1
|
Shah H, Khan K, Badshah Y, Trembley JH, Ashraf NM, Shabbir M, Afsar T, Aldisi D, Khan D, Razak S. Unravelling the role of PRKCI and key-cancer related genes in breast cancer development and metastasis. Discov Oncol 2025; 16:350. [PMID: 40100546 PMCID: PMC11920535 DOI: 10.1007/s12672-025-02133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Breast cancer is one of the most common causes of fatalities in females globally. Rising cases of drug resistance against existing chemotherapeutics are great problem. To address this issue, there is a need to find appropriate biomarker that could be used to detect cancer at early stages, so drug resistance development can be avoided. Protein Kinase C iota (PKCɩ), an AGC kinase, has an oncogenic role in cancers and its expression and Single nucleotide polymorphisms (SNPs) have been reported to be associated with the cancer development. So, the study aims were to examine the expression of PKCɩ, Protein Kinase B (AKT), Suppressor of cytokine signaling 3 (SOCS3), Vascular endothelial growth factor (VEGF), Krupple like factor 3 (KLF3), Tumor protein D52 (TPD52), Hypoxia inducible factor (HIF1α) and microRNA-124 (miR-124) in breast cancer and association of PKCɩ variants (G34W & F66Y) with breast cancer. METHODS Genetic expression assay was performed through real time Polymerase Chain reaction (PCR), whereas the genotypic association of PKCɩ SNPs with breast cancer was accomplished through Tetra-ARMS PCR. RESULTS The expression levels of PKCɩ, AKT, SOC3, VEGF, HIF1α and TPD52 were elevated in patients as compared to control whereas the expression levels of miR-124 and KLF3 were lowered in patients. Positive association of variant G34W (TT) of PKCɩ with breast cancer has been explored through ARM's PCR, while no association of variant F66Y with breast cancer was found. CONCLUSION Hence, the results suggest that PKCɩ and related genes can have a role in breast cancer and after further verification can serve as the potential biomarkers for the early-diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Hania Shah
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Punjab, Lahore, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dara Aldisi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dilawer Khan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Han W, Zhou H, Zhang X, Li H, Han X, Su L, Tian L, Xue X. HMGB2 is a biomarker associated with poor prognosis promoting radioresistance in glioma by targeting base excision repair pathway. Transl Oncol 2024; 45:101977. [PMID: 38728871 PMCID: PMC11107350 DOI: 10.1016/j.tranon.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND High mobility group box 2 (HMGB2) is considered as a biomarker of poor prognosis in various cancers.This study aims to investigate the effect and mechanism of HMGB2 in gliomas. METHODS With the glioma related on-line and our local hospital databases, the expression differences of HMGB2,Kaplan-Meier survival analysis and COX regression analysis were performed.The correlation analysis between the clinicopathological features and imaging parameters with the HMGB2 expression had been done. Then GSEA and PPI networks were carried out to find out the most significant pathway. The pathway inhibitor was applied to verify HMGB2's participation. CCK8,EDU assays,γ-H2AX immunofluorescence staining and colony formation assay were conducted to observe effects on glioma cells. RESULTS Available datasets showed that HMGB2 was highly expressed in glioma and patients with high expression of HMGB2 had poorer prognosis and molecular characteristics. Protein level evidence of western blot and immunohistochemistry from our center supported the conclusions above. Analysis on imaging features suggested that HMGB2 expression level had an inverse association with ADCmean but positively with the thickness of enhancing margin. Results from GSEA and PPI network analysis exhibited that HMGB2 was involved in base excision repair (BER) signaling pathway. Experimental evidence demonstrated that the overexpression of HMGB2 promoted the proliferation of glioma cells and enhanced the radio-resistance. CONCLUSIONS HMGB2 could promote glioma development and enhance the radioresistance of glioma cells, potentially related to the BER pathway, suggesting it may serve as an underlying biomarker for patients with glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinyuan Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Haonan Li
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Su
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
3
|
Shen W, Yuan L, Hao B, Xiang J, Cheng F, Wu Z, Li X. KLF3 promotes colorectal cancer growth by activating WNT1. Aging (Albany NY) 2024; 16:2475-2493. [PMID: 38305787 PMCID: PMC10911342 DOI: 10.18632/aging.205494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
OBJECTIVE The function of Kruppel-like factor 3 (KLF3) remains largely unexplored in colorectal cancer (CRC). METHODS KLF3 expression in CRC was assessed through qPCR, western blotting, immunohistochemical assays, and The Cancer Genome Atlas (TCGA) database. The tumor-promoting capacity of KLF3 was explored by performing in vitro functional experiments using CRC cells. A subcutaneous nude mouse tumor assay was employed to evaluate tumor growth. To further elucidate the interaction between KLF3 and other factors, luciferase reporter assay, agarose gel electrophoresis, and ChIP analysis were performed. RESULTS KLF3 was downregulated in CRC tissue and cells. Silencing of KLF3 increased the potential of CRC cells for proliferation, migration, and invasion, while its activation decreased these processes. Downregulated KLF3 was associated with accelerated tumor growth in vivo. Mechanistically, KLF3 was discovered to target the promoter sequence of WNT1. Consequently, the diminished expression of KLF3 led to the buildup of WNT1 and the WNT/β-catenin pathway activation, consequently stimulating the progression of CRC. CONCLUSIONS This investigation suggests that the involvement of KLF3/WNT1 regulatory pathway contributes to the progression of CRC, thereby emphasizing its promise as an important focus for future therapies aimed at treating CRC.
