1
|
Karimi B, Mokhtari K, Rozbahani H, Peymani M, Nabavi N, Entezari M, Rashidi M, Taheriazam A, Ghaedi K, Hashemi M. Pathological roles of miRNAs and pseudogene-derived lncRNAs in human cancers, and their comparison as prognosis/diagnosis biomarkers. Pathol Res Pract 2024; 253:155014. [PMID: 38128189 DOI: 10.1016/j.prp.2023.155014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
This review examines and compares the diagnostic and prognostic capabilities of miRNAs and lncRNAs derived from pseudogenes in cancer patients. Additionally, it delves into their roles in cancer pathogenesis. Both miRNAs and pseudogene-derived lncRNAs have undergone thorough investigation as remarkably sensitive and specific cancer biomarkers, offering significant potential for cancer detection and monitoring. . Extensive research is essential to gain a complete understanding of the precise roles these non-coding RNAs play in cancer, allowing the development of novel targeted therapies and biomarkers for improved cancer detection and treatment approaches.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Rozbahani
- Department of Psychology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Psychology, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Sun Z, Li Y, Tan X, Liu W, He X, Pan D, Li E, Xu L, Long L. Friend or Foe: Regulation, Downstream Effectors of RRAD in Cancer. Biomolecules 2023; 13:biom13030477. [PMID: 36979412 PMCID: PMC10046484 DOI: 10.3390/biom13030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ras-related associated with diabetes (RRAD), a member of the Ras-related GTPase superfamily, is primarily a cytosolic protein that actives in the plasma membrane. RRAD is highly expressed in type 2 diabetes patients and as a biomarker of congestive heart failure. Mounting evidence showed that RRAD is important for the progression and metastasis of tumor cells, which play opposite roles as an oncogene or tumor suppressor gene depending on cancer and cell type. These findings are of great significance, especially given that relevant molecular mechanisms are being discovered. Being regulated in various pathways, RRAD plays wide spectrum cellular activity including tumor cell division, motility, apoptosis, and energy metabolism by modulating tumor-related gene expression and interacting with multiple downstream effectors. Additionally, RRAD in senescence may contribute to its role in cancer. Despite the twofold characters of RRAD, targeted therapies are becoming a potential therapeutic strategy to combat cancers. This review will discuss the dual identity of RRAD in specific cancer type, provides an overview of the regulation and downstream effectors of RRAD to offer valuable insights for readers, explore the intracellular role of RRAD in cancer, and give a reference for future mechanistic studies.
Collapse
Affiliation(s)
- Zhangyue Sun
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Yongkang Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xiaolu Tan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Wanyi Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xinglin He
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Deyuan Pan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Liyan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Lin Long
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
- Correspondence: ; Tel.: +86-754-88900460; Fax: +86-754-88900847
| |
Collapse
|
3
|
Wang G, Zhang Q, Wang Q, Wang J, Chen L, Sun Q, Miao D. Long non-coding RNA DUXAP10 exerts oncogenic properties in osteosarcoma by recruiting HuR to enhance SOX18 mRNA stability. Hum Cell 2022; 35:1939-1951. [PMID: 36053455 PMCID: PMC9515053 DOI: 10.1007/s13577-022-00772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Recent studies have demonstrated that several long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of osteosarcoma (OS). However, more lncRNAs and their mechanisms in regulating growth and migration of OS cells remain to be investigated. In this study, we identified an lncRNA called DUXAP10 by analysis of GEO data, which was significantly up-regulated in OS tissues and cell lines. Experiments in vitro revealed that lncRNA DUXAP10 promoted proliferation, migration, and invasion of OS cells and inhibited their apoptosis. We also demonstrated that DUXAP10 promoted the formation and growth of OS by tumor formation assay. Furthermore, SOX18 was identified as a critical downstream target of DUXAP10 by transcriptome RNA-seq. Mechanistically, DUXAP10 mainly localized in cytoplasm and could specifically bind to HuR to increase the stability of SOX18 mRNA. Meanwhile, SOX18 knockdown largely reversed increased proliferation of OS cells induced by DUXAP10 overexpression. Findings from this study indicate that lncRNA DUXAP10 can act as an oncogene in osteosarcoma by binding HuR to up-regulate the expression of SOX18 at a post-transcriptional level, which may provide a new target for OS clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Guantong Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Qinjue Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Lulu Chen
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Qiang Sun
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Nsengimana B, Khan FA, Awan UA, Wang D, Fang N, Wei W, Zhang W, Ji S. Pseudogenes and Liquid Phase Separation in Epigenetic Expression. Front Oncol 2022; 12:912282. [PMID: 35875144 PMCID: PMC9305658 DOI: 10.3389/fonc.2022.912282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudogenes have been considered as non-functional genes. However, peptides and long non-coding RNAs produced by pseudogenes are expressed in different tumors. Moreover, the dysregulation of pseudogenes is associated with cancer, and their expressions are higher in tumors compared to normal tissues. Recent studies show that pseudogenes can influence the liquid phase condensates formation. Liquid phase separation involves regulating different epigenetic stages, including transcription, chromatin organization, 3D DNA structure, splicing, and post-transcription modifications like m6A. Several membrane-less organelles, formed through the liquid phase separate, are also involved in the epigenetic regulation, and their defects are associated with cancer development. However, the association between pseudogenes and liquid phase separation remains unrevealed. The current study sought to investigate the relationship between pseudogenes and liquid phase separation in cancer development, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Usman Ayub Awan
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Pakistan
| | - Dandan Wang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Na Fang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wenqiang Wei
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| | - Weijuan Zhang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| |
Collapse
|
5
|
Xu Y, Yu X, Sun Z, He Y, Guo W. Roles of lncRNAs Mediating Wnt/β-Catenin Signaling in HCC. Front Oncol 2022; 12:831366. [PMID: 35356220 PMCID: PMC8959654 DOI: 10.3389/fonc.2022.831366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the second most deadly cancer worldwide. Due to the absence of early diagnostic markers and effective therapeutic approaches, distant metastasis and increasing recurrence rates are major difficulties in the clinical treatment of HCC. Further understanding of its pathogenesis has become an urgent goal in HCC research. Recently, abnormal expression of long noncoding RNAs (lncRNAs) was identified as a vital regulator involved in the initiation and development of HCC. Activation of the Wnt/β-catenin pathway has been reported to obviously impact cell proliferation, invasion, and migration of HCC. This article reviews specific interactions, significant mechanisms and molecules related to HCC initiation and progression to provide promising strategies for treatment.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Zhao J, Xu L, Dong Z, Zhang Y, Cao J, Yao J, Xing J. The LncRNA DUXAP10 Could Function as a Promising Oncogene in Human Cancer. Front Cell Dev Biol 2022; 10:832388. [PMID: 35186937 PMCID: PMC8850700 DOI: 10.3389/fcell.2022.832388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most prevalent and deadliest diseases globally, with an increasing morbidity of approximately 14 million new cancer cases per year. Identifying novel diagnostic and prognostic biomarkers for cancers is important for developing cancer therapeutic strategies and lowering mortality rates. Long noncoding RNAs (lncRNAs) represent a group of noncoding RNAs of more than 200 nucleotides that have been shown to participate in the development of human cancers. The novel lncRNA DUXAP10 was newly reported to be abnormally overexpressed in several cancers and positively correlated with poor clinical characteristics of cancer patients. Multiple studies have found that DUXAP10 widely regulates vital biological functions related to the development and progression of cancers, including cell proliferation, apoptosis, invasion, migration, and stemness, through different molecular mechanisms. The aim of this review was to recapitulate current findings regarding the roles of DUXAP10 in cancers and evaluate the potential of DUXAP10 as a novel biomarker for cancer diagnosis, treatment, and prognostic assessment.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zihui Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yize Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhua Cao
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Yao
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiyuan Xing
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiyuan Xing,
| |
Collapse
|
7
|
Wu C, Song W, Wang Z, Wang B. Functions of lncRNA DUXAP8 in non-small cell lung cancer. Mol Biol Rep 2022; 49:2531-2542. [PMID: 35031926 DOI: 10.1007/s11033-021-07066-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Non-small cell lung cancer (NSCLC) poses a serious threat to public health due to its significant morbidity and mortality rates. The processes of NSCLC formation and development are quite complex and involve numerous regulatory biomolecules. Long non-coding RNAs (lncRNAs) have attracted attention since they have been found to play critical roles in the tumorigenesis of various human malignancies. Recently, double homeobox A pseudogene 8 (DUXAP8) was identified as an oncogenic lncRNA that is overexpressed in different tumor types. In NSCLC, high expression of DUXAP8 is associated with poor prognosis in patients. The regulatory mechanism underlying the oncogenic effects of DUXAP8 can be divided into transcriptional level and post-transcriptional level. DUXAP8 promotes proliferation, epithelial-mesenchymal transition, and aerobic glycolysis in NSCLC cells. Moreover, DUXAP8 shows potential for the diagnosis and treatment of NSCLC. Herein, we review the molecular mechanisms underlying the DUXAP8-mediated phenotypes of NSCLC as well as its potential clinical applications.
