1
|
Mallah H, Diabasana Z, Soultani S, Idoux-Gillet Y, Massfelder T. Prostate Cancer: A Journey Through Its History and Recent Developments. Cancers (Basel) 2025; 17:194. [PMID: 39857976 PMCID: PMC11763992 DOI: 10.3390/cancers17020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Prostate cancer is one of the most common diseases among men worldwide and continues to pose a serious threat to health. This review shows the history and the new developments in the management of prostate cancer, with an emphasis on a range of therapeutic approaches, such as hormone therapy, radiation therapy, surgery, and innovative targeted therapeutics. The evolution of these treatments is examined in light of clinical outcomes, patient quality of life, and emerging resistance mechanisms, such as the recently shown vitamin D-based strategies. New developments that have the potential to increase survival rates and reduce side effects are also discussed, including PARP inhibitors (PARPis), immunotherapy, and tailored medication. Additionally, the use of biomarkers and sophisticated imaging methods in therapeutic decision-making is explored, with a focus on how these tools might improve patient care. The absolute necessity for a multidisciplinary approach for improving treatment strategies is becoming more and more apparent as our understanding of the biology of prostate cancer deepens. This approach ensures that patients receive customized medicines that fit their unique profiles. Future avenues of investigation will focus on resolving issues dealing with treatment efficacy and resistance to improve treatment results, ultimately leading to disease cure for prostate cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Massfelder
- Regenerative NanoMedicine, Centre de Recherche en Biomédecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), UMR_S U1260 INSERM and University of Strasbourg, 67085 Strasbourg, France; (H.M.); (Z.D.); (Y.I.-G.)
| |
Collapse
|
2
|
Wang Y, Yu FX. Angiomotin family proteins in the Hippo signaling pathway. Bioessays 2024; 46:e2400076. [PMID: 38760875 DOI: 10.1002/bies.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The Motin family proteins (Motins) are a class of scaffolding proteins consisting of Angiomotin (AMOT), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). Motins play a pivotal role in angiogenesis, tumorigenesis, and neurogenesis by modulating multiple cellular signaling pathways. Recent findings indicate that Motins are components of the Hippo pathway, a signaling cascade involved in development and cancer. This review discusses how Motins are integrated into the Hippo signaling network, as either upstream regulators or downstream effectors, to modulate cell proliferation and migration. The repression of YAP/TAZ by Motins contributes to growth inhibition, whereas subcellular localization of Motins and their interactions with actin fibers are critical in regulating cell migration. The net effect of Motins on cell proliferation and migration may contribute to their diverse biological functions.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Yang Y, Cao YL, Wang WH, Sen Shi S, Zhang YY, Lv BB, Yang WW, Li M, Wei D. Syndecan-2 modulates the YAP pathway in epithelial-to-mesenchymal transition-related migration, invasion, and drug resistance in colorectal cancer. Heliyon 2023; 9:e20183. [PMID: 37876440 PMCID: PMC10590854 DOI: 10.1016/j.heliyon.2023.e20183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/26/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is associated with an invasive phenotype in colorectal cancer (CRC). Here, we examined the roles of YES-associated protein (YAP) and syndecan-2 (SDC2) in EMT-related progression, invasion, metastasis, and drug resistance in CRC. The expression levels of YAP and SDC2 in CRC patient tumor tissue were quantified by PCR and western blotting. EMT-associated characteristics were assessed using Transwell assays and immunohistochemistry. Co-immunoprecipitation, glutathione S-transferase pull-down, and luciferase reporter assays were used to assess interactions between YAP and SDC2. YAP was found to be highly expressed in tumor tissue from 13/16 CRC patients, while SDC2 was highly expressed in the tumor tissue of 12/16 CRC patients. Overexpression of YAP in colon cancer cells led to increased cell viability, invasion, migration, and oxaliplatin resistance demonstrating that YAP plays a role in EMT. In addition, overexpression of YAP led to decreased expression of the large tumor suppressor kinase 1 (LATS1) and mammalian sterile 20-like kinases (MST1/2). Decreased LATS1 expression was associated with increased levels of cell proliferation. Knockdown of YAP by shRNA interference led to decreased cell invasion, migration, and drug resistance in colon cancer cells and reduced tumorigenesis in a mouse xenograft model. Finally, we established that YAP interacted with SDC2, and demonstrated that SDC2 mediated the YAP pathway through the EMT-related factors BMP4, CTGF and FOXM1.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Anal Colorectal Surgery, The 989th Hospital of the Joint Logistics Support Force of PLA, Luoyang, 471031, Henan Province, China
