1
|
Buzdin AA, Heydarov RN, Golounina OO, Suntsova MV, Matrosova AV, Bondarenko EV, Roumiantsev SA, Sorokin MI, Kholodenko RV, Kholodenko IV, Chekhonin VP, Plaksina EV, Rozhinskaya LY, Melnichenko GA, Belaya ZE. Transcriptome-Wide Analysis of Pituitary and Ectopic Adrenocorticotropic Hormone-Secreting Tumors. Cancers (Basel) 2025; 17:658. [PMID: 40002253 PMCID: PMC11852724 DOI: 10.3390/cancers17040658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Endogenous Cushing's syndrome (CS) is a rare neuroendocrine disorder characterized by either secondary cortisol increases due to an adrenocorticotropic hormone (ACTH)-secreting pituitary tumor (Cushing's disease (CD)), an ACTH-secreting neuroendocrine tumor (NET) of non-pituitary origin (ectopic ACTH syndrome (EAS)), or by the primarily adrenal autonomous overproduction of cortisol [...].
Collapse
Affiliation(s)
- Anton A. Buzdin
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Rustam N. Heydarov
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Olga O. Golounina
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Maria V. Suntsova
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Alina V. Matrosova
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ekaterina V. Bondarenko
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Sergey A. Roumiantsev
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Maksim I. Sorokin
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
- Oncobox LLC, Moscow 119991, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia;
| | - Vladimir P. Chekhonin
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Evgeniya V. Plaksina
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Liudmila Y. Rozhinskaya
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Galina A. Melnichenko
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| | - Zhanna E. Belaya
- Endocrinology Research Center, Moscow 117036, Russia; (R.N.H.); (O.O.G.); (M.V.S.); (A.V.M.); (E.V.B.); (S.A.R.); (M.I.S.); (V.P.C.); (E.V.P.); (L.Y.R.); (G.A.M.); (Z.E.B.)
| |
Collapse
|
2
|
Sorokin M, Lyadov V, Suntsova M, Garipov M, Semenova A, Popova N, Guguchkin E, Heydarov R, Zolotovskaia M, Zhao X, Yan Q, Wang Y, Karpulevich E, Buzdin A. Detection of fusion events by RNA sequencing in FFPE versus freshly frozen colorectal cancer tissue samples. Front Mol Biosci 2025; 11:1448792. [PMID: 39906487 PMCID: PMC11791353 DOI: 10.3389/fmolb.2024.1448792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
Gene fusion events result in chimeric proteins that are frequently found in human cancers. Specific targeted therapies are available for several types of cancer fusions including receptor tyrosine kinase gene moieties. RNA sequencing (RNAseq) can directly be used for detection of gene rearrangements in a single test, along with multiple additional biomarkers. However, tumor biosamples are usually formalin-fixed paraffin-embedded (FFPE) tissue blocks where RNA is heavily degraded, which in theory may result in decreased efficiency of fusion detection. Here, for the first time, we compared the efficacy of gene fusion detection by RNAseq for matched pairs of freshly frozen in RNA stabilizing solution (FF) and FFPE tumor tissue samples obtained from 29 human colorectal cancer patients. We detected no statistically significant difference in the number of chimeric transcripts in FFPE and FF RNAseq profiles. The known fusion KANSL1-ARL17A/B occurred with a high frequency in 69% of the patients. We also detected 93 new fusion genes not mentioned in the literature or listed in the ChimerSeq database. Among them, 11 were found in two or more patients, suggesting their potential role in carcinogenesis. Most of the fusions detected most probably represented read-through, microdeletion or local duplication events. Finally, in one patient, we detected a potentially clinically actionable in-frame fusion of LRRFIP2 and ALK genes not previously described in colorectal cancer with an intact tyrosine kinase domain that can be potentially targeted by ALK inhibitors.
Collapse
Affiliation(s)
- Maxim Sorokin
- OmicsWay Corp., Covina, CA, United States
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Vladimir Lyadov
- Moscow State Budgetary Healthcare Institution “Moscow City Oncological Hospital N1, Moscow Healthcare Department”, Moscow, Russia
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Novokuznetsk State Institute for Advanced Training of Physicians – Branch of RMACPE, Novokuznetsk, Russia
| | - Maria Suntsova
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marat Garipov
- Moscow State Budgetary Healthcare Institution “Moscow City Oncological Hospital N1, Moscow Healthcare Department”, Moscow, Russia
| | - Anna Semenova
- Moscow State Budgetary Healthcare Institution “Moscow City Oncological Hospital N1, Moscow Healthcare Department”, Moscow, Russia
| | - Natalia Popova
- Moscow State Budgetary Healthcare Institution “Moscow City Oncological Hospital N1, Moscow Healthcare Department”, Moscow, Russia
| | | | - Rustam Heydarov
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Xiaowen Zhao
- Core lab, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qing Yan
- Core lab, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ye Wang
- Core lab, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | | | - Anton Buzdin
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
- Moscow Center for Advanced Studies, Moscow, Russia
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
3
|
Fei L, Zhang J, Zhuo D. A statistical model to identify hereditary and epigenetic fusion genes associated with dilated cardiomyopathy. Front Genet 2024; 15:1438887. [PMID: 39411373 PMCID: PMC11473313 DOI: 10.3389/fgene.2024.1438887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a heart condition that causes enlarged and weakened left ventricles and affects the heart's ability to pump blood effectively. Most genetic etiology still needs to be understood. Previously, we have used the known germline hereditary fusion genes (HFGs) to identify HFGs associated with multiple myeloma and leukemia. In this study, we have developed a statistical model to study fusion transcripts discovered from the left ventricles of 122 DCM patients and 252 GTEx (Genotype Tissue Expression) healthy controls to discover novel HFGs, ranging from 4% to 87.7%, and EFGs, ranging from 4% to 99.2%, associated with DCM. This discovery of numerous novel HFGs and EFGs associated with DCM provides first-hand evidence that DCM results from interactive developmental consequences between germline genetic and environmental abnormalities and paves the way for future research and diagnostic and therapeutic applications, instilling hope for the future of DCM treatment.