Collapse
Affiliation(s)
- Cui Wu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Wu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Zhongnan Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Bingmei Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| |
Collapse
|
8
|
Lin HP, Wang Z, Yang C. LncRNA DUXAP10 Upregulation and the Hedgehog Pathway Activation Are Critically Involved in Chronic Cadmium Exposure-Induced Cancer Stem Cell-Like Property. Toxicol Sci 2021; 184:33-45. [PMID: 34373904 PMCID: PMC8677432 DOI: 10.1093/toxsci/kfab099] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cadmium (Cd) is a well-known lung carcinogen. However, the mechanism of Cd carcinogenesis remains to be clearly defined. Cd has been shown to act as a weak mutagen, suggesting that it may exert tumorigenic effect through nongenotoxic ways, such as epigenetic mechanisms. Long noncoding RNAs (lncRNAs) refer to RNA molecules that are longer than 200 nucleotides in length but lack protein-coding capacities. Regulation of gene expressions by lncRNAs is considered as one of important epigenetic mechanisms. The goal of this study is to investigate the mechanism of Cd carcinogenesis focusing on the role of lncRNA dysregulations. Cd-induced malignant transformation of human bronchial epithelia BEAS-2B cells was accomplished by a 9-month low-dose Cd (CdCl2, 2.5 µM) exposure. The Cd-exposed cells formed significantly more colonies in soft agar, displayed cancer stem cell (CSC)-like property, and formed tumors in nude mice. Mechanistically, chronic low-dose Cd exposure did not cause significant genotoxic effects but dysregulated lncRNA expressions. Further Q-PCR analysis confirmed the significant upregulation of the oncogenic lncRNA DUXAP10 in Cd-transformed cells. DUXAP10 knockdown in Cd-transformed cells significantly reduced their CSC-like property. Further mechanistic studies showed that the Hedgehog pathway is activated in Cd-transformed cells and inhibition of this pathway reduces Cd-induced CSC-like property. DUXAP10 knockdown caused the Hedgehog pathway inactivation in Cd-transformed cells. Furthermore, Pax6 expression was upregulated in Cd-transformed cells and Pax6 knockdown significantly reduced their DUXAP10 levels and CSC-like property. In summary, these findings suggest that the lncRNA DUXAP10 upregulation may play an important role in Cd carcinogenesis.
Collapse
Affiliation(s)
- Hsuan-Pei Lin
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, USA
| |
Collapse
|
9
|
Chen L, Wu C, Wang H, Chen S, Ma D, Tao Y, Wang X, Luan Y, Wang T, Shi Y, Song G, Zhao Y, Dong X, Wang B. Analysis of Long Noncoding RNAs in Aila-Induced Non-Small Cell Lung Cancer Inhibition. Front Oncol 2021; 11:652567. [PMID: 34235076 PMCID: PMC8255921 DOI: 10.3389/fonc.2021.652567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/21/2021] [Indexed: 01/24/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has the highest morbidity and mortality among all carcinomas. However, it is difficult to diagnose in the early stage, and current therapeutic efficacy is not ideal. Although numerous studies have revealed that Ailanthone (Aila), a natural product, can inhibit multiple cancers by reducing cell proliferation and invasion and inducing apoptosis, the mechanism by which Aila represses NSCLC progression in a time-dependent manner remains unclear. In this study, we observed that most long noncoding RNAs (lncRNAs) were either notably up- or downregulated in NSCLC cells after treatment with Aila. Moreover, alterations in lncRNA expression induced by Aila were crucial for the initiation and metastasis of NSCLC. Furthermore, in our research, expression of DUXAP8 was significantly downregulated in NSCLC cells after treatment with Aila and regulated expression levels of EGR1. In conclusion, our findings demonstrate that Aila is a potent natural suppressor of NSCLC by modulating expression of DUXAP8 and EGR1.
Collapse
Affiliation(s)
- Lin Chen
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China.,College of Animal Science, Jilin University, Changchun, China
| | - Cui Wu
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Sinuo Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Danhui Ma
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ye Tao
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xingye Wang
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanhe Luan
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Yan Shi
- School of Pharmacy, Jilin University, Changchun, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yicheng Zhao
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xijun Dong
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China.,Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Bingmei Wang
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Exploring the long noncoding RNAs-based biomarkers and pathogenesis of malignant transformation from dysplasia to oral squamous cell carcinoma by bioinformatics method. Eur J Cancer Prev 2021; 29:174-181. [PMID: 31343435 PMCID: PMC7012364 DOI: 10.1097/cej.0000000000000527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) play an important role in many biological processes and carcinogenesis. We aimed to explore lncRNA-based pathogenesis, diagnostic biomarkers, and predictive factors of malignant transformation from dysplasia to oral squamous cell carcinoma (OSCC). Microarray data of GSE30784 consisting of 167 OSCC, 17 dysplasia, and 45 normal oral tissues were downloaded from the GEO database. The differentially expressed genes (DEGs) and lncRNAs between the three samples were identified using R, followed by lncRNA-mRNA coexpression and coregulation network analysis for the prediction of lncRNA target genes. Gene Ontology and Kyoto encydopedia of gene and genomes pathway analysis were performed to further characterize potential interactions. A total of 4462 DEGs and 76 differentially expressed lncRNAs were screened between the three groups, and 200 DEGs and only double homeobox A pseudogene 10 (DUXAP10) were screened among the three groups. A total of 1662 interactions of 46 lncRNAs and their coexpressed target genes were predicted, and 38 pairs of lncRNA-lncRNA coregulated 843 target genes. The coregulated target genes significantly enriched in antigen adaptive immune response, activation of phagocytosis receptor signaling, mast granule NF-κB inflammation, etc. Overall, lncRNAs were differentially expressed in OSCC and dysplasia. The target genes might play an important role in the carcinogenesis and development of OSCC. These results improve our understanding regarding the lncRNA-based pathogenesis and identify some potential targets for early diagnosis of malignant transformation from dysplasia to OSCC.