| | - Yong Li Cao
- Institute of Anal Colorectal Surgery, The 989th Hospital of the Joint Logistics Support Force of PLA, Luoyang, 471031, Henan Province, China
| | - Wen Hang Wang
- Department of Anorectal, Zhumadian Central Hospital, Zhumadian, 463000, Henan Province, China
| | - Shou Sen Shi
- Institute of Anal Colorectal Surgery, The 989th Hospital of the Joint Logistics Support Force of PLA, Luoyang, 471031, Henan Province, China
| | - Yuan Yao Zhang
- Institute of Anal Colorectal Surgery, The 989th Hospital of the Joint Logistics Support Force of PLA, Luoyang, 471031, Henan Province, China
| | - Bing Bing Lv
- Institute of Anal Colorectal Surgery, The 989th Hospital of the Joint Logistics Support Force of PLA, Luoyang, 471031, Henan Province, China
| | - Wei Wei Yang
- Institute of Anal Colorectal Surgery, The 989th Hospital of the Joint Logistics Support Force of PLA, Luoyang, 471031, Henan Province, China
| | - Ming Li
- Institute of Anal Colorectal Surgery, The 989th Hospital of the Joint Logistics Support Force of PLA, Luoyang, 471031, Henan Province, China
| | - Dong Wei
- Institute of Anal Colorectal Surgery, The 989th Hospital of the Joint Logistics Support Force of PLA, Luoyang, 471031, Henan Province, China
| |
Collapse
|
4
|
Amirifar P, Kissil J. The role of Motin family proteins in tumorigenesis-an update. Oncogene 2023; 42:1265-1271. [PMID: 36973516 DOI: 10.1038/s41388-023-02677-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The Motin protein family consists of three members: AMOT (p80 and p130 isoforms), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). The family members play an important role in processes such as cell proliferation, migration, angiogenesis, tight junction formation, and cell polarity. These functions are mediated through the involvement of the Motins in the regulation of different signal transduction pathways, including those regulated by small G-proteins and the Hippo-YAP pathway. One of the more characterized aspects of Motin family function is their role in regulating signaling through the Hippo-YAP pathway, and while some studies suggest a YAP-inhibitory function other studies indicate the Motins are required for YAP activity. This duality is also reflected in previous reports, often contradictory, that suggest the Motin proteins can function as oncogenes or tumor suppressors in tumorigenesis. In this review we summarize recent findings and integrate that with the existing work describing the multifunctional role of the Motins in different cancers. The emerging picture suggests that the Motin protein function is cell-type and context dependent and that further investigation in relevant cell types and whole organism models is required for the elucidation of the function of this protein family.
Collapse
Affiliation(s)
- Parisa Amirifar
- Department of Molecular Oncology, Cancer Biology Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Joseph Kissil
- Department of Molecular Oncology, Cancer Biology Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
5
|
BMP/Smad Pathway Is Involved in Lithium Carbonate-Induced Neural-Tube Defects in Mice and Neural Stem Cells. Int J Mol Sci 2022; 23:ijms232314831. [PMID: 36499158 PMCID: PMC9735442 DOI: 10.3390/ijms232314831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Neural-tube defects (NTDs) are one type of the most serious birth defects. Studies have shown that inositol deficiency is closely related to the occurrence of NTDs. Bone morphogenetic protein (BMP)-mediated Smad signaling pathways have been implicated in neurogenesis and neural-tube closure. However, the role of the BMP/Smad pathway in inositol-deficiency-induced NTDs remains unclear. Inositol-deficiency models in C57 mice and mouse neural stem cells (mNSCs) were induced with Li2CO3 treatment or inositol withdrawal. The role of the BMP/Smad pathway in the regulation of cell proliferation and the development of NTDs was determined utilizing qRT-PCR, HE staining, Western blot, immunostaining, MTT assay, EdU staining, and flow cytometry. The intraperitoneal injection of Li2CO3 at Embryonic Day 7.5 induced the occurrence of NTDs. The mRNA levels of Bmp2, Bmp4, Smad1, Smad5, Smad8 and Runx2, the phosphorylation of Smad1/5/8, and the nuclear translocation of Runx2 were significantly increased in NTD embryonic brain tissues and mNSCs exposed to Li2CO3 or an inositol-free medium, which were suppressed by BMP receptor selective inhibitor LDN-193189. The Li2CO3-induced phosphorylation of Smad1/5/8 was inhibited by inositol supplementation. Cell proliferation was significantly promoted by Li2CO3 exposure or the absence of inositol in mNSCs, which was reversed by LDN-193189. These results suggest that the activation of the BMP/Smad signaling pathway might play an important role in the development of NTDs induced by maternal Li2CO3 exposure via inositol deficiency.