Collapse
Affiliation(s)
- Ling Fei
- Department of Cardiology, Chengdu Xinhua Hospital, Tianjin Medical University, Tianjin, China
| | - Jun Zhang
- Department of Cardiology, Changzhou Central Hospital, Tianjin Medical University, Cangzhou, Hebei, China
| | - Degen Zhuo
- SplicingCodes, BioTailor Inc, Miami, FL, United States
| |
Collapse
|
4
|
Ramirez CA, Becker-Hapak M, Singhal K, Russler-Germain DA, Frenkel F, Barnell EK, McClain ED, Desai S, Schappe T, Onyeador OC, Kudryashova O, Belousov V, Bagaev A, Ocheredko E, Kiwala S, Hundal J, Skidmore ZL, Watkins MP, Mooney TB, Walker JR, Krysiak K, Gomez F, Fronick CC, Fulton RS, Schreiber RD, Mehta-Shah N, Cashen AF, Kahl BS, Ataullakhanov R, Bartlett NL, Griffith M, Griffith OL, Fehniger TA. Neoantigen landscape supports feasibility of personalized cancer vaccine for follicular lymphoma. Blood Adv 2024; 8:4035-4049. [PMID: 38713894 PMCID: PMC11339042 DOI: 10.1182/bloodadvances.2022007792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
ABSTRACT Personalized cancer vaccines designed to target neoantigens represent a promising new treatment paradigm in oncology. In contrast to classical idiotype vaccines, we hypothesized that "polyvalent" vaccines could be engineered for the personalized treatment of follicular lymphoma (FL) using neoantigen discovery by combined whole-exome sequencing (WES) and RNA sequencing (RNA-seq). Fifty-eight tumor samples from 57 patients with FL underwent WES and RNA-seq. Somatic and B-cell clonotype neoantigens were predicted and filtered to identify high-quality neoantigens. B-cell clonality was determined by the alignment of B-cell receptor (BCR) CDR3 regions from RNA-seq data, grouping at the protein level, and comparison with the BCR repertoire from healthy individuals using RNA-seq data. An average of 52 somatic mutations per patient (range, 2-172) were identified, and ≥2 (median, 15) high-quality neoantigens were predicted for 56 of 58 FL samples. The predicted neoantigen peptides were composed of missense mutations (77%), indels (9%), gene fusions (3%), and BCR sequences (11%). Building off of these preclinical analyses, we initiated a pilot clinical trial using personalized neoantigen vaccination combined with PD-1 blockade in patients with relapsed or refractory FL (#NCT03121677). Synthetic long peptide vaccines targeting predicted high-quality neoantigens were successfully synthesized for and administered to all 4 patients enrolled. Initial results demonstrate feasibility, safety, and potential immunologic and clinical responses. Our study suggests that a genomics-driven personalized cancer vaccine strategy is feasible for patients with FL, and this may overcome prior challenges in the field. This trial was registered at www.ClinicalTrials.gov as #NCT03121677.