Collapse
|
11
|
Dang X, Zhao W, Li C, Yang H, Li D, Zhang S, Jin T. Impact of COL6A4P2 gene polymorphisms on the risk of lung cancer: A case-control study. PLoS One 2021; 16:e0252082. [PMID: 34019596 PMCID: PMC8139505 DOI: 10.1371/journal.pone.0252082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Lung cancer (LC) is a malignant tumor that poses the greatest threat to human health and life. Most studies suggested that the occurrence of LC is associated with environmental and genetic factors. We aimed to explore the association between COL6A4P2 single nucleotide polymorphisms (SNPs) and CHD risk in the Chinese Southern Han population. Based on the 'case-control' experimental design (510 cases and 495 controls), we conducted an association study between five candidate COL6A4P2 SNPs and the corresponding LC risk. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated by logistic regression to analyze the LC susceptibility under different genetic models. The results showed that COL6A4P2 rs34445363 was significantly associated with LC risk under alleles model (OR = 1.26, 95%CI: 1.01-1.58, p = 0.038). In addition, rs34445363 was also significantly associated with LC risk under the log-additive model (OR = 1.26, 95%CI: 1.01-1.58, p = 0.041). The results of subgroup analysis showed that rs34445363 (OR = 1.42, 95%CI: 1.03-1.95, p = 0.033) and rs61733464 (OR = 0.72, 95%CI: 0.52-0.99, p = 0.048) were both significantly associated with LC risk in the log-additive model among participants who were ≤ 61 years old. We also found that the variation of rs34445363 (GA vs. GG, OR = 1.73, 95%CI: 1.04-2.86, p = 0.034) and rs77941834 (TA vs. TT, OR = 1.88, 95%CI: 1.06-3.34, p = 0.032) were associated with LC risk in the codominant model among female participants. Our study is the first to find that COL6A4P2 gene polymorphism is associated with LC risk in the Chinese Han population. Our study provides a basic reference for individualized LC prevention.
Collapse
Affiliation(s)
- Xiaodong Dang
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Shaanxi, Xi’an, China
| | - Wenhui Zhao
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Shaanxi, Xi’an, China
| | - Chen Li
- Xi’an 21st Century Biological Sicence and Technology Co., Ltd, Shaanxi, Xi’an, China
| | - Hua Yang
- Xi’an 21st Century Biological Sicence and Technology Co., Ltd, Shaanxi, Xi’an, China
| | - Dianzhen Li
- Xi’an 21st Century Biological Sicence and Technology Co., Ltd, Shaanxi, Xi’an, China
| | - Shanshan Zhang
- Xi’an 21st Century Biological Sicence and Technology Co., Ltd, Shaanxi, Xi’an, China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Shaanxi, Xi’an, China
| |
Collapse
|
12
|
Khajehdehi M, Khalaj-Kondori M, Ghasemi T, Jahanghiri B, Damaghi M. Long Noncoding RNAs in Gastrointestinal Cancer: Tumor Suppression Versus Tumor Promotion. Dig Dis Sci 2021; 66:381-397. [PMID: 32185664 DOI: 10.1007/s10620-020-06200-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/07/2020] [Indexed: 01/17/2023]
Abstract
Approximately 80% of the human genome harbors biochemical marks of active transcription that its majority transcribes to noncoding RNAs, namely long noncoding RNAs (lncRNAs). LncRNAs are heterogeneous RNA transcripts that regulate critical biological processes such as cell survival and death. They involve in the progression of different cancers by affecting transcriptional and post-transcriptional modifications as well as epigenetic control of numerous tumor suppressors and oncogenes. Recent findings show that aberrant expression of lncRNAs is associated with tumor initiation, progression, invasion, and overall survival of patients with gastrointestinal (GI) cancers. Some lncRNAs play as tumor suppressors in all GI cancers, but others play as tumor promoters. However, some other lncRNAs might function as a tumor suppressor in one GI cancer, but as a tumor promoter in another GI cancer type. This fact highlights possible context dependency of the expression patterns and roles of at least some lncRNAs in GI cancer development and progression. Here, we review the functional relation of lncRNAs involved in the development and progression of GI cancer by focusing on their roles as tumor suppressor and tumor promoter genes.
Collapse
Affiliation(s)
- Mina Khajehdehi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Tayyebeh Ghasemi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Babak Jahanghiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Damaghi
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, 33612, FL, USA
| |
Collapse
|
13
|
Cancer stem cell transcriptome landscape reveals biomarkers driving breast carcinoma heterogeneity. Breast Cancer Res Treat 2021; 186:89-98. [PMID: 33389402 DOI: 10.1007/s10549-020-06045-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Breast carcinomas are heterogeneous diseases with distinct clinical outcomes and cancer stem cell (CSC) percentages. Exploring breast carcinoma stem cell landscape could help understand the heterogeneity of such cancers with profound clinical relevance. METHODS We conducted transcriptional profiling of CSCs and non-stem cancer cells isolated from three triple-negative breast carcinoma cell lines, analyzed the CSC transcriptome landscape that drives breast carcinoma heterogeneity through differentially expressed gene identification, gene ontology (GO) and pathway enrichment analyses as well as network construction, and experimentally validated the network hub gene. RESULTS We identified a CSC feature panel consisting of 122 and 381 over-represented and under-expressed genes capable of differentiating breast carcinoma subtypes. We also underpinned the prominent roles of the PI3K-AKT pathway in empowering carcinoma cells with uncontrolled proliferative and migrative abilities that ultimately foster cancer stemness, and revealed the potential promotive roles of ATP6V1B1 on breast carcinoma stemness through functional in vitro studies. CONCLUSIONS Our study contributes in identifying a CSC feature panel for breast carcinomas that drives breast carcinoma heterogeneity at the transcriptional level, which provides a reservoir for diagnostic marker and/or therapeutic target identification once experimentally validated as demonstrated by ATP6V1B1.
Collapse
|
14
|
Scarola M, Comisso E, Rosso M, Del Sal G, Schneider C, Schoeftner S, Benetti R. FUS-dependent loading of SUV39H1 to OCT4 pseudogene-lncRNA programs a silencing complex with OCT4 promoter specificity. Commun Biol 2020; 3:632. [PMID: 33128015 PMCID: PMC7603346 DOI: 10.1038/s42003-020-01355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
The resurrection of pseudogenes during evolution produced lncRNAs with new biological function. Here we show that pseudogene-evolution created an Oct4 pseudogene lncRNA that is able to direct epigenetic silencing of the parental Oct4 gene via a 2-step, lncRNA dependent mechanism. The murine Oct4 pseudogene 4 (mOct4P4) lncRNA recruits the RNA binding protein FUS to allow the binding of the SUV39H1 HMTase to a defined mOct4P4 lncRNA sequence element. The mOct4P4-FUS-SUV39H1 silencing complex holds target site specificity for the parental Oct4 promoter and interference with individual components results in loss of Oct4 silencing. SUV39H1 and FUS do not bind parental Oct4 mRNA, confirming the acquisition of a new biological function by the mOct4P4 lncRNA. Importantly, all features of mOct4P4 function are recapitulated by the human hOCT4P3 pseudogene lncRNA, indicating evolutionary conservation. Our data highlight the biological relevance of rapidly evolving lncRNAs that infiltrate into central epigenetic regulatory circuits in vertebrate cells.