Collapse
|
6
|
Zhang Y, Zhang Y, Kameishi S, Barutello G, Zheng Y, Tobin NP, Nicosia J, Hennig K, Chiu DKC, Balland M, Barker TH, Cavallo F, Holmgren L. The Amot/integrin protein complex transmits mechanical forces required for vascular expansion. Cell Rep 2021; 36:109616. [PMID: 34433061 DOI: 10.1016/j.celrep.2021.109616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Vascular development is a complex multistep process involving the coordination of cellular functions such as migration, proliferation, and differentiation. How mechanical forces generated by cells and transmission of these physical forces control vascular development is poorly understood. Using an endothelial-specific genetic model in mice, we show that deletion of the scaffold protein Angiomotin (Amot) inhibits migration and expansion of the physiological and pathological vascular network. We further show that Amot is required for tip cell migration and the extension of cellular filopodia. Exploiting in vivo and in vitro molecular approaches, we show that Amot binds Talin and is essential for relaying forces between fibronectin and the cytoskeleton. Finally, we provide evidence that Amot is an important component of the endothelial integrin adhesome and propose that Amot integrates spatial cues from the extracellular matrix to form a functional vascular network.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Yumeng Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Sumako Kameishi
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Yujuan Zheng
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - John Nicosia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katharina Hennig
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - David Kung-Chun Chiu
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Lars Holmgren
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden.
| |
Collapse
|
7
|
Li D, Shen Y, Ren H, Wang L, Yang J, Wang Y. Angiomotin-p130 inhibits vasculogenic mimicry formation of small cell lung cancer independently of Smad2/3 signal pathway. J Bioenerg Biomembr 2021; 53:295-305. [PMID: 33712992 DOI: 10.1007/s10863-021-09891-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/05/2021] [Indexed: 01/20/2023]
Abstract
Lung cancer, the most concerning malignancy worldwide and one of the leading causes of cancer-related deaths. Growing evidence indicates that Angiomotin (Amot)-p130 plays an important role in types of cancer, including breast cancer and gastric cancer. Moreover, evidence suggested that the low Amot-p130 expression correlates with the poor prognosis of lung cancer patients, however, the role and mechanism of Amot-p130 in lung cancer is still unclear. In this study, we showed that Amot-p130 expression was reduced in lung cancer tissues, compared with the adjacent para-carcinoma tissues. In addition, we observed that the reduced expression of Amot-p130 was associated with vasculogenic mimicry (VM) channels formation in lung cancer tissues. Amot-p130 expression was differently expression in lung cancer cell line H446, H1688 and H2227 compared with the normal human lung cells HFL1. To clarify the role of Amot-p130 in lung cancer, we constructed the Amot-p130 expressing H446 cells and Amot-p130 silencing H1299 cells. We confirmed that Amot-p130 overexpression inhibited the migration and invasion of lung cancer cells, whereas its silence promoted cell migration and invasion. Interestingly, we also found that Amot-p130 overexpression suppressed VM tube formation in H446 cells, while its knockdown promoted VM tube formation in H2227 cells. Further studies suggested that Amot-p130 plays roles in M tube formation of lung cancer cell V are independent on smad2/3 signaling pathway. Finally, inoculation of Amot-p130 expressing H446 cells and Amot-p130 silencing H1299 cells into nude mice suppressed tumor growth, when compared with the control group. Based on these results, Amot-p130 serves as a possible diagnostic and therapeutic target in lung cancer patients, and may be an effective mediator of VM formation in lung cancer.
