1
|
Liu D, Chen G, Hu C, Li H. Promising odor-based therapeutics targeting ectopic olfactory receptor proteins in cancer: A review. Int J Biol Macromol 2025; 308:142342. [PMID: 40139602 DOI: 10.1016/j.ijbiomac.2025.142342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Cancer remains a formidable adversary in global health, necessitating the development of innovative strategies to curb the proliferation, invasion, and metastasis of cancer cells for effective treatment outcomes. Traditional cancer therapies often fall short in addressing the diverse therapeutic requirements of patients. Consequently, the exploration of novel therapeutic targets has become increasingly vital. Olfactory receptors (ORs) belonging to the G protein-coupled receptor (GPCR) subfamily, are present in non-nasal tissues and contribute to a wide range of physiological functions. ORs are specifically expressed in malignant tumors and have emerged as potential biomarkers for cancer detection. They can regulate diverse tumor biological behaviors and are involved in the development of malignant tumors, indicating that they might serve as potential targets for cancer treatment. This paper provides a comprehensive review of the ectopic expression of ORs, their functions in malignancies and odor-based therapeutics targeting ectopic olfactory receptors (EORs) in cancer, and aims to clarify their connection with cancer, providing new clues for probing the tumor biology and developing therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Dongsheng Liu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Gaojun Chen
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Changyi Hu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
2
|
Yuan ZQ, Peng XC, Liu L, Yang FY, Qian F. Olfactory receptors and human diseases. Cell Tissue Res 2025:10.1007/s00441-025-03971-5. [PMID: 40278904 DOI: 10.1007/s00441-025-03971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Olfaction plays a crucial role in distinguishing odors, enabling organisms to seek benefits and evade hazards. Olfactory receptors (ORs), characterized by highly variable binding pockets, facilitate the detection of diverse odorants from both external and internal environments. Nasal ORs, expressed in olfactory sensory neurons (OSNs), are critical for olfactory cognition and associated neuronal plasticity. In contrast, extra-nasal ORs, expressed in extra-olfactory tissues, detect specific chemicals and modulate cellular processes such as proliferation, migration, inflammation, and apoptosis. Aberrant OR expression or dysfunction has been implicated in numerous human diseases, including anosmia, dementia, dermatopathies, obesity, infertility, cancers, respiratory disorders, atherosclerosis and viral infections. Olfactory training, such as aromatherapy, demonstrates significant therapeutic potential for anosmia, dementia and psychological distress. Natural or synthetic odorants have been applied for promoting hair regeneration and cutaneous wound healing. Conversely, overexpression of specific ORs in cancer cells may drive tumor progression. Additionally, ORs may mediate virus-host interactions during infection, owing to their structural variability. Collectively, OR-targeted agonists and antagonists (odorants) represent promising candidates for treating OR-associated pathologies.
Collapse
Affiliation(s)
- Zhong-Qi Yuan
- Department of Neurosurgery, Health Science Center, First Affiliated Hospital of Yangtze University, Yangtze University, Hubei Province, Jingzhou, 434023, China
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Jingzhou Hospital Affiliated to Yangtze University, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Fu-Yuan Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China
| | - Feng Qian
- Department of Neurosurgery, Health Science Center, First Affiliated Hospital of Yangtze University, Yangtze University, Hubei Province, Jingzhou, 434023, China.
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Hubei Province, Jingzhou, 434023, China.
| |
Collapse
|
3
|
Uribe S, Shany E, Zhang Y, Wu AD, Dan W, Perez-Zoghbi JF, Emala CW, Yim PD. β-Ionone facilitates ex vivo airway smooth muscle relaxation via extraocular opsin-3 light receptor activation. Am J Physiol Lung Cell Mol Physiol 2025; 328:L526-L537. [PMID: 39937635 DOI: 10.1152/ajplung.00227.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Recent studies have linked deficiencies in β-carotene ingestion and its metabolites with an increased risk and severity of asthma exacerbations. We demonstrate that β-ionone, a β-carotene metabolite, dose-dependently relaxes upper and lower airways in vitro using wire myography of tracheal rings and phase-contrast microscopy of precision-cut lung slices (PCLSs). We demonstrate that β-ionone-induced relaxation is mediated through extraocular opsin-3 (OPN3) receptor activation via pharmacological competitive inhibition with chromophore 9-cis retinal and through the decreased relaxation demonstrated in Opn3-null PCLSs. We implicate a mechanistic pathway suggestive of Gαs activation that is in agreement with our previous findings. Finally, we confirmed OPN3 expression in airway smooth muscle cells by immunofluorescence and mRNA expression. Our findings implicate β-ionone as a potential therapeutic agent for conditions characterized by bronchoconstriction, such as asthma and COPD. Moreover, this study underscores the significance of dietary intake, particularly of β-carotene-rich foods, in maintaining respiratory health.NEW & NOTEWORTHY This research investigates β-ionone's potential as a therapeutic agent for bronchoconstriction. It sheds light on the mechanism of action of β-ionone's activation of extraocular opsin-3 receptors, offering insights into dietary influences on respiratory health. Notably, β-ionone induces dose-dependent relaxation in both upper and lower airways, with attenuated relaxation in Opn3-knockout models confirming receptor selectivity. This study presents a novel approach to addressing respiratory ailments and underscores the significance of dietary components in managing airway pathology.
