1
|
Huang YH, Chien PJ, Wang WL, Hsu LS, Huang YM, Chang WW. Tribbles pseudokinase 3 drives cancer stemness in oral squamous cell carcinoma cells by supporting the expression levels of SOX2 and EGFR. Int J Mol Med 2025; 55:44. [PMID: 39791220 PMCID: PMC11758896 DOI: 10.3892/ijmm.2025.5485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a type of head and neck cancer (HNC) with a high recurrence rate, which has been reported to be associated with the presence of cancer stem cells (CSCs). Tribbles pseudokinase 3 (TRIB3) is involved in intracellular signaling and the aim of the present study was to investigate the role of TRIB3 in the maintenance of CSCs. Analysis of The Cancer Genome Atlas database samples demonstrated a positive correlation between TRIB3 expression levels and shorter overall survival rates in patients with HNC. Knockdown of TRIB3 in the SAS and HSC-3 OSCC cell lines reduced cell proliferation through the induction of cell cycle arrest, but not of apoptosis. The population of OSCC-CSCs, defined by a high level of intracellular aldehyde dehydrogenase activity and the ability to form tumorspheres, was also reduced in TRIB3-silenced OSCC cells. The tumorigenicity of tumorspheres derived from the SAS OSCC cell line was reduced following TRIB3 knockdown. These results suggested the potential involvement of TRIB3 in the self-renewal capability of the OSCC CSCs. Mechanistically, TRIB3 was shown to positively regulate SOX2 expression via maintaining both the protein expression level and the SOX2 promoter-binding capability of E2F transcription factor 1 (E2F1). Additionally, TRIB3 also increased the expression level of EGFR through preventing its lysosomal degradation. The significant associations between TRIB3 and E2F1, SOX2 or EGFR expression were also confirmed using a HNC tissue array. Taken together, the findings of the present study may suggest that TRIB3 is an oncogenic protein that supports the stemness of OSCC and that targeting TRIB3 may be a potential strategy for OSCC therapy in the future.
Collapse
Affiliation(s)
- Yu-Hao Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan, R.O.C
| | - Peng-Ju Chien
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan, R.O.C
| | - Wen-Ling Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan, R.O.C
| | - Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan, R.O.C
| | - Yen-Min Huang
- Division of Hematology and Oncology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Keelung 204201, Taiwan, R.O.C
- Hemophilia and Thrombosis Treatment Center, Keelung Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Keelung 204201, Taiwan, R.O.C
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan, R.O.C
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan, R.O.C
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan, R.O.C
| |
Collapse
|
2
|
Galindo Torres BP, Alcaraz Ortega R, Saiz López P, Adiego Leza MI, Moradillo Renuncio MDM, García Girón C, Grijalba Uche MV. New evidence for miRNA testing in head and neck squamous cell cancer patients. Clin Transl Oncol 2025:10.1007/s12094-025-03854-9. [PMID: 39913046 DOI: 10.1007/s12094-025-03854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
PURPOSE Prognosis of HNSCC has not changed over the last decades. MicroRNAs mediate gene expression and participate in regulating cellular biological processes. Its aberrant expression is an important event in the development of several cancers, including head and neck squamous cell cancer. The aim of the study is to determine if circulating miRNAs are reliable diagnostic indicators and can be used to monitor head and neck cancer. METHODS/PATIENTS An observational, longitudinal, prospective, analytical study was conducted, with a case-control design, in which 37 head and neck squamous cell cancer patients at diagnosis were compared with 30 healthy patients. Blood samples were obtained and free miRNA expression levels of 17 miRNAs were determined by PCR-RT. Follow-up of HNSCC was carried out for one year with blood extractions at 7 days for surgical patients, and 1, 2, 6 and 12 months after finishing treatment for all patients. RESULTS Seventy-eight percent of the participants in HNSCC group and 57% among control group were men. Smokers and alcohol consumers exhibit increased susceptibility to HNSCC, and risk rises to 63.4% (R2 = 0.634) when both factors are combined. HNSCC patients overexpressed miR-21-5p and miR-122, while miR-195-5p is downregulated. Elevated miR-21-5p levels correlates with tumour size and miR-374b-5p, with advanced stage (p = 0.005). CONCLUSION Our findings suggest that the evaluation of certain miRNAs' expression levels in plasma can be used as potential markers for HNSCC diagnosis. Further assays with larger samples could be performed to validate data and establish a cut-off expression level for our proposed miRNAs.
Collapse
Affiliation(s)
| | | | - Patricia Saiz López
- Servicio Anatomía Patológica, Hospital Universitario de Burgos, Burgos, Spain
| | | | | | | | | |
Collapse
|
3
|
Chatterjee P, Ghosh D, Chowdhury SR, Roy SS. ETS1 drives EGF-induced glycolytic shift and metastasis of epithelial ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119805. [PMID: 39159682 DOI: 10.1016/j.bbamcr.2024.119805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/10/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
Epithelial ovarian cancer (EOC), a leading cause of gynecological cancer-related morbidity and mortality and the most common type of ovarian cancer (OC), is widely characterized by alterations in the Epidermal Growth Factor (EGF) signaling pathways. The phenomenon of metastasis is largely held accountable for the majority of EOC-associated deaths. Existing literature reports substantiate evidence on the indispensable role of metabolic reprogramming, particularly the phenomenon of the 'Warburg effect' or aerobic glycolysis in priming the cancer cells towards Epithelial to Mesenchymal transition (EMT), subsequently facilitating EMT. Considering the diverse roles of growth factor signaling across different stages of oncogenesis, our prime emphasis was laid on unraveling mechanistic details of EGF-induced 'Warburg effect' and resultant metastasis in EOC cells. Our study puts forth Ets1, an established oncoprotein and key player in OC progression, as the prime metabolic sensor to EGF-induced cues from the tumor microenvironment (TME). EGF treatment has been found to induce Ets1 expression in OC cells predominantly through the Extracellular Signal-Regulated Kinase1/2 (ERK1/2) pathway activation. This subsequently results in pronounced glycolysis, characterized by an enhanced lactate production through transcriptional up-regulation of key determinant genes of the central carbon metabolism namely, hexokinase 2 (HK2) and monocarboxylate transporter 4 (MCT4). Furthermore, this study reports an unforeseen combinatorial blockage of HK2 and MCT4 as an effective approach to mitigate cellular metastasis in OC. Collectively, our work proposes a novel mechanistic insight into EGF-induced glycolytic bias in OC cells and also sheds light on an effective therapeutic intervention approach exploiting these insights.
Collapse
Affiliation(s)
- Priti Chatterjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Deepshikha Ghosh
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
5
|
Acharya SK, Shai S, Choon YF, Gunardi I, Hartanto FK, Kadir K, Roychoudhury A, Amtha R, Vincent-Chong VK. Cancer Stem Cells in Oral Squamous Cell Carcinoma: A Narrative Review on Experimental Characteristics and Methodological Challenges. Biomedicines 2024; 12:2111. [PMID: 39335624 PMCID: PMC11429394 DOI: 10.3390/biomedicines12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation of cancer cells that are believed to initiate and drive cancer progression. In animal models, xenotransplanted CSCs have demonstrated the ability to produce tumors. Since their initial isolation in blood cancers, CSCs have been identified in various solid human cancers, including oral squamous cell carcinoma (OSCC). In addition to their tumorigenic properties, dysregulated stem-cell-related signaling pathways-Wnt family member (Wnt), neurogenic locus notch homolog protein (Notch), and hedgehog-have been shown to endow CSCs with characteristics like self-renewal, phenotypic plasticity, and chemoresistance, contributing to recurrence and treatment failure. Consequently, CSCs have become targets for new therapeutic agents, with some currently in different phases of clinical trials. Notably, small molecule inhibitors of the hedgehog signaling pathway, such as vismodegib and glasdegib, have been approved for the treatment of basal cell carcinoma and acute myeloid leukemia, respectively. Other strategies for eradicating CSCs include natural compounds, nano-drug delivery systems, targeting mitochondria and the CSC microenvironment, autophagy, hyperthermia, and immunotherapy. Despite the extensive documentation of CSCs in OSCC since its first demonstration in head and neck (HN) SCC in 2007, none of these novel pharmacological approaches have yet entered clinical trials for OSCC patients. This narrative review summarizes the in vivo and in vitro evidence of CSCs and CSC-related signaling pathways in OSCC, highlighting their role in promoting chemoresistance and immunotherapy resistance. Additionally, it addresses methodological challenges and discusses future research directions to improve experimental systems and advance CSC studies.
Collapse
Affiliation(s)
- Surendra Kumar Acharya
- Department of Oral Medicine, Radiology and Surgery, Faculty of Dentistry, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Saptarsi Shai
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Yee Fan Choon
- Department of Oral and Maxillofacial Surgical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Indrayadi Gunardi
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Firstine Kelsi Hartanto
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ajoy Roychoudhury
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rahmi Amtha
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Vui King Vincent-Chong
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
6
|
Gupta I, Badrzadeh F, Tsentalovich Y, Gaykalova DA. Connecting the dots: investigating the link between environmental, genetic, and epigenetic influences in metabolomic alterations in oral squamous cell carcinoma. J Exp Clin Cancer Res 2024; 43:239. [PMID: 39169426 PMCID: PMC11337877 DOI: 10.1186/s13046-024-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for around 90% of all oral cancers and is the eighth most common cancer worldwide. Despite progress in managing OSCC, the overall prognosis remains poor, with a survival rate of around 50-60%, largely due to tumor size and recurrence. The challenges of late-stage diagnosis and limitations in current methods emphasize the urgent need for less invasive techniques to enable early detection and treatment, crucial for improving outcomes in this aggressive form of oral cancer. Research is currently aimed at unraveling tumor-specific metabolite profiles to identify candidate biomarkers as well as discover underlying pathways involved in the onset and progression of cancer that could be used as new targets for diagnostic and therapeutic purposes. Metabolomics is an advanced technological approach to identify metabolites in different sample types (biological fluids and tissues). Since OSCC promotes metabolic reprogramming influenced by a combination of genetic predisposition and environmental factors, including tobacco and alcohol consumption, and viral infections, the identification of distinct metabolites through screening may aid in the diagnosis of this condition. Moreover, studies have shown the use of metabolites during the catalysis of epigenetic modification, indicating a link between epigenetics and metabolism. In this review, we will focus on the link between environmental, genetic, and epigenetic influences in metabolomic alterations in OSCC. In addition, we will discuss therapeutic targets of tumor metabolism, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Fariba Badrzadeh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Yuri Tsentalovich
- International tomography center CB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Genome Sciences, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Feng J, Fang J. HOXC6-mediated transcriptional activation of ENO2 promotes oral squamous cell carcinoma progression through the Warburg effect. J Biochem Mol Toxicol 2024; 38:e23752. [PMID: 38923759 DOI: 10.1002/jbt.23752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Oral squamous cell carcinoma (OSCC) requires an in-depth exploration of its molecular mechanisms. The Warburg effect, along with the oncogenes enolase 2 (ENO2) and homeobox C6 (HOXC6), plays a central role in cancer. However, the specific interaction between ENO2 and HOXC6 in driving the Warburg effect and OSCC progression remains poorly understood. Through differential gene expression analysis in head and neck squamous cell carcinomas using Gene Expression Profiling Interactive Analysis, we identified upregulated ENO2 in OSCC. Silencing ENO2 in OSCC cells revealed its involvement in migration, invasion, and aerobic glycolysis of OSCC cells. Further exploration of ENO2's regulatory network identified HOXC6 as a potential transcriptional regulator. Subsequently, HOXC6 was silenced in OSCC cells, and expressions of ENO2 were assessed to validate its relationship with ENO2. Chromatin Immunoprecipitation and luciferase assays were utilized to investigate the direct transcriptional activation of ENO2 by HOXC6. A rescue assay co-overexpressing ENO2 and silencing HOXC6 in OSCC cells affirmed HOXC6's role in ENO2-associated glycolysis. High ENO2 expression in OSCC was validated through quantitative real-time polymerase chain reaction, Western blot, and immunohistochemistry analyses, which correlated with poor patient survival. Functional assays demonstrated that ENO2 silencing inhibited glycolysis and attenuated the aggressiveness of OSCC cells. In vivo studies confirmed the oncogenic role of ENO2 in OSCC growth. Notably, HOXC6 exhibited a positive correlation with ENO2 expression in clinical samples. Mechanistically, HOXC6 was identified as a direct transcriptional activator of ENO2, orchestrating the Warburg effect in OSCC cells. This study reveals the intricate link between HOXC6-mediated ENO2 transcriptional activation and the Warburg effect in OSCC, offering a potential therapeutic target for treating OSCC patients.
