity in fibrosarcoma through negative regulation of RAN. IUBMB Life 2020; 72:1034-1044. [PMID: 32027089 DOI: 10.1002/iub.2240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) act as crucial regulators of biological pathways/processes by reinforcing transcriptional programs and moderating transcripts. Emerging evidences have shown the involvement of dysregulated miRNAs in pathophysiology of human diseases including several cancer types. Recently, miR-197-3p has been reported to play different roles in different cancers; however, its role in fibrosarcoma, a highly aggressive and malignant soft tissue sarcoma originated from the mesenchymal tissues, has not yet been studied. Therefore, this study aims to investigate the possible regulatory roles of miR-197-3p in the oncogenicity of fibrosarcoma. For this, we initially performed qRT-PCR of miR-197-3p, which we found to be downregulated in HT1080 human fibrosarcoma cells compared with IMR90-tert normal fibroblast cells. Subsequently, we performed gain-of-function study by employing several methods such as MTT assay, clonogenic assay, wound healing, flow cytometry cell cycle analysis, and acridine orange staining after transfecting HT1080 cells with miR-197-3p mimic. From these assays, we observed that miR-197-3p significantly inhibits viability, colony forming, and migration ability as well as triggers G2/M phase cell cycle arrest and autophagy in fibrosarcoma cells. To understand the mechanism through which miRNA performs these functions, we predicted its targets using TargetScan and performed pathway enrichment analysis after screening them by their expression in fibrosarcoma. Among the enriched targets, we found RAN (ras-related nuclear protein) to be a crucial target through which miR-197-3p represses tumorigenesis by binding to its 3´ UTR, validated by luciferase reporter assay. The tumor suppressive role of the miRNA was further confirmed by transfecting its mimic in RAN-overexpressed cells which showed significant attenuation in tumorigenic effect of RAN in fibrosarcoma as seen in different assays. Taken together, our study unveiled that miR-197-3p acts as an oncosuppressor in fibrosarcoma through G2/M phase arrest and induction of autophagy, and raises the possibility to act as a novel therapeutic intervention for the malignancy.
Collapse
Affiliation(s)
- Neha Jain
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Basudeb Das
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
20
|
Huang X, Zhao J, Fu W, Zhu J, Lou S, Tian X, Chen S, Ruan J, He J, Zhou H. The association of RAN and RANBP2 gene polymerphisms with Wilms tumor risk in Chinese children. J Cancer 2020; 11:804-809. [PMID: 31949483 PMCID: PMC6959007 DOI: 10.7150/jca.36651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023] Open
Abstract
Wilms tumor is considered to be the most common renal malignancy among children. RAN, a member of RAS superfamily, and its binding partner RANBP2 are related to the progression of multiple tumors. Nevertheless, the effects of the RAN and RANBP2 gene polymorphisms on the tumorigenesis of Wilms tumor remain unclarified. In this study, three potentially functional polymorphisms (rs56109543 C>T, rs7132224 A>G, and rs14035 C>T) in the RAN and one (rs2462788 C>T) in the RANBP2 were chosen to investigate their association with Wilms tumor susceptibility. Odds ratios (ORs) and 95% confidence intervals (CIs) were applied to assess the association of the selected polymorphisms with Wilms tumor susceptibility. Results shown that RAN rs7132224 AG/GG genotypes significantly increased Wilms tumor risk when compared to AA genotype (adjusted OR=1.40, 95% CI=1.01-1.95, P=0.047). Carriers of 1-3 risk genotypes have a significantly higher Wilms tumor risk than those without risk genotype (adjusted OR=1.49, 95% CI=1.07-2.07, P=0.020). Moreover, stratified analysis indicated that RAN rs56109543 CT/TT genotypes, RAN rs7132224 AG/GG genotypes and RANBP2 rs2462788 CT/TT genotypes remarkably increased Wilms tumor susceptibility among the subgroups. Our results indicated that RAN and RANBP2 polymorphisms were associated with Wilms tumor susceptibility in Chinese children. The role of RAN/RANBP2 in cancers deserves more attention.
