1
|
Vilar JB, Christmann M, Tomicic MT. Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go? Cancers (Basel) 2022; 14:cancers14102416. [PMID: 35626024 PMCID: PMC9139489 DOI: 10.3390/cancers14102416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma is a type of brain cancer that remains incurable. Despite multiple past and ongoing preclinical studies and clinical trials, involving adjuvants to the conventional therapy and based on molecular targeting, no relevant benefit for patients’ survival has been achieved so far. The current first-line treatment regimen is based on ionizing radiation and the monoalkylating compound, temozolomide, and has been administered for more than 15 years. Glioblastoma is extremely resistant to most agents due to a mutational background that elicits quick response to insults and adapts to microenvironmental and metabolic changes. Here, we present the most recent evidence concerning the molecular features and their alterations governing pathways involved in GBM response to the standard radio-chemotherapy and discuss how they collaborate with acquired GBM’s resistance. Abstract Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow. Ionizing radiation and TMZ induce, for the most part, DNA damage repair, autophagy, stemness, and senescence, whereas only a small fraction of GBM cells undergoes treatment-induced apoptosis. Particularly upon TMZ exposure, most of the GBM cells undergo cellular senescence. Increased DNA repair attenuates the agent-induced cytotoxicity; autophagy functions as a pro-survival mechanism, protecting the cells from damage and facilitating the cells to have energy to grow. Stemness grants the cells capacity to repopulate the tumor, and senescence triggers an inflammatory microenvironment favorable to transformation. Here, we highlight this mutational background and its interference with the response to the standard radiochemotherapy. We discuss the most relevant and recent evidence obtained from the studies revealing the molecular mechanisms that lead these cells to be resistant and indicate some future perspectives on combating this incurable tumor.
Collapse
|
2
|
Sun G, Yuan W, Zhu W, Chen J. WZY-321 triggers glioma cell apoptosis via XAF1 up-regulation caused by MTM-mediated miR-873 down-regulation. J Cancer 2022; 13:2312-2321. [PMID: 35517406 PMCID: PMC9066199 DOI: 10.7150/jca.68775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/06/2022] [Indexed: 11/05/2022] Open
Abstract
Gliomas account for the majority of primary malignant brain tumors around the world and are highly aggressive. Evodiamine is one of the main effective components of Evodia rutaecarpa, which can inhibit proliferation and promote apoptosis of tumor cells including glioma cells. The derivative of Evodiamine named WZY-321 was successfully developed, and exhibited significant cytotoxicity and could efficiently induce glioma cell apoptosis; however, the mechanism of WZY-321-induced glioma cell apoptosis is not clear. Our current studies showed that WZY-321 increased X-linked inhibitor of apoptosis-associated factor 1 (XAF1) expression in glioma cells, and up-regulated XAF1 resulted in glioma cell apoptosis. Moreover, WZY-321 treatment decreased miR-873 expression and increased lncRNA MTM expression in glioma cells, and down-regulated miR-873 or up-regulated MTM lead to glioma cell apoptosis. Mechanically, WZY-321 up-regulated XAF1 gene expression via MTM-decreased miR-873 expression, that bound to XAF1 3' UTR and decreased XAF1 mRNA levels. Taken together, these data indicate that WZY-321 triggers glioma cell apoptosis via XAF1 up-regulation caused by MTM-mediated miR-873 down-regulation.
Collapse
Affiliation(s)
- Guan Sun
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, P.R. China.,Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Wei Yuan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, P.R. China
| | - Weiye Zhu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, P.R. China
| | - Jian Chen
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, Nantong, P.R. China
| |
Collapse
|
3
|
Lee MG, Choi Z, Lim NJ, Lim JS, Lee KW, Ko KP, Ryu BK, Kang SH, Chi SG. XAF1 directs glioma response to temozolomide through apoptotic transition of autophagy by activation of ROS-ATM-AMPK signaling. Neurooncol Adv 2022; 4:vdac013. [PMID: 35274103 PMCID: PMC8903238 DOI: 10.1093/noajnl/vdac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Abstract
Background
X-linked inhibitor of apoptosis-associated factor 1 (XAF1) is a tumor suppressor that is commonly inactivated in multiple human cancers. However, its role in the pathogenesis and therapeutic response of glioma is poorly characterized.
Methods
XAF1 activation by temozolomide (TMZ) and its effect on TMZ cytotoxicity were defined using luciferase reporter, flow cytometry, and immunofluorescence assays. Signaling mechanism was analyzed using genetic and pharmacologic experiments. In vivo studies were performed in mice to validate the role of XAF1 in TMZ therapy.