Collapse
Affiliation(s)
- Dan Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanwei Shen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yuan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Chen X, Yuan W, Li Y, Luo J, Hou N. Role of Hippo-YAP1/TAZ pathway and its crosstalk in cardiac biology. Int J Biol Sci 2020; 16:2454-2463. [PMID: 32760212 PMCID: PMC7378646 DOI: 10.7150/ijbs.47142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway undertakes a pivotal role in organ size control and the process of physiology and pathology in tissue. Its downstream effectors YAP1 and TAZ receive upstream stimuli and exert transcription activity to produce biological output. Studies have demonstrated that the Hippo pathway contributes to maintenance of cardiac homeostasis and occurrence of cardiac disease. And these cardiac biological events are affected by crosstalk among Hippo-YAP1/TAZ, Wnt/β-catenin, Bone morphogenetic protein (BMP) and G-protein-coupled receptor (GPCR) signaling, which provides new insights into the Hippo pathway in heart. This review delineates the interaction among Hippo, Wnt, BMP and GPCR pathways and discusses the effects of these pathways in cardiac biology.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
9
|
Lin SR, Mokgautsi N, Liu YN. Ras and Wnt Interaction Contribute in Prostate Cancer Bone Metastasis. Molecules 2020; 25:E2380. [PMID: 32443915 PMCID: PMC7287876 DOI: 10.3390/molecules25102380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent and malignant cancer types in men, which causes more than three-hundred thousand cancer death each year. At late stage of PCa progression, bone marrow is the most often metastatic site that constitutes almost 70% of metastatic cases of the PCa population. However, the characteristic for the osteo-philic property of PCa is still puzzling. Recent studies reported that the Wnt and Ras signaling pathways are pivotal in bone metastasis and that take parts in different cytological changes, but their crosstalk is not well studied. In this review, we focused on interactions between the Wnt and Ras signaling pathways during each stage of bone metastasis and present the fate of those interactions. This review contributes insights that can guide other researchers by unveiling more details with regard to bone metastasis and might also help in finding potential therapeutic regimens for preventing PCa bone metastasis.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| |
Collapse
|
10
|
Zhang H, Sun J, Ju W, Li B, Lou Y, Zhang G, Liang G, Luo X. Apatinib suppresses breast cancer cells proliferation and invasion via angiomotin inhibition. Am J Transl Res 2019; 11:4460-4469. [PMID: 31396349 PMCID: PMC6684907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Breast cancer is a leading cause of cancer-related death in the women worldwide. Apatinib is a novel tyrosine kinase inhibitor that selectively binds and inhibits vascular endothelial growth factor receptor 2 (VEGFR-2). The clinical trials have demonstrated the objective efficacy of Apatinib against metastatic breast cancer. However, the underlying mechanism is not well established. In the present study, the breast cell lines, BT-474 and MCF-7, were investigated. The effect of Apatinib on the cell viability was determined using CCK-8 assay. The migration, invasion, cell cycle distribution and the downstream signaling of VEGFR-2 in the cells were determined after 48 h treatment with this drug. Subsequently, Vector of angiomotin (AMOT) cDNA was transfected into MCF-7 cells. The cells were either exposed to Apatinib or vehicle and then examined for cell viabilities, migration, invasion, cell cycle distribution and the downstream signaling of VEGFR-2. Apatinib demonstrated a dose-dependent, significant inhibition of cell viabilities, migration and invasion of BT-474 and MCF-7 cells, with an increase in the percentage of cells in G1 phase and a decrease in S phase. In addition, in MCF-7 cells, Apatinib decreased AMOT expression, accompanied with the decreased expression of LATS1/2, YAP, ERK1/2 phosphorylation and cyclin D1. The inhibitory effect of Apatinib on the cell activities and protein expressions were significantly suppressed by AMOT overexpression. The results of this study indicated that Apatinib inhibited MCF-7 cell proliferation and invasion through AMOT/VEGFR-2 pathway.