Collapse
Affiliation(s)
- Wei Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lebin Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Boyu Hao
- General Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiajia Xiang
- Laboratory of Molecular Center, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fei Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhao Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiaodong Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
4
|
Wan B, Zhang W, Deng X, Lu Y, Zhang Z, Yang Y. Molecular Expression and Prognostic Implications of Krüppel-Like Factor 3 (KLF3) in Clear Cell Renal Cell Carcinoma. Crit Rev Eukaryot Gene Expr 2024; 34:45-59. [PMID: 38073441 DOI: 10.1615/critreveukaryotgeneexpr.2023049010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
A major subtype of renal cancer is clear cell renal cell carcinoma (ccRCC). Krüppel-like factor 3 (KLF3) dysfunction is also revealed leading to poor prognosis in multiple cancer types. However, dysregulation and molecular dynamics of KLF3 underlying ccRCC progression still remains elusive. Here KLF3 gene and protein expressions in ccRCC were explored using data cohorts from The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), Clinical Proteomic Tumor Analysis Consortium (CPTAC) and verified them in our patient cohort. Correlations of KLF3 expression with clinicopathological features, epigenetic modification, and immune microenvironment characteristics were further investigated. KLF3 was significantly down-regulated expressed in ccRCC tissues compared to adjacent normal controls. Adverse pathological parameters and poor prognosis were associated with lower expression of KLF3. Mechanically, KLF3 regulation was mainly attributed to CpG island methylation. KLF3-high expression subgroup was significantly enriched in cell signaling pathways most associated with EMT markers, angiogenesis, inflammatory response, apoptosis, TGF-β, degradation of ECM, G2M checkpoint, and PI3K-AKT-mTOR. Based on GDSC database, KLF3 upregulation was identified to be associated with higher sensitivities towards PI3K-Akt-mTOR pathway inhibitors such as PI-103, PIK-93, and OSI-027. In addition, patients with down-regulated KLF3 expressions were found more sensitive towards Trametinib, Cetuximab, and Erlotinib. Collectively, our findings suggest that KLF3 may act as a suitable biomarker for prognosis prediction, tumor microenvironment (TME) phenotype identification, thereby helping ccRCC patients to make better therapeutic decisions.
Collapse
Affiliation(s)
- Bin Wan
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| | - Wensheng Zhang
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| | - Xinxi Deng
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| | - Yigang Lu
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| | - Zhuo Zhang
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| | - Yang Yang
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| |
Collapse
|
5
|
Liu X, Zhang L. microRNA-92b-3p augments colon cancer development through inhibiting KLF3. J Biochem Mol Toxicol 2023; 37:e23488. [PMID: 37597242 DOI: 10.1002/jbt.23488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023]
Abstract
Colon cancer (CC) is a tumor of the large intestine. miR-92b-3p is often deregulated in the tumorigensis. Here, the role of miR-92b-3p in the development of CC was investigated. miR-92b-3p and Kruppel-like factor 3 (KLF3) expression was examined in CC tissues and cells. miR-92b-3p inhibitor or KLF3 overexpression vector was transfected into CC cells, respectively to observe its role in CC cell proliferation, invasion, migration, and apoptosis. The targeting relationship between miR-92b-3p and KLF3 was validated. Meanwhile, rescue experiments were performed by co-transfection of miR-92b-3p inhibitor and KLF3 siRNA, followed by determining CC cell proliferation, invasion, migration, and apoptosis. Higher miR-92b-3p and lower KLF3 expression levels were observed in CC tissues and cells. miR-92b-3p inhibition or KLF3 overexpression reduced proliferation, invasion, and migration whereas induced apoptosis of CC cells. KLF3 was validated to be the target gene of miR-92b-3p. Depletion of KLF3 could reverse the antitumor role of miR-92b-3p inhibition in CC cells. miR-92b-3p augments CC development through inhibiting KLF3, which may confers a novel way to develop future treatment target.
Collapse
Affiliation(s)
- Xuezhong Liu
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Lei Zhang
- Department of General Surgery, Liaocheng Dongchangfu People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
6
|
Martínez-Oca P, Alba C, Sánchez-Roncero A, Fernández-Marcelo T, Martín MÁ, Escrivá F, Rodríguez JM, Álvarez C, Fernández-Millán E. Maternal Diet Determines Milk Microbiome Composition and Offspring Gut Colonization in Wistar Rats. Nutrients 2023; 15:4322. [PMID: 37892398 PMCID: PMC10609248 DOI: 10.3390/nu15204322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Mother's milk contains a unique microbiome that plays a relevant role in offspring health. We hypothesize that maternal malnutrition during lactation might impact the microbial composition of milk and affect adequate offspring gut colonization, increasing the risk for later onset diseases. Then, Wistar rats were fed ad libitum (Control, C) food restriction (Undernourished, U) during gestation and lactation. After birth, offspring feces and milk stomach content were collected at lactating day (L)4, L14 and L18. The V3-V4 region of the bacterial 16S rRNA gene was sequenced to characterize bacterial communities. An analysis of beta diversity revealed significant disparities in microbial composition between groups of diet at L4 and L18 in both milk, and fecal samples. In total, 24 phyla were identified in milk and 18 were identified in feces, with Firmicutes, Proteobacteria, Actinobacteroidota and Bacteroidota collectively representing 96.1% and 97.4% of those identified, respectively. A higher abundance of Pasteurellaceae and Porphyromonas at L4, and of Gemella and Enterococcus at L18 were registered in milk samples from the U group. Lactobacillus was also significantly more abundant in fecal samples of the U group at L4. These microbial changes compromised the number and variety of milk-feces or feces-feces bacterial correlations. Moreover, increased offspring gut permeability and an altered expression of goblet cell markers TFF3 and KLF3 were observed in U pups. Our results suggest that altered microbial communication between mother and offspring through breastfeeding may explain, in part, the detrimental consequences of maternal malnutrition on offspring programming.
Collapse
Affiliation(s)
- Paula Martínez-Oca
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), Campus de Excelencia Científica, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
| | - Claudio Alba
- Department of Nutrition and Food Science, Faculty of Veterinary Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (C.A.); (J.M.R.)
| | - Alicia Sánchez-Roncero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.S.-R.); (F.E.); (C.Á.)
| | - Tamara Fernández-Marcelo
- Centro de Investigación Biomédica en Red (CIBERDEM), ISCIII, 28029 Madrid, Spain; (T.F.-M.); (M.Á.M.)
| | - María Ángeles Martín
- Centro de Investigación Biomédica en Red (CIBERDEM), ISCIII, 28029 Madrid, Spain; (T.F.-M.); (M.Á.M.)
- Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Fernando Escrivá
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.S.-R.); (F.E.); (C.Á.)
- Centro de Investigación Biomédica en Red (CIBERDEM), ISCIII, 28029 Madrid, Spain; (T.F.-M.); (M.Á.M.)
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Faculty of Veterinary Sciences, University Complutense of Madrid, 28040 Madrid, Spain; (C.A.); (J.M.R.)
| | - Carmen Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.S.-R.); (F.E.); (C.Á.)
- Centro de Investigación Biomédica en Red (CIBERDEM), ISCIII, 28029 Madrid, Spain; (T.F.-M.); (M.Á.M.)
| | - Elisa Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.S.-R.); (F.E.); (C.Á.)