Collapse
Affiliation(s)
- Jing Feng
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Jin Fang
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
8
|
Wan X, Ma D, Song G, Tang L, Jiang X, Tian Y, Yi Z, Jiang C, Jin Y, Hu A, Bai Y. The SOX2/PDIA6 axis mediates aerobic glycolysis to promote stemness in non-small cell lung cancer cells. J Bioenerg Biomembr 2024; 56:323-332. [PMID: 38441855 DOI: 10.1007/s10863-024-10009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 05/24/2024]
Abstract
Non-small cell lung cancer (NSCLC) is an aggressive and rapidly expanding lung cancer. Abnormal upregulation or knockdown of PDIA6 expression can predict poor prognosis in various cancers. This study aimed to investigate the biological function of PDIA6 in NSCLC. SOX2 and PDIA6 expression in NSCLC tissues and regulatory relationship between them were analyzed using bioinformatics. GSEA was performed on the enrichment pathway of PDIA6. qRT-PCR was utilized to examine expression of SOX2 and PDIA6 in NSCLC tissues and cells, and dual-luciferase reporter assay and ChIP experiments were performed to validate their regulatory relationship. CCK-8 experiment was conducted to assess cell viability, western blot was to examine levels of stem cell markers and proteins related to aerobic glycolysis pathway in cells. Cell sphere formation assay was used to evaluate efficiency of cell sphere formation. Reagent kits were used to measure glycolysis levels and glycolysis products. High expression of PDIA6 in NSCLC was linked to aerobic glycolysis. Knockdown of PDIA6 reduced cell viability, expression of stem cell surface markers, and cell sphere formation efficiency in NSCLC. Overexpression of PDIA6 could enhance cell viability and promote aerobic glycolysis, but the addition of 2-DG could reverse this result. Bioinformatics predicted the existence of upstream transcription factor SOX2 for PDIA6, and SOX2 was significantly upregulated in NSCLC, and they had a binding relationship. Further experiments revealed that PDIA6 overexpression restored repressive effect of knocking down SOX2 on aerobic glycolysis and cell stemness. This work revealed that the SOX2/PDIA6 axis mediated aerobic glycolysis to promote NSCLC cell stemness, providing new therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Xiaoya Wan
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Daiyuan Ma
- Department Of Oncology, Affiliated Hospital Of North Sichuan Medical College, Nanchong, 637000, China
| | - Guanglin Song
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Lina Tang
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Xianxue Jiang
- Department Of Thoracic Surgery, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Yingguo Tian
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Zunli Yi
- Department Of Pathology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Chengying Jiang
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Yong Jin
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Anmu Hu
- Department Of Ultrasound, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Yuju Bai
- Department of Thoracic Oncology, The Second Affiliated Hospital Of Zunyi Medical University, Intersection of Xinpu Avenue and Xinlong Avenue, Xinpu New District, Zunyi, 563000, China.
| |
Collapse
|
9
|
Park W, Wei S, Xie CL, Han JH, Kim BS, Kim B, Jin JS, Yang ES, Cho MK, Ryu D, Yang HX, Bae SJ, Ha KT. Targeting pyruvate dehydrogenase kinase 1 overcomes EGFR C797S mutation-driven osimertinib resistance in non-small cell lung cancer. Exp Mol Med 2024; 56:1137-1149. [PMID: 38689087 PMCID: PMC11148081 DOI: 10.1038/s12276-024-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Osimertinib, a selective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), effectively targets the EGFR T790M mutant in non-small cell lung cancer (NSCLC). However, the newly identified EGFR C797S mutation confers resistance to osimertinib. In this study, we explored the role of pyruvate dehydrogenase kinase 1 (PDK1) in osimertinib resistance. Patients exhibiting osimertinib resistance initially displayed elevated PDK1 expression. Osimertinib-resistant cell lines with the EGFR C797S mutation were established using A549, NCI-H292, PC-9, and NCI-H1975 NSCLC cells for both in vitro and in vivo investigations. These EGFR C797S mutant cells exhibited heightened phosphorylation of EGFR, leading to the activation of downstream oncogenic pathways. The EGFR C797S mutation appeared to increase PDK1-driven glycolysis through the EGFR/AKT/HIF-1α axis. Combining osimertinib with the PDK1 inhibitor leelamine helped successfully overcome osimertinib resistance in allograft models. CRISPR-mediated PDK1 knockout effectively inhibited tumor formation in xenograft models. Our study established a clear link between the EGFR C797S mutation and elevated PDK1 expression, opening new avenues for the discovery of targeted therapies and improving our understanding of the roles of EGFR mutations in cancer progression.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Shibo Wei
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Chu-Long Xie
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Bosung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jung-Sook Jin
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Eun-Sun Yang
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Min Kyoung Cho
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hao-Xian Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, 49267, Republic of Korea.
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
10
|
Sasabe E, Tomomura A, Yamamoto T. The involvement of epidermal growth factor receptor/protein kinase B signaling in the tumor intrinsic PD-L1-induced malignant potential of oral squamous cell carcinoma. J Oral Pathol Med 2024; 53:310-320. [PMID: 38693616 DOI: 10.1111/jop.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Various antigen-presenting cells and tumor cells-expressing PD-L1 inhibits antitumor immune responses in the tumor microenvironment. Recently, numerous studies have shown that tumor cell intrinsic PD-L1 also plays important roles in tumor growth and progression. On the other hand, oral squamous cell carcinoma (OSCC) cells overexpress epidermal growth factor receptor (EGFR) and EGFR signal pathway exacerbates tumor progression. Therefore, this study assessed whether tumor-intrinsic PD-L1 facilitates malignant potential of OSCC cells through regulation of EGFR signaling. METHODS Two OSCC cell lines, SAS and HSC-3, were transfected with PD-L1 and EGFR-specific small interfering RNA (siRNA). Influences of PD-L1 knockdown on malignant potentials of OSCC cells were examined by Cell Counting kit-8 assay, transwell assay, sphere formation assay, flow cytometry, and Western blot. Effects of PD-L1 and EGFR knockdown on each expression were examined by quantitative real-time PCR (qRT-PCR), Western blot, and flow cytometry. RESULTS Transfection of an PD-L1-siRNA into OSCC cells decreased the abilities of proliferation, stemness, and mobility of these cells significantly. PD-L1 knockdown also decreased EGFR expression through the promotion of proteasome- and lysosome-mediated degradation and following activation of the EGFR/protekin kinase B (AKT) signal pathway. Meanwhile, EGFR knockdown did not influence PD-L1 expression in SAS and HSC-3 cells, but treatment with a recombinant human EGF induced its expression. Treatment with erlotinib and cetuximab suppressed rhEGF-induced PD-L1 expression and localization in the cellular membrane of both OSCC cells. CONCLUSION OSCC cells-expressing PD-L1 induced by EGF stimulation may promote malignancy intrinsically via the activation of the EGFR/AKT signaling cascade.
Collapse
Affiliation(s)
- Eri Sasabe
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Ayumi Tomomura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
11
|
Jiang W, Xu S, Li P. SLC2A3 promotes tumor progression through lactic acid-promoted TGF-β signaling pathway in oral squamous cell carcinoma. PLoS One 2024; 19:e0301724. [PMID: 38625978 PMCID: PMC11020985 DOI: 10.1371/journal.pone.0301724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/21/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUNDS Oral squamous cell carcinoma is a malignant tumor of the head and neck, and its molecular mechanism remains to be explored. METHODS By analyzing the OSCC data from the TCGA database, we found that SLC2A3 is highly expressed in OSCC patients. The expression level of SLC2A3 was verified by RT-PCR and western blotting in OSCC cell lines. The function of SLC2A3 in OSCC cell lines and Lactic acid in SLC2A3-knockdown OSCC cells were detected by colony formation, CCK8, transwell, and wound healing assays. The effect of SLC2A3 on tumor growth and metastasis was tested in vivo. GSEA and Western blot were used to analyze and validate tumor phenotypes and signaling pathway molecules. RESULTS We analyzed OSCC datasets in the TCGA database and found that SLC2A3 had abnormally high expression and was associated with poor prognosis. We also found that oral squamous cell carcinoma cells had increased proliferation, migration, invasion, EMT phenotype, and glycolysis due to SLC2A3 overexpression. Conversely, SLC2A3 knockdown had the opposite effect. Our in vivo experiments confirmed that SLC2A3 overexpression promoted tumor growth and metastasis while knockdown inhibited it. We also observed that high SLC2A3 expression led to EMT and the activation of the TGF-β signaling pathway, while knockdown inhibited it. Interestingly, exogenous lactic acid restored the EMT, proliferation, migration, and invasion abilities of oral cancer cells inhibited by knocking down SLC2A3. CONCLUSIONS Our study reveals that SLC2A3 expression was up-regulated in OSCC. SLC2A3 activates the TGF-β signaling pathway through lactic acid generated from glycolysis, thus regulating the biological behavior of OSCC.