Collapse
Affiliation(s)
- Michele Scarola
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy
- Dipartimento di Area Medica (DAME), Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Elisa Comisso
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy
- Dipartimento di Area Medica (DAME), Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Massimo Rosso
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy
- Dipartimento di Science della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy
- Dipartimento di Science della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Claudio Schneider
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy
- Dipartimento di Area Medica (DAME), Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Stefan Schoeftner
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy.
- Dipartimento di Science della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| | - Roberta Benetti
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy.
- Dipartimento di Area Medica (DAME), Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
15
|
Lyu L, Yao J, Wang M, Zheng Y, Xu P, Wang S, Zhang D, Deng Y, Wu Y, Yang S, Lyu J, Guan F, Dai Z. Overexpressed Pseudogene HLA-DPB2 Promotes Tumor Immune Infiltrates by Regulating HLA-DPB1 and Indicates a Better Prognosis in Breast Cancer. Front Oncol 2020; 10:1245. [PMID: 32903535 PMCID: PMC7438735 DOI: 10.3389/fonc.2020.01245] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been successfully used for treating melanoma and non-small cell lung cancer. However, many patients with breast cancer (BC) show low response to ICIs due to the paucity of infiltrating immune cells. Pseudogenes, as a particular kind of long-chain noncoding RNA, play vital roles in tumorigenesis, but their potential roles in tumor immunology remain unclear. In this study that used data from online databases, the novel pseudogene HLA-DPB2 and its parental gene HLA-DPB1 were overexpressed and correlated with better prognosis in BC. Mechanistically, our results revealed that HLA-DPB2 might serve as an endogenous RNA to increase HLA-DPB1 expression by competitively binding with has-miR-370-3p. Functionally, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the HLA-DPB2/HLA-DPB1 axis was strongly relevant to immune-related biological functions. Further analysis demonstrated that high expression levels of the HLA-DPB2 and HLA-DPB1 were significantly associated with high immune infiltration abundance of CD8+ T cells, CD4+ T cells, Tfh, Th1, and NK cells and with high expression of majority biomarkers of monocytes, NK cell, T cell, CD8+ T cell, and Th1 in BC and its subtype, indicating that HLA-DPB2 can increase the abundance of tumor-infiltrating lymphocytes in the BC microenvironment. Also, the HLA-DPB2 and HLA-DPB1 expression levels positively correlated with the expression levels of programmed cell death protein 1, programmed cell death ligand 1, and cytotoxic T-lymphocyte-associated antigen-4. Our findings suggest that pseudogene HLA-DPB2 can upregulate HLA-DPB1 through sponging has-miR-370-3p, thus exerting its antitumor effect by recruiting tumor-infiltrating immune cells into the breast tumor microenvironment, and that targeting the HLA-DPB2/HLA-DPB1 axis with ICIs may optimize the current immunotherapy for BC.
Collapse
Affiliation(s)
- Lijuan Lyu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zheng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuqian Wang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dai Zhang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Feng Guan
- Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Li J, Jiang L, Liu Z, Li Y, Xu Y, Liu H. Oncogenic pseudogene DUXAP10 knockdown suppresses proliferation and invasion and induces apoptosis of papillary thyroid carcinoma cells by inhibition of Akt/mTOR pathway. Clin Exp Pharmacol Physiol 2020; 47:1473-1483. [PMID: 32215944 DOI: 10.1111/1440-1681.13310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
Pseudogenes, another novel group of non-coding segments without protein-coding capacity, are closely associated with tumourigenesis and cancer progression. Double homeoboxA pseudogene 10 (DUXAP10) is reported to be robustly expressed in thyroid carcinoma. However, the functional role and underlying mechanism of DUXAP10 in papillary thyroid carcinoma (PTC) progression remain undefined. DUXAP10 expression in PTC cells was detected by qRT-PCR. Cell proliferation and invasion were determined using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Transwell invasion assay, respectively. Apoptosis was evaluated using flow cytometry. Protein expression of matrix metalloproteinase (MMP)-2, MMP-9, protein kinase B (Akt), phosphorylated Akt, mammalian target of rapamycin (mTOR), and phosphorylated mTOR was examined by western blot. Results showed that DUXAP10 was significantly overexpressed in PTC cells compared with normal thyroid follicular epithelium cells. DUXAP10 silencing suppressed cell proliferation and invasive ability, reduced the expression of MMP-2 and MMP-9, and increased apoptotic rate and caspase-3 activity in PTC cells. Additionally, the Akt/mTOR pathway was inhibited following DUXAP10 knockdown in PTC cells. Activation of the Akt/mTOR pathway by 740Y-P and MHY1485 attenuated DUXAP10 knockdown-induced proliferation reduction, invasion suppression and apoptosis in PTC cells. In conclusion, DUXAP10 knockdown suppressed proliferation and invasion and induced apoptosis in PTC cells at least partially by inhibition of the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jian Li
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Li Jiang
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Zhu Liu
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yanguo Li
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yang Xu
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hongwei Liu
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
17
|
Li G, Tong X, Pan L, Huang H, Ma H, Feng Y. Epididymal protein 3A is upregulated and promotes cell proliferation in non-small cell lung cancer. Oncol Lett 2020; 19:4024-4030. [PMID: 32391105 PMCID: PMC7204621 DOI: 10.3892/ol.2020.11517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/11/2020] [Indexed: 01/26/2023] Open
Abstract
Lung cancer is one of the most common cancer types and a major contributor to cancer-associated mortalities worldwide. The aim of the present study was to investigate the function of the epididymal protein 3A (EDDM3A) in non-small cell lung cancer (NSCLC). Data from patients with NSCLC were retrieved from The Cancer Genome Atlas and analyzed, and the differences in EDDM3A expression level between 30 NSCLC tissues and matched adjacent non-tumor tissues (>5 cm) were assessed via tissue microarray analysis. It was revealed that, compared with adjacent non-tumor tissues, EDDM3A expression was significantly increased in NSCLC tissues (P=4.19×10−2). To knock down EDDM3A expression in a human NSCLC cell line, lentivirus-mediated short hairpin RNAs (shRNAs) were used, and the knockdown efficiency was assessed via reverse transcription-quantitative PCR and western blotting. Moreover, cell proliferation was evaluated with an MTT assay and Celigo imaging cytometry. In addition, cell apoptosis was detected by Annexin V staining. It was demonstrated that knockdown of EDDM3A inhibited the proliferation of A549 cells. Furthermore, compared with the control group, the apoptotic rate of the EDDM3A-shRNA group was significantly higher. Collectively, the present results indicate the potential role of EDDM3A in NSCL and suggest that EDDM3A may represent a potent therapeutic target for treating patients with NSCLC.
Collapse
Affiliation(s)
- Guangbin Li
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Xing Tong
- Department of Pathology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Liangbin Pan
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Haitao Huang
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Haitao Ma
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yu Feng
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
18
|
Lou W, Ding B, Fu P. Pseudogene-Derived lncRNAs and Their miRNA Sponging Mechanism in Human Cancer. Front Cell Dev Biol 2020; 8:85. [PMID: 32185172 PMCID: PMC7058547 DOI: 10.3389/fcell.2020.00085] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudogenes, abundant in the human genome, are traditionally considered as non-functional “junk genes.” However, recent studies have revealed that pseudogenes act as key regulators at DNA, RNA or protein level in diverse human disorders (including cancer), among which pseudogene-derived long non-coding RNA (lncRNA) transcripts are extensively investigated and has been reported to be frequently dysregulated in various types of human cancer. Growing evidence demonstrates that pseudogene-derived lncRNAs play important roles in cancer initiation and progression by serving as competing endogenous RNAs (ceRNAs) through competitively binding to shared microRNAs (miRNAs), thus affecting both their cognate genes and unrelated genes. Herein, we retrospect those current findings about expression, functions and potential ceRNA mechanisms of pseudogene-derived lncRNAs in human cancer, which may provide us with some crucial clues in developing potential targets for cancer therapy in the future.