- Centro de Investigación Biomédica en Red (CIBERDEM), ISCIII, 28029 Madrid, Spain; (T.F.-M.); (M.Á.M.)
| |
Collapse
|
7
|
Zhu J, Teng H, Zhu X, Yuan J, Zhang Q, Zou Y. Pan-cancer analysis of Krüppel-like factor 3 and its carcinogenesis in pancreatic cancer. Front Immunol 2023; 14:1167018. [PMID: 37600783 PMCID: PMC10435259 DOI: 10.3389/fimmu.2023.1167018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Background Krüppel-like factor 3 (KLF3) is a key transcriptional repressor, which is involved in various biological functions such as lipogenesis, erythropoiesis, and B cell development, and has become one of the current research hotspots. However, the role of KLF3 in the pan-cancer and tumor microenvironment remains unclear. Methods TCGA and GTEx databases were used to evaluate the expression difference of KLF3 in pan-cancer and normal tissues. The cBioPortal database and the GSCALite platform analyzed the genetic variation and methylation modification of KLF3. The prognostic role of KLF3 in pan-cancer was identified using Cox regression and Kaplan-Meier analysis. Correlation analysis was used to explore the relationship between KLF3 expression and tumor mutation burden, microsatellite instability, and immune-related genes. The relationship between KLF3 expression and tumor immune microenvironment was calculated by ESTIMATE, EPIC, and MCPCOUNTER algorithms. TISCH and CancerSEA databases analyzed the expression distribution and function of KLF3 in the tumor microenvironment. TIDE, GDSC, and CTRP databases evaluated KLF3-predicted immunotherapy response and sensitivity to small molecule drugs. Finally, we analyzed the role of KLF3 in pancreatic cancer by in vivo and in vitro experiments. Results KLF3 was abnormally expressed in a variety of tumors, which could effectively predict the prognosis of patients, and it was most obvious in pancreatic cancer. Further experiments verified that silencing KLF3 expression inhibited pancreatic cancer progression. Functional analysis and gene set enrichment analysis found that KLF3 was involved in various immune-related pathways and tumor progression-related pathways. In addition, based on single-cell sequencing analysis, it was found that KLF3 was mainly expressed in CD4Tconv, CD8T, monocytes/macrophages, endothelial cells, and malignant cells in most of the tumor microenvironment. Finally, we assessed the value of KLF3 in predicting response to immunotherapy and predicted a series of sensitive drugs targeting KLF3. Conclusion The role of KLF3 in the tumor microenvironment of various types of tumors cannot be underestimated, and it has significant potential as a biomarker for predicting the response to immunotherapy. In particular, it plays an important role in the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hong Teng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaojian Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jingxuan Yuan
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Qiong Zhang
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yeqing Zou
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Li Y, Wang Y, Zou Q, Li S, Zhang F. KLF3 Transcription Activates WNT1 and Promotes the Growth and Metastasis of Gastric Cancer via Activation of the WNT/β-Catenin Signaling Pathway. J Transl Med 2023; 103:100078. [PMID: 36827869 DOI: 10.1016/j.labinv.2023.100078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
The transcription factor Krüppel-like factor (KLF) 3 is one of the members of the KLF family, which plays an important role in tumor progression. Nevertheless, the role of KLF3 in the growth and metastasis of gastric cancer (GC) still needs to be elucidated. Bioinformatics analysis showed that KLF3 was overexpressed in patients with GC, and the high expression of KLF3 was correlated with poor survival. KLF3 was also overexpressed in GC clinical samples and cell lines. In vitro functional role of KLF3 in GC cells was explored by a gain-of-function and loss-of-function assay. Overexpressed KLF3 promoted the cell proliferation, migration, invasion, and epithelial-mesenchymal transition of GC cells, whereas suppressed KLF3 inhibited these biological behaviors. The clinical samples and bioinformatics analysis showed that WNT1 was also highly expressed in GC tumor tissues and positively correlated with KLF3 expression. The luciferase reporter assay and chromatin immunoprecipitation result confirmed that KLF3 could directly bind to the WNT1 promoter to increase the transcriptional activity of WNT1, thus regulating its expression. Overexpressed KLF3 enhanced the protein expression level of p-GSK3β(Ser9) and β-catenin, the key elements in the WNT/β-catenin signaling pathway. Repression of KLF3 decreased the level of p-GSK3β(Ser9) and β-catenin. Immunofluorescence images showed that KLF3 promoted nuclear β-catenin accumulation. Inhibition of WNT1 attenuated the proliferation, migration, and invasiveness of KLF3-overexpressing GC cells. Moreover, the xenograft mouse model confirmed that KLF3 promotes GC tumor growth and metastasis in vivo. Our results demonstrated that KLF3 activates the WNT/β-catenin signaling pathway via WNT1 to promote GC tumor growth and metastasis, indicating that repression of KLF3 may act as a potential therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Ying Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Wang
- Endoscopy Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qinguang Zou
- Department of Thoracic Surgery, Jilin Cancer Hospital, Changchun, Jilin, China
| | - Shouqing Li
- Tumor Integrative Medicine Center, Jilin Province People's Hospital, Changchun, Jilin, China
| | - Fan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
9
|
Chang J, Li H, Zhu Z, Mei P, Hu W, Xiong X, Tao J. microRNA-21-5p from M2 macrophage-derived extracellular vesicles promotes the differentiation and activity of pancreatic cancer stem cells by mediating KLF3. Cell Biol Toxicol 2022; 38:577-590. [PMID: 33728488 PMCID: PMC9343318 DOI: 10.1007/s10565-021-09597-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
AIM Given the fact that tumor-associated macrophage-derived extracellular vesicles (EVs) are attributable to tumor aggressiveness, this research intends to decode the mechanism of M2 macrophage-derived EVs in the differentiation and activities of pancreatic cancer (PaCa) stem cells via delivering microRNA (miR)-21-5p. METHODS Polarized M2 macrophages were induced, from which EVs were collected and identified. miR-21-5p expression in M2 macrophage-derived EVs was tested. After cell sorting, CD24+CD44+EpCAM+ stem cells were co-cultured with M2 macrophages, in which miR-21-5p was upregulated or downregulated. The effects of M2 macrophage-derived EVs and miR-21-5p on Nanog/octamer-binding transcription factor 4 (Oct4) expression, sphere formation, colony formation, invasion and migration capacities, apoptosis, and in vivo tumorigenic ability were examined. Krüppel-like factor 3 (KLF3) expression and its interaction with miR-21-5p were determined. RESULTS M2 macrophage-derived EVs promoted PaCa stem cell differentiation and activities. miR-21a-5p was upregulated in M2 macrophage-derived EVs. miR-21a-5p downregulation in M2 macrophage-derived EVs inhibited Nanog/Oct4 expression and impaired sphere-forming, colony-forming, invasion, migration, and anti-apoptosis abilities of PaCa stem cells in vitro and tumorigenic ability in vivo. miR-21-5p targeted KLF3 to mediate the differentiation and activities of PaCa stem cells, and KLF3 was downregulated in PaCa stem cells. CONCLUSION This work explains that M2 macrophage-derived exosomal miR-21a-5p stimulates differentiation and activity of PaCa stem cells via targeting KLF3, paving a novel way for attenuating PaCa stemness.