Collapse
Affiliation(s)
- Wei Jiang
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- College of Stomatology, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Sheng Xu
- Department of Dental Laboratory, Guangxi Medical University College of Stomatology, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ping Li
- Department of Pathology, Guangxi Medical University College of Stomatology, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
12
|
Cheng Y, Song Z, Fang X, Tang Z. Polycomb repressive complex 2 and its core component EZH2: potential targeted therapeutic strategies for head and neck squamous cell carcinoma. Clin Epigenetics 2024; 16:54. [PMID: 38600608 PMCID: PMC11007890 DOI: 10.1186/s13148-024-01666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The polycomb group (PcG) comprises a set of proteins that exert epigenetic regulatory effects and play crucial roles in diverse biological processes, ranging from pluripotency and development to carcinogenesis. Among these proteins, enhancer of zeste homolog 2 (EZH2) stands out as a catalytic component of polycomb repressive complex 2 (PRC2), which plays a role in regulating the expression of homologous (Hox) genes and initial stages of x chromosome inactivation. In numerous human cancers, including head and neck squamous cell carcinoma (HNSCC), EZH2 is frequently overexpressed or activated and has been identified as a negative prognostic factor. Notably, EZH2 emerges as a significant gene involved in regulating the STAT3/HOTAIR axis, influencing HNSCC proliferation, differentiation, and promoting metastasis by modulating related oncogenes in oral cancer. Currently, various small molecule compounds have been developed as inhibitors specifically targeting EZH2 and have gained approval for treating refractory tumors. In this review, we delve into the epigenetic regulation mediated by EZH2/PRC2 in HNSCC, with a specific focus on exploring the potential roles and mechanisms of EZH2, its crucial contribution to targeted drug therapy, and its association with cancer markers and epithelial-mesenchymal transition. Furthermore, we aim to unravel its potential as a therapeutic strategy for oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yuxi Cheng
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China
| | - Zhengzheng Song
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China
| | - Xiaodan Fang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China.
| | - Zhangui Tang
- Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center of Oral Major Diseases and Oral Health & Academician, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
13
|
Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci 2024; 31:13. [PMID: 38254117 PMCID: PMC10804490 DOI: 10.1186/s12929-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains a serious burden in society and while the pace in the development of novel and more effective therapeutics is increasing, testing platforms that faithfully mimic the tumor microenvironment are lacking. With a clear shift from animal models to more complex in vitro 3D systems, spheroids emerge as strong options in this regard. Years of development have allowed spheroid-based models to better reproduce the biomechanical cues that are observed in the tumor-associated extracellular matrix (ECM) and cellular interactions that occur in both a cell-cell and cell-ECM manner. Here, we summarize some of the key cellular interactions that drive tumor development, progression and invasion, and how successfully are these interactions recapitulated in 3D spheroid models currently in use in the field. We finish by speculating on future advancements in the field and on how these can shape the relevance of spherical 3D models for tumor modelling.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
14
|
Jiang Z, He J, Zhang B, Wang L, Long C, Zhao B, Yang Y, Du L, Luo W, Hu J, Hong X. A Potential "Anti-Warburg Effect" in Circulating Tumor Cell-mediated Metastatic Progression? Aging Dis 2024; 16:AD.2023.1227. [PMID: 38300633 PMCID: PMC11745448 DOI: 10.14336/ad.2023.1227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Metabolic reprogramming is a defining hallmark of cancer metastasis, warranting thorough exploration. The tumor-promoting function of the "Warburg Effect", marked by escalated glycolysis and restrained mitochondrial activity, is widely acknowledged. Yet, the functional significance of mitochondria-mediated oxidative phosphorylation (OXPHOS) during metastasis remains controversial. Circulating tumor cells (CTCs) are considered metastatic precursors that detach from primary or secondary sites and harbor the potential to seed distant metastases through hematogenous dissemination. A comprehensive metabolic characterization of CTCs faces formidable obstacles, including the isolation of these rare cells from billions of blood cells, coupled with the complexities of ex vivo-culturing of CTC lines or the establishment of CTC-derived xenograft models (CDX). This review summarized the role of the "Warburg Effect" in both tumorigenesis and CTC-mediated metastasis. Intriguingly, bioinformatic analysis of single-CTC transcriptomic studies unveils a potential OXPHOS dominance over Glycolysis signature genes across several important cancer types. From these observations, we postulate a potential "Anti-Warburg Effect" (AWE) in CTCs-a metabolic shift bridging primary tumors and metastases. The observed AWE could be clinically important as they are significantly correlated with therapeutic response in melanoma and prostate patients. Thus, unraveling dynamic metabolic regulations within CTC populations might reveal an additional layer of regulatory complexities of cancer metastasis, providing an avenue for innovative anti-metastasis therapies.
Collapse
Affiliation(s)
- Zhuofeng Jiang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Jiapeng He
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Binyu Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Liping Wang
- Department of Oncology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China.
| | - Chunhao Long
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Boxi Zhao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yufan Yang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Longxiang Du
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Weiren Luo
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China.
| | - Jianyang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
15
|
Chen B, Wang Y, Wu Y, Xu T. Effect of HPV Oncoprotein on Carbohydrate and Lipid Metabolism in Tumor Cells. Curr Cancer Drug Targets 2024; 24:987-1004. [PMID: 38284713 DOI: 10.2174/0115680096266981231215111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024]
Abstract
High-risk HPV infection accounts for 99.7% of cervical cancer, over 90% of anal cancer, 50% of head and neck cancers, 40% of vulvar cancer, and some cases of vaginal and penile cancer, contributing to approximately 5% of cancers worldwide. The development of cancer is a complex, multi-step process characterized by dysregulation of signaling pathways and alterations in metabolic pathways. Extensive research has demonstrated that metabolic reprogramming plays a key role in the progression of various cancers, such as cervical, head and neck, bladder, and prostate cancers, providing the material and energy foundation for rapid proliferation and migration of cancer cells. Metabolic reprogramming of tumor cells allows for the rapid generation of ATP, aiding in meeting the high energy demands of HPV-related cancer cell proliferation. The interaction between Human Papillomavirus (HPV) and its associated cancers has become a recent focus of investigation. The impact of HPV on cellular metabolism has emerged as an emerging research topic. A significant body of research has shown that HPV influences relevant metabolic signaling pathways, leading to cellular metabolic alterations. Exploring the underlying mechanisms may facilitate the discovery of biomarkers for diagnosis and treatment of HPV-associated diseases. In this review, we introduced the molecular structure of HPV and its replication process, discussed the diseases associated with HPV infection, described the energy metabolism of normal cells, highlighted the metabolic features of tumor cells, and provided an overview of recent advances in potential therapeutic targets that act on cellular metabolism. We discussed the potential mechanisms underlying these changes. This article aims to elucidate the role of Human Papillomavirus (HPV) in reshaping cellular metabolism and the application of metabolic changes in the research of related diseases. Targeting cancer metabolism may serve as an effective strategy to support traditional cancer treatments, as metabolic reprogramming is crucial for malignant transformation in cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- The Second Hospital of Jilin University, Changchun, China
| | - Yishi Wu
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Olmedo I, Martínez D, Carrasco-Rojas J, Jara JA. Mitochondria in oral cancer stem cells: Unraveling the potential drug targets for new and old drugs. Life Sci 2023; 331:122065. [PMID: 37659591 DOI: 10.1016/j.lfs.2023.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Head and neck cancer is a major health problem worldwide, with most cases arising in the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, accounting for over 90% of all cases. Compared to other types of cancer, OSCC, has the worse prognosis, with a 5-year survival rate of 50%. Additionally, OSCC is characterized by a high rate of resistance to chemotherapy treatment, which may be partly explained by the presence of cancer stem cells (CSC) subpopulation. CSC can adapt to harmful environmental condition and are highly resistant to both chemotherapy and radiotherapy treatments, thus contributing to tumor relapse. The aim of this review is to highlight the role of mitochondria in oral CSC as a potential target for oral cancer treatment. For this purpose, we reviewed some fundamental aspects of the most validated protein markers of stemness, autophagy, the mitochondrial function and energy metabolism in oral CSC. Moreover, a discussion will be made on why energy metabolism, especially oxidative phosphorylation in CSC, may offer such a diverse source of original pharmacological target for new drugs. Finally, we will describe some drugs able to disturb mitochondrial function, with emphasis on those aimed to interrupt the electron transport chain function, as novel therapeutic strategies in multidrug-resistant oral CSC. The reutilization of old drugs approved for clinical use as new antineoplastics, in cancer treatment, is also matter of revision.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Martínez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javiera Carrasco-Rojas
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Toxicological and Pharmacological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Sun Q, Chen X, Luo H, Meng C, Zhu D. Cancer stem cells of head and neck squamous cell carcinoma; distance towards clinical application; a systematic review of literature. Am J Cancer Res 2023; 13:4315-4345. [PMID: 37818051 PMCID: PMC10560931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the major pathological type of head and neck cancer (HNC). The disease ranks sixth among the most common malignancies worldwide, with an increasing incidence rate yearly. Despite the development of therapy, the prognosis of HNSCC remains unsatisfactory, which may be attributed to the resistance to traditional radio-chemotherapy, relapse, and metastasis. To improve the diagnosis and treatment, the targeted therapy for HNSCC may be successful as that for some other tumors. Nanocarriers are the most effective system to deliver the anti-cancerous agent at the site of interest using passive or active targeting approaches. The system enhances the drug concentration in HCN target cells, increases retention, and reduces toxicity to normal cells. Among the different techniques in nanotechnology, quantum dots (QDs) possess multiple fluorescent colors emissions under single-source excitation and size-tunable light emission. Dendrimers are the most attractive nanocarriers, which possess the desired properties of drug retention, release, unaffecting by the immune system, blood circulation time enhancing, and cells or organs specific targeting properties. In this review, we have discussed the up-to-date knowledge of the Cancer Stem Cells of Head and Neck Squamous Cell Carcinoma. Although a lot of data is available, still much more efforts remain to be made to improve the treatment of HNSCC.