Collapse
Affiliation(s)
- Cody A. Ramirez
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | | | - Kartik Singhal
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - David A. Russler-Germain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | | | - Erica K. Barnell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Ethan D. McClain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Sweta Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy Schappe
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | - Susanna Kiwala
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Zachary L. Skidmore
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Marcus P. Watkins
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Thomas B. Mooney
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Jason R. Walker
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Kilannin Krysiak
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Felicia Gomez
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Catrina C. Fronick
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Robert S. Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Robert D. Schreiber
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Neha Mehta-Shah
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Amanda F. Cashen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Brad S. Kahl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | | | - Nancy L. Bartlett
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Obi L. Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Todd A. Fehniger
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Fontana D, Zambrotta GPM, Scannella A, Piazza R, Gambacorti-Passerini C. Late relapse of chronic myeloid leukemia after allogeneic bone marrow transplantation points to KANSARL (KANSL1::ARL17A) alteration: a case report with insights on the molecular landscape. Ann Hematol 2024; 103:1561-1568. [PMID: 38321229 PMCID: PMC11009776 DOI: 10.1007/s00277-024-05649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Chronic myeloid leukemia is a myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome and the consequent BCR::ABL1 oncoprotein. In the era before the introduction of tyrosine kinase inhibitors (TKIs), the only potentially curative treatment was allogeneic hematopoietic stem cell transplantation (HSCT). Here, we present the case of a patient affected by CML who experienced a relapse 20 years after allogeneic HSCT. Following relapse, the patient was treated with imatinib and bosutinib, resulting in a deep molecular response and successfully discontinued treatment. Additional analysis including whole-exome sequencing and RNA sequencing provided some insights on the molecular mechanisms of the relapse: the identification of the fusion transcript KANSL1::ARL17A (KANSARL), a cancer predisposition fusion gene, could justify a condition of genomic instability which may be associated with the onset and/or probably the late relapse of his CML.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy.
| | - Giovanni Paolo Maria Zambrotta
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
- Hematology Division and Bone Marrow Unit, IRCCS, San Gerardo dei Tintori, Monza, Italy
| | - Antonio Scannella
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
- Hematology Division and Bone Marrow Unit, IRCCS, San Gerardo dei Tintori, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
- Hematology Division and Bone Marrow Unit, IRCCS, San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
6
|
Russler-Germain E, Majumdar S, Nguyen T, Hirose K, Yang PH, Mian A, Dahiya S. Glioneuronal heterotopia in the right middle cranial fossa. FREE NEUROPATHOLOGY 2024; 5:28. [PMID: 39691769 PMCID: PMC11650708 DOI: 10.17879/freeneuropathology-2024-5845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/19/2024] [Indexed: 04/02/2025]
Affiliation(s)
- Emilie Russler-Germain
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, USA
| | - Shamaita Majumdar
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, USA
| | - Theresa Nguyen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, USA
| | - Keiko Hirose
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, USA
| | - Peter H. Yang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, USA
| | - Ali Mian
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, USA
| | - Sonika Dahiya
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
7
|
Haas BJ, Dobin A, Ghandi M, Van Arsdale A, Tickle T, Robinson JT, Gillani R, Kasif S, Regev A. Targeted in silico characterization of fusion transcripts in tumor and normal tissues via FusionInspector. CELL REPORTS METHODS 2023; 3:100467. [PMID: 37323575 PMCID: PMC10261907 DOI: 10.1016/j.crmeth.2023.100467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
Here, we present FusionInspector for in silico characterization and interpretation of candidate fusion transcripts from RNA sequencing (RNA-seq) and exploration of their sequence and expression characteristics. We applied FusionInspector to thousands of tumor and normal transcriptomes and identified statistical and experimental features enriched among biologically impactful fusions. Through clustering and machine learning, we identified large collections of fusions potentially relevant to tumor and normal biological processes. We show that biologically relevant fusions are enriched for relatively high expression of the fusion transcript, imbalanced fusion allelic ratios, and canonical splicing patterns, and are deficient in sequence microhomologies between partner genes. We demonstrate that FusionInspector accurately validates fusion transcripts in silico and helps characterize numerous understudied fusions in tumor and normal tissue samples. FusionInspector is freely available as open source for screening, characterization, and visualization of candidate fusions via RNA-seq, and facilitates transparent explanation and interpretation of machine-learning predictions and their experimental sources.
Collapse
Affiliation(s)
- Brian J. Haas
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | | | | | - Anne Van Arsdale
- Department of Obstetrics and Gynecology and Women’s Health, Albert Einstein Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Timothy Tickle
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James T. Robinson
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Riaz Gillani
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
- Boston Children’s Hospital, Boston, MA 02115, USA
| | - Simon Kasif
- Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
8
|
James BA, Williams JL, Nemesure B. A systematic review of genetic ancestry as a risk factor for incidence of non-small cell lung cancer in the US. Front Genet 2023; 14:1141058. [PMID: 37082203 PMCID: PMC10110850 DOI: 10.3389/fgene.2023.1141058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023] Open
Abstract
Background: Non-Small Cell Lung Cancer (NSCLC), the leading cause of cancer-related death in the United States, is the most diagnosed form of lung cancer. While lung cancer incidence has steadily declined over the last decade, disparities in incidence and mortality rates persist among African American (AA), Caucasian American (CA), and Hispanic American (HA) populations. Researchers continue to explore how genetic ancestry may influence differential outcomes in lung cancer risk and development. The purpose of this evaluation is to highlight experimental research that investigates the differential impact of genetic mutations and ancestry on NSCLC incidence. Methods: This systematic review was conducted using PubMed and Google Scholar search engines. The following key search terms were used to select articles published between 2011 and 2022: "African/European/Latin American Ancestry NSCLC"; "Racial Disparities NSCLC"; "Genetic Mutations