Collapse
Affiliation(s)
- Styvalizh Uribe
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States
| | - Eyar Shany
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States
| | - Yi Zhang
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States
| | - Amy D Wu
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States
| | - William Dan
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States
| | - Charles W Emala
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States
| | - Peter D Yim
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, United States
| |
Collapse
|
4
|
Tang Y, Tian Y, Zhang CX, Wang GT. Olfactory Receptors and Tumorigenesis: Implications for Diagnosis and Targeted Therapy. Cell Biochem Biophys 2025; 83:295-305. [PMID: 39365517 DOI: 10.1007/s12013-024-01556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Olfactory receptors (ORs) are a class of G protein-coupled receptors (GPCR) widely distributed in olfactory sensory neurons and various non-olfactory tissues, serving significant physiological and pathological functions in the human body. Increasing evidence reveals the heightened expression of olfactory receptors in tumorous tissues and cells alongside normal tissues. Olfactory receptors have demonstrated influence over tumor cell proliferation and metastasis, establishing a close relationship with tumor initiation and progression. This review highlights the specific molecular actions and signaling pathways of olfactory receptors in the development of human tumors. The potential for precise tumor diagnosis and targeted therapy through therapeutic targeting of olfactory receptors as an adjunct anticancer treatment strategy is being considered.
Collapse
Affiliation(s)
- Yi Tang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ye Tian
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | | | - Guo-Tai Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Sub No.2, Weiyang West Road, Qindu District, Xianyang, 712000, China.
| |
Collapse
|
5
|
Cussenot O, Poupel L, Mousset C, Lavergne J, Bruyere F, Fontaine A, Cancel-Tassin G, Fromont-Hankard G. Spatial Genomics Identifies Heat Shock Proteins as Key Molecular Changes Associated to Adipose Periprostatic Space Invasion in Prostate Cancer. Cancers (Basel) 2024; 17:2. [PMID: 39796635 PMCID: PMC11718861 DOI: 10.3390/cancers17010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
PURPOSE To identify molecular changes during PCa invasion of adipose space using Spatial Transcriptomic Profiling of PCa cells. METHODS This study was performed on paired intraprostatic and extraprostatic samples obtained from radical prostatectomy with pT3a pathological stages. RESULTS Differential gene expression revealed upregulation of heat shock protein genes: DNAJB1, HSPA8, HSP90AA1, HSPA1B, HSPA1A in PCa PanCK+ cells from the adipose periprostatic space. Extraprostatic extension was significantly associated with overexpression of genes involved in metastatic spread (EGR1, OR51E2, SPON2), of aggressiveness ERG negative signature of enhancers of androgen receptor (HOXB13, FOXA1), and of PSMA (FOLH1). They were associated with loss at 6q, 10q, 16q, and gain at 8q24 locus. CONCLUSIONS PCa invasion of adipose EPE induces adaptative process related to heat shock proteins; PCa cells in EPE also present transcriptomics signatures for ERG independent aggressiveness, androgen receptor co-activation, and specific CNV changes.
Collapse
Affiliation(s)
- Olivier Cussenot
- Department of Urology, Medical University of Vienna, 1090 Vienna, Austria
- CeRePP, 75020 Paris, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7DQ, UK
| | - Lucie Poupel
- Plateforme CHICS, Centre de Recherche des Cordeliers—UMRS 1138, 75006 Paris, France
| | | | - Julien Lavergne
- Plateforme CHICS, Centre de Recherche des Cordeliers—UMRS 1138, 75006 Paris, France
| | - Franck Bruyere
- Department of Urology, Medical University of Tours, 37000 Tours, France
| | | | | | - Gaelle Fromont-Hankard
- CeRePP, 75020 Paris, France
- Inserm UMR 1069, 37032 Tours, France
- Department of Pathology, Orleans University Hospital, 45000 Orléans, France
| |
Collapse
|
6
|
Guo J, Kang SG, Huang K, Tong T. Targeting Odorant Receptors in Adipose Tissue with Food-Derived Odorants: A Novel Approach to Obesity Treatment. Foods 2024; 13:3938. [PMID: 39683011 DOI: 10.3390/foods13233938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Odorant receptors (ORs) have long been thought to serve as chemosensors located on the cilia of olfactory sensory neurons (OSNs) in the olfactory epithelium, where they recognize odorant molecules and comprise the largest family of seven transmembrane-domain G protein-coupled receptors (GPCRs). Over the last three decades, accumulating evidence has suggested that ORs are distributed in a variety of peripheral tissues beyond their supposed typical tissue expression in the olfactory epithelium. These ectopic ORs play a role in regulating various cellular, physiological, and pathophysiological phenomena in the body, such as regulation of hypertension, hepatic glucose production, cancer development, and chronic skin disease. Adipose tissue, the key organ in regulating obesity and energy metabolism, has been reported to take advantage of ectopic OR-mediated signaling. In this review, we summarize and provide an in-depth analysis of the current research on the key biological functions of adipose tissue ORs in response to food-derived odorants, as well as the molecular mechanisms underlying their activity.