Collapse
Affiliation(s)
- Jian Chang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Hanjun Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Zhongchao Zhu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Pei Mei
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Weimin Hu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China
| | - Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
10
|
Shan HJ, Gu WX, Duan G, Chen HL. Fat mass and obesity associated (FTO)-mediated N6-methyladenosine modification of Krüppel-like factor 3 (KLF3) promotes osteosarcoma progression. Bioengineered 2022; 13:8038-8050. [PMID: 35311620 PMCID: PMC9161850 DOI: 10.1080/21655979.2022.2051785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N6-methyladenosine (m6A) methylation is the most common and abundant methylation modification of eukaryotic mRNAs, which is involved in tumor initiation and progression. The study aims to explore the potential role and the regulatory mechanism of fat mass and obesity associated (FTO) in osteosarcoma (OS) progression. In this study, we detected the expressions of Krüppel-like factor 3 (KLF3) in OS cells and tissues and found that the mRNA and protein levels of KLF3 were increased in OS cells and tissues and significantly related to tumor size, metastasis, and TNM stage and poor prognosis of OS patients. FTO promoted the proliferation and invasion and suppressed apoptosis of OS cells through cell experiments in vitro. Further mechanism dissection revealed that FTO and YTHDF2 enforced the decay of KLF3 mRNA and decreased its expression. FTO-mediated mRNA demethylation inhibited KLF3 expression in the YTHDF2-dependent manner. Moreover, KLF3 overexpression abrogated FTO-induced oncogenic effects on the proliferation and invasion of OS cells. Overall, our findings showed that FTO-mediated m6A modification of KLF3 promoted OS progression, which may provide a therapeutic target for OS.
Collapse
Affiliation(s)
- Hong-Jian Shan
- Department of Orthopedics, Institute of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China.,Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, P. R. China
| | - Wen-Xiang Gu
- Department of Orthopedics, Institute of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Gang Duan
- Department of Orthopedics, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, P. R. China
| | - Hong-Liang Chen
- Department of Orthopedics, Institute of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| |
Collapse
|
11
|
Expression and Prognosis Value of the KLF Family Members in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6571272. [PMID: 35345512 PMCID: PMC8957442 DOI: 10.1155/2022/6571272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Krüppel-like factors (KLFs) are some kind of transcriptional regulator that regulates a broad range of cellular functions and has been linked to the development of certain malignancies. KLF expression patterns and prognostic values in colorectal cancer (CRC) have, however, been investigated rarely. To investigate the differential expression, predictive value, and gene mutations of KLFs in CRC patients, we used various online analytic tools, including ONCOMINE, TCGA, cBioPortal, and the TIMER database. KLF2-6, KLF8-10, KLF12-15, and KLF17 mRNA expression levels were dramatically downregulated in CRC tissues, but KLF1, KLF7, and KLF16 mRNA expression levels were significantly elevated in CRC tissues. According to the findings of Cox regression analysis, upregulation of KLF3, KLF5, and KLF6 and downregulation of KLF15 were linked with a better prognosis in CRC. For functional enrichment, our findings revealed that KLF members are involved in a variety of cancer-related biological processes. In colon cancer and rectal cancer, KLFs were also shown to be associated with a variety of immune cells. The findings of this research reveal that KLF family members' mRNA expression levels are possible prognostic indicators for patients with CRC.
Collapse
|
12
|
Rudd ML, Hansen NF, Zhang X, Urick ME, Zhang S, Merino MJ, Mullikin JC, Brody LC, Bell DW. KLF3 and PAX6 are candidate driver genes in late-stage, MSI-hypermutated endometrioid endometrial carcinomas. PLoS One 2022; 17:e0251286. [PMID: 35081118 PMCID: PMC8791453 DOI: 10.1371/journal.pone.0251286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Endometrioid endometrial carcinomas (EECs) are the most common histological subtype of uterine cancer. Late-stage disease is an adverse prognosticator for EEC. The purpose of this study was to analyze EEC exome mutation data to identify late-stage-specific statistically significantly mutated genes (SMGs), which represent candidate driver genes potentially associated with disease progression. We exome sequenced 15 late-stage (stage III or IV) non-ultramutated EECs and paired non-tumor DNAs; somatic variants were called using Strelka, Shimmer, SomaticSniper and MuTect. Additionally, somatic mutation calls were extracted from The Cancer Genome Atlas (TCGA) data for 66 late-stage and 270 early-stage (stage I or II) non-ultramutated EECs. MutSigCV (v1.4) was used to annotate SMGs in the two late-stage cohorts and to derive p-values for all mutated genes in the early-stage cohort. To test whether late-stage SMGs are statistically significantly mutated in early-stage tumors, q-values for late-stage SMGs were re-calculated from the MutSigCV (v1.4) early-stage p-values, adjusting for the number of late-stage SMGs tested. We identified 14 SMGs in the combined late-stage EEC cohorts. When the 14 late-stage SMGs were examined in the TCGA early-stage data, only Krüppel-like factor 3 (KLF3) and Paired box 6 (PAX6) failed to reach significance as early-stage SMGs, despite the inclusion of enough early-stage cases to ensure adequate statistical power. Within TCGA, nonsynonymous mutations in KLF3 and PAX6 were, respectively, exclusive or nearly exclusive to the microsatellite instability (MSI)-hypermutated molecular subgroup and were dominated by insertions-deletions at homopolymer tracts. In conclusion, our findings are hypothesis-generating and suggest that KLF3 and PAX6, which encode transcription factors, are MSI target genes and late-stage-specific SMGs in EEC.