Collapse
Affiliation(s)
- Qingjia Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Xi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Hong Luo
- Department of Hematology, The First Hospital of QiqiharQiqihar 161005, Heilongjiang, China
| | - Cuida Meng
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| |
Collapse
|
18
|
Arora R, Cao C, Kumar M, Sinha S, Chanda A, McNeil R, Samuel D, Arora RK, Matthews TW, Chandarana S, Hart R, Dort JC, Biernaskie J, Neri P, Hyrcza MD, Bose P. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response. Nat Commun 2023; 14:5029. [PMID: 37596273 PMCID: PMC10439131 DOI: 10.1038/s41467-023-40271-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
The spatial organization of the tumor microenvironment has a profound impact on biology and therapy response. Here, we perform an integrative single-cell and spatial transcriptomic analysis on HPV-negative oral squamous cell carcinoma (OSCC) to comprehensively characterize malignant cells in tumor core (TC) and leading edge (LE) transcriptional architectures. We show that the TC and LE are characterized by unique transcriptional profiles, neighboring cellular compositions, and ligand-receptor interactions. We demonstrate that the gene expression profile associated with the LE is conserved across different cancers while the TC is tissue specific, highlighting common mechanisms underlying tumor progression and invasion. Additionally, we find our LE gene signature is associated with worse clinical outcomes while TC gene signature is associated with improved prognosis across multiple cancer types. Finally, using an in silico modeling approach, we describe spatially-regulated patterns of cell development in OSCC that are predictably associated with drug response. Our work provides pan-cancer insights into TC and LE biology and interactive spatial atlases ( http://www.pboselab.ca/spatial_OSCC/ ; http://www.pboselab.ca/dynamo_OSCC/ ) that can be foundational for developing novel targeted therapies.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christian Cao
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mehul Kumar
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ayan Chanda
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Reid McNeil
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Divya Samuel
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rahul K Arora
- Center for Health Informatics, University of Calgary, Calgary, AB, Canada
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - T Wayne Matthews
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shamir Chandarana
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Hart
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joseph C Dort
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Otolaryngology Head & Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Division of Hematology, Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Martin D Hyrcza
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Pinaki Bose
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
19
|
Jiang Q, Zhang D, Liu J, Liang C, Yang R, Zhang C, Wu J, Lin J, Ye T, Ding L, Li J, Gao S, Li B, Ye Q. HPIP is an essential scaffolding protein running through the EGFR-RAS-ERK pathway and drives tumorigenesis. SCIENCE ADVANCES 2023; 9:eade1155. [PMID: 37294756 PMCID: PMC10256163 DOI: 10.1126/sciadv.ade1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/04/2023] [Indexed: 06/11/2023]
Abstract
The EGFR-RAS-ERK pathway plays a key role in cancer development and progression. However, the integral assembly of EGFR-RAS-ERK signaling complexes from the upstream component EGFR to the downstream component ERK is largely unknown. Here, we show that hematopoietic PBX-interacting protein (HPIP) interacts with all classical components of the EGFR-RAS-ERK pathway and forms at least two complexes with overlapping components. Experiments of HPIP knockout or knockdown and chemical inhibition of HPIP expression showed that HPIP is required for EGFR-RAS-ERK signaling complex formation, EGFR-RAS-ERK signaling activation, and EGFR-RAS-ERK signaling-mediated promotion of aerobic glycolysis as well as cancer cell growth in vitro and in vivo. HPIP expression is correlated with EGFR-RAS-ERK signaling activation and predicts worse clinical outcomes in patients with lung cancer. These results provide insights into EGFR-RAS-ERK signaling complex formation and EGFR-RAS-ERK signaling regulation and suggest that HPIP may be a promising therapeutic target for cancer with dysregulated EGFR-RAS-ERK signaling.
Collapse
Affiliation(s)
- Qiwei Jiang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Deyu Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Juan Liu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Chaoyang Liang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ronghui Yang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Cheng Zhang
- Outpatient Department, Jingnan Medical Area, Chinese PLA General Hospital, Beijing 100850, China
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jing Lin
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Department of Clinical Laboratory, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Tianxing Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Lihua Ding
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Jianbin Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Binghui Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qinong Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| |
Collapse
|
20
|
Joshi P, Waghmare S. Molecular signaling in cancer stem cells of tongue squamous cell carcinoma: Therapeutic implications and challenges. World J Stem Cells 2023; 15:438-452. [PMID: 37342225 PMCID: PMC10277967 DOI: 10.4252/wjsc.v15.i5.438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 05/26/2023] Open
Abstract
Head and neck squamous cell carcinoma is the seventh most common cancer worldwide with high mortality rates. Amongst oral cavity cancers, tongue carcinoma is a very common and aggressive oral cavity carcinoma. Despite the implementation of a multimodality treatment regime including surgical intervention, chemo-radiation as well as targeted therapy, tongue carcinoma shows a poor overall 5-year survival pattern, which is attributed to therapy resistance and recurrence of the disease. The presence of a rare population, i.e., cancer stem cells (CSCs) within the tumor, are involved in therapy resistance, recurrence, and distant metastasis that results in poor survival patterns. Therapeutic agents targeting CSCs have been in clinical trials, although they are unable to reach into therapy stage which is due to their failure in trials. A more detailed understanding of the CSCs is essential for identifying efficient targets. Molecular signaling pathways, which are differentially regulated in the CSCs, are one of the promising targets to manipulate the CSCs that would provide an improved outcome. In this review, we summarize the current understanding of molecular signaling associated with the maintenance and regulation of CSCs in tongue squamous cell carcinoma in order to emphasize the need of the hour to get a deeper understanding to unravel novel targets.
Collapse
Affiliation(s)
- Priyanka Joshi
- Stem Cell Biology Group, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Sanjeev Waghmare
- Stem Cell Biology Group, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
| |
Collapse
|
21
|
Wongviriya A, Shelton RM, Cooper PR, Milward MR, Landini G. The relationship between sphingosine-1-phosphate receptor 2 and epidermal growth factor in migration and invasion of oral squamous cell carcinoma. Cancer Cell Int 2023; 23:65. [PMID: 37038210 PMCID: PMC10088162 DOI: 10.1186/s12935-023-02906-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lipid mediator and its binding to the S1P receptor 2 (S1PR2) is reported to regulate cytoskeletal organization. Epidermal growth factor (EGF) has been shown to induce migration and invasion in tumour cells. Since binding of S1P to S1PR2 and EGF to the EGF receptors exhibit some overlapping functionality, this study aimed to determine whether S1PR2 was involved in EGF-induced migration and invasion of oral squamous cell carcinoma (OSCC) lines and to identify any potential crosstalk between the two pathways. Migration was investigated using the scratch wound assay while invasion was studied using the transwell invasion and multicellular tumour spheroid (MCTS) assays. Activity of Rac1, a RhoGTPase, was measured using G-LISA (small GTPase activation assays) while S1P production was indirectly measured via the expression of sphingosine kinase (Sphk). S1PR2 inhibition with 10 µM JTE013 reduced EGF-induced migration, invasion and Rac1 activity, however, stimulation of S1PR2 with 10 µM CYM5478 did not enhance the effect of EGF on migration, invasion or Rac1 activity. The data demonstrated a crosstalk between EGF/EGFR and S1P/S1PR2 pathways at the metabolic level. S1PR2 was not involved in EGF production, but EGF promoted S1P production through the upregulation of Sphk1. In conclusion, OSCC lines could not migrate and invade without S1PR2 regulation, even with EGF stimulation. EGF also activated S1PR2 by stimulating S1P production via Sphk1. The potential for S1PR2 to control cellular motility may lead to promising treatments for OSCC patients and potentially prevent or reduce metastasis.
Collapse
Affiliation(s)
- Adjabhak Wongviriya
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Richard M Shelton
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Paul R Cooper
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Michael R Milward
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gabriel Landini
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
22
|
Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS, Bishayee A, Kumar AP, Sethi G. Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev 2023. [PMID: 36929669 DOI: 10.1002/med.21948] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a complex process with a primordial role in cellular transformation whereby an epithelial cell transforms and acquires a mesenchymal phenotype. This transformation plays a pivotal role in tumor progression and self-renewal, and exacerbates resistance to apoptosis and chemotherapy. EMT can be initiated and promoted by deregulated oncogenic signaling pathways, hypoxia, and cells in the tumor microenvironment, resulting in a loss-of-epithelial cell polarity, cell-cell adhesion, and enhanced invasive/migratory properties. Numerous transcriptional regulators, such as Snail, Slug, Twist, and ZEB1/ZEB2 induce EMT through the downregulation of epithelial markers and gain-of-expression of the mesenchymal markers. Additionally, signaling cascades such as Wnt/β-catenin, Notch, Sonic hedgehog, nuclear factor kappa B, receptor tyrosine kinases, PI3K/AKT/mTOR, Hippo, and transforming growth factor-β pathways regulate EMT whereas they are often deregulated in cancers leading to aberrant EMT. Furthermore, noncoding RNAs, tumor-derived exosomes, and epigenetic alterations are also involved in the modulation of EMT. Therefore, the regulation of EMT is a vital strategy to control the aggressive metastatic characteristics of tumor cells. Despite the vast amount of preclinical data on EMT in cancer progression, there is a lack of clinical translation at the therapeutic level. In this review, we have discussed thoroughly the role of the aforementioned transcription factors, noncoding RNAs (microRNAs, long noncoding RNA, circular RNA), signaling pathways, epigenetic modifications, and tumor-derived exosomes in the regulation of EMT in cancers. We have also emphasized the contribution of EMT to drug resistance and possible therapeutic interventions using plant-derived natural products, their semi-synthetic derivatives, and nano-formulations that are described as promising EMT blockers.
Collapse
Affiliation(s)
- Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hin Chong Leong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia Centre for Materials Interface, Pontedera, Pisa, Italy
| | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
23
|
Danella EB, Costa de Medeiros M, D'Silva NJ. Cytokines secreted by inflamed oral mucosa: implications for oral cancer progression. Oncogene 2023; 42:1159-1165. [PMID: 36879116 DOI: 10.1038/s41388-023-02649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
The oral mucosa has an essential role in protecting against physical, microbial, and chemical harm. Compromise of this barrier triggers a wound healing response. Key events in this response such as immune infiltration, re-epithelialization, and stroma remodeling are coordinated by cytokines that promote cellular migration, invasion, and proliferation. Cytokine-mediated cellular invasion and migration are also essential features in cancer dissemination. Therefore, exploration of cytokines that regulate each stage of oral wound healing will provide insights about cytokines that are exploited by oral squamous cell carcinoma (SCC) to promote tumor development and progression. This will aid in identifying potential therapeutic targets to constrain SCC recurrence and increase patient survival. In this review, we discuss cytokines that overlap in oral wounds and SCC, emphasizing how these cytokines promote cancer progression.
Collapse
Affiliation(s)
- Erika B Danella
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Marcell Costa de Medeiros
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Nisha J D'Silva
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA. .,Pathology, University of Michigan Medical School, 1500 E Medical Center Dr, Ann Arbor, MI, USA. .,Rogel Cancer Center, 1500 E Medical Center Dr, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Galindo Torres BP, García Girón C, Alcaraz Ortega R, Saiz López P, Adiego Leza MI, Grijalba Uche MV. Knowledge and expectations about miRNAs as biomarkers in head and neck squamous cell cancers. Am J Otolaryngol 2023; 44:103771. [PMID: 36603378 DOI: 10.1016/j.amjoto.2022.103771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
Head and neck squamous cell cancer patients suffer from a high postoperative recurrence rate and poor prognosis. Thus, it is essential to better understand the underlying molecular mechanisms and identify the role of new biomarkers. Recent research has shown that the dysregulation of microRNAs is a potential biomarker as a screening or prognostic tool. Moreover, the literature reveals its promising usefulness to select the best treatment strategy and monitor tumour response. The purpose of this review is to identify and synthesize the available literature on microRNAs as biomarkers that could help manage patients with head and neck squamous cell cancer. A search in scientific databases was completed, including all relevant articles related to circulating microRNAs in head and neck squamous cell cancer published in English or Spanish. We focused on articles whose main findings were related to their usefulness in diagnosis and prognosis. Conclusion: Knowledge of microRNAs opens the possibilities that these molecules offer in terms of monitoring cancer disease in a less-invasive, simple manner, allowing for serial sampling to assess the response to treatment and minimal residual disease. It is yet to be determined whether liquid biopsy will replace the traditional biopsy in the future but it represents a change in the paradigm of management of head and neck squamous cell cancer.