Collapse
Affiliation(s)
- Jingya Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Tao Tong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| |
Collapse
|
7
|
Hou M, Chen J, Yang L, Qin L, Liu J, Zhao H, Guo Y, Yu QQ, Zhang Q. Identification of Fatty Acid Metabolism-Related Subtypes in Gastric Cancer Aided by Machine Learning. Cancer Manag Res 2024; 16:1463-1473. [PMID: 39439917 PMCID: PMC11495201 DOI: 10.2147/cmar.s483577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Gastric cancer, the fifth most common malignant tumor in the world, poses a serious threat to human health. However, the role of fatty acid metabolism (FAM) in gastric cancer remains incompletely understood. We aim to provide guidance for clinical decisions by utilizing public database of gastric adenocarcinoma to establish an FAM-related gene subtypes via machine learning algorithm. METHODS The intersection of FMGs from KEGG, Hallmark, and Reactome bioinformatics databases and the DEGs of the TCGA-STAD cohort was used to decompose the gene matrix related to establish FAM-related gene subtypes by NMF. Comparison of immune infiltrating differences between subtypes using ESTIMATE and Cibersort algorithms. The multifactor Cox regression to identify independent risk genes for patient prognosis based on the subtypes. A prognostic model including independent risk genes was built using random survival forest and Cox regression. IHC validation in gastric cancer and adjacent tissues confirmed the above gene expression level. RESULTS 71 DEGs related to FMGs of STAD were identified, which was used to established the FAM-related gene subtypes, C1 and C2. The immune infiltrating analysis showed that most immune features of C2 were significantly upregulated compared to C1. The independent risk genes were CGβ8, UPK1B, and OR51G based on the subtypes. A gastric cancer prognostic model consisting of independent risk genes was constructed and patients were classified into high-risk and low-risk groups with survival differential analysis. Finally, IHC showed that CGβ8 and UPK1B expression were upregulated in gastric cancer, while OR51G2 did not detect differences in expression. CONCLUSION The study developed a machine learning-based gastric cancer prognosis risk model using FMGs. This model effectively stratifies patients according to their risk levels and provides valuable insights for clinical decision-making, enabling accurate evaluation of patient prognosis.
Collapse
Affiliation(s)
- Maolin Hou
- Department of Internal Medicine, Siziwangqi People’s Hospital, Wulancabu, 011800, People’s Republic of China
| | - Jinghua Chen
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, 250000, People’s Republic of China
| | - Le Yang
- Department of Gastrointestinal Surgery, Jining, 272000, People’s Republic of China
| | - Lei Qin
- Department of Gastrointestinal Surgery, Jining, 272000, People’s Republic of China
| | - Jie Liu
- Department of Pediatric Intensive Care Unit, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250000, People’s Republic of China
| | - Haibo Zhao
- Department of Oncology, Jining, 272000, People’s Republic of China
| | - Yujin Guo
- Department of Clinical Pharmacology, Jining, 272000, People’s Republic of China
| | - Qing-Qing Yu
- Department of Clinical Pharmacology, Jining, 272000, People’s Republic of China
| | - Qiujie Zhang
- Department of Oncology, Jining, 272000, People’s Republic of China
| |
Collapse
|
8
|
Abaffy T, Fu O, Harume-Nagai M, Goldenberg JM, Kenyon V, Kenakin T. Intracellular Allosteric Antagonist of the Olfactory Receptor OR51E2. Mol Pharmacol 2024; 106:21-32. [PMID: 38719475 PMCID: PMC11187688 DOI: 10.1124/molpharm.123.000843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024] Open
Abstract
Olfactory receptors are members of class A (rhodopsin-like) family of G protein-coupled receptors (GPCRs). Their expression and function have been increasingly studied in nonolfactory tissues, and many have been identified as potential therapeutic targets. In this manuscript, we focus on the discovery of novel ligands for the olfactory receptor family 51 subfamily E2 (OR51E2). We performed an artificial intelligence-based virtual drug screen of a ∼2.2 million small molecule library. Cell-based functional assay identified compound 80 (C80) as an antagonist and inverse agonist, and detailed pharmacological analysis revealed C80 acts as a negative allosteric modulator by significantly decreasing the agonist efficacy, while having a minimal effect on receptor affinity for agonist. C80 binds to an allosteric binding site formed by a network of nine residues localized in the intracellular parts of transmembrane domains 3, 5, 6, 7, and H8, which also partially overlaps with a G protein binding site. Mutational experiments of residues involved in C80 binding uncovered the significance of the C2406.37 position in blocking the activation-related conformational change and keeping the receptor in the inactive form. Our study provides a mechanistic understanding of the negative allosteric action of C80 on agonist-ctivated OR51E2. We believe the identification of the antagonist of OR51E2 will enable a multitude of studies aiming to determine the functional role of this receptor in specific biologic processes. SIGNIFICANCE STATEMENT: OR51E2 has been implicated in various biological processes, and its antagonists that can effectively modulate its activity have therapeutic potential. Here we report the discovery of a negative allosteric modulator of OR51E2 and provide a mechanistic understanding of its action. We demonstrate that this modulator has an inhibitory effect on the efficacy of the agonist for the receptor and reveal a network of nine residues that constitute its binding pocket, which also partially overlaps with the G protein binding site.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Olivia Fu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Maira Harume-Nagai
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Josh M Goldenberg
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Victor Kenyon
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Terry Kenakin
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| |
Collapse
|
9
|
Luo D, Ottesen E, Lee JH, Singh R. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. RESEARCH SQUARE 2024:rs.3.rs-3818622. [PMID: 38464174 PMCID: PMC10925445 DOI: 10.21203/rs.3.rs-3818622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2, produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4,172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/SMN2. These fifindings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/SMN2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/SMN2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, a universally expressed circRNA produced by SMN1/SMN2.