Results
Epigenetic alteration of XAF1 is frequent in cell lines and primary tumors and contributes to cancer cell growth. XAF1 transcription is activated by TMZ via JNK-IRF-1 signaling to promote apoptosis while it is impaired by promoter hypermethylation. In tumor cells expressing high O 6methylguanineDNA methyltransferase (MGMT), XAF1 response to TMZ is debilitated. XAF1 facilitates TMZ-mediated autophagic flux to direct an apoptotic transition of protective autophagy. Mechanistically, XAF1 is translocated into the mitochondria to stimulate reactive oxygen species (ROS) production and ataxia telangiectasia mutated (ATM)-AMPactivated protein kinase (AMPK) signaling. A mutant XAF1 lacking the zinc finger 6 domain fails to localize in the mitochondria and activate ROS-ATMAMPK signaling and autophagy-mediated apoptosis. XAF1restored xenograft tumors display a reduced growth rate and enhanced therapeutic response to TMZ, which is accompanied with activation of ATMAMPK signaling. XAF1 expression is associated with overall survival of TMZ treatment patients, particularly with low MGMT cancer.
Conclusions
This study uncovers an important role for the XAF1ATMAMPK axis as a linchpin to govern glioma response to TMZ therapy.
Collapse
Affiliation(s)
- Min Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Zisun Choi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Na Jung Lim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji Sun Lim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kyung Woo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kyung Phil Ko
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Byung Kyu Ryu
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
- Department of Neurosurgery, School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Shin Hyuk Kang
- Department of Neurosurgery, School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sung Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Localization matters: nuclear-trapped Survivin sensitizes glioblastoma cells to temozolomide by elevating cellular senescence and impairing homologous recombination. Cell Mol Life Sci 2021; 78:5587-5604. [PMID: 34100981 PMCID: PMC8257519 DOI: 10.1007/s00018-021-03864-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
To clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.
Collapse
|
5
|
刘 娟, 刘 星, 魏 宝, 刘 洁, 王 悦, 刘 辉. [Effect of stable overexpression of XAF1 gene on biological characteristics of ovarian cancer A2780 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:760-766. [PMID: 34134965 PMCID: PMC8214961 DOI: 10.12122/j.issn.1673-4254.2021.05.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct an ovarian cancer cell line stably overexpressing XAF1 gene and observe the effects of XAF1 gene overexpression on proliferation, apoptosis, cell cycle and sensitivity to paclitaxel of the cells. OBJECTIVE Ovarian cancer A2780 cells were transfected with the plasmids pcDNA3.1(+) or pcDNA3.1(+)-XAF1, and the cells stably Over expressing XAF1 (A2780/XAF1 cells) were screened using G418. Cell clone formation assay and CCK8 assay were used to evaluate the changes in proliferation and paclitaxel sensitivity of the transfected cells, and cell cycle and apoptosis of the cells were analyzed using flow cytometry. OBJECTIVE We successfully obtained A2780/XAF1 cells stably overexpressing XAF1, which exhibited no significant changes in cell morphology. Compared with the negative control cells (A2780/NC), A2780/XAF1 cells had lowered clone formation ability (P=0.0016) and attenuated proliferative activity on the first (P=0.009) and third (P=0.0035) days after cell adherence with also a significantly increased percentage of cells in G2-M phase (P < 0.001). A2780/XAF1 cells showed significantly higher apoptosis rates than A2780/NC cells in the absence of apoptotic stimulation, in serum-free culture or following paclitaxel induction (P < 0.001). The proliferative activity of A2780/XAF1 cells was significantly lower than that of A2780/NC cells after exposure to different paclitaxel concentrations (P < 0.001). The half inhibitory concentration of paclitaxel was significantly lower in A2780/XAF1 than in A2780/NC cells. OBJECTIVE Overexpression of XAF1 significantly inhibits the proliferation, induces cell cycle arrest, promotes apoptosis, and increases paclitaxel sensitivity in ovarian cancer cells.