Collapse
Affiliation(s)
| | | | | | - Patricia Saiz López
- Pathological Anatomy Department, Universitary Hospital of Burgos, Burgos, Spain
| | | | | |
Collapse
|
25
|
Fernandes GMDM, Serafim Junior V, Galbiatti-Dias ALS, Ferreira LAM, Castanhole-Nunes MMU, Kawasaki-Oyama RS, Maniglia JV, Pavarino EC, Goloni-Bertollo EM. Treatment effects of the EGFR pathway drugs on head and neck cancer stem cells. Am J Cancer Res 2022; 12:4196-4210. [PMID: 36225637 PMCID: PMC9548020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023] Open
Abstract
(1) Head and neck cancer (HNC) is the sixth most common cancer worldwide and show low survival rates and drug resistance, which can be due to the presence of cancer stem cells (CSCs), a small cell population with metastatic potential, invasion and self-renewal ability. (2) Here, seven tumor cells were sorted as CD44+/CD117+/CD133+ or ALDH+, considered as HNC stem cells (HNCSCs), and as CD44-/CD117-/CD133- or ALDH-, considered non-HNCSCs after both cells sorted criteria was compared to evaluate cell migration, invasion, and colony forming assays. These subpopulations were treated with Cetuximab, Paclitaxel, or a combination of both drugs and evaluated for cell viability. Quantitative PCR and western blot were performed to evaluate EGFR, TRKB, KRAS and HIF-1α gene and protein expression. (3) HNCSCs presented more colonies and appeared to be more sensitive to the drug combination when compared with non-HNCSCs, regardless cells sorted criteria and primary tumor subsite. The EGFR, TRKB, KRAS and HIF-1α genes and proteins were upregulated in CSCs compared with non-HNCSCs, thus explaining the drug resistance. (4) This study contributes to the better development of specific therapeutic protocols based on Cetuximab and Paclitaxel drugs in the treatment of HNC in the presence of CSCs and cell proliferation biomarkers.
Collapse
Affiliation(s)
- Glaucia Maria de Mendonça Fernandes
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Vilson Serafim Junior
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Ana Lívia Silva Galbiatti-Dias
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Leticia Antunes Muniz Ferreira
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Márcia Maria Urbanin Castanhole-Nunes
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Rosa Sayoko Kawasaki-Oyama
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - José Victor Maniglia
- Department of Otolaryngology and Head and Neck Surgery, Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Erika Cristina Pavarino
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
26
|
Nguyen A, Kim AH, Kang MK, Park NH, Kim RH, Kim Y, Shin KH. Chronic Alcohol Exposure Promotes Cancer Stemness and Glycolysis in Oral/Oropharyngeal Squamous Cell Carcinoma Cell Lines by Activating NFAT Signaling. Int J Mol Sci 2022; 23:ijms23179779. [PMID: 36077186 PMCID: PMC9456298 DOI: 10.3390/ijms23179779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol consumption is associated with an increased risk of several cancers, including oral/oropharyngeal squamous cell carcinoma (OSCC). Alcohol also enhances the progression and aggressiveness of existing cancers; however, its underlying molecular mechanism remains elusive. Especially, the local carcinogenic effects of alcohol on OSCC in closest contact with ingestion of alcohol are poorly understood. We demonstrated that chronic ethanol exposure to OSCC increased cancer stem cell (CSC) populations and their stemness features, including self-renewal capacity, expression of stem cell markers, ALDH activity, and migration ability. The ethanol exposure also led to a significant increase in aerobic glycolysis. Moreover, increased aerobic glycolytic activity was required to support the stemness phenotype of ethanol-exposed OSCC, suggesting a molecular coupling between cancer stemness and metabolic reprogramming. We further demonstrated that chronic ethanol exposure activated NFAT (nuclear factor of activated T cells) signaling in OSCC. Functional studies revealed that pharmacological and genetic inhibition of NFAT suppressed CSC phenotype and aerobic glycolysis in ethanol-exposed OSCC. Collectively, chronic ethanol exposure promotes cancer stemness and aerobic glycolysis via activation of NFAT signaling. Our study provides a novel insight into the roles of cancer stemness and metabolic reprogramming in the molecular mechanism of alcohol-mediated carcinogenesis.
Collapse
Affiliation(s)
- Anthony Nguyen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Anna H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Mo K. Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Reuben H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Yong Kim
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Laboratory of Stem Cell and Cancer Epigenetics, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Broad Stem Cell Research Center, Los Angeles, CA 90095, USA
- Correspondence: (Y.K.); (K.-H.S.)
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Correspondence: (Y.K.); (K.-H.S.)
| |
Collapse
|
27
|
Chen H, Hu K, Xie Y, Qi Y, Li W, He Y, Fan S, Liu W, Li C. CDK1 Promotes Epithelial–Mesenchymal Transition and Migration of Head and Neck Squamous Carcinoma Cells by Repressing ∆Np63α-Mediated Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23137385. [PMID: 35806389 PMCID: PMC9266818 DOI: 10.3390/ijms23137385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
∆Np63α is a key transcription factor overexpressed in types of squamous cell carcinomas (SCCs), which represses epithelial–mesenchymal transition (EMT) and cell migration. In this study, we found that CDK1 phosphorylates ∆Np63α at the T123 site, impairing its affinity to the target promoters of its downstream genes and its regulation of them in turn. Database analysis revealed that CDK1 is overexpressed in head and neck squamous cell carcinomas (HNSCCs), especially the metastatic HNSCCs, and is negatively correlated with overall survival. We further found that CDK1 promotes the EMT and migration of HNSCC cells by inhibiting ∆Np63α. Altogether, our study identified CDK1 as a novel regulator of ΔNp63α, which can modulate EMT and cell migration in HNSCCs. Our findings will help to elucidate the migration mechanism of HNSCC cells.
Collapse
Affiliation(s)
- Huimin Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Ke Hu
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Ying Xie
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Yucheng Qi
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Wenjuan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Yaohui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Shijie Fan
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.L.); (Y.H.); (W.L.)
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.C.); (K.H.); (Y.X.); (Y.Q.); (S.F.)
- Correspondence:
| |
Collapse
|
28
|
Li TJ, Hao YH, Tang YL, Liang XH. Periodontal Pathogens: A Crucial Link Between Periodontal Diseases and Oral Cancer. Front Microbiol 2022; 13:919633. [PMID: 35847109 PMCID: PMC9279119 DOI: 10.3389/fmicb.2022.919633] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence shows a striking link between periodontal diseases and various human cancers including oral cancer. And periodontal pathogens, leading to periodontal diseases development, may serve a crucial role in oral cancer. This review elucidated the molecular mechanisms of periodontal pathogens in oral cancer. The pathogens directly engage in their own unique molecular dialogue with the host epithelium to acquire cancer phenotypes, and indirectly induce a proinflammatory environment and carcinogenic substance in favor of cancer development. And functional, rather than compositional, properties of oral microbial community correlated with cancer development are discussed. The effect of periodontal pathogens on periodontal diseases and oral cancer will further detail the pathogenesis of oral cancer and intensify the need of maintaining oral hygiene for the prevention of oral diseases including oral cancer.
Collapse
Affiliation(s)
- Tian-Jiao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi-hang Hao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Alzawi A, Iftikhar A, Shalgm B, Jones S, Ellis I, Islam M. Receptor, Signal, Nucleus, Action: Signals That Pass through Akt on the Road to Head and Neck Cancer Cell Migration. Cancers (Basel) 2022; 14:2606. [PMID: 35681586 PMCID: PMC9179418 DOI: 10.3390/cancers14112606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
This review aims to provide evidence for the role of the tumour microenvironment in cancer progression, including invasion and metastasis. The tumour microenvironment is complex and consists of tumour cells and stromal-derived cells, in addition to a modified extracellular matrix. The cellular components synthesise growth factors such as EGF, TGFα and β, VEGF, and NGF, which have been shown to initiate paracrine signalling in head and neck cancer cells by binding to cell surface receptors. One example is the phosphorylation, and hence activation, of the signalling protein Akt, which can ultimately induce oral cancer cell migration in vitro. Blocking of Akt activation by an inhibitor, MK2206, leads to a significant decrease, in vitro, of cancer-derived cell migration, visualised in both wound healing and scatter assays. Signalling pathways have therefore been popular targets for the design of chemotherapeutic agents, but drug resistance has been observed and is related to direct tumour-tumour cell communication, the tumour-extracellular matrix interface, and tumour-stromal cell interactions. Translation of this knowledge to patient care is reliant upon a comprehensive understanding of the complex relationships present in the tumour microenvironment and could ultimately lead to the design of efficacious treatment regimens such as targeted therapy or novel therapeutic combinations.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammad Islam
- Unit of Cell & Molecular Biology, School of Dentistry, University of Dundee, Dundee DD1 4HN, UK; (A.A.); (A.I.); (B.S.); (S.J.); (I.E.)
| |
Collapse
|
30
|
Läsche M, Gallwas J, Gründker C. Like Brothers in Arms: How Hormonal Stimuli and Changes in the Metabolism Signaling Cooperate, Leading HPV Infection to Drive the Onset of Cervical Cancer. Int J Mol Sci 2022; 23:5050. [PMID: 35563441 PMCID: PMC9103757 DOI: 10.3390/ijms23095050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all precautionary actions and the possibility of using vaccinations to counteract infections caused by human papillomaviruses (HPVs), HPV-related cancers still account for approximately 5% of all carcinomas. Worldwide, many women are still excluded from adequate health care due to their social position and origin. Therefore, immense efforts in research and therapy are still required to counteract the challenges that this disease entails. The special thing about an HPV infection is that it is not only able to trick the immune system in a sophisticated way, but also, through genetic integration into the host genome, to use all the resources available to the host cells to complete the replication cycle of the virus without activating the alarm mechanisms of immune recognition and elimination. The mechanisms utilized by the virus are the metabolic, immune, and hormonal signaling pathways that it manipulates. Since the virus is dependent on replication enzymes of the host cells, it also intervenes in the cell cycle of the differentiating keratinocytes and shifts their terminal differentiation to the uppermost layers of the squamocolumnar transformation zone (TZ) of the cervix. The individual signaling pathways are closely related and equally important not only for the successful replication of the virus but also for the onset of cervical cancer. We will therefore analyze the effects of HPV infection on metabolic signaling, as well as changes in hormonal and immune signaling in the tumor and its microenvironment to understand how each level of signaling interacts to promote tumorigenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, 37075 Göttingen, Germany; (M.L.); (J.G.)