Collapse
|
10
|
Courcelle M, Fabre PH, Douzery EJP. Phylogeny, Ecology, and Gene Families Covariation Shaped the Olfactory Subgenome of Rodents. Genome Biol Evol 2023; 15:evad197. [PMID: 37972291 PMCID: PMC10653590 DOI: 10.1093/gbe/evad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
Olfactory receptor (OR) genes represent the largest multigenic family in mammalian genomes and encode proteins that bind environmental odorant molecules. The OR repertoire is extremely variable among species and is subject to many gene duplications and losses, which have been linked to ecological adaptations in mammals. Although they have been studied on a broad taxonomic scale (i.e., placental), finer sampling has rarely been explored in order to better capture the mechanisms that drove the evolution of the OR repertoire. Among placental mammals, rodents are well-suited for this task, as they exhibit diverse life history traits, and genomic data are available for most major families and a diverse array of lifestyles. In this study, 53 rodent published genomes were mined for their OR subgenomes. We retrieved more than 85,000 functional and pseudogene OR sequences that were subsequently classified into phylogenetic clusters. Copy number variation among rodents is similar to that of other mammals. Using our OR counts along with comparative phylogenetic approaches, we demonstrated that ecological niches such as diet, period of activity, and a fossorial lifestyle strongly impacted the proportion of OR pseudogenes. Within the OR subgenome, phylogenetic inertia was the main factor explaining the relative variations of the 13 OR gene families. However, a striking exception was a convergent 10-fold expansion of the OR family 14 among the phylogenetically divergent subterranean mole-rat lineages belonging to Bathyergidae and Spalacidae families. This study illustrates how the diversity of the OR repertoire has evolved among rodents, both shaped by selective forces stemming from species life history traits and neutral evolution along the rodent phylogeny.
Collapse
Affiliation(s)
- Maxime Courcelle
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Pierre-Henri Fabre
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, United Kingdom
- Institut Universitaire de France (IUF), Section Biologie-Médecine-Santé, Paris, France
| | - Emmanuel J P Douzery
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
11
|
Do Synthetic Fragrances in Personal Care and Household Products Impact Indoor Air Quality and Pose Health Risks? J Xenobiot 2023; 13:121-131. [PMID: 36976159 PMCID: PMC10051690 DOI: 10.3390/jox13010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Fragrance compounds (synthetic fragrances or natural essential oils) comprise formulations of specific combinations of individual materials or mixtures. Natural or synthetic scents are core constituents of personal care and household products (PCHPs) that impart attractiveness to the olfactory perception and disguise the unpleasant odor of the formula components of PCHPs. Fragrance chemicals have beneficial properties that allow their use in aromatherapy. However, because fragrances and formula constituents of PCHPs are volatile organic compounds (VOCs), vulnerable populations are exposed daily to variable indoor concentrations of these chemicals. Fragrance molecules may trigger various acute and chronic pathological conditions because of repetitive human exposure to indoor environments at home and workplaces. The negative impact of fragrance chemicals on human health includes cutaneous, respiratory, and systemic effects (e.g., headaches, asthma attacks, breathing difficulties, cardiovascular and neurological problems) and distress in workplaces. Pathologies related to synthetic perfumes are associated with allergic reactions (e.g., cutaneous and pulmonary hypersensitivity) and potentially with the perturbation of the endocrine-immune-neural axis. The present review aims to critically call attention to odorant VOCs, particularly synthetic fragrances and associated formula components of PCHPs, potentially impacting indoor air quality and negatively affecting human health.
Collapse
|
12
|
Xu X, Khater M, Wu G. The olfactory receptor OR51E2 activates ERK1/2 through the Golgi-localized Gβγ-PI3Kγ-ARF1 pathway in prostate cancer cells. Front Pharmacol 2022; 13:1009380. [PMID: 36313302 PMCID: PMC9606680 DOI: 10.3389/fphar.2022.1009380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The olfactory receptor OR51E2 is ectopically expressed in prostate tissues and regulates prostate cancer progression, but its function and regulation in oncogenic mitogen-activate protein kinase (MAPK) activation are poorly defined. Here we demonstrate that β-ionone, an OR51E2 agonist, dose-dependently activates extracellular signal-regulated kinases 1 and 2 (ERK1/2) in prostate cancer cells, with an EC50 value of approximate 20 μM and an efficiency comparable to other receptor agonists. We also find that CRISPR-Cas9-mediated knockout of Golgi-translocating Gγ9 subunit, phosphoinositide 3-kinase γ (PI3Kγ) and the small GTPase ADP-ribosylation factor 1 (ARF1), as well as pharmacological inhibition of Gβγ, PI3Kγ and Golgi-localized ARF1, each abolishes ERK1/2 activation by β-ionone. We further show that β-ionone significantly promotes ARF1 translocation to the Golgi and activates ARF1 that can be inhibited by Gγ9 and PI3Kγ depletion. Collectively, our data demonstrate that OR51E2 activates ERK1/2 through the Gβγ-PI3Kγ-ARF1 pathway that occurs spatially at the Golgi, and also provide important insights into MAPK hyper-activation in prostate cancer.