Collapse
Affiliation(s)
- Haige Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
- Department of Radiation Oncology, Luoyang Central Hospital Affiliated to Zhengzhou UniversityLuoyang 471000, Henan, China
| | - Jing Sun
- Department of Radiation Oncology, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
| | - Wencui Ju
- Department of Radiation Oncology, Luoyang Central Hospital Affiliated to Zhengzhou UniversityLuoyang 471000, Henan, China
| | - Bin Li
- Department of Radiation Oncology, Luoyang Central Hospital Affiliated to Zhengzhou UniversityLuoyang 471000, Henan, China
| | - Yunfeng Lou
- Department of Radiation Oncology, Luoyang Central Hospital Affiliated to Zhengzhou UniversityLuoyang 471000, Henan, China
| | - Guoqiang Zhang
- Department of Infectious Disease, Luoyang Central Hospital Affiliated to Zhengzhou UniversityLuoyang 471000, Henan, China
| | - Gaofeng Liang
- Medical College, Henan University of Science and TechnologyLuoyang 471023, Henan, China
| | - Xiaoyong Luo
- Department of Radiation Oncology, Luoyang Central Hospital Affiliated to Zhengzhou UniversityLuoyang 471000, Henan, China
| |
Collapse
|
11
|
Ling XH, Fu H, Chen ZY, Lu JM, Zhuo YJ, Chen JH, Zhong WD, Jia Z. miR‑505 suppresses prostate cancer progression by targeting NRCAM. Oncol Rep 2019; 42:991-1004. [PMID: 31322225 PMCID: PMC6667922 DOI: 10.3892/or.2019.7231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Previous researchers have demonstrated that microRNA-505 (miR-505) is negatively correlated with progression in various malignancies. However, the detailed function and molecular mechanisms of miR-505 have yet to be completely elucidated in prostate cancer (PCa). The present study initially identified the potential role of miR-505 in PCa using in vitro experiments, and demonstrated that restoration of miR-505 inhibited proliferation, invasion and migration, yet induced cell cycle arrest and promoted apoptosis in PCa cells. The present study also demonstrated that the expression of neuron-glial-related cell adhesion molecule (NRCAM) was markedly upregulated in PCa cells when compared with benign prostate epithelium. A luciferase reporter assay demonstrated that miR-505 directly targeted NRCAM in PCa cells. In addition, NRCAM stimulation antagonized the inhibitory effects of miR-505 on the proliferation, migration, and invasion of PCa cells. Furthermore, lower levels of miR-505 and higher levels of NRCAM may serve as a predictor of worse biochemical recurrence-free survival or disease-free survival in patients with PCa. In conclusion, the present study revealed the inhibitory effects of miR-505 on PCa tumorigenesis, which potentially occur by targeting NRCAM. The combined analysis of NRCAM and miR-505 may predict disease progression in patients with PCa following radical prostatectomy.
Collapse
Affiliation(s)
- Xiao-Hui Ling
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hao Fu
- Department of Urology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Yun Chen
- Reproductive Medicine Centre, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong 516001, P.R. China
| | - Jian-Ming Lu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yang-Jia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jia-Hong Chen
- Reproductive Medicine Centre, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong 516001, P.R. China
| | - Wei-De Zhong
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Angiomotin-p130 inhibits β-catenin stability by competing with Axin for binding to tankyrase in breast cancer. Cell Death Dis 2019; 10:179. [PMID: 30792381 PMCID: PMC6385204 DOI: 10.1038/s41419-019-1427-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
Abstract
Growing evidence indicates that Angiomotin (Amot)-p130 and Amot-p80 have different physiological functions. We hypothesized that Amot-p130 is a tumor suppressor gene in breast cancer, in contrast with the canonical oncogenicity of Amot-p80 or total Amot. To clarify the role of Amot-p130 in breast cancer, we performed real-time quantitative PCR, western blotting, flow cytometry, microarray, immunofluorescence, immunoprecipitation, and tumor sphere-formation assays in vitro, as well as tumorigenesis and limited-dilution analysis in vivo. In this study, we showed that Amot-p130 inhibited the proliferation, migration, and invasion of breast cancer cells. Interestingly, transcriptional profiles indicated that genes differentially expressed in response to Amot-p130 knockdown were mostly related to β-catenin signaling in MCF7 cells. More importantly, most of the downstream partners of β-catenin were associated with stemness. In a further validation, Amot-p130 inhibited the cancer stem cell potential of breast cancer cells both in vitro and in vivo. Mechanistically, Amot-p130 decreased β-catenin stability by competing with Axin for binding to tankyrase, leading to a further inhibition of the WNT pathway. In conclusions, Amot-p130 functions as a tumor suppressor gene in breast cancer, disrupting β-catenin stability by competing with Axin for binding to tankyrase. Amot-p130 was identified as a potential target for WNT pathway-targeted therapies in breast cancer.