Collapse
Affiliation(s)
- Meghan L. Rudd
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy F. Hansen
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaolu Zhang
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mary Ellen Urick
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Suiyuan Zhang
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria J. Merino
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - James C. Mullikin
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lawrence C. Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daphne W. Bell
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
13
|
Li QL, Lin X, Yu YL, Chen L, Hu QX, Chen M, Cao N, Zhao C, Wang CY, Huang CW, Li LY, Ye M, Wu M. Genome-wide profiling in colorectal cancer identifies PHF19 and TBC1D16 as oncogenic super enhancers. Nat Commun 2021; 12:6407. [PMID: 34737287 PMCID: PMC8568941 DOI: 10.1038/s41467-021-26600-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer is one of the most common cancers in the world. Although genomic mutations and single nucleotide polymorphisms have been extensively studied, the epigenomic status in colorectal cancer patient tissues remains elusive. Here, together with genomic and transcriptomic analysis, we use ChIP-Seq to profile active enhancers at the genome wide level in colorectal cancer paired patient tissues (tumor and adjacent tissues from the same patients). In total, we sequence 73 pairs of colorectal cancer tissues and generate 147 H3K27ac ChIP-Seq, 144 RNA-Seq, 147 whole genome sequencing and 86 H3K4me3 ChIP-Seq samples. Our analysis identifies 5590 gain and 1100 lost variant enhancer loci in colorectal cancer, and 334 gain and 121 lost variant super enhancer loci. Multiple key transcription factors in colorectal cancer are predicted with motif analysis and core regulatory circuitry analysis. Further experiments verify the function of the super enhancers governing PHF19 and TBC1D16 in regulating colorectal cancer tumorigenesis, and KLF3 is identified as an oncogenic transcription factor in colorectal cancer. Taken together, our work provides an important epigenomic resource and functional factors for epigenetic studies in colorectal cancer.
Collapse
Affiliation(s)
- Qing-Lan Li
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiang Lin
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ya-Li Yu
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Lin Chen
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Qi-Xin Hu
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Meng Chen
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Nan Cao
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen Zhao
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen-Yu Wang
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Cheng-Wei Huang
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Mei Ye
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
14
|
Soares de Lima Y, Arnau-Collell C, Díaz-Gay M, Bonjoch L, Franch-Expósito S, Muñoz J, Moreira L, Ocaña T, Cuatrecasas M, Herrera-Pariente C, Carballal S, Moreno L, Díaz de Bustamante A, Castells A, Bujanda L, Cubiella J, Rodríguez-Alcalde D, Balaguer F, Castellví-Bel S. Germline and Somatic Whole-Exome Sequencing Identifies New Candidate Genes Involved in Familial Predisposition to Serrated Polyposis Syndrome. Cancers (Basel) 2021; 13:929. [PMID: 33672345 PMCID: PMC7927050 DOI: 10.3390/cancers13040929] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The serrated polyposis syndrome (SPS) is the most common and yet underdiagnosed colorectal polyposis syndrome. It is characterized by multiple and/or large colonic serrated polyps and a higher associated risk for colorectal cancer (CRC). The main objective of this study was to identify new candidate genes involved in the germline predisposition to SPS/CRC. Thirty-nine SPS patients from 16 families (≥2 patients per family) were recruited without alterations in well-known hereditary CRC genes, and germline and somatic whole-exome sequencing were performed. Germline rare variants with plausible pathogenicity, located in genes involved in cancer development, senescence and epigenetic regulation were selected. Somatic mutational profiling and signature analysis was pursued in one sample per family, when possible. After data filtering, ANXA10, ASXL1, CFTR, DOT1L, HIC1, INO80, KLF3, MCM3AP, MCM8, PDLIM2, POLD1, TP53BP1, WNK2 and WRN were highlighted as the more promising candidate genes for SPS germline predisposition with potentially pathogenic variants shared within families. Somatic analysis characterized mutational profiles in advanced serrated polyps/tumors, revealing a high proportion of hypermutated samples, with a prevalence of clock-like mutational signatures in most samples and the presence of DNA mismatch repair-defective signatures in some cases. In conclusion, we identified new candidate genes to be involved in familial SPS. Further functional studies and replication in additional cohorts are required to confirm the selected candidates.
Collapse
Affiliation(s)
- Yasmin Soares de Lima
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Coral Arnau-Collell
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Marcos Díaz-Gay
- Moores Cancer Center, Department of Cellular and Molecular Medicine, Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Laia Bonjoch
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Sebastià Franch-Expósito
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Jenifer Muñoz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Leticia Moreira
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Teresa Ocaña
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Miriam Cuatrecasas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Pathology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Tumor Bank-Biobank, Hospital Clínic, 08036 Barcelona, Spain;
| | - Cristina Herrera-Pariente
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Sabela Carballal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Lorena Moreno
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | | | - Antoni Castells
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Luis Bujanda
- Gastroenterology Department, Hospital Donostia-Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Basque Country University (UPV/EHU), 20014 San Sebastián, Spain;
| | - Joaquín Cubiella
- Gastroenterology Department, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 32005 Ourense, Spain;
| | | | - Francesc Balaguer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Sergi Castellví-Bel
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| |
Collapse
|
15
|
Wu S, Tang Y, Liu W. Circ_0084043 promotes cell proliferation and glycolysis but blocks cell apoptosis in melanoma via circ_0084043-miR-31-KLF3 axis. Open Life Sci 2020; 15:774-786. [PMID: 33817265 PMCID: PMC7747509 DOI: 10.1515/biol-2020-0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma is an aggressive malignant tumor. The crucial role of circular RNAs has been documented in many types of cancer, including melanoma. The objective of this study was to uncover the function of circ_0084043 in the biological process of melanoma and associated mechanism of action. The expression of circ_0084043, miR-31, and Krüppel-like factor 3 (KLF3) was determined by qRT-PCR. Cell proliferation and apoptosis were monitored by the MTT assay and flow cytometry assay, respectively. The progression of glycolysis was evaluated according to the levels of glucose consumption, lactate production, and ATP concentration using appropriate detection kits. The relationship between miR-31 and circ_0084043 or KLF3 was predicted by the bioinformatics tool and ascertained by the dual-luciferase reporter assay. The protein levels of KLF3 and glucose transporter 1 (Glut1) were quantified by western blot. A xenograft model was established to ascertain the role of circ_0084043 in vivo. As a result, circ_0084043 expression was reinforced in melanoma tissues and cells. Circ_0084043 knockdown inhibited cell proliferation, induced cell apoptosis, and restrained glycolysis. MiR-31 was a target of circ_0084043, and miR-31 deficiency reversed the role of circ_0084043 knockdown. KLF3 was targeted by miR-31, and KLF3 upregulation abolished the effects of miR-31 enrichment. Moreover, circ_0084043 knockdown impeded tumor growth in vivo and suppressed the level of Glut1 by modulating miR-31 and KLF3. Circ_0084043 promoted cell proliferation and glycolysis, and blocked apoptosis through the circ_0084043–miR-31–KLF3 regulatory axis in melanoma.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Dermatology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Yuhan Tang