Collapse
Affiliation(s)
- Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Wang J, Yang X, Han S, Zhang L. CEP131 knockdown inhibits cell proliferation by inhibiting the ERK and AKT signaling pathways in non-small cell lung cancer. Oncol Lett 2020; 19:3145-3152. [PMID: 32218865 PMCID: PMC7068694 DOI: 10.3892/ol.2020.11411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Disrupted centrosome-associated family protein expression can result in the detrimental duplication of centrosomes, causing genomic instability and subsequent carcinogenesis. Limited research has demonstrated that centrosomal protein 131 (CEP131) exhibits oncogenic activity in osteosarcoma, hepatocellular carcinoma and breast cancer. The present study demonstrated that there is an association between CEP131 expression and advanced Tumor-Node-Metastasis stage (P=0.016), and positive regional lymph node metastasis (P=0.023) in 91 cases of non-small cell lung cancer. A549 and SPC-A-1 cells, with moderate expression levels of CEP131, were selected as representative cell lines. The results indicated that downregulation of CEP131 induced G1/S cell cycle arrest, inhibition of cyclins D1/E and cyclin-dependent kinases 2/4/6, and induction of inhibitory p21/p27, all of which are regulated by ERK and AKT signaling, suggesting that CEP131 exhibits potential as a novel target in the treatment of lung cancer.
Collapse
Affiliation(s)
- Junying Wang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaoping Yang
- Department of Anesthesiology, Dalian Obstetrics and Gynecology Hospital, Dalian, Liaoning 116033, P.R. China
| | - Shixin Han
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lizhi Zhang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
20
|
Chen X, Wan L, Wang W, Xi WJ, Yang AG, Wang T. Re-recognition of pseudogenes: From molecular to clinical applications. Theranostics 2020; 10:1479-1499. [PMID: 32042317 PMCID: PMC6993246 DOI: 10.7150/thno.40659] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Pseudogenes were initially regarded as "nonfunctional" genomic elements that did not have protein-coding abilities due to several endogenous inactivating mutations. Although pseudogenes are widely expressed in prokaryotes and eukaryotes, for decades, they have been largely ignored and classified as gene "junk" or "relics". With the widespread availability of high-throughput sequencing analysis, especially omics technologies, knowledge concerning pseudogenes has substantially increased. Pseudogenes are evolutionarily conserved and derive primarily from a mutation or retrotransposon, conferring the pseudogene with a "gene repository" role to store and expand genetic information. In contrast to previous notions, pseudogenes have a variety of functions at the DNA, RNA and protein levels for broadly participating in gene regulation to influence the development and progression of certain diseases, especially cancer. Indeed, some pseudogenes have been proven to encode proteins, strongly contradicting their "trash" identification, and have been confirmed to have tissue-specific and disease subtype-specific expression, indicating their own value in disease diagnosis. Moreover, pseudogenes have been correlated with the life expectancy of patients and exhibit great potential for future use in disease treatment, suggesting that they are promising biomarkers and therapeutic targets for clinical applications. In this review, we summarize the natural properties, functions, disease involvement and clinical value of pseudogenes. Although our knowledge of pseudogenes remains nascent, this field deserves more attention and deeper exploration.
Collapse
|
21
|
Zhou Q, Zhang W, Wang Z, Liu S. Long non-coding RNA PTTG3P functions as an oncogene by sponging miR-383 and up-regulating CCND1 and PARP2 in hepatocellular carcinoma. BMC Cancer 2019; 19:731. [PMID: 31340767 PMCID: PMC6657059 DOI: 10.1186/s12885-019-5936-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/12/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Emerging evidence indicates that Long non-coding RNAs (LncRNAs) and microRNAs (miRNAs) play crucial roles in tumor progression, including hepatocellular carcinoma (HCC). However, whether there is a crosstalk between LncRNA pituitary tumor-transforming 3 (PTTG3P) and miR-383 in HCC remains unknown. This study is designed to explore the underlying mechanism by which LncRNA PTTG3P sponges miR-383 during HCC progression. METHODS qPCR and Western blot were used to analyze LncRNA PTTG3P, miR-383 and other target genes' expression. CCK-8 assay was performed to examine cell proliferation. Annexin V-PE/PI and PI staining were used to analyze cell apoptosis and cell cycle distribution by flow cytometry, respectively. Transwell migration and invasion assays were used to examine cell migration and invasion abilities. An in vivo xenograft study was performed to detect tumor growth. Luciferase reporter assay and RNA pull-down assay were carried out to detect the interaction between miR-383 and LncRNA PTTG3P. RIP was carried out to detect whether PTTG3P and miR-383 were enriched in Ago2-immunoprecipitated complex. RESULTS In this study, we found that PTTG3P was up-regulated in HCC tissues and cells. Functional experiments demonstrated that knockdown of PTTG3P inhibited cell proliferation, migration and invasion, and promoted cell apoptosis, acting as an oncogene. Mechanistically, PTTG3P upregulated the expression of miR-383 targets Cyclin D1 (CCND1) and poly ADP-ribose polymerase 2 (PARP2) by sponging miR-383, acting as a competing endogenous RNA (ceRNA). The PTTG3P-miR-383-CCND1/PARP2 axis modulated HCC phenotypes. Moreover, PTTG3P also affected the PI3K/Akt signaling pathway. CONCLUSION The data indicate a novel PTTG3P-miR-383-CCND1/PARP2 axis in HCC tumorigenesis, suggesting that PTTG3P may be used as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Hepatology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Zhongfeng Wang
- Department of Hepatology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Songyang Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
22
|
Yue C, Liang C, Ge H, Yan L, Xu Y, Li G, Li P, Wei Z, Wu J. Pseudogene DUXAP10 acts as a diagnostic and prognostic marker and promotes cell proliferation by activating PI3K/AKT pathway in hepatocellular carcinoma. Onco Targets Ther 2019; 12:4555-4566. [PMID: 31354289 PMCID: PMC6572670 DOI: 10.2147/ott.s210623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/16/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Recently, the pseudogene DUXAP10 was shown to be overexpressed in various human cancers and emerged as a key cancer regulator. However, the roles of DUXAP10 in hepatocellular carcinoma (HCC) tumorigenesis and progression remain uncharacterized. Methods: Comprehensive analyses were performed to investigate DUXAP10 expression patterns, potential biologic functions, and clinical significance in HCC based on the data downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. DUXAP10 expression levels in HCC tissue sections and cells were verified using quantitative real-time PCR analysis. DUXAP10-siRNA was used to silence DUXAP10 in the Hep3B cell line to determine the roles of DUXAP10 in HCC cell proliferation. Results: DUXAP10 was significantly overexpressed in HCC, and DUXAP10 upregulation was closely associated with poor prognoses in HCC patients. DUXAP10 knockdown decreased cell proliferation and arrested HCC cells in the G1 phase of the cell cycle. Western blot analysis showed that DUXAP10 knockdown decreased p-AKT expression in HCC cells. Conclusion: Our study demonstrates that pseudogene DUXAP10 promotes HCC cell proliferation by activating PI3K/AKT pathway and could act as a potential diagnostic and prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Chaosen Yue
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chaojie Liang
- Department of General Surgery, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Hua Ge
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lijun Yan
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yingchen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Guangming Li