| |
Collapse
|
31
|
Rodríguez-Vargas MP, Alvarado-Garnica H, Gutiérrez-Verdín LD, Villanueva-Sánchez FG, García-Contreras R. [Cancer stem cells in oral squamous cell carcinoma. Literature review]. REVISTA CIENTÍFICA ODONTOLÓGICA 2022; 10:e106. [PMID: 38389655 PMCID: PMC10880721 DOI: 10.21142/2523-2754-1002-2022-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 02/24/2024] Open
Abstract
Objective To perform a literature review on oral squamous cell carcinoma, the presence of cancer stem cells; their association with the course of the disease and therapeutic applications. Methods : A search was performed in the PubMed database by entering the following algorithm: ((((neoplastic stem cells [MeSH Terms ]) OR (Cancer stem cells [Text Word ])) AND (Squamous Cell Carcinoma of Head and Neck [MeSH Terms])) AND (Oral squamous cell carcinoma [Text Word ]), to find articles in english published between 2012 and 2022. The PRISMA diagram was used to identify and select the articles. Results A result of 49 articles was obtained; of which 27 were chosen according to the title and abstract in their association with the topic. In addition, 8 additional articles suggested by their relationship with the information previously searched were included. In total, 35 articles were evaluated. There has been found that tumoral cells in squamous oral carcinoma are heterogeneous since they include cancer stem cells wich possess characteristics of stem and neoplasic cells; which possess characteristics of stem cells as well as neoplastic cells; they have been associated with disease progression, recurrence, and metastasis and have been considered to be a key mechanism of therapy failure. Conclusions The expression of stem cell markers in oral squamous cell carcinomas has been demonstrated and has contributed to their identification in oral squamous cell carcinomas and has been implicated in the behavior of cancer cells. New therapeutic measures aimed at eliminating cancer stem cells have been proposed and developed.
Collapse
Affiliation(s)
- Mariana Paulina Rodríguez-Vargas
- Laboratorio de Investigación Interdisciplinaria (LII), Área de Patología Oral y Maxilofacial. Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México. León, Guanajuato, México. , Universidad Nacional Autónoma de México Laboratorio de Investigación Interdisciplinaria (LII), Área de Patología Oral y Maxilofacial Escuela Nacional de Estudios Superiores (ENES) Unidad León Universidad Nacional Autónoma de México LeónGuanajuato Mexico
| | - Hugo Alvarado-Garnica
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales. Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México. León, Guanajuato, México. , Universidad Nacional Autónoma de México Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales Escuela Nacional de Estudios Superiores (ENES) Unidad León Universidad Nacional Autónoma de México LeónGuanajuato Mexico
| | - Luis David Gutiérrez-Verdín
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato. León, Guanajuato, México. Universidad de Guanajuato División de Ciencias e Ingenierías Campus León Universidad de Guanajuato LeónGuanajuato Mexico
| | - Francisco Germán Villanueva-Sánchez
- Laboratorio de Investigación Interdisciplinaria (LII), Área de Patología Oral y Maxilofacial. Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México. León, Guanajuato, México. , Universidad Nacional Autónoma de México Laboratorio de Investigación Interdisciplinaria (LII), Área de Patología Oral y Maxilofacial Escuela Nacional de Estudios Superiores (ENES) Unidad León Universidad Nacional Autónoma de México LeónGuanajuato Mexico
| | - René García-Contreras
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales. Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México. León, Guanajuato, México. , Universidad Nacional Autónoma de México Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales Escuela Nacional de Estudios Superiores (ENES) Unidad León Universidad Nacional Autónoma de México LeónGuanajuato Mexico
| |
Collapse
|
32
|
Tumor Cell Glycolysis—At the Crossroad of Epithelial–Mesenchymal Transition and Autophagy. Cells 2022; 11:cells11061041. [PMID: 35326492 PMCID: PMC8947107 DOI: 10.3390/cells11061041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Upregulation of glycolysis, induction of epithelial–mesenchymal transition (EMT) and macroautophagy (hereafter autophagy), are phenotypic changes that occur in tumor cells, in response to similar stimuli, either tumor cell-autonomous or from the tumor microenvironment. Available evidence, herein reviewed, suggests that glycolysis can play a causative role in the induction of EMT and autophagy in tumor cells. Thus, glycolysis has been shown to induce EMT and either induce or inhibit autophagy. Glycolysis-induced autophagy occurs both in the presence (glucose starvation) or absence (glucose sufficiency) of metabolic stress. In order to explain these, in part, contradictory experimental observations, we propose that in the presence of stimuli, tumor cells respond by upregulating glycolysis, which will then induce EMT and inhibit autophagy. In the presence of stimuli and glucose starvation, upregulated glycolysis leads to adenosine monophosphate-activated protein kinase (AMPK) activation and autophagy induction. In the presence of stimuli and glucose sufficiency, upregulated glycolytic enzymes (e.g., aldolase or glyceraldehyde 3-phosphate dehydrogenase) or decreased levels of glycolytic metabolites (e.g., dihydroxyacetone phosphate) may mimic a situation of metabolic stress (herein referred to as “pseudostarvation”), leading, directly or indirectly, to AMPK activation and autophagy induction. We also discuss possible mechanisms, whereby glycolysis can induce a mixed mesenchymal/autophagic phenotype in tumor cells. Subsequently, we address unresolved problems in this field and possible therapeutic consequences.
Collapse
|
33
|
Shahoumi LA. Oral Cancer Stem Cells: Therapeutic Implications and Challenges. FRONTIERS IN ORAL HEALTH 2022; 2:685236. [PMID: 35048028 PMCID: PMC8757826 DOI: 10.3389/froh.2021.685236] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is currently one of the 10 most common malignancies worldwide, characterized by a biologically highly diverse group of tumors with non-specific biomarkers and poor prognosis. The incidence rate of HNSCC varies widely throughout the world, with an evident prevalence in developing countries such as those in Southeast Asia and Southern Africa. Tumor relapse and metastasis following traditional treatment remain major clinical problems in oral cancer management. Current evidence suggests that therapeutic resistance and metastasis of cancer are mainly driven by a unique subpopulation of tumor cells, termed cancer stem cells (CSCs), or cancer-initiating cells (CICs), which are characterized by their capacity for self-renewal, maintenance of stemness and increased tumorigenicity. Thus, more understanding of the molecular mechanisms of CSCs and their behavior may help in developing effective therapeutic interventions that inhibit tumor growth and progression. This review provides an overview of the main signaling cascades in CSCs that drive tumor repropagation and metastasis in oral cancer, with a focus on squamous cell carcinoma. Other oral non-SCC tumors, including melanoma and malignant salivary gland tumors, will also be considered. In addition, this review discusses some of the CSC-targeted therapeutic strategies that have been employed to combat disease progression, and the challenges of targeting CSCs, with the aim of improving the clinical outcomes for patients with oral malignancies. Targeting of CSCs in head and neck cancer (HNC) represents a promising approach to improve disease outcome. Some CSC-targeted therapies have already been proven to be successful in pre-clinical studies and they are now being tested in clinical trials, mainly in combination with conventional treatment regimens. However, some studies revealed that CSCs may not be the only players that control disease relapse and progression of HNC. Further, clinical research studying a combination of therapies targeted against head and neck CSCs may provide significant advances.
Collapse
Affiliation(s)
- Linah A Shahoumi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
34
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
35
|
Boschert V, Teusch J, Müller-Richter UDA, Brands RC, Hartmann S. PKM2 Modulation in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:775. [PMID: 35054968 PMCID: PMC8775697 DOI: 10.3390/ijms23020775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The enzyme pyruvate kinase M2 (PKM2) plays a major role in the switch of tumor cells from oxidative phosphorylation to aerobic glycolysis, one of the hallmarks of cancer. Different allosteric inhibitors or activators and several posttranslational modifications regulate its activity. Head and neck squamous cell carcinoma (HNSCC) is a common disease with a high rate of recurrence. To find out more about PKM2 and its modulation in HNSCC, we examined a panel of HNSCC cells using real-time cell metabolic analysis and Western blotting with an emphasis on phosphorylation variant Tyr105 and two reagents known to impair PKM2 activity. Our results show that in HNSCC, PKM2 is commonly phosphorylated at Tyrosine 105. Its levels depended on tyrosine kinase activity, emphasizing the importance of growth factors such as EGF (epidermal growth factor) on HNSCC metabolism. Furthermore, its correlation with the expression of CD44 indicates a role in cancer stemness. Cells generally reacted with higher glycolysis to PKM2 activator DASA-58 and lower glycolysis to PKM2 inhibitor Compound 3k, but some were more susceptible to activation and others to inhibition. Our findings emphasize the need to further investigate the role of PKM2 in HNSCC, as it could aid understanding and treatment of the disease.
Collapse
Affiliation(s)
- Verena Boschert
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany; (J.T.); (U.D.A.M.-R.); (R.C.B.); (S.H.)
| | - Jonas Teusch
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany; (J.T.); (U.D.A.M.-R.); (R.C.B.); (S.H.)
| | - Urs D. A. Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany; (J.T.); (U.D.A.M.-R.); (R.C.B.); (S.H.)
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97070 Würzburg, Germany
- Bavarian Cancer Research Center (BZKF), D-91054 Erlangen, Germany
| | - Roman C. Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany; (J.T.); (U.D.A.M.-R.); (R.C.B.); (S.H.)
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany; (J.T.); (U.D.A.M.-R.); (R.C.B.); (S.H.)
| |
Collapse
|
36
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
37
|
Sasabe E, Tomomura A, Liu H, Sento S, Kitamura N, Yamamoto T. Epidermal growth factor/epidermal growth factor receptor signaling blockage inhibits tumor cell-derived exosome uptake by oral squamous cell carcinoma through macropinocytosis. Cancer Sci 2021; 113:609-621. [PMID: 34874595 PMCID: PMC8819298 DOI: 10.1111/cas.15225] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Various cell types secrete exosomes into their surrounding extracellular space, which consequently affect the function and activity of recipient cells. Numerous studies have showed that tumor cell‐derived exosomes play important roles in tumor growth and progression. Although a variety of endocytic pathways are reportedly involved in the cellular uptake of exosomes, detailed mechanisms remain unknown. The present study demonstrated that treatment with recombinant epidermal growth factor (EGF) time‐ and dose‐dependently promoted cellular uptake of oral squamous cell carcinoma (OSCC) cell‐derived exosomes into OSCC cells themselves. Conversely, EGF receptor (EGFR) knockdown and treatment with EGFR inhibitors, including erlotinib and cetuximab, abrogated OSCC cell uptake of exosomes. The macropinocytosis inhibitor 5‐(N‐ethyl‐N‐isopropyl) amiloride (EIPA) blocked the effects of active EGF/EGFR signaling on uptake of OSCC cell‐derived exosomes. These EGFR inhibitors also suppressed OSCC cell‐derived exosome‐induced proliferation, migration, invasion, stemness, and chemoresistance of OSCC cells. Taken together, the data presented herein suggest that EGFR inhibitors might inhibit the malignant potential of OSCC cells through direct inhibition of not only EGFR downstream signaling pathway but also cellular uptake of OSCC cell‐derived exosomes through macropinocytosis.