- Department of Oncology, Chinese Medicine Hospital of Hengyang, Hengyang 421000, Hunan, China
| | - Wenli Liu
- Department of Oncology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfang South Road, Zhuhui District, Hengyang 421000, Hunan, China
| |
Collapse
|
16
|
Wan Y, Luo H, Yang M, Tian X, Peng B, Zhan T, Chen X, Ding Y, He J, Cheng X, Huang X, Zhang Y. miR-324-5p Contributes to Cell Proliferation and Apoptosis in Pancreatic Cancer by Targeting KLF3. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:432-442. [PMID: 32913892 PMCID: PMC7452094 DOI: 10.1016/j.omto.2020.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer cells are characterized by high cell proliferation and low cell apoptosis, but the factors involved in these processes remain to be further studied. In this study, we report that miR-324-5p regulates the proliferation and apoptosis of pancreatic cancer cells through regulating the expression of Krüppel-like factor 3 (KLF3). In both pancreatic cancer tissues and cell lines, the levels of miR-324-5p are significantly increased. Inhibition of miR-324-5p represses cell proliferation but promotes cell apoptosis, whereas overexpression of miR-324-5p exerts the opposite effect. Furthermore, we identified KLF3, a factor regulating pancreatic cancer cell proliferation and apoptosis, as a new direct downstream target of miR-324-5p. Our results suggest that miR-324-5p plays an important role in pancreatic cancer cell proliferation and apoptosis via downregulating the expression of KLF3.
Collapse
Affiliation(s)
- Yiyuan Wan
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China.,Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China.,Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ming Yang
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xia Tian
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Bo Peng
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Zhan
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoli Chen
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xueting Cheng
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaodong Huang
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Yadong Zhang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| |
Collapse
|
17
|
lncRNA KLF3-AS1 Suppresses Cell Migration and Invasion in ESCC by Impairing miR-185-5p-Targeted KLF3 Inhibition. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:231-241. [PMID: 32193151 PMCID: PMC7078507 DOI: 10.1016/j.omtn.2020.01.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 01/03/2020] [Accepted: 01/11/2020] [Indexed: 12/19/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common cancer occurring in males and females worldwide. Accumulating evidence continues to highlight the crucial roles of long non-coding RNAs (lncRNAs) in the process of tumorigenesis. However, the regulatory mechanism of lncRNAs in ESCC remains unclear. The aim of this study is to elucidate the role of lncRNA Krüppel-like factor 3 antisense RNA 1 (KLF3-AS1) in ESCC by regulating miR-185-5p and KLF3. Initially, ESCC cell spheres with stem cell-like properties were prepared by suspension culture, and subsequently characterized by assessing colony formation ability and stem cell markers. LncRNA KLF3-AS1 was found to be poorly expressed in ESCC and could upregulate the expression of KLF3 by binding to miR-185-5p. lncRNA KLF3-AS1 upregulation was observed to inhibit miR-185-5p, thereby contributing to decreased expression of SOX2 and Oct4 (octamer-binding transcription factor 4). Furthermore, enhancement of lncRNA KLF3-AS1 resulted in reduced colony formation ability, cell invasion and migration, and tumor volume in vivo while promoting cell apoptosis in ESCC through downregulation of miR-185-5p. Collectively, this study indicated that lncRNA KLF3-AS1 inhibited ESCC cell invasion and migration by impairing miR-185-5p-mediated inhibition of KLF3, highlighting a promising novel potential target for ESCC treatment.
Collapse
|
18
|
Sun W, Hu S, Zu Y, Deng Y. KLF3 is a crucial regulator of metastasis by controlling STAT3 expression in lung cancer. Mol Carcinog 2019; 58:1933-1945. [PMID: 31486564 PMCID: PMC6852579 DOI: 10.1002/mc.23072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
Lung cancer is one of the most common causes of cancer‐related mortality worldwide, which is partially due to its metastasis. However, the mechanism underlying its metastasis remains elusive. In this study, we showed that a low Krüppel‐like factor 3 (KLF3) expression level is correlated with a poor prognosis and TNM stages in clinical patients with lung cancer and further demonstrated that KLF3 expression is downregulated in lung cancer tissues compared with adjacent normal samples. In addition, bioinformatics analysis results showed that KLF3 expression is related to lung cancer epithelial‐mesenchymal transition (EMT). In vitro and in vivo experiments also showed that KLF3 silencing promotes lung cancer EMT and enhances lung cancer metastasis. More importantly, bioinformatics analysis and in vitro experiments indicated that the role of KLF3 in lung cancer metastasis is dependent on the STAT3 signaling pathway. Overall, our data indicated the crucial function of KLF3 in lung cancer metastasis and suggested opportunities to improve the therapy of patients with lung cancer.
Collapse
Affiliation(s)
- Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Wang R, Xu J, Xu J, Zhu W, Qiu T, Li J, Zhang M, Wang Q, Xu T, Guo R, Lu K, Yin Y, Gu Y, Zhu L, Huang P, Liu P, Liu L, De W, Shu Y. MiR-326/Sp1/KLF3: A novel regulatory axis in lung cancer progression. Cell Prolif 2019; 52:e12551. [PMID: 30485570 PMCID: PMC6495967 DOI: 10.1111/cpr.12551] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To investigate the function and regulatory mechanism of Krüppel-like factor 3 (KLF3) in lung cancer. MATERIALS AND METHODS KLF3 expression was analysed by qRT-PCR and Western blot assays. The proliferation, migration, invasion, cycle and apoptosis were measured by CCK-8 and EdU, wound-healing and Transwell, and flow cytometry assays. The tumour growth was detected by nude mouse tumorigenesis assay. In addition, the interaction between KLF3 and Sp1 was accessed by luciferase reporter, EMSA and ChIP assay. JAK2, STAT3, PI3K and p-AKT levels were evaluated by Western blot and IHC assays. RESULTS The results indicated that KLF3 expression was elevated in lung cancer tissues. Knockdown of KLF3 inhibited lung cancer cell proliferation, migration and invasion, and induced cell cycle arrest and apoptosis. In addition, the downregulation of KLF3 suppressed tumour growth in vivo. KLF3 was transcriptionally activated by Sp1. miR-326 could bind to 3'UTR of Sp1 but not KLF3 and decreased the accumulation of Sp1, which further indirectly reduced KLF3 expression and inactivated JAK2/STAT3 and PI3K/AKT signaling pathways in vitro and in vivo. CONCLUSIONS Our data demonstrate that miR-326/Sp1/KLF3 regulatory axis is involved in the development of lung cancer, which hints the potential target for the further therapeutic strategy against lung cancer.