Collapse
Affiliation(s)
- 娟 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 星辰 刘
- 成都市第 六人民医院妇科,四川 成都 610051Department of Gynecology, The Sixth People's Hospital of Chengdu, Chengdu 610051
| | - 宝宝 魏
- 成都中医药大学附属医院妇科,四川 成都 610075Department of Gynecology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 洁 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 悦华 王
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 辉 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Majchrzak‐Celińska A, Dybska E, Barciszewska A. DNA methylation analysis with methylation-sensitive high-resolution melting (MS-HRM) reveals gene panel for glioma characteristics. CNS Neurosci Ther 2020; 26:1303-1314. [PMID: 32783304 PMCID: PMC7702229 DOI: 10.1111/cns.13443] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Local DNA hypermethylation is a potential source of cancer biomarkers. While the evaluation of single gene methylation has limited value, their selected panel may provide better information. AIMS This study aimed to analyze the promoter methylation level in a 7-gene panel in brain tumors and verifies the usefulness of methylation-sensitive high-resolution melting (MS-HRM) for this purpose. METHODS Forty-six glioma samples and one non-neoplastic brain sample were analyzed by MS-HRM in terms of SFRP1, SFRP2, RUNX3, CBLN4, INA, MGMT, and RASSF1A promoter methylation. The results were correlated with patients' clinicopathological features. RESULTS DNA methylation level of all analyzed genes was significantly higher in brain tumor samples as compared to non-neoplastic brain and commercial, unmethylated DNA control. RASSF1A was the most frequently methylated gene, with statistically significant differences depending on the tumor WHO grade. Higher MGMT methylation levels were observed in females, whereas the levels of SFRP1 and INA promoter methylation significantly increased with patients' age. A positive correlation of promoter methylation levels was observed between pairs of genes, for example, CBLN4 and INA or MGMT and RASSF1A. CONCLUSIONS Our 7-gene panel of promoter methylation can be helpful in brain tumor diagnosis or characterization, and MS-HRM is a suitable method for its analysis.
Collapse
Affiliation(s)
| | - Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic DiseasesPoznan University of Medical SciencesPoznańPoland
| | - Anna‐Maria Barciszewska
- Intraoperative Imaging UnitChair and Department of Neurosurgery and NeurotraumatologyPoznan University of Medical SciencesPoznańPoland
- Department of Neurosurgery and NeurotraumatologyHeliodor Swiecicki Clinical HospitalPoznańPoland
| |
Collapse
|
7
|
Mirchia K, Richardson TE. Beyond IDH-Mutation: Emerging Molecular Diagnostic and Prognostic Features in Adult Diffuse Gliomas. Cancers (Basel) 2020; 12:E1817. [PMID: 32640746 PMCID: PMC7408495 DOI: 10.3390/cancers12071817] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Diffuse gliomas are among the most common adult central nervous system tumors with an annual incidence of more than 16,000 cases in the United States. Until very recently, the diagnosis of these tumors was based solely on morphologic features, however, with the publication of the WHO Classification of Tumours of the Central Nervous System, revised 4th edition in 2016, certain molecular features are now included in the official diagnostic and grading system. One of the most significant of these changes has been the division of adult astrocytomas into IDH-wildtype and IDH-mutant categories in addition to histologic grade as part of the main-line diagnosis, although a great deal of heterogeneity in the clinical outcome still remains to be explained within these categories. Since then, numerous groups have been working to identify additional biomarkers and prognostic factors in diffuse gliomas to help further stratify these tumors in hopes of producing a more complete grading system, as well as understanding the underlying biology that results in differing outcomes. The field of neuro-oncology is currently in the midst of a "molecular revolution" in which increasing emphasis is being placed on genetic and epigenetic features driving current diagnostic, prognostic, and predictive considerations. In this review, we focus on recent advances in adult diffuse glioma biomarkers and prognostic factors and summarize the state of the field.
Collapse
Affiliation(s)
- Kanish Mirchia
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA;
| | | |
Collapse
|
8
|
Wu Q, Berglund AE, Wang D, MacAulay RJ, Mulé JJ, Etame AB. Paradoxical epigenetic regulation of XAF1 mediates plasticity towards adaptive resistance evolution in MGMT-methylated glioblastoma. Sci Rep 2019; 9:14072. [PMID: 31575897 PMCID: PMC6773736 DOI: 10.1038/s41598-019-50489-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Epigenetic regulation of O6-alkylguanine DNA alkyltransferase (MGMT) is surrogate of intrinsic resistance to temozolomide (TMZ). However, mechanisms associated with adaptive resistance evolution of glioblastoma (GBM) relative to MGMT methylation remain unclear. We hereby report a paradoxical yet translational epigenetic regulation of plasticity towards adaptive resistance in GBM. Based on an adaptive resistance model of GBM cells with differential MGMT methylation profiles, MGMT-hypermethylation enhanced genetic and phenotypic plasticity towards adaptive resistance to TMZ while MGMT hypomethylation limited plasticity. The resulting model-associated adaptive resistance gene signature negatively correlated with GBM patient survival. XAF1, a tumor suppressor protein, paradoxically emerged as a mediator of differential plasticities towards adaptive resistance to TMZ through epigenetic regulation. XAF1 promoted resistance both in-vitro and in-vivo. Furthermore, XAF1 expression negatively correlated with XAF1 promoter methylation status, and negatively correlate with GBM patient survival. Collectively, XAF1 appears to have a pradoxical yet translational role in GBM.