Collapse
Affiliation(s)
- Xiaokai Huang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jie Zhao
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Susu Lou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaoqian Tian
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shanshan Chen
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jichen Ruan
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jing He
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
- ✉ Corresponding authors: Haixia Zhou, Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang, China, Tel./Fax: +86-13587898900, ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, Tel./Fax: (+86-020)38076560,
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- ✉ Corresponding authors: Haixia Zhou, Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou 325027, Zhejiang, China, Tel./Fax: +86-13587898900, ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, Tel./Fax: (+86-020)38076560,
| |
Collapse
|
21
|
An Y, Zhou L, Huang Z, Nice EC, Zhang H, Huang C. Molecular insights into cancer drug resistance from a proteomics perspective. Expert Rev Proteomics 2019; 16:413-429. [PMID: 30925852 DOI: 10.1080/14789450.2019.1601561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Resistance to chemotherapy and development of specific and effective molecular targeted therapies are major obstacles facing current cancer treatment. Comparative proteomic approaches have been employed for the discovery of putative biomarkers associated with cancer drug resistance and have yielded a number of candidate proteins, showing great promise for both novel drug target identification and personalized medicine for the treatment of drug-resistant cancer. Areas covered: Herein, we review the recent advances and challenges in proteomics studies on cancer drug resistance with an emphasis on biomarker discovery, as well as understanding the interconnectivity of proteins in disease-related signaling pathways. In addition, we highlight the critical role that post-translational modifications (PTMs) play in the mechanisms of cancer drug resistance. Expert opinion: Revealing changes in proteome profiles and the role of PTMs in drug-resistant cancer is key to deciphering the mechanisms of treatment resistance. With the development of sensitive and specific mass spectrometry (MS)-based proteomics and related technologies, it is now possible to investigate in depth potential biomarkers and the molecular mechanisms of cancer drug resistance, assisting the development of individualized therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Yao An
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Li Zhou
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Zhao Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Edouard C Nice
- c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Canhua Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| |
Collapse
|
22
|
Haggag YA, Matchett KB, Falconer RA, Isreb M, Jones J, Faheem A, McCarron P, El-Tanani M. Novel Ran-RCC1 Inhibitory Peptide-Loaded Nanoparticles Have Anti-Cancer Efficacy In Vitro and In Vivo. Cancers (Basel) 2019; 11:cancers11020222. [PMID: 30769871 PMCID: PMC6406988 DOI: 10.3390/cancers11020222] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
The delivery of anticancer agents to their subcellular sites of action is a significant challenge for effective cancer therapy. Peptides, which are integral to several oncogenic pathways, have significant potential to be utilised as cancer therapeutics due to their selectivity, high potency and lack of normal cell toxicity. Novel Ras protein-Regulator of chromosome condensation 1 (Ran-RCC1) inhibitory peptides designed to interact with Ran, a novel therapeutic target in breast cancer, were delivered by entrapment into polyethylene glycol-poly (lactic-co-glycolic acid) PEG-PLGA polymeric nanoparticles (NPs). A modified double emulsion solvent evaporation technique was used to optimise the physicochemical properties of these peptide-loaded biodegradable NPs. The anti-cancer activity of peptide-loaded NPs was studied in vitro using Ran-expressing metastatic breast (MDA-MB-231) and lung cancer (A549) cell lines, and in vivo using Solid Ehrlich Carcinoma-bearing mice. The anti-metastatic activity of peptide-loaded NPs was investigated using migration, invasion and colony formation assays in vitro. A PEG-PLGA-nanoparticle encapsulating N-terminal peptide showed a pronounced antitumor and anti-metastatic action in lung and breast cancer cells in vitro and caused a significant reduction of tumor volume and associated tumor growth inhibition of breast cancer model in vivo. These findings suggest that the novel inhibitory peptides encapsulated into PEGylated PLGA NPs are delivered effectively to interact and deactivate Ran. This novel Ran-targeting peptide construct shows significant potential for therapy of breast cancer and other cancers mediated by Ran overexpression.
Collapse
Affiliation(s)
- Yusuf A Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta 31111, Egypt.
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - Kyle B Matchett
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, C-TRIC, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, Northern Ireland, UK.
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - Mohammad Isreb
- School of Pharmacy and Clinical Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - Jason Jones
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - Ahmed Faheem
- Department of Pharmacy, Health and Well-being, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
- Imhotep Diagnostics and Therapeutics, Europa Tool House, Springbank, Industrial Estate, Dunmurry BT17 0QL, Northern Ireland, UK.