Collapse
|
13
|
Huang T, Zhou Y, Zhang J, Cheng ASL, Yu J, To KF, Kang W. The physiological role of Motin family and its dysregulation in tumorigenesis. J Transl Med 2018; 16:98. [PMID: 29650031 PMCID: PMC5898069 DOI: 10.1186/s12967-018-1466-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/28/2018] [Indexed: 11/30/2022] Open
Abstract
Members in Motin family, or Angiomotins (AMOTs), are adaptor proteins that localize in the membranous, cytoplasmic or nuclear fraction in a cell context-dependent manner. They control the bioprocesses such as migration, tight junction formation, cell polarity, and angiogenesis. Emerging evidences have demonstrated that AMOTs participate in cancer initiation and progression. Many of the previous studies have focused on the involvement of AMOTs in Hippo-YAP1 pathway. However, it has been controversial for years that AMOTs serve as either positive or negative growth regulators in different cancer types because of the various cellular origins. The molecular mechanisms of these opposite roles of AMOTs remain elusive. This review comprehensively summarized how AMOTs function physiologically and how their dysregulation promotes or inhibits tumorigenesis. Better understanding the functional roles of AMOTs in cancers may lead to an improvement of clinical interventions as well as development of novel therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China
| | - Jinglin Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| |
Collapse
|
14
|
Zheng H, Ke X, Li D, Wang Q, Wang J, Liu X, Deng M, Deng X, Xue Y, Zhu Y, Wang Q. NEDD4 promotes cell growth and motility in hepatocellular carcinoma. Cell Cycle 2018; 17:728-738. [PMID: 29480061 DOI: 10.1080/15384101.2018.1440879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. In China, the situation is even worse as cancer incidence and mortality continue to increase rapidly. Although tremendous progress has been made toward HCC treatments, the benefits for liver cancer patients are still limited. Therefore, it is necessary to identify and develop novel therapeutic methods. Neuronally expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, plays a critical role in the development and progression of various types of human cancers. In our study, NEDD4 acts as an oncoprotein in both QGY7703 and SMMC7721 liver cancer cell lines. We found that depletion of NEDD4 by siRNA transfection led to inhibition of cell growth, invasion and migration, and promotion of apoptosis. In contrast, overexpression of NEDD4 via plasmid transfection resulted in facilitated cell proliferation, invasion and migration, and decreased apoptosis. Importantly, we observed that tumor suppressor LATS1, also a core component of Hippo pathway, was negatively regulated by NEDD4 in liver cancer cells. Our findings suggested that NEDD4 may be involved in the HCC progression via regulating LATS1 associated signaling pathway. Therefore, targeting NEDD4-LATS1 signaling could be a potential therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Hailun Zheng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiquan Ke
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Dapeng Li
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qiangwu Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Jianchao Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaoyang Liu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Min Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaojing Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yongju Xue
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yu Zhu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qizhi Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| |
Collapse
|
15
|
Zheng H, Ke X, Li D, Wang Q, Wang J, Liu X, Deng M, Deng X, Xue Y, Zhu Y, Wang Q. NEDD4 promotes cell growth and motility in hepatocellular carcinoma. CELL CYCLE (GEORGETOWN, TEX.) 2018. [PMID: 29480061 DOI: 10.1080/15384101.2018.1440879.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. In China, the situation is even worse as cancer incidence and mortality continue to increase rapidly. Although tremendous progress has been made toward HCC treatments, the benefits for liver cancer patients are still limited. Therefore, it is necessary to identify and develop novel therapeutic methods. Neuronally expressed developmentally downregulated 4 (NEDD4), an E3 ubiquitin ligase, plays a critical role in the development and progression of various types of human cancers. In our study, NEDD4 acts as an oncoprotein in both QGY7703 and SMMC7721 liver cancer cell lines. We found that depletion of NEDD4 by siRNA transfection led to inhibition of cell growth, invasion and migration, and promotion of apoptosis. In contrast, overexpression of NEDD4 via plasmid transfection resulted in facilitated cell proliferation, invasion and migration, and decreased apoptosis. Importantly, we observed that tumor suppressor LATS1, also a core component of Hippo pathway, was negatively regulated by NEDD4 in liver cancer cells. Our findings suggested that NEDD4 may be involved in the HCC progression via regulating LATS1 associated signaling pathway. Therefore, targeting NEDD4-LATS1 signaling could be a potential therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Hailun Zheng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiquan Ke
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Dapeng Li
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qiangwu Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Jianchao Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaoyang Liu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Min Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Xiaojing Deng