Collapse
Affiliation(s)
- Rong Wang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jiali Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jing Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Wei Zhu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Tianzhu Qiu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jun Li
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Meiling Zhang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Qianqian Wang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Tongpeng Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Renhua Guo
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Kaihua Lu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Yongmei Yin
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Yanhong Gu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Lingjun Zhu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Puwen Huang
- Department of OncologyLiyang people's Hospital of Jiangsu ProvinceLiyangChina
| | - Ping Liu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Lianke Liu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Wei De
- Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingChina
| | - Yongqian Shu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| |
Collapse
|
20
|
Wu G, Yuan S, Chen Z, Chen G, Fan Q, Dong H, Ye F, Li J, Zhu X. The KLF14 Transcription Factor Regulates Glycolysis by Downregulating LDHB in Colorectal Cancer. Int J Biol Sci 2019; 15:628-635. [PMID: 30745849 PMCID: PMC6367579 DOI: 10.7150/ijbs.30652] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
The Krüppel-like transcription factor 14 (KLF14) is a critical regulator of a wide array of biological processes. However, the role of KLF14 in colorectal cancer (CRC) isn't fully investigated. This study aimed to explore the clinicopathological significance and potential role of KLF14 in the carcinogenesis and progression of CRC. A tissue microarray consisting of 185 samples from stage I-III CRC patients was adopted to analyze the correlation between KLF14 expression and clinicopathological parameters, as well as overall survival (OS) and disease-free survival (DFS). The underlying mechanisms of altered KLF14 expression on glycolysis were studied using in vitro and patients' samples. The results showed that KLF14 expression was downregulated in CRC than their normal controls. Low KLF14 expression correlated with advanced T stage (P< 0.001) and N stage (P= 0.040), and larger tumor size (P= 0.008). Lost KLF14 expression implied shorter OS and DFS after colectomy in both univariate and multivariate survival analysis (P<0.05). Experimentally, restore KLF14 expression significantly decreased the rate of glycolysis both in vitro and in patients' sample. Mechanically, KLF14 regulated glycolysis by downregulating glycolytic enzyme LDHB. Collectively, KLF14 is a novel prognostic biomarker for survival in CRC, and downregulation of KLF14 in CRC prompts glycolysis by target LDHB. Hence, KLF14 could constitute potential prognostic predictors and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Guiyang Wu
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Shichao Yuan
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Zaiping Chen
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Guoping Chen
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Qinghao Fan
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Hao Dong
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Fubo Ye
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing Li
- Departments of CyberKnife, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xiongwen Zhu
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| |
Collapse
|
21
|
Cui G, Cai F, Ding Z, Gao L. HMGB2 promotes the malignancy of human gastric cancer and indicates poor survival outcome. Hum Pathol 2018; 84:133-141. [PMID: 30296520 DOI: 10.1016/j.humpath.2018.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/23/2018] [Accepted: 09/29/2018] [Indexed: 11/16/2022]
Abstract
HMGB2 is an important protein in carcinogenesis. However, little is known about the specific role of HMGB2 in gastric cancer. In the present study, HMGB2 expression was evaluated in 198 primary gastric cancer tissues and their adjacent nontumor controls. The correlation between HMGB2 expression and clinico-pathological features and survival was assessed. The effect of HMGB2 on cell proliferation, invasion, and glycolysis was examined in vitro. The expression of HMGB2 was significantly increased in human gastric cancer when compared with nontumor tissues (P < .001). High HMGB2 expression correlated with large tumor size (P = .001), advanced T stage (P = .007), and presence of lymph node metastasis (P = .004). Moreover, high HMGB2 expression was validated as an independent prognostic factor in both univariate and multivariate analyses (P < .05). Experimentally, silencing HMGB2 expression by stable transfected shRNA significantly decreased the proliferation, invasion, and glycolysis of gastric cancer cells. In conclusion, HMGB2 is a novel prognostic biomarker for survival in gastric cancer, and knockdown HMGB2 expression in gastric cancer cells attenuated proliferation and invasion, and impaired glycolysis in gastric cancer cells. Hence, HMGB2 may serve as a new biomarker and a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Guangfei Cui
- Department of Gastrointestinal Surgery, The First People's Hospital of Shangqiu, Shangqiu 476100, Henan Province, China.
| | - Feng Cai
- Department of Gastrointestinal Surgery, The First People's Hospital of Shangqiu, Shangqiu 476100, Henan Province, China.
| | - Zhanwei Ding
- Department of Gastrointestinal Surgery, The First People's Hospital of Shangqiu, Shangqiu 476100, Henan Province, China.
| | - Ling Gao
- Department of Gastrointestinal Surgery, The First People's Hospital of Shangqiu, Shangqiu 476100, Henan Province, China.
| |
Collapse
|
22
|
Cui G, Cai F, Ding Z, Gao L. MMP14 predicts a poor prognosis in patients with colorectal cancer. Hum Pathol 2018; 83:36-42. [PMID: 30120968 DOI: 10.1016/j.humpath.2018.03.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 10/28/2022]
Abstract
Matrix metalloproteinases (MMPs) are involved in most biological processes. Recently, MMP14 was reported to be up-regulated in some types of cancer and to promote cancer cell invasion and metastasis. However, there are few reports on the clinical significance of MMP14 in colorectal cancer (CRC). In this study, MMP14 expression was first investigated in The Cancer Genome Atlas (TCGA) and whole-genome expression microarray (GEO; Accession Number GSE39582) and then validated with our database. Univariate and multivariate analyses were performed to assess the association between prognostic factors and survival outcomes. MMP14 was upregulated at both the transcriptional and protein levels in cancer compared with normal tissues (P < .05), and high MMP14 expression was associated with advanced tumor stage in the 3 study cohorts. In the univariate Cox proportional hazard ratio analysis, MMP14 correlated significantly with prognosis in both the TCGA and GSE39582 databases (P < .05). In the validation cohort, patients with high MMP14 expression had lower 5-year disease-free survival (DFS; hazard ratio [HR] 6.707; 95% confidence interval [CI] 3.184, 14.128; P < .001) and overall survival (OS; HR 10.669; 95% CI 3.828, 29.737; P < .001) than those with low MMP14 expression. Multivariate survival analysis showed that MMP14 was an independent prognostic marker for both DFS (HR 5.776; 95% CI 2.719, 12.270; P < .001) and OS (HR 8.971; 95% CI 3.199, 25.156; P < .001). Clearly, MMP14 plays an important role in CRC progression and prognosis and could be a useful biomarker for prediction of survival after colectomy.