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
23
|
Sheng KL, Pridham KJ, Sheng Z, Lamouille S, Varghese RT. Functional Blockade of Small GTPase RAN Inhibits Glioblastoma Cell Viability. Front Oncol 2019; 8:662. [PMID: 30671385 PMCID: PMC6331428 DOI: 10.3389/fonc.2018.00662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma, the most common malignant tumor in the brain, lacks effective treatments and is currently incurable. To identify novel drug targets for this deadly cancer, the publicly available results of RNA interference screens from the Project Achilles database were analyzed. Ten candidate genes were identified as survival genes in 15 glioblastoma cell lines. RAN, member RAS oncogene family (RAN) was expressed in glioblastoma at the highest level among all candidates based upon cDNA microarray data. However, Kaplan-Meier survival analysis did not show any correlation between RAN mRNA levels and patient survival. Because RAN is a small GTPase that regulates nuclear transport controlled by karyopherin subunit beta 1 (KPNB1), RAN was further analyzed together with KPNB1. Indeed, GBM patients with high levels of RAN also had more KPNB1 and levels of KPNB1 alone did not relate to patient prognosis. Through a Cox multivariate analysis, GBM patients with high levels of RAN and KPNB1 showed significantly shorter life expectancy when temozolomide and promoter methylation of O6-methylguanine DNA methyltransferase were used as covariates. These results indicate that RAN and KPNB1 together are associated with drug resistance and GBM poor prognosis. Furthermore, the functional blockade of RAN and KPNB1 by importazole remarkably suppressed cell viability and activated apoptosis in GBM cells expressing high levels of RAN, while having a limited effect on astrocytes and GBM cells with undetectable RAN. Together, our results demonstrate that RAN activity is important for GBM survival and the functional blockade of RAN/KPNB1 is an appealing therapeutic approach.
Collapse
Affiliation(s)
- Kevin L Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| | - Kevin J Pridham
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| | - Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States.,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.,Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, United States.,Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States.,Faculty of Health Science, Virginia Tech, Blacksburg, VA, United States
| | - Samy Lamouille
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States.,Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.,Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States
| | - Robin T Varghese
- Department of Biological Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| |
Collapse
|
24
|
Sharma A, McCarron P, Matchett K, Hawthorne S, El-Tanani M. Anti-Invasive and Anti-Proliferative Effects of shRNA-Loaded Poly(Lactide-Co-Glycolide) Nanoparticles Following RAN Silencing in MDA-MB231 Breast Cancer Cells. Pharm Res 2018; 36:26. [PMID: 30560466 PMCID: PMC6297200 DOI: 10.1007/s11095-018-2555-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Background Overexpression of the RAN GTP (RAN) gene has been shown to be linked to metastatic activity of MDA-MB231 human breast cancer cells by increasing Ras/MEK/ERK and PI3K/Akt/mTORC1 signalling. The aim of this study was to investigate the potential of polymeric nanoparticles to deliver two novel shRNA sequences, targeted against the RAN gene, to MDA-MB231 cells grown in culture and to assess their effects in a range of biological assays. Methods Biodegradable PLGA nanoparticles, loaded with shRNA-1 and shRNA-4, were fabricated using a double emulsion solvent evaporation technique and characterised for size, zeta potential and polydispersity index before testing on the MDA-MB231 cell line in a range of assays including cell viability, migration, invasion and gene knock down. Results shRNA-loaded nanoparticles were successfully fabricated and delivered to MDA-MB231 cells in culture, where they effectively released their payload, causing a decrease in both cell invasion and cell migration by knocking down RAN gene expression. Conclusion Results indicate the anti-RAN shRNA-loaded nanoparticles deliver and release biological payload to MDA-MB231 cells in culture. This works paves the way for further investigations into the possible use of anti-RAN shRNA-loaded NP formulations for the treatment of breast cancer in vivo.
Collapse
Affiliation(s)
- Ankur Sharma
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Kyle Matchett
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK.
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, ICT building, University of Bradford, Richmond Road, Bradford, England, BD7 1DP, UK
| |
Collapse
|
25
|
Frost HR, Amos CI. A multi-omics approach for identifying important pathways and genes in human cancer. BMC Bioinformatics 2018; 19:479. [PMID: 30541428 PMCID: PMC6292115 DOI: 10.1186/s12859-018-2476-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Background Cancer develops when pathways controlling cell survival, cell fate or genome maintenance are disrupted by the somatic alteration of key driver genes. Understanding how pathway disruption is driven by somatic alterations is thus essential for an accurate characterization of cancer biology and identification of therapeutic targets. Unfortunately, current cancer pathway analysis methods fail to fully model the relationship between somatic alterations and pathway activity. Results To address these limitations, we developed a multi-omics method for identifying biologically important pathways and genes in human cancer. Our approach combines single-sample pathway analysis with multi-stage, lasso-penalized regression to find pathways whose gene expression can be explained largely in terms of gene-level somatic alterations in the tumor. Importantly, this method can analyze case-only data sets, does not require information regarding pathway topology and supports personalized pathway analysis using just somatic alteration data for a limited number of cancer-associated genes. The practical effectiveness of this technique is illustrated through an analysis of data from The Cancer Genome Atlas using gene sets from the Molecular Signatures Database. Conclusions Novel insights into the pathophysiology of human cancer can be obtained from statistical models that predict expression-based pathway activity in terms of non-silent somatic mutations and copy number variation. These models enable the identification of biologically important pathways and genes and support personalized pathway analysis in cases where gene expression data is unavailable. Electronic supplementary material The online version of this article (10.1186/s12859-018-2476-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, 03755, NH, USA.