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yongju Xue
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Yu Zhu
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| | - Qizhi Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Bengbu Medical College , Bengbu , Anhui 233004 , P.R. China
| |
Collapse
|
16
|
Yan Z, Shi H, Zhu R, Li L, Qin B, Kang L, Chen H, Guan H. Inhibition of YAP ameliorates choroidal neovascularization via inhibiting endothelial cell proliferation. Mol Vis 2018; 24:83-93. [PMID: 29422766 PMCID: PMC5800432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/29/2018] [Indexed: 10/25/2022] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the leading cause of central visual loss among patients over the age of 55 years worldwide. Neovascular-type AMD (nAMD) accounts for approximately 10% of patients with AMD and is characterized by choroidal neovascularization (CNV). The proliferation of choroidal endothelial cells (CECs) is one important step in the formation of new vessels. Transcriptional coactivator Yes-associated protein (YAP) can promote the proliferation of multiple cancer cells, corneal endothelial cells, and vascular smooth muscle cells, which participate in angiogenesis. This study intends to reveal the expression and functions of YAP during the CNV process. Methods In the study, a mouse CNV model was generated by laser photocoagulation. YAP expression was detected with western blotting and immunohistochemistry. YAP siRNA and ranibizumab, a VEGF monoclonal antibody, were injected intravitreally in CNV mice. The YAP and VEGF expression levels after injection were detected with western blotting. The incidence and leakage area of CNV were measured with fundus fluorescein angiography, choroidal flat mounting, and hematoxylin and eosin (HE) staining. Immunofluorescent double staining was used to detect YAP cellular localization with CD31 (an endothelial cell marker) antibody. Proliferating cell nuclear antigen (PCNA) expression in CNV mice without or with YAP siRNA intravitreal injection and the colocalization of PCNA and CD31 were measured with western blotting and immunofluorescent double staining, respectively. Results YAP expression increased following laser exposure, in accordance with vascular endothelial growth factor (VEGF) expression. YAP siRNA and ranibizumab decreased VEGF expression and the incidence and leakage area of CNV. YAP was localized in the vascular endothelium within the CNV site. Additionally, after laser exposure, YAP siRNA inhibited the increased expression of PCNA, which was colocalized with endothelial cells. Conclusions This study showed that YAP upregulation promoted CNV formation by upregulating the proliferation of endothelial cells, providing evidence for the molecular mechanisms of CNV and suggesting a novel molecular target for nAMD treatment.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Haihong Shi
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Rongrong Zhu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Lele Li
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Bai Qin
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Lihua Kang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Hui Chen
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Huaijin Guan
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
17
|
Sun M, Na Q, Huang L, Song G, Jin F, Li Y, Hou Y, Kang D, Qiao C. YAP Is Decreased in Preeclampsia and Regulates Invasion and Apoptosis of HTR-8/SVneo. Reprod Sci 2018; 25:1382-1393. [PMID: 29303055 DOI: 10.1177/1933719117746784] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preeclampsia (PE) is a gestational disorder with hypertension and proteinuria leading to maternal and fetal morbidity and mortality. Yes-associated protein (YAP), a transcription coactivator of Hippo pathway, was identified as an oncoprotein participated in tumorigenesis. However, the effect of YAP on trophoblast has not been investigated. In our study, YAP expression levels in first-trimester, full-term, and PE placentas were detected using quantitative real-time polymerase chain reaction (PCR), Western blot assays, and immunohistochemistry. Yes-associated protein expression was also detected in BeWo and HTR-8/SVneo. Overexpression plasmid and YAP small interfering RNA were introduced into trophoblast cells. Furthermore, we utilized a Transwell invasion assay, flow cytometry, and Cell Counting Kit-8 analysis to examine the role of YAP in the invasion, apoptosis, and proliferation of HTR-8/SVneo trophoblast cells. The result showed that both YAP messenger RNA (mRNA) and protein expression levels were less in preeclamptic placentas. Yes-associated protein mRNA and protein expression levels were more highly expressed in BeWo. Yes-associated protein enhanced cell invasion, reduced the cellular apoptotic response, and had no effect on proliferation. In addition, the overexpression of YAP activated the expression of caudal-related homeobox transcription factor 2 (CDX2), whereas reduced expression of YAP inhibited the expression of CDX2. Our results demonstrate that decreased YAP levels may contribute to the development of PE by regulating trophoblast invasion and apoptosis involving regulation of CDX2. Collectively, we proposed decreased YAP may contribute to trophoblast dysfunction, which suggests it might represent a prognostic biomarker and therapeutic target for PE.