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Pengyang Li
- Department of Medicine, Saint Vincent Hospital, Worcester, MA, USA
| | - Zhigang Wei
- Department of General Surgery, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jixiang Wu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
23
|
Yue C, Ren Y, Ge H, Yan L, Xu Y, Wang G, Wu J. Pseudogene DUXAP10 can be used as a diagnostic and prognostic biomarker in human cancers. J Cell Physiol 2019; 234:23685-23694. [PMID: 31169303 DOI: 10.1002/jcp.28937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Chaosen Yue
- Department of General Surgery Beijing Tongren Hospital, Capital Medical University Beijing China
| | - Yaoyao Ren
- Department of Anesthesiology Beijing Tongren Hospital, Capital Medical University Beijing China
| | - Hua Ge
- Department of General Surgery Beijing Tongren Hospital, Capital Medical University Beijing China
| | - Lijun Yan
- Department of General Surgery Beijing Tongren Hospital, Capital Medical University Beijing China
| | - Yingchen Xu
- Department of General Surgery Beijing Tongren Hospital, Capital Medical University Beijing China
| | - Guyan Wang
- Department of Anesthesiology Beijing Tongren Hospital, Capital Medical University Beijing China
| | - Jixiang Wu
- Department of General Surgery Beijing Tongren Hospital, Capital Medical University Beijing China
| |
Collapse
|
24
|
DUXAP10 inhibition attenuates the proliferation and metastasis of hepatocellular carcinoma cells by regulation of the Wnt/β-catenin and PI3K/Akt signaling pathways. Biosci Rep 2019; 39:BSR20181457. [PMID: 30996112 PMCID: PMC6542759 DOI: 10.1042/bsr20181457] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/21/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
The long non-coding RNA DUXAP10 has been involved in the development, progression, and metastasis in several human cancers, but its biological function and underlying mechanism in hepatocellular carcinoma (HCC) still undetermined. The present study was proposed to explore the effect of DUXAP10 on the growth and metastasis of HCC cells and the potential mechanisms involved. The results showed that DUXAP10 is dramatically elevated in HCC tumor tissues and cell lines. Knockdown of DUXAP10 by DUXAP10 si-RNA significantly inhibited the cell viability, proliferation and induce the apoptosis of HCC cell line. Meanwhile, inhibition of DUXAP10 attenuates the cell migration, invasion, and epithelial-mesenchymal transition (EMT) process. No significant change of JNK MAPK pathway was detected in DUXAP10 siRNA transfected HCC cell lines. The β-catenin and pAkt levels were decreased in the Hep G2+DUXAP10 siRNA and SMMC7721+DUXAP10 siRNA groups, while the activation of Wnt/β-catenin or PI3K/Akt suppressed the inhibition of DUXAP10 siRNA on cell proliferation and migration. Collectively, DUXAP10 plays a critical role in regulating HCC development, potentially by regulating EMT and cell proliferation through the PI3K/Akt and Wnt/β-catenin signaling. Inhibition of DUXAP10 in HCC HepG2 cells could attenuate the EMT and cell proliferation and invasion. Therefore, DUXAP10 might be a promising therapy target to inhibit the growth of HCC.
Collapse
|
25
|
The Function of Non-Coding RNAs in Lung Cancer Tumorigenesis. Cancers (Basel) 2019; 11:cancers11050605. [PMID: 31052265 PMCID: PMC6563001 DOI: 10.3390/cancers11050605] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the most prevalent and deadliest cancer worldwide. A significant part of lung cancer studies is dedicated to the expression alterations of non-coding RNAs. The non-coding RNAs are transcripts that cannot be translated into proteins. While the study of microRNAs and siRNAs in lung cancer received a lot of attention over the last decade, highly efficient therapeutic option or the diagnostic methods based on non-coding RNAs are still lacking. Because of this, it is of utmost importance to direct future research on lung cancer towards analyzing other RNA types for which the currently available data indicates that are essential at modulating lung tumorigenesis. Through our review of studies on this subject, we identify the following non-coding RNAs as tumor suppressors: ts-46, ts-47, ts-101, ts-53, ts-3676, ts-4521 (tRNA fragments), SNORD116-26, HBII-420, SNORD15A, SNORA42 (snoRNAs), piRNA-like-163, piR-35127, the piR-46545 (piRNAs), CHIAP2, LOC100420907, RPL13AP17 (pseudogenes), and uc.454 (T-UCR). We also found non-coding RNAs with tumor-promoting function: tRF-Leu-CAG, tRNA-Leu, tRNA-Val (tRNA fragments), circ-RAD23B, circRNA 100146, circPVT1, circFGFR3, circ_0004015, circPUM1, circFLI1, circABCB10, circHIPK3 (circRNAs), SNORA42, SNORA3, SNORD46, SNORA21, SNORD28, SNORA47, SNORD66, SNORA68, SNORA78 (snoRNAs), piR-65, piR-34871, piR-52200, piR651 (piRNAs), hY4 5’ fragments (YRNAs), FAM83A-AS1, WRAP53, NKX2-1-AS1 (NATs), DUXAP8, SFTA1P (pseudogene transcripts), uc.338, uc.339 (T-UCRs), and hTERC.
Collapse
|
26
|
Kovalenko TF, Patrushev LI. Pseudogenes as Functionally Significant Elements of the Genome. BIOCHEMISTRY (MOSCOW) 2018; 83:1332-1349. [PMID: 30482145 DOI: 10.1134/s0006297918110044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudogene is a gene copy that has lost its original function. For a long time, pseudogenes have been considered as "junk DNA" that inevitably arises as a result of ongoing evolutionary process. However, experimental data obtained during recent years indicate this understanding of the nature of pseudogenes is not entirely correct, and many pseudogenes perform important genetic functions. In the review, we have addressed classification of pseudogenes, methods of their detection in the genome, and the problem of their evolutionary conservatism and prevalence among species belonging to different taxonomic groups in the light of modern data. The mechanisms of gene expression regulation by pseudogenes and the role of pseudogenes in pathogenesis of various human diseases are discussed.
Collapse
Affiliation(s)
- T F Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
27
|
Lian Y, Yang J, Lian Y, Xiao C, Hu X, Xu H. DUXAP8, a pseudogene derived lncRNA, promotes growth of pancreatic carcinoma cells by epigenetically silencing CDKN1A and KLF2. Cancer Commun (Lond) 2018; 38:64. [PMID: 30367681 PMCID: PMC6235391 DOI: 10.1186/s40880-018-0333-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent studies highlight pseudogene derived long non-coding RNAs (lncRNAs) as key regulators of cancer biology. However, few of them have been well characterized in pancreatic cancer. Here, we aimed to identify the association between pseudogene derived lncRNA DUXAP8 and growth of pancreatic cancer cells. METHODS We screened for pseudogene derived lncRNAs associated with human pancreatic cancer by comparative analysis of three independent datasets from GEO. Quantitative real-time reverse transcription polymerase chain reaction was used to assess the relative expression of DUXAP8 in pancreatic cancer tissues and cells. Loss-of-function approaches were used to investigate the potential functional roles of DUXAP8 in pancreatic cancer cell proliferation and apoptosis in vitro and in vivo. RNA immunoprecipitation, chromosome immunoprecipitation assay and rescue experiments were performed to analyze the association of DUXAP8 with target proteins and genes in pancreatic cancer cells. RESULTS Pancreatic cancer tissues had significantly higher DUXAP8 levels than paired adjacent normal tissues. High DUXAP8 expression was associated with a larger tumor size, advanced pathological stage and shorter overall survival of pancreatic cancer patients. Moreover, silencing DUXAP8 expression by siRNA or shRNA inhibited pancreatic cancer cell proliferation and promoted apoptosis in vitro and in vivo. Mechanistic analyses indicated that DUXAP8 regulates PC cell proliferation partly through downregulation of tumor suppressor CDKN1A and KLF2 expression. CONCLUSION Our results suggest that tumor expression of pseudogene derived lncRNA DUXAP8 plays an important role in pancreatic cancer progression. DUXAP8 may serve as a candidate biomarker and represent a novel therapeutic target of pancreatic cancer.