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, 03755, NH, USA
| |
Collapse
|
26
|
Wu L, Dell'Anno I, Lapidot M, Sekido Y, Chan ML, Kohno M, Serre-Beinier V, Felley-Bosco E, de Perrot M. Progress of malignant mesothelioma research in basic science: A review of the 14th international conference of the international mesothelioma interest group (iMig2018). Lung Cancer 2018; 127:138-145. [PMID: 30642542 DOI: 10.1016/j.lungcan.2018.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/25/2018] [Indexed: 02/03/2023]
Abstract
Here we summarize the most recent update of mesothelioma research in basic science presented at the 14th iMig2018 international conference. The symposium of basic science track mainly focused on the drivers of mesothelioma initiation and progression, molecular pathogenesis, and perspectives on potential therapeutic approaches. This review covers several promising fields including strategies efficiently inhibiting YAP/TAZ functions or their critical downstream targets, heparanase inhibitors, RAN depletion, and MIF/CD74 inhibitors that may be developed as novel therapeutic approaches. In addition, targeting mesothelioma stem cells by depleting M2-polarized macrophages in tumor microenvironment or blocking Tnfsf18 (GITRL)-GITR signalling might be translated into therapeutic modalities in mesothelioma treatment.
Collapse
Affiliation(s)
- Licun Wu
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery and Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | - Irene Dell'Anno
- Department of Biology, University of Pisa, Via Derna 1, Pisa, Italy
| | - Moshe Lapidot
- Division of Thoracic Surgery, Lung Center and International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Kanokoden 1-1, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Mei-Lin Chan
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery and Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | - Mikihiro Kohno
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery and Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | - Veronique Serre-Beinier
- Department of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, 1211 Geneva 4, Switzerland
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, University Hospital Zurich, University of Zurich, 8044, Zürich, Switzerland
| | - Marc de Perrot
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery and Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada.
| |
Collapse
|
27
|
Tanaka I, Sato M, Kato T, Goto D, Kakumu T, Miyazawa A, Yogo N, Hase T, Morise M, Sekido Y, Girard L, Minna JD, Byers LA, Heymach JV, Coombes KR, Kondo M, Hasegawa Y. eIF2β, a subunit of translation-initiation factor EIF2, is a potential therapeutic target for non-small cell lung cancer. Cancer Sci 2018; 109:1843-1852. [PMID: 29624814 PMCID: PMC5989750 DOI: 10.1111/cas.13602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
To identify novel therapeutic targets for non‐small cell lung cancer (NSCLC), we conducted an integrative study in the following 3 stages: (i) identification of potential target gene(s) through shRNA functional screens in 2 independent NSCLC cell lines; (ii) validation of the clinical relevance of identified gene(s) using public databases; and (iii) investigation of therapeutic potential of targeting the identified gene(s) in vitro. A semi‐genome‐wide shRNA screen was performed in NCI‐H358 cells, and was integrated with data from our previous screen in NCI‐H460 cells. Among genes identified in shRNA screens, 24 were present in both NCI‐H358 and NCI‐H460 cells and were considered potential targets. Among the genes, we focused on eIF2β, which is a subunit of heterotrimeric G protein EIF2 and functions as a transcription initiation factor. The eIF2β protein is highly expressed in lung cancer cell lines compared with normal bronchial epithelial cells, and gene copy number analyses revealed that eIF2β is amplified in a subset of NSCLC cell lines. Gene expression analysis using The Cancer Genome Atlas (TCGA) dataset revealed that eIF2β expression is significantly upregulated in lung cancer tissues compared with corresponding normal lung tissues. Furthermore, high eIF2β expression was correlated with poor survival in patients with lung adenocarcinoma, as shown in other cohorts using publicly available online tools. RNAi‐mediated depletion of eIF2β suppresses growth of lung cancer cells independently of p53 mutation status, in part through G1 cell cycle arrest. Our data suggest that eIF2β is a therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuo Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshio Kato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daiki Goto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Kakumu
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Miyazawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoyuki Yogo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Morise
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sekido
- Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Kevin R Coombes
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Masashi Kondo
- Department of Respiratory Medicine, Fujita Health University, Toyoake, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|