Collapse
Affiliation(s)
- Man Sun
- 1 Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,2 Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,3 Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Quan Na
- 1 Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,2 Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,3 Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Ling Huang
- 1 Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,2 Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,3 Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Guiyu Song
- 1 Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,2 Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,3 Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Feng Jin
- 1 Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,2 Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,3 Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Yuanyuan Li
- 1 Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,2 Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,3 Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Yue Hou
- 1 Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,2 Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,3 Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Danyang Kang
- 1 Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,2 Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,3 Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| | - Chong Qiao
- 1 Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,2 Key Laboratory of Maternal-Fetal Medicine, China Medical University, Shenyang, Liaoning Province, China.,3 Key Laboratory of Obstetrics and Gynecology of Higher Education, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
18
|
Rotoli D, Morales M, Ávila J, Maeso MDC, García MDP, Mobasheri A, Martín-Vasallo P. Commitment of Scaffold Proteins in the Onco-Biology of Human Colorectal Cancer and Liver Metastases after Oxaliplatin-Based Chemotherapy. Int J Mol Sci 2017; 18:ijms18040891. [PMID: 28441737 PMCID: PMC5412470 DOI: 10.3390/ijms18040891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 01/13/2023] Open
Abstract
Scaffold proteins play pivotal roles in the regulation of signaling pathways, integrating external and internal stimuli to various cellular outputs. We report the pattern of cellular and subcellular expression of scaffoldins angiomotin-like 2 (AmotL2), FK506 binding protein 5 (FKBP51) and IQ motif containing GTPase-activating protein 1 (IQGAP1) in colorectal cancer (CRC) and metastases in liver resected after oxaliplatin-based chemotherapy (CT). Positive immunostaining for the three scaffoldins was found in most cells in healthy colon, tumor, healthy liver and metastasized liver. The patterns of expression of AmotL2, FKBP51 and IQGAP1 show the greatest variability in immune system cells and neurons and glia cells and the least in blood vessel cells. The simultaneous subcellular localization in tumor cells and other cell types within the tumor suggest an involvement of these three scaffoldins in cancer biology, including a role in Epithelial Mesenchymal Transition. The display in differential localization and quantitative expression of AmotL2, FKBP51, and IQGAP1 could be used as biomarkers for more accurate tumor staging and as potential targets for anti-cancer therapeutics by blocking or slowing down their interconnecting functions. Tough further research needs to be done in order to improve these assessments.
Collapse
Affiliation(s)
- Deborah Rotoli
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
- CNR-National Research Council, Institute of Endocrinology and Experimental Oncology (IEOS), Via Sergio Pansini 5, 80131 Naples, Italy.
| | - Manuel Morales
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
- Service of Medical Oncology, Hospiten® Hospitals, 38001 Santa Cruz de Tenerife, Spain.
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
| | - María Del Carmen Maeso
- Service of Pathology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
| | | | - Ali Mobasheri
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK.
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), Faculty of Applied Medical Sciences, King AbdulAziz University, 21589 Jeddah, Saudi Arabia.
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, Av. Astrofísico Sánchez s/n., 38206 La Laguna, Spain.
| |
Collapse
|