Collapse
Affiliation(s)
- Yifan Lian
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361005, Fujian, P. R. China.,Institute for Microbial Ecology, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Jiebin Yang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361005, Fujian, P. R. China.,Institute for Microbial Ecology, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Yikai Lian
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361005, Fujian, P. R. China.,Institute for Microbial Ecology, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Chuangxing Xiao
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361005, Fujian, P. R. China.,Institute for Microbial Ecology, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Xuezhen Hu
- Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Nanjing, 210029, Jiangsu, P. R. China.
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361005, Fujian, P. R. China. .,Institute for Microbial Ecology, Xiamen University, Xiamen, 361005, Fujian, P. R. China.
| |
Collapse
|
28
|
Wang Z, Ren B, Huang J, Yin R, Jiang F, Zhang Q. LncRNA DUXAP10 modulates cell proliferation in esophageal squamous cell carcinoma through epigenetically silencing p21. Cancer Biol Ther 2018; 19:998-1005. [PMID: 30215547 DOI: 10.1080/15384047.2018.1470723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Esophageal Squamous Cell Carcinoma (ESCC) belongs to malignant tumor of human digestive system. It has greatly threatened human health both mentally and physically. Long non-coding RNAs have been discovered to be special molecular regulators in various cancers, including ESCC. LncRNA DUXAP10 is a newfound RNA, which is able to improve the progression of cancers 1-3 . In this study, DUXAP10 was certified to be upregulated in ESCC tissues and cells. Besides, it was positively correlated with short survival time. Moreover, down-expression of DUXAP10 contributed to decreased cell proliferation and metastasis. Silenced DUXAP10 led to increased apoptosis rate and stagnation of cell cycle. Results of mechanism experiments suggested that DUXAP10 motivated ESCC progression through recruiting enhancer of zeste homolog 2 (EZH2) to the promoter of p21. Our findings suggested that the pseudogene-derived from lncRNA DUXAP10 drove the biological progression of ESCC. DUXAP10 was likely to be a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Zhongqiu Wang
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| | - Binhui Ren
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| | - Jianfeng Huang
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| | - Rong Yin
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| | - Feng Jiang
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| | - Qin Zhang
- a Department of Thoracic Surgery , Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province. No.42 , Baiziting Road, Xuanwu District, 210009, Nanjing , Jiangsu Province , PR China
| |
Collapse
|
29
|
Xu Y, Wu D, Liu J, Huang S, Zuo Q, Xia X, Jiang Y, Wang S, Chen Y, Wang T, Sun L. Downregulated lncRNA HOXA11-AS Affects Trophoblast Cell Proliferation and Migration by Regulating RND3 and HOXA7 Expression in PE. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:195-206. [PMID: 30195759 PMCID: PMC6023946 DOI: 10.1016/j.omtn.2018.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/01/2023]
Abstract
The long noncoding RNA HOXA11-AS displays abnormal expression in numerous human diseases. However, its function and biological mechanisms remain unclear in preeclampsia (PE). In this study, we report that HOXA11-AS is significantly downregulated in preeclamptic placental tissues and could contribute to the occurrence and development of PE. Silencing of HOXA11-AS expression could significantly suppress trophoblast cell growth and migration, whereas HOXA11-AS overexpression facilitated cell growth in the HTR-8/SVneo, JEG3, and JAR cell lines. RNA-seq analysis also indicated that HOXA11-AS silencing preferentially regulated numerous genes associated with cell proliferation and cell migration. Mechanistic analyses showed that HOXA11-AS could recruit Ezh2 and Lsd1 protein and regulate RND3 mRNA expression in the nucleus. In the cytoplasm, HOXA11-AS modulates HOXA7 expression by sponged miR-15b-5p, affecting trophoblast cell proliferation. Together, these data confirm that aberrant expression of HOXA11-AS is involved in the occurrence and development of PE and may act as a prospective diagnosis and therapeutic target in PE.
Collapse
Affiliation(s)
- Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Dan Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jie Liu
- Department of Obstetrics and Gynecology and Reproduction Center, Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221000, China
| | - Shiyun Huang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Qing Zuo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xi Xia
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Shenzhen Hospital, FuTian District, Shenzhen, Guangdong, China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sailan Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yanzi Chen
- Department of Emergency, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Tianjun Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
30
|
Xu Y, Yu X, Wei C, Nie F, Huang M, Sun M. Over-expression of oncigenic pesudogene DUXAP10 promotes cell proliferation and invasion by regulating LATS1 and β-catenin in gastric cancer. J Exp Clin Cancer Res 2018; 37:13. [PMID: 29374493 PMCID: PMC5787324 DOI: 10.1186/s13046-018-0684-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, the pesudogenes have emerged as critical regulators in human cancers tumorigenesis and progression, and been identified as a key revelation in post-genomic biology. However, the expression pattern, biological function and mechanisms responsible for these molecules in human gastric cancer (GC) are not fully understood. METHODS In this study, we globally assessed the transcriptomic differences of pesudogenes in gastric cancer using publicly available microarray data. DUXAP10 expression levels in GC tissues and cells was detected using quantitative real-time PCR (qPCR). DUXAP10 siRNAs and over-expression vector were transfected into GC cells to down-regulate or up-regulate DUXAP10 expression. Loss- and gain-of function assays were performed to investigate the role of DUXAP10 in GC cells cell proliferation, and invasion. RIP, RNA pulldown, and ChIP assays were used to determine the mechanism of DUXAP10's regulation of underlying targets. RESULTS The pesudogene DUXAP10 is the only pseudogene that significantly over-expressed in all four GEO datasets, and frequently over-expressed in many other cancers including Liver Hepatocellular carcinoma, Bladder cancer, and Esophageal Cancer. High DUXAP10 expression is associated with GC patients poor prognosis, and knockdown of DUXAP10 significantly inhibits cells proliferation, migration and invasion in GC. Mechanistic investigation shows that DUXAP10 can interact with PRC2 and LSD1 to repress LATS1 expression at transcriptional level, and bind with HuR to maintain the stability of β-catenin mRNA and increase its protein levels at post-transcriptional level. CONCLUSIONS Overall, our findings illuminate how increased DUXAP10 confers an oncogenic function in GC development and progression that may serve as a candidate prognostic biomarker and target for clinical management of GC.