Collapse
|
13
|
Geng R, Wang Y, Fang J, Zhao Y, Li M, Kang SG, Huang K, Tong T. Ectopic odorant receptors responding to flavor compounds in skin health and disease: Current insights and future perspectives. Crit Rev Food Sci Nutr 2022; 63:9392-9408. [PMID: 35445618 DOI: 10.1080/10408398.2022.2064812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin, the largest organ of human body, acts as a barrier to protect body from the external environment and is exposed to a myriad of flavor compounds, especially food- and plant essential oil-derived odorant compounds. Skin cells are known to express various chemosensory receptors, such as transient potential receptors, adenosine triphosphate receptors, taste receptors, and odorant receptors (ORs). We aim to provide a review of this rapidly developing field and discuss latest discoveries related to the skin ORs activated by flavor compounds, their impacts on skin health and disease, odorant ligands interacting with ORs exerting specific biological effects, and the mechanisms involved. ORs are recently found to be expressed in skin tissue and cells, such as keratinocytes, melanocytes, and fibroblasts. To date, several ectopic skin ORs responding to flavor compounds, are involved in different skin biological processes, such as wound healing, hair growth, melanin regulation, pressure stress, skin barrier function, atopic dermatitis, and psoriasis. The recognition of physiological role of skin ORs, combined with the fact that ORs belong to a highly druggable protein family (G protein-coupled receptors), underscores the potential of skin ORs responding to flavor compounds as a novel regulating strategy for skin health and disease.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Chungkyemyon, Muangun, Jeonnam, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|
14
|
Ectopic Odorant Receptor Responding to Flavor Compounds: Versatile Roles in Health and Disease. Pharmaceutics 2021; 13:pharmaceutics13081314. [PMID: 34452275 PMCID: PMC8402194 DOI: 10.3390/pharmaceutics13081314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Prompted by the ground-breaking discovery of the rodent odorant receptor (OR) gene family within the olfactory epithelium nearly 30 years ago, followed by that of OR genes in cells of the mammalian germ line, and potentiated by the identification of ORs throughout the body, our appreciation for ORs as general chemoreceptors responding to odorant compounds in the regulation of physiological or pathophysiological processes continues to expand. Ectopic ORs are now activated by a diversity of flavor compounds and are involved in diverse physiological phenomena varying from adipogenesis to myogenesis to hepatic lipid accumulation to serotonin secretion. In this review, we outline the key biological functions of the ectopic ORs responding to flavor compounds and the underlying molecular mechanisms. We also discuss research opportunities for utilizing ectopic ORs as therapeutic strategies in the treatment of human disease as well as challenges to be overcome in the future. The recognition of the potent function, signaling pathway, and pharmacology of ectopic ORs in diverse tissues and cell types, coupled with the fact that they belong to G protein-coupled receptors, a highly druggable protein family, unequivocally highlight the potential of ectopic ORs responding to flavor compounds, especially food-derived odorant compounds, as a promising therapeutic strategy for various diseases.
Collapse
|
15
|
Aloum L, Alefishat E, Adem A, Petroianu G. Ionone Is More than a Violet's Fragrance: A Review. Molecules 2020; 25:molecules25245822. [PMID: 33321809 PMCID: PMC7764282 DOI: 10.3390/molecules25245822] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The term ionone is derived from “iona” (Greek for violet) which refers to the violet scent and “ketone” due to its structure. Ionones can either be chemically synthesized or endogenously produced via asymmetric cleavage of β-carotene by β-carotene oxygenase 2 (BCO2). We recently proposed a possible metabolic pathway for the conversion of α-and β-pinene into α-and β-ionone. The differences between BCO1 and BCO2 suggest a unique physiological role of BCO2; implying that β-ionone (one of BCO2 products) is involved in a prospective biological function. This review focuses on the effects of ionones and the postulated mechanisms or signaling cascades involved mediating these effects. β-Ionone, whether of an endogenous or exogenous origin possesses a range of pharmacological effects including anticancer, chemopreventive, cancer promoting, melanogenesis, anti-inflammatory and antimicrobial actions. β-Ionone mediates these effects via activation of olfactory receptor (OR51E2) and regulation of the activity or expression of cell cycle regulatory proteins, pro-apoptotic and anti-apoptotic proteins, HMG-CoA reductase and pro-inflammatory mediators. α-Ionone and β-ionone derivatives exhibit anti-inflammatory, antimicrobial and anticancer effects, however the corresponding structure activity relationships are still inconclusive. Overall, data demonstrates that ionone is a promising scaffold for cancer, inflammation and infectious disease research and thus is more than simply a violet’s fragrance.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE
| | - Abdu Adem
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
| | - Georg Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
- Correspondence: ; Tel.: +971-50-413-4525
| |
Collapse
|
16
|
Zhang T, Ni H, Qiu XJ, Li T, Zhang LZ, Li LJ, Jiang ZD, Li QB, Chen F, Zheng FP. Suppressive Interaction Approach for Masking Stale Note of Instant Ripened Pu-Erh Tea Products. Molecules 2019; 24:E4473. [PMID: 31817626 PMCID: PMC6943613 DOI: 10.3390/molecules24244473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/07/2022] Open
Abstract
The unpleasant stale note is a negative factor hindering the consumption of instant ripened Pu-erh tea products. This study focused on investigating volatile chemicals in instant ripened Pu-erh tea that could mask the stale note via sensory evaluation, gas chromatography-mass spectrometry (GC-MS), and gas chromatography-olfactometry (GC-O) analyses. GC-MS and GC-O analyses showed that linalool, linalool oxides, trans-β-ionone, benzeneacetaldehyde, and methoxybenzenes were the major aroma contributors to the simultaneous distillation and extraction (SDE) extract of instant ripened Pu-erh tea. Sensory evaluation showed that the SDE extract had a strong stale note, which was due to methoxybenzenes. By investigating suppressive interaction among flavour components, the stale note from methoxybenzenes was shown to have reciprocal masking interactions with sweet, floral, and green notes. Moreover, the validation experiment showed that the addition of 40 μg/mL of trans-β-ionone in the instant ripened Pu-erh tea completely masked the stale note and improved the overall aromatic acceptance. These results elucidate the volatile chemicals that could mask the stale note of instant ripened Pu-erh tea products, which might help to develop high quality products made from instant ripened Pu-erh tea.