Collapse
Affiliation(s)
- Eri Sasabe
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Ayumi Tomomura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Hangyu Liu
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Shinya Sento
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
38
|
Cirillo N, Wu C, Prime SS. Heterogeneity of Cancer Stem Cells in Tumorigenesis, Metastasis, and Resistance to Antineoplastic Treatment of Head and Neck Tumours. Cells 2021; 10:cells10113068. [PMID: 34831291 PMCID: PMC8619944 DOI: 10.3390/cells10113068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
The discovery of a small subset of cancer cells with self-renewal properties that can give rise to phenotypically diverse tumour populations has shifted our understanding of cancer biology. Targeting cancer stem cells (CSCs) is becoming a promising therapeutic strategy in various malignancies, including head and neck squamous cell carcinoma (HNSCC). Diverse sub-populations of head and neck cancer stem cells (HNCSCs) have been identified previously using CSC specific markers, the most common being CD44, Aldehyde Dehydrogenase 1 (ALDH1), and CD133, or by side population assays. Interestingly, distinct HNCSC subsets play different roles in the generation and progression of tumours. This article aims to review the evidence for a role of specific CSCs in HNSCC tumorigenesis, invasion, and metastasis, together with resistance to treatment.
Collapse
Affiliation(s)
- Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia;
- Correspondence:
| | - Carmen Wu
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia;
| | - Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
39
|
Epithelial-to-Mesenchymal Transition-Derived Heterogeneity in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13215355. [PMID: 34771518 PMCID: PMC8582421 DOI: 10.3390/cancers13215355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinomas (HNSCC) are common malignancies with considerable morbidity and a high death toll worldwide. Resistance towards multi-modal therapy modalities composed of surgery, irradiation, chemo- and immunotherapy represents a major obstacle in the efficient treatment of HNSCC patients. Patients frequently show nodal metastases at the time of diagnosis and endure early relapses, oftentimes in the form of local recurrences. Differentiation programs such as the epithelial-to-mesenchymal transition (EMT) allow individual tumor cells to adopt cellular functions that are central to the development of metastases and treatment resistance. In the present review article, the molecular basis and regulation of EMT and its impact on the progression of HNSCC will be addressed. Abstract Head and neck squamous cell carcinomas (HNSCC) are common tumors with a poor overall prognosis. Poor survival is resulting from limited response to multi-modal therapy, high incidence of metastasis, and local recurrence. Treatment includes surgery, radio(chemo)therapy, and targeted therapy specific for EGFR and immune checkpoint inhibition. The understanding of the molecular basis for the poor outcome of HNSCC was improved using multi-OMICs approaches, which revealed a strong degree of inter- and intratumor heterogeneity (ITH) at the level of DNA mutations, transcriptome, and (phospho)proteome. Single-cell RNA-sequencing (scRNA-seq) identified RNA-expression signatures related to cell cycle, cell stress, hypoxia, epithelial differentiation, and a partial epithelial-to-mesenchymal transition (pEMT). The latter signature was correlated to nodal involvement and adverse clinical features. Mechanistically, shifts towards a mesenchymal phenotype equips tumor cells with migratory and invasive capacities and with an enhanced resistance to standard therapy. Hence, gradual variations of EMT as observed in HNSCC represent a potent driver of tumor progression that could open new paths to improve the stratification of patients and to innovate approaches to break therapy resistance. These aspects of molecular heterogeneity will be discussed in the present review.
Collapse
|
40
|
Bayat Z, Farhadi Z, Taherkhani A. Identification of potential biomarkers associated with poor prognosis in oral squamous cell carcinoma through integrated bioinformatics analysis: A pilot study. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Niu D, Luo T, Wang H, Xia Y, Xie Z. Lactic acid in tumor invasion. Clin Chim Acta 2021; 522:61-69. [PMID: 34400170 DOI: 10.1016/j.cca.2021.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Invasion involves tumor cells altering their cell-matrix interactions and acquiring motility for metastatic spread. Invasive tumor cells exhibit dysregulated metabolism and enhanced aerobic glycolysis, leading to nutrient depletion, hypoxia, and lactic acid production. Lactic acid is a byproduct of glycolysis capable of promoting oncogenic progression, but its role in tumor invasion is unclear. A growing number of studies have demonstrated that lactic acid regulates the degradation of collagen Ⅳ, collagen Ⅶ, and glycoprotein; the synthesis of collagen Ⅰ; and multiple signaling pathways, including TGF-β/Smad, Wnt/β-catenin, IL-6/STAT3, and HGF/MET, which are associated with basement membrane (BM) remodeling and epithelial-mesenchymal transition (EMT), two hallmarks of the tumor invasive process. In the present review, we summarize BM remodeling and EMT in tumor invasion, discuss the emerging roles and molecular mechanisms of lactic acid in these processes, and provide insights for further research.
Collapse
Affiliation(s)
- Dun Niu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang 421001, China
| | - Ting Luo
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang 421001, China
| | - Hanbin Wang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang 421001, China
| | - Yiniu Xia
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang 421001, China.
| |
Collapse
|
42
|
Chen CH, Wang BW, Hsiao YC, Wu CY, Cheng FJ, Hsia TC, Chen CY, Wang Y, Weihua Z, Chou RH, Tang CH, Chen YJ, Wei YL, Hsu JL, Tu CY, Hung MC, Huang WC. PKCδ-mediated SGLT1 upregulation confers the acquired resistance of NSCLC to EGFR TKIs. Oncogene 2021; 40:4796-4808. [PMID: 34155348 PMCID: PMC8298203 DOI: 10.1038/s41388-021-01889-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
The tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) have been widely used for non-small cell lung cancer (NSCLC) patients, but the development of acquired resistance remains a therapeutic hurdle. The reduction of glucose uptake has been implicated in the anti-tumor activity of EGFR TKIs. In this study, the upregulation of the active sodium/glucose co-transporter 1 (SGLT1) was found to confer the development of acquired EGFR TKI resistance and was correlated with the poorer clinical outcome of the NSCLC patients who received EGFR TKI treatment. Blockade of SGLT1 overcame this resistance in vitro and in vivo by reducing glucose uptake in NSCLC cells. Mechanistically, SGLT1 protein was stabilized through the interaction with PKCδ-phosphorylated (Thr678) EGFR in the TKI-resistant cells. Our findings revealed that PKCδ/EGFR axis-dependent SGLT1 upregulation was a critical mechanism underlying the acquired resistance to EGFR TKIs. We suggest co-targeting PKCδ/SGLT1 as a potential strategy to improve the therapeutic efficacy of EGFR TKIs in NSCLC patients.
Collapse
Affiliation(s)
- Chia-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - Bo-Wei Wang
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Yu-Chun Hsiao
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Fang-Ju Cheng
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Te-Chun Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, Hyperbaric Oxygen Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yi Chen
- Division of Thoracic Surgery, Department of Surgery, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Zhang Weihua
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ruey-Hwang Chou
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yun-Ju Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
- Department of Pharmacy, E-Da Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jennifer L Hsu
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chih-Yen Tu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, China Medical University, Taichung, Taiwan.
| | - Mien-Chie Hung
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
| | - Wei-Chien Huang
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
43
|
Wu Y, Gao W, Liu H. Role of metabolic reprogramming in drug resistance to epidermal growth factor tyrosine kinase inhibitors in non-small cell lung cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:545-551. [PMID: 34148892 PMCID: PMC10930213 DOI: 10.11817/j.issn.1672-7347.2021.200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 11/03/2022]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) can effectively inhibit the growth of EGFR-dependent mutant non-small cell lung cancer (NSCLC). Unfortunately, NSCLC patients often develop severe drug resistance after long-term EGFR-TKI treatment. Studies have shown that the disorder of energy metabolism in tumor cells can induce EGFR-TKI resistance. Due to the drug action, gene mutation and other factors, tumor cells undergo metabolic reprogramming, which increases the metabolic rate and intensity of tumor cells, promotes the intake and synthesis of nutrients (such as sugar, fat and glutamine), forms a microenvironment conducive to tumor growth, enhances the bypass activation, phenotype transformation and abnormal proliferation of tumor cells, and inhibits the activity of immune cells and apoptosis of tumor cells, ultimately leading to drug resistance of tumor cells to EGFR-TKI. Therefore, targeting energy metabolism of NSCLC may be a potential way to alleviate TKI resistance.
Collapse
Affiliation(s)
- Yu Wu
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College; Anhui Provincial Biochemical Drugs Engineering Technology Research Center, Bengbu Anhui 233030, China.
| | - Wei Gao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College; Anhui Provincial Biochemical Drugs Engineering Technology Research Center, Bengbu Anhui 233030, China.
| | - Hao Liu
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College; Anhui Provincial Biochemical Drugs Engineering Technology Research Center, Bengbu Anhui 233030, China.
| |
Collapse
|
44
|
Gudi RR, Janakiraman H, Howe PH, Palanisamy V, Vasu C. Loss of CPAP causes sustained EGFR signaling and epithelial-mesenchymal transition in oral cancer. Oncotarget 2021; 12:807-822. [PMID: 33889303 PMCID: PMC8057274 DOI: 10.18632/oncotarget.27932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
Higher epidermal growth factor receptor (EGFR) signaling can contribute to tumor metastasis and resistance to therapies in oral squamous cell carcinoma (OSCC). EGFR signaling can promote epithelial-mesenchymal transition (EMT) in OSCC. EMT is a process by which epithelial cells acquire invasive properties and it can contribute to tumor metastasis. Not only do the abnormal functions of microtubule and microtubule-organizing centers (MTOC) such as centrosomes lead to cancers, but also the malignant tissues are characterized by aberrant centriolar features and amplified centrosomes. Microtubule inhibition therapies increase the sensitivity to EGFR targeting drugs in various cancers. In this study, we show that the loss of expression of a microtubule/tubulin binding protein, centrosomal protein 4.1-associated protein (CPAP), which is critical for centriole biogenesis and normal functioning of the centrosome, caused an increase in the EGFR levels and its signaling and, enhanced the EMT features and invasiveness of OSCC cells. Further, depletion of CPAP enhanced the tumorigenicity of these cells in a xeno-transplant model. Importantly, CPAP loss-associated EMT features and invasiveness of multiple OSCC cells were attenuated upon depletion of EGFR in them. On the other hand, we found that CPAP protein levels were higher in EGF treated OSCC cells as well as in oral cancer tissues, suggesting that the frequently reported aberrant centriolar features of tumors are potentially a consequence, but not the cause, of tumor progression. Overall, our novel observations show that, in addition to its known indispensable role in centrosome biogenesis, CPAP also plays a vital role in suppressing tumorigenesis in OSCC by facilitating EGFR homeostasis.