Collapse
Affiliation(s)
- Yongcan Xu
- Department of General Surgery, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Xiang Yu
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Chenchen Wei
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fengqi Nie
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Mingde Huang
- Department of Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, People's Republic of China.
| | - Ming Sun
- Department of Bioinformatics and computational biology, UT MD Anderson Cancer Center, 1400 Pressler Street, Unit 1410, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Lian Y, Xiao C, Yan C, Chen D, Huang Q, Fan Y, Li Z, Xu H. Knockdown of pseudogene derived from lncRNA DUXAP10 inhibits cell proliferation, migration, invasion, and promotes apoptosis in pancreatic cancer. J Cell Biochem 2018; 119:3671-3682. [PMID: 29286182 DOI: 10.1002/jcb.26578] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022]
Abstract
Current evidence suggests that pseudogene derived lncRNAs may be important players in human cancer progression. Our previous study showed that DUXAP10 could promote cell proliferation in colorectal cancer. However, the clinical significance and potential role of DUXAP10 in human pancreatic cancer (PC) has not been uncovered. In this study, we found that DUXAP10 was overexpressed in PC tissues compared with normal tissues. DUXAP10 expression was significantly higher in patients with an advanced TNM stage and positive lymph node metastasis. Bioinformatic analysis showed that cell cycle progression was increased in patients with high DUXAP10 expression. In vitro and in vivo assays of DUXAP10 alterations revealed a complex integrated phenotype affecting cell growth, apoptosis, migration, and invasion. Mechanistic studies revealed that DUXAP10 has a crucial role in G2/M arrest. We further showed that DUXAP10 regulated PC cell proliferation through interact with RNA-binding protein EZH2 and LSD1. Overall, our findings indicates that DUXAP10 is an oncogenic lncRNA that promotes PC proliferation and metastasis.
Collapse
Affiliation(s)
- Yifan Lian
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Chuanxing Xiao
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China.,Institute for Microbial Ecology, Xiamen University, Xiamen, Fujian, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China.,Institute for Microbial Ecology, Xiamen University, Xiamen, Fujian, China
| | - Dajun Chen
- Department of Gastroenterology, People's Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Qingwen Huang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China.,Institute for Microbial Ecology, Xiamen University, Xiamen, Fujian, China
| | - Zhaohua Li
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China.,Institute for Microbial Ecology, Xiamen University, Xiamen, Fujian, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
32
|
Withers CN, Brown DM, Byiringiro I, Allen MR, Condon KW, Satin J, Andres DA. Rad GTPase is essential for the regulation of bone density and bone marrow adipose tissue in mice. Bone 2017; 103:270-280. [PMID: 28732776 PMCID: PMC6886723 DOI: 10.1016/j.bone.2017.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 01/03/2023]
Abstract
The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca2+ channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad-/- calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity.
Collapse
Affiliation(s)
- Catherine N Withers
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| | - Drew M Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Innocent Byiringiro
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Keith W Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Jonathan Satin
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| |
Collapse
|
33
|
Zheng X, Dong Q, Zhang X, Han Q, Han X, Han Y, Wu J, Rong X, Wang E. The coiled-coil domain of oncogene RASSF 7 inhibits hippo signaling and promotes non-small cell lung cancer. Oncotarget 2017; 8:78734-78748. [PMID: 29108261 PMCID: PMC5667994 DOI: 10.18632/oncotarget.20223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and despite recent improvements in treatment patient prognosis remains dismal. In this study, we examined the role of N-terminal Ras-association domain family 7 (RASSF7) in human non-small cell lung cancer (NSCLC). We found that RASSF7 was overexpressed NSCLC tissues, which correlated with advanced TNM stage, positive lymph node metastasis, and poor prognosis. This RASSF7 overexpression promoted lung cancer cell proliferation, migration, and invasion. We also found that RASSF7 interacted with mammalian Ste20-like kinase 1(MST1) through its C-terminal coiled-coil domain to inhibit MST1 phosphorylation as well as the phosphorylation of large tumor suppressor kinase 1(LATS1) and yes-associated protein (YAP), while promoting the nuclear translocation of YAP. In addition, RASSF7 overexpression inhibited the Hippo signaling pathway both in vitro and vivo and promoted the expression of proteins associated with proliferation and invasion, such as connective tissue growth factor. These results suggest that targeting RASSF7 could be exploited for therapeutic benefit in the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Electron Microscopy, Basic Medical College, Chengde Medical College, Chengde, China
| | - Qianze Dong
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qiang Han
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xu Han
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yong Han
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jingjing Wu
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xuezhu Rong
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Science and First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
34
|
Lian Y, Xu Y, Xiao C, Xia R, Gong H, Yang P, Chen T, Wu D, Cai Z, Zhang J, Wang K. The pseudogene derived from long non-coding RNA DUXAP10 promotes colorectal cancer cell growth through epigenetically silencing of p21 and PTEN. Sci Rep 2017; 7:7312. [PMID: 28779166 PMCID: PMC5544748 DOI: 10.1038/s41598-017-07954-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/03/2017] [Indexed: 12/24/2022] Open
Abstract
Recently, substantial evidence has demonstrated that pseudogene derived lncRNAs are crucial regulators of cancer development and progression. DUXAP10,a pseudogene derived long non-coding RNA(lncRNA), is overexpression in colorectal cancer (CRC), but its expression pattern, biological function and underlying mechanism in CRC is still undetermined. In this study, we observed that DUXAP10 was up-regulated in CRC tissues which was positively correlated with advanced pathological stages, larger tumor sizes and lymph node metastasis. Additionally, knockdown of DUXAP10 inhibited cell proliferation, induced cell apoptosis and increase the number of G0/G1 cells significantly in the HCT116 and SW480 cell lines. Moreover, DUXAP10 silencing inhibited tumor growth in vivo. Further mechanism study showed that, by binding to histone demethylase lysine-specific demethylase 1 (LSD1), DUXAP10 promote CRC cell growth and reduced cell apoptosis through silencing the expression of p21 and phosphatase and tensin homolog (PTEN) tumor suppressor. Our findings suggested that the pseudogene-derived from lncRNA DUXAP10 promotes the biological progression of CRC and is likely to be a potential therapeutic target for CRC intervention.
Collapse
Affiliation(s)
- Yifan Lian
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.,Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Chuanxing Xiao
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Rui Xia
- Department of Laboratory, Nanjing Chest Hospital, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Huangbo Gong
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Peng Yang
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Tao Chen
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Dongdong Wu
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Zeling Cai
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Jianping Zhang
- Department of General Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China.
| |
Collapse
|
35
|
Ng IK, Ng C, Low JJ, Chiu L, Seah E, Ng CH, Chng WJ, Yan B, Ban KHK. Identifying large indels in targeted next generation sequencing assays for myeloid neoplasms: a cautionary tale of the ZRSR1 pseudogene. J Clin Pathol 2017; 70:1069-1073. [PMID: 28676493 DOI: 10.1136/jclinpath-2017-204440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/04/2022]
Abstract
Targeted next generation sequencing platforms have been increasingly utilised for identification of novel mutations in myeloid neoplasms, such as acute myeloid leukaemia (AML), and hold great promise for use in routine clinical diagnostics. In this study, we evaluated the utility of an open source variant caller in detecting large indels in a targeted sequencing of AML samples. While we found that this bioinformatics pipeline has the potential to accurately capture large indels (>20 bp) in patient samples, we highlighted the pitfall of a confounding ZRSR1 pseudogene that led to an erroneous ZRSR2 variant call. We further discuss possible clinical implications of the ZRSR1 pseudogene in myeloid neoplasms based on its molecular features. Knowledge of the confounding ZRSR1 pseudogene in ZRSR2 sequencing assays could be particularly important in AML diagnostics because the detection of ZRSR2 in AML patients is highly specific for an s-AML diagnosis.
Collapse
Affiliation(s)
- Isaac Ks Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Ng
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore
| | - Jia Jin Low
- Department of Statistics, National University of Singapore, Singapore
| | - Lily Chiu
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore
| | - Elaine Seah
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Chin Hin Ng
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Cancer Science Institute, National University of Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Benedict Yan
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore
| | - Kenneth H K Ban
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|