Collapse
Affiliation(s)
- Ting Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (T.Z.); (F.C.)
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.-J.Q.); (T.L.); (L.-Z.Z.); (L.-J.L.); (Z.-D.J.); (Q.-B.L.)
| | - Hui Ni
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (T.Z.); (F.C.)
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.-J.Q.); (T.L.); (L.-Z.Z.); (L.-J.L.); (Z.-D.J.); (Q.-B.L.)
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Xu-Jian Qiu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.-J.Q.); (T.L.); (L.-Z.Z.); (L.-J.L.); (Z.-D.J.); (Q.-B.L.)
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Ting Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.-J.Q.); (T.L.); (L.-Z.Z.); (L.-J.L.); (Z.-D.J.); (Q.-B.L.)
| | - Liang-Zhen Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.-J.Q.); (T.L.); (L.-Z.Z.); (L.-J.L.); (Z.-D.J.); (Q.-B.L.)
| | - Li-Jun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.-J.Q.); (T.L.); (L.-Z.Z.); (L.-J.L.); (Z.-D.J.); (Q.-B.L.)
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Ze-Dong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.-J.Q.); (T.L.); (L.-Z.Z.); (L.-J.L.); (Z.-D.J.); (Q.-B.L.)
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qing-Biao Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.-J.Q.); (T.L.); (L.-Z.Z.); (L.-J.L.); (Z.-D.J.); (Q.-B.L.)
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Feng Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (T.Z.); (F.C.)
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.-J.Q.); (T.L.); (L.-Z.Z.); (L.-J.L.); (Z.-D.J.); (Q.-B.L.)
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Fu-Ping Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (T.Z.); (F.C.)
| |
Collapse
|
17
|
The senses of the choroid plexus. Prog Neurobiol 2019; 182:101680. [DOI: 10.1016/j.pneurobio.2019.101680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
|
18
|
Gao W, Zhang Y, Niu M, Bo Y, Li H, Xue X, Lu Y, Zheng X, Tang Y, Cui J, He L, Thorne RF, Wang B, Wu Y. Identification of miR‐145‐5p‐Centered Competing Endogenous RNA Network in Laryngeal Squamous Cell Carcinoma. Proteomics 2019; 19:e1900020. [DOI: 10.1002/pmic.201900020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/02/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Yunfeng Bo
- Department of Pathology Shanxi Cancer Hospital Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
| | - Huizheng Li
- Department of Otolaryngology Head and Neck Surgery Dalian Municipal Friendship Hospital Dalian 116001 Liaoning P. R. China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Yan Lu
- Department of Otolaryngology Head and Neck Surgery The First Hospital Jinzhou Medical University Jinzhou 121001 Liaoning P. R. China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Yemei Tang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Jiajia Cui
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Long He
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Rick F. Thorne
- Translational Research Institute Henan Provincial People's Hospital School of Medicine, Henan University Zhengzhou 450053 Henan P. R. China
- School of Environmental and Life Sciences The University of Newcastle Callaghan 2308 NSW Australia
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- Otolaryngology Head and Neck Surgery Research Institute Shanxi Medical University Taiyuan 030001 Shanxi P. R. China
- The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer Taiyuan 030001 Shanxi P. R. China
| |
Collapse
|
19
|
Endogenous ionone. Commentary on "Study on the developmental toxicity of β-ionone in the rat". Regul Toxicol Pharmacol 2018; 101:194-195. [PMID: 30529345 DOI: 10.1016/j.yrtph.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 01/09/2023]
|
20
|
Courtens F, Demangeat JL, Benabdallah M. Could the Olfactory System Be a Target for Homeopathic Remedies as Nanomedicines? J Altern Complement Med 2018; 24:1032-1038. [PMID: 29889551 PMCID: PMC6247980 DOI: 10.1089/acm.2018.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Homeopathic remedies (HRs) contain odorant molecules such as flavonoids or terpenes and can lose their efficiency in presence of some competitive odors. Such similarities, along with extreme sensitivity of the olfactory system, widespread presence of olfactory receptors over all organic tissues (where they have metabolic roles besides perception of odors), and potential direct access to the brain through olfactory nerves (ONs) and trigeminal nerves, may suggest the olfactory system as target for HRs. Recent works highlighted that HRs exist in a dual form, that is, a still molecular form at low dilution and a nanoparticulate form at high dilution, and that remnants of source remedy persist in extremely high dilutions. From the literature, both odorants and nanoparticles (NPs) can enter the body through inhalation, digestive absorption, or through the skin, especially, NPs or viruses can directly reach the brain through axons of nerves. Assuming that HRs are recognized by olfactory receptors, their information could be transmitted to numerous tissues through receptor-ligand interaction, or to the brain by either activating the axon potential of ONs and trigeminal nerves or, in their nanoparticulate form, by translocating through axons of these nerves. Moreover, the nanoparticulate form may activate the immune system at multiple levels, induce systemic various biological responses through the pituitary axis and inflammation factors, or modulate gene expression at the cellular level. As immunity, inflammation, pituitary axis, and olfactory system are closely linked together, their permanent interaction triggered by olfactory receptors may thus ensure homeostasis.