Collapse
Affiliation(s)
- Qiong Wu
- Departments of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Anders E Berglund
- Departments of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Dapeng Wang
- Departments of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Robert J MacAulay
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - James J Mulé
- Departments of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Arnold B Etame
- Departments of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
9
|
Tomicic MT, Steigerwald C, Rasenberger B, Brozovic A, Christmann M. Functional mismatch repair and inactive p53 drive sensitization of colorectal cancer cells to irinotecan via the IAP antagonist BV6. Arch Toxicol 2019; 93:2265-2277. [PMID: 31289894 DOI: 10.1007/s00204-019-02513-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/04/2019] [Indexed: 11/26/2022]
Abstract
A common strategy to overcome acquired chemotherapy resistance is the combination of a specific anticancer drug (e.g., topoisomerase I inhibitor irinotecan) together with a putative sensitizer. The purpose of this study was to analyze the cytostatic/cytotoxic response of colorectal carcinoma (CRC) cells to irinotecan, depending on the mismatch repair (MMR) and p53 status and to examine the impact of BV6, a bivalent antagonist of inhibitors of apoptosis c-IAP1/c-IAP2, alone or combined with irinotecan. Therefore, several MSH2- or MSH6-deficient cell lines were complemented for MMR deficiency, or MSH6 was knocked out/down in MMR-proficient cells. Upon irinotecan, MMR-deficient/p53-mutated lines repaired DNA double-strand breaks by homologous recombination less efficiently than MMR-proficient/p53-mutated lines and underwent elevated caspase-9-dependent apoptosis. Opposite, BV6-mediated sensitization was achieved only in MMR-proficient/p53-mutated cells. In those cells, c-IAP1 and c-IAP2 were effectively degraded by BV6, caspase-8 was fully activated, and both canonical and non-canonical NF-κB signaling were triggered. The results were confirmed ex vivo in tumor organoids from CRC patients. Therefore, the particular MMR+/p53mt signature, often found in non-metastasizing (stage II) CRC might be used as a prognostic factor for an adjuvant therapy using low-dose irinotecan combined with a bivalent IAP antagonist.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany.
| | - Christian Steigerwald
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| | - Birgit Rasenberger
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| | - Anamaria Brozovic
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| |
Collapse
|
10
|
Sensitization of colorectal cancer cells to irinotecan by the Survivin inhibitor LLP3 depends on XAF1 proficiency in the context of mutated p53. Arch Toxicol 2018; 92:2645-2648. [PMID: 29947891 DOI: 10.1007/s00204-018-2240-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Survivin is a well-established target in experimental cancer therapy. While hardly expressed in normal tissues, it is over-expressed in most human tumors, including colorectal cancer (CRC). Different compartmentalization of Survivin enables its multiple functions as a key controller of cell division, apoptosis, stress-induced signaling and also of migration and metastasis. Because of the lack of its enzymatic activity, this oncoprotein is considered to be undruggable. Nevertheless, small-molecule interfacial inhibitors interfering with its dimerization and/or disrupting the Survivin-Ran protein complex were shown to be potent drugs causing Survivin proteasomal degradation and inducing apoptosis in cancer cells. Based on our results with different CRC cell lines, we show that the Survivin inhibitor LLP3 might be effective as mono-therapy in the subgroup of p53-proficient and also some p53-mutated tumors, independent of mismatch repair status. When combined with irinotecan, expression of the tumor suppressor X-linked inhibitor of apoptosis factor 1 (XAF1) plays a decisive role for sensitization of CRC cells to this first-line drug, however, only in the p53-mutated background. The combination treatment with IT should be avoided in p53-proficient tumors independent of XAF1 expression, since no sensitization to or even protection against moderate-toxic concentrations of IT might occur.
Collapse
|