Collapse
Affiliation(s)
- Radhika R Gudi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Philip H Howe
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
45
|
Läsche M, Urban H, Gallwas J, Gründker C. HPV and Other Microbiota; Who's Good and Who's Bad: Effects of the Microbial Environment on the Development of Cervical Cancer-A Non-Systematic Review. Cells 2021; 10:cells10030714. [PMID: 33807087 PMCID: PMC8005086 DOI: 10.3390/cells10030714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is responsible for around 5% of all human cancers worldwide. It develops almost exclusively from an unsolved, persistent infection of the squamocolumnar transformation zone between the endo- and ecto-cervix with various high-risk (HR) human papillomaviruses (HPVs). The decisive turning point on the way to persistent HPV infection and malignant transformation is an immune system weakened by pathobionts and oxidative stress and an injury to the cervical mucosa, often caused by sexual activities. Through these injury and healing processes, HPV viruses, hijacking activated keratinocytes, move into the basal layers of the cervical epithelium and then continue their development towards the distal prickle cell layer (Stratum spinosum). The microbial microenvironment of the cervical tissue determines the tissue homeostasis and the integrity of the protective mucous layer through the maintenance of a healthy immune and metabolic signalling. Pathological microorganisms and the resulting dysbiosis disturb this signalling. Thus, pathological inflammatory reactions occur, which manifest the HPV infection. About 90% of all women contract an HPV infection in the course of their lives. In about 10% of cases, the virus persists and cervical intra-epithelial neoplasia (CIN) develops. Approximately 1% of women with a high-risk HPV infection incur a cervical carcinoma after 10 to 20 years. In this non-systematic review article, we summarise how the sexually and microbial mediated pathogenesis of the cervix proceeds through aberrant immune and metabolism signalling via CIN to cervical carcinoma. We show how both the virus and the cancer benefit from the same changes in the immune and metabolic environment.
Collapse
|
46
|
Mathavan S, Kue CS, Kumar S. Identification of potential candidate genes for lip and oral cavity cancer using network analysis. Genomics Inform 2021; 19:e4. [PMID: 33840168 PMCID: PMC8042300 DOI: 10.5808/gi.20062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Lip and oral cavity cancer, which can occur in any part of the mouth, is the 11th most common type of cancer worldwide. The major obstacles to patients' survival are the poor prognosis, lack of specific biomarkers, and expensive therapeutic alternatives. This study aimed to identify the main genes and pathways associated with lip and oral cavity carcinoma using network analysis and to analyze its molecular mechanism and prognostic significance further. In this study, 472 genes causing lip and oral cavity carcinoma were retrieved from the DisGeNET database. A protein-protein interaction network was developed for network analysis using the STRING database. VEGFA, IL6, MAPK3, INS, TNF, MAPK8, MMP9, CXCL8, EGF, and PTGS2 were recognized as network hub genes using the maximum clique centrality algorithm available in cytoHubba, and nine potential drug candidates (ranibizumab, siltuximab, sulindac, pomalidomide, dexrazoxane, endostatin, pamidronic acid, cetuximab, and apricoxib) for lip and oral cavity cancer were identified from the DGIdb database. Gene enrichment analysis was also performed to identify the gene ontology categorization of cellular components, biological processes, molecular functions, and biological pathways. The genes identified in this study could furnish a new understanding of the underlying molecular mechanisms of carcinogenesis and provide more reliable biomarkers for early diagnosis, prognostication, and treatment of lip and oral cavity cancer.
Collapse
Affiliation(s)
- Sarmilah Mathavan
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40100, Malaysia
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40100, Malaysia
| | - Suresh Kumar
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40100, Malaysia
| |
Collapse
|
47
|
Choe JH, Mazambani S, Kim TH, Kim JW. Oxidative Stress and the Intersection of Oncogenic Signaling and Metabolism in Squamous Cell Carcinomas. Cells 2021; 10:606. [PMID: 33803326 PMCID: PMC8000417 DOI: 10.3390/cells10030606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinomas (SCCs) arise from both stratified squamous and non-squamous epithelium of diverse anatomical sites and collectively represent one of the most frequent solid tumors, accounting for more than one million cancer deaths annually. Despite this prevalence, SCC patients have not fully benefited from recent advances in molecularly targeted therapy or immunotherapy. Rather, decades old platinum-based or radiation regimens retaining limited specificity to the unique characteristics of SCC remain first-line treatment options. Historically, a lack of a consolidated perspective on genetic aberrations driving oncogenic transformation and other such factors essential for SCC pathogenesis and intrinsic confounding cellular heterogeneity in SCC have contributed to a critical dearth in effective and specific therapies. However, emerging evidence characterizing the distinct genomic, epigenetic, and metabolic landscapes of SCC may be elucidating unifying features in a seemingly heterogeneous disease. In this review, by describing distinct metabolic alterations and genetic drivers of SCC revealed by recent studies, we aim to establish a conceptual framework for a previously unappreciated network of oncogenic signaling, redox perturbation, and metabolic reprogramming that may reveal targetable vulnerabilities at their intersection.
Collapse
Affiliation(s)
- Joshua H. Choe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Simbarashe Mazambani
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
| | - Jung-whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.M.); (T.H.K.)
- Research and Development, VeraVerse Inc., 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
48
|
Kumar M, Jaiswal RK, Prasad R, Yadav SS, Kumar A, Yadava PK, Singh RP. PARP-1 induces EMT in non-small cell lung carcinoma cells via modulating the transcription factors Smad4, p65 and ZEB1. Life Sci 2021; 269:118994. [PMID: 33417952 DOI: 10.1016/j.lfs.2020.118994] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022]
Abstract
AIM To study the role of PARP-1 in EMT of non-small cell lung carcinoma. MATERIALS AND METHODS We used H1299 and H460 lung cancer cells for knockdown study of PARP-1 using shPARP-1 lentiviral particle. We performed western blotting, confocal microscopy, semi-quantitative PCR, wound healing and colony formation assays. BACKGROUND AND KEY FINDINGS PARP-1 (poly-ADP ribose polymerase-1) is a multi-domain protein having DNA binding, auto-modification and catalytic domain, that participates in many biological processes including DNA damage detection and repair, transcription regulation, apoptosis, necrosis, cancer progression and metastasis. Metastasis is a leading cause of death in cancer patients, which starts in epithelial tumors via initiating epithelial to mesenchymal transition. There are various transcription factors involved in EMT including Snail-1, Smads, p65, ZEB1 and Twist1. We studied the effect of PARP-1 knockdown on EMT in non-small cell lung cancer cell line H1299. We found a significant increase in epithelial marker including ZO1 and β-catenin, while prominent decrease in the mesenchymal marker vimentin after PARP-1 knockdown in H1299 cells. Transcription factors including p65, Smad4 and ZEB1 showed significant decrease with concurrent expression of EMT markers. Cell migration and colony formation decreased after PARP-1 knockdown in H1299 cells. SIGNIFICANCE Overall, the shRNA mediated knockdown of PARP-1 in H1299 cells resulted in reversal of EMT or mesenchymal to epithelial transition (MET) characterized by an increase in epithelial markers and a decrease in mesenchymal markers, via down-regulating transcription factors including Smad4, p65 and ZEB1. Thus PARP-1 has a role in EMT in lung cancer.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rishi Kumar Jaiswal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ramraj Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suresh Singh Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anil Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod Kumar Yadava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Rana Pratap Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
49
|
Jia B, Zhang S, Wu S, Zhu Q, Li W. MiR-770 promotes oral squamous cell carcinoma migration and invasion by regulating the Sirt7/Smad4 pathway. IUBMB Life 2020; 73:264-272. [PMID: 33326690 DOI: 10.1002/iub.2426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant cancer with unfavorable prognosis, and the epithelial-to-mesenchymal transition (EMT) is a critical contributor to OSCC metastasis. Recently, we have shown that sirtuin 7 (Sirt7) is associated with EMT and OSCC metastasis by acetylating small mother against decapentaplegic 4 (Smad4). Nonetheless, the mechanism of Sirt7 downregulation in OSCC cells remains unknown. This study analyzed the potential microRNAs that were predicted to regulate Sirt7 expression by online databases. We identified miR-770 as an upstream regulator of Sirt7 that targets its 3'-untranslated region. The expression of miR-770 was observed to be negatively correlated with the mRNA expression of Sirt7 in metastatic OSCC tumors, and higher miR-770 expression was correlated with poorer OSCC patient survival. Our in vitro data indicated that miR-770 promoted OSCC cell migration and invasion, and this process was dependent on Sirt7/Smad4 signaling. Furthermore, in vivo metastasis experiments indicated that miR-770 overexpression led to more prominent OSCC metastasis and downregulated Sirt7 expression. Collectively, our results revealed a new role of Sirt7 downregulation in metastatic OSCC and suggested that miR-770 is a potential target in counteracting OSCC metastasis.
Collapse
Affiliation(s)
- Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sanke Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Wu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuyu Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenlu Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Ferraresi A, Girone C, Esposito A, Vidoni C, Vallino L, Secomandi E, Dhanasekaran DN, Isidoro C. How Autophagy Shapes the Tumor Microenvironment in Ovarian Cancer. Front Oncol 2020; 10:599915. [PMID: 33364196 PMCID: PMC7753622 DOI: 10.3389/fonc.2020.599915] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is characterized by a high mortality rate due to the late diagnosis and the elevated metastatic potential. Autophagy, a lysosomal-driven catabolic process, contributes to the macromolecular turnover, cell homeostasis, and survival, and as such, it represents a pathway targetable for anti-cancer therapies. It is now recognized that the vascularization and the cellular composition of the tumor microenvironment influence the development and progression of OC by controlling the availability of nutrients, oxygen, growth factors, and inflammatory and immune-regulatory soluble factors that ultimately impinge on autophagy regulation in cancer cells. An increasing body of evidence indicates that OC carcinogenesis is associated, at least in the early stages, to insufficient autophagy. On the other hand, when the tumor is already established, autophagy activation provides a survival advantage to the cancer cells that face metabolic stress and protects from the macromolecules and organelles damages induced by chemo- and radiotherapy. Additionally, upregulation of autophagy may lead cancer cells to a non-proliferative dormant state that protects the cells from toxic injuries while preserving their stem-like properties. Further to complicate the picture, autophagy is deregulated also in stromal cells. Thus, changes in the tumor microenvironment reflect on the metabolic crosstalk between cancer and stromal cells impacting on their autophagy levels and, consequently, on cancer progression. Here, we present a brief overview of the role of autophagy in OC hallmarks, including tumor dormancy, chemoresistance, metastasis, and cell metabolism, with an emphasis on the bidirectional metabolic crosstalk between cancer cells and stromal cells in shaping the OC microenvironment.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carlo Girone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|