Collapse
|
21
|
Wojcik S, Weidinger D, Ständer S, Luger T, Hatt H, Jovancevic N. Functional characterization of the extranasal OR2A4/7 expressed in human melanocytes. Exp Dermatol 2018; 27:1216-1223. [PMID: 30091289 DOI: 10.1111/exd.13764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Olfactory receptors (ORs) were first described as specialized chemoreceptors in the nasal epithelium. In the last two decades, ORs have also been detected to be functionally expressed and active in different nonolfactory tissues of the human body, because they used to react to specific odour stimuli. In this study, we conducted a characterization of the extranasal OR2A4/7 expressed in primary human melanocytes and sections of the human skin. OR2A4/7 expression could be demonstrated at the transcript and protein level. We uncovered elevated intracellular cAMP and Ca2+ levels accompanied by elevated p38 and reduced p42/44 MAPK phosphorylation following odourant (cyclohexyl salicylate; CHS) stimulation of melanocytes. These results were associated with enhanced melanin biosynthesis in conjunction with the growth inhibition and differentiation of melanocytes. Our findings highlight the participation of OR2A4/7 in human primary melanocyte physiology and suggest an alternate mechanism that regulates melanogenesis.
Collapse
Affiliation(s)
- Sebastian Wojcik
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Daniel Weidinger
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Sonja Ständer
- Department of Dermatology, Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | | | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | | |
Collapse
|
22
|
Clonal Heterogeneity Reflected by PI3K-AKT-mTOR Signaling in Human Acute Myeloid Leukemia Cells and Its Association with Adverse Prognosis. Cancers (Basel) 2018; 10:cancers10090332. [PMID: 30223538 PMCID: PMC6162751 DOI: 10.3390/cancers10090332] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023] Open
Abstract
Clonal heterogeneity detected by karyotyping is a biomarker associated with adverse prognosis in acute myeloid leukemia (AML). Constitutive activation of the phosphatidylinositol-3-kinase-Akt-mechanistic target of rapamycin (PI3K-Akt-mTOR) pathway is present in AML cells, and this pathway integrates signaling from several upstream receptors/mediators. We suggest that this pathway reflects biologically important clonal heterogeneity. We investigated constitutive PI3K-Akt-mTOR pathway activation in primary human AML cells derived from 114 patients, together with 18 pathway mediators. The cohort included patients with normal karyotype or single karyotype abnormalities and with an expected heterogeneity of molecular genetic abnormalities. Clonal heterogeneity reflected as pathway mediator heterogeneity was detected for 49 patients. Global gene expression profiles of AML cell populations with and without clonal heterogeneity differed with regard to expression of ectopic olfactory receptors (a subset of G-protein coupled receptors) and proteins involved in G-protein coupled receptor signaling. Finally, the presence of clonal heterogeneity was associated with adverse prognosis for patients receiving intensive antileukemic treatment. The clonal heterogeneity as reflected in the activation status of selected mediators in the PI3K-Akt-mTOR pathway was associated with a different gene expression profile and had an independent prognostic impact. Biological heterogeneity reflected in the intracellular signaling status should be further investigated as a prognostic biomarker in human AML.
Collapse
|
23
|
Jovancevic N, Khalfaoui S, Weinrich M, Weidinger D, Simon A, Kalbe B, Kernt M, Kampik A, Gisselmann G, Gelis L, Hatt H. Odorant Receptor 51E2 Agonist β-ionone Regulates RPE Cell Migration and Proliferation. Front Physiol 2017; 8:888. [PMID: 29249973 PMCID: PMC5714887 DOI: 10.3389/fphys.2017.00888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023] Open
Abstract
The odorant receptor 51E2 (OR51E2), which is well-characterized in prostate cancer cells and epidermal pigment cells, was identified for the first time as the most highly expressed OR in human fetal and adult retinal pigment epithelial (RPE) cells. Immunofluorescence staining and Western blot analysis revealed OR51E2 localization throughout the cytosol and in the plasma membrane. Additionally, immunohistochemical staining of diverse layers of the eye showed that the expression of OR51E2 is restricted to the pigment cells of the RPE and choroid. The results of Ca2+-imaging experiments demonstrate that activation of OR51E2 triggers a Ca2+ dependent signal pathway in RPE cells. Downstream signaling of OR51E2 involves the activation of adenylyl cyclase, ERK1/2 and AKT. The activity of these protein kinases likely accounts for the demonstrated increase in the migration and proliferation of RPE cells upon stimulation with the OR51E2 ligand β-ionone. These findings suggest that OR51E2 is involved in the regulation of RPE cell growth. Thus, OR51E2 represents a potential target for the treatment of proliferative disorders.