Collapse
Affiliation(s)
- Guangfei Cui
- Department of Gastrointestinal Surgery, The First People's Hospital of Shangqiu, Shangqiu 476100, Henan Province, China
| | - Feng Cai
- Department of Gastrointestinal Surgery, The First People's Hospital of Shangqiu, Shangqiu 476100, Henan Province, China
| | - Zhanwei Ding
- Department of Gastrointestinal Surgery, The First People's Hospital of Shangqiu, Shangqiu 476100, Henan Province, China
| | - Ling Gao
- Department of Gastrointestinal Surgery, The First People's Hospital of Shangqiu, Shangqiu 476100, Henan Province, China.
| |
Collapse
|
23
|
Wu G, Chen Z, Li J, Ye F, Chen G, Fan Q, Dong H, Yuan S, Zhu X. NOTCH4 Is a Novel Prognostic Marker that Correlates with Colorectal Cancer Progression and Prognosis. J Cancer 2018; 9:2374-2379. [PMID: 30026833 PMCID: PMC6036718 DOI: 10.7150/jca.26359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Notch family plays vital role in carcinogenesis and progression of various cancer, however, its clinical significance and prognostic value in colorectal cancer isn't fully investigated. In present study, we first investigated the NOTCH4 expression in The Cancer Genome Atlas (TCGA) (n=361) and GSE39582 (n=474) database and then validated with our own database (n=248). The transcriptional and protein levels of NOTCH4 were evaluated by RT-PCR and immunohistochemistry study, respectively. Univariate and multivariate survival analyses were performed to explore the relationship between various prognostic factors and survival outcomes. In the univariate analysis, NOTCH3 and NOTCH4 were significantly correlated with prognosis in TCGA and GSE39582 database, respectively (P<0.05). For NOTCH3 has been studied in CRC, we chosen NOTCH4 for further study. NOTCH4 mRNA was higher in liver metastases than their primary colorectal cancer or normal mucosa. Increased NOTCH4 levels significantly correlated with advanced N stage (P= 0.002), M stage (P= 0.002), lymphovascular invasion (P= 0.026), and CEA status (P= 0.030). Patients with high NOTCH4 expression had shorter 5-year disease-free survival (DFS) (HR 6.809; 95% CI 3.334-13.904; P< 0.001) and overall survival (OS) (HR 6.476; 95% CI 3.307-12.689; P<0.001) than those with low NOTCH4 expression. Multivariate survival analysis demonstrated that NOTCH4 was an independent prognostic biomarker for both DFS (HR 7.848; 95% CI 3.777-16.308; P<0.001) and OS (HR 5.323; 95% CI 2.668-10.623; P<0.001).Collectively, NOTCH4 may play critical role in colorectal cancer progression and could serve as a novel biomarker to predict survival after colectomy.
Collapse
Affiliation(s)
- Guiyang Wu
- Department of General Surgery, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Zaiping Chen
- Department of General Surgery, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing Li
- Departments of CyberKnife, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Fubo Ye
- Department of General Surgery, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Guoping Chen
- Department of General Surgery, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Qinghao Fan
- Department of General Surgery, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Hao Dong
- Department of General Surgery, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Shichao Yuan
- Department of General Surgery, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Xiongwen Zhu
- Department of General Surgery, Taizhou Municipal Hospital, Medical College of Taizhou University, Taizhou 318000, Zhejiang Province, China
| |
Collapse
|
24
|
Men X, Ma J, Wu T, Pu J, Wen S, Shen J, Wang X, Wang Y, Chen C, Dai P. Transcriptome profiling identified differentially expressed genes and pathways associated with tamoxifen resistance in human breast cancer. Oncotarget 2017; 9:4074-4089. [PMID: 29423105 PMCID: PMC5790522 DOI: 10.18632/oncotarget.23694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
Tamoxifen (TAM) resistance is an important clinical problem in the treatment of breast cancer. In order to identify the mechanism of TAM resistance for estrogen receptor (ER)-positive breast cancer, we screened the transcriptome using RNA-seq and compared the gene expression profiles between the MCF-7 mamma carcinoma cell line and the TAM-resistant cell line TAMR/MCF-7, 52 significant differential expression genes (DEGs) were identified including SLIT2, ROBO, LHX, KLF, VEGFC, BAMBI, LAMA1, FLT4, PNMT, DHRS2, MAOA and ALDH. The DEGs were annotated in the GO, COG and KEGG databases. Annotation of the function of the DEGs in the KEGG database revealed the top three pathways enriched with the most DEGs, including pathways in cancer, the PI3K-AKT pathway, and focal adhesion. Then we compared the gene expression profiles between the Clinical progressive disease (PD) and the complete response (CR) from the cancer genome altas (TCGA). 10 common DEGs were identified through combining the clinical and cellular analysis results. Protein-protein interaction network was applied to analyze the association of ER signal pathway with the 10 DEGs. 3 significant genes (GFRA3, NPY1R and PTPRN2) were closely related to ER related pathway. These significant DEGs regulated many biological activities such as cell proliferation and survival, motility and migration, and tumor cell invasion. The interactions between these DEGs and drug resistance phenomenon need to be further elucidated at a functional level in further studies. Based on our findings, we believed that these DEGs could be therapeutic targets, which can be explored to develop new treatment options.
Collapse
Affiliation(s)
- Xin Men
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Jun Ma
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Tong Wu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Junyi Pu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Shaojia Wen
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Jianfeng Shen
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Xun Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Yamin Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Chao Chen
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| | - Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, PR China
| |
Collapse
|