Collapse
Affiliation(s)
| | | | | | | | - Annika Simon
- Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Benjamin Kalbe
- Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Marcus Kernt
- Ophthalmology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anselm Kampik
- Ophthalmology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Lian Gelis
- Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Hanns Hatt
- Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
24
|
Wolf S, Jovancevic N, Gelis L, Pietsch S, Hatt H, Gerwert K. Dynamical Binding Modes Determine Agonistic and Antagonistic Ligand Effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR). Sci Rep 2017; 7:16007. [PMID: 29167480 PMCID: PMC5700038 DOI: 10.1038/s41598-017-16001-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 11/03/2017] [Indexed: 01/14/2023] Open
Abstract
We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany.
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China.
| | - Nikolina Jovancevic
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Lian Gelis
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Sebastian Pietsch
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Hanns Hatt
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| |
Collapse
|
25
|
Sanz G, Leray I, Muscat A, Acquistapace A, Cui T, Rivière J, Vincent-Naulleau S, Giandomenico V, Mir LM. Gallein, a Gβγ subunit signalling inhibitor, inhibits metastatic spread of tumour cells expressing OR51E2 and exposed to its odorant ligand. BMC Res Notes 2017; 10:541. [PMID: 29084601 PMCID: PMC5663063 DOI: 10.1186/s13104-017-2879-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022] Open
Abstract
Objective We previously reported that the olfactory receptor OR51E2, overexpressed in LNCaP prostate cancer cells, promotes cell invasiveness upon stimulation of its agonist β-ionone, and this phenomenon increases metastatic spread. Furthermore, we showed that the induced cell invasiveness involves a PI3 kinase dependent signalling pathway. We report here the results of a new investigation to address whether gallein, a small inhibitor of G protein βγ subunit interaction with PI3 kinase, can inhibit β-ionone effects both in vitro and in vivo. Results We demonstrate that gallein can inhibit the β-ionone-induced cell invasiveness in vitro, as well as the spread of metastases in vivo. LNCaP cell invasiveness, assessed using spheroid cultures in collagen gels in vitro, was increased by β-ionone and the effect was reversed by co-administration of gallein. LNCaP tumour cells, subcutaneously inoculated to immunodeficient mice, generated more metastases in vivo when β-ionone was applied through the skin. Furthermore, the intraperitoneal injection of gallein inhibited this increased metastasis spread. Our results thus support the role of OR51E2 in the β-ionone observed effects, and suggest that gallein could be a potential new agent in personalized medicine of the tumours expressing OR51E2. Electronic supplementary material The online version of this article (10.1186/s13104-017-2879-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guenhaël Sanz
- NBO, INRA, Université Paris Saclay, 78350, Jouy-En-Josas, France. .,Biologie du Développement et Reproduction, INRA, ENVA, Université Paris-Saclay, 78350, Jouy-En-Josas, France.
| | - Isabelle Leray
- Vectorologie et Thérapeutiques Anti-cancéreuses, UMR8203, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Adeline Muscat
- Vectorologie et Thérapeutiques Anti-cancéreuses, UMR8203, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | | | - Tao Cui
- Department of Medical Sciences, Endocrine Tumor Biology, Uppsala University, Uppsala, Sweden
| | - Julie Rivière
- GABI, AgroParisTech, INRA, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Silvia Vincent-Naulleau
- GABI, AgroParisTech, INRA, Université Paris-Saclay, 78350, Jouy-En-Josas, France.,CEA, DRF, Université Paris-Saclay, 92260, Fontenay-Aux-Roses, France
| | - Valeria Giandomenico
- Department of Medical Sciences, Endocrine Tumor Biology, Uppsala University, Uppsala, Sweden
| | - Lluis M Mir
- Vectorologie et Thérapeutiques Anti-cancéreuses, UMR8203, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France.
| |
Collapse
|
26
|
Ranzani M, Iyer V, Ibarra-Soria X, Del Castillo Velasco-Herrera M, Garnett M, Logan D, Adams DJ. Revisiting olfactory receptors as putative drivers of cancer. Wellcome Open Res 2017; 2:9. [PMID: 28492065 PMCID: PMC5421569 DOI: 10.12688/wellcomeopenres.10646.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Olfactory receptors (ORs) recognize odorant molecules and activate a signal transduction pathway that ultimately leads to the perception of smell. This process also modulates the apoptotic cycle of olfactory sensory neurons in an olfactory receptor-specific manner. Recent reports indicate that some olfactory receptors are expressed in tissues other than the olfactory epithelium suggesting that they may have pleiotropic roles. Methods: We investigated the expression of 301 olfactory receptor genes in a comprehensive panel of 968 cancer cell lines. Results: Forty-nine per cent of cell lines show expression of at least one olfactory receptor gene. Some receptors display a broad pattern of expression across tumour types, while others were expressed in cell lines from a particular tissue. Additionally, most of the cancer cell lines expressing olfactory receptors express the effectors necessary for OR-mediated signal transduction. Remarkably, among cancer cell lines, OR2C3 is exclusively expressed in melanoma lines. We also confirmed the expression of OR2C3 in human melanomas, but not in normal melanocytes. Conclusions: The pattern of OR2C3 expression is suggestive of a functional role in the development and/or progression of melanoma. Some olfactory receptors may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Marco Ranzani
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, UK
| | - Vivek Iyer
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | - Mathew Garnett
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton, UK
| | - Darren Logan
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, UK
| |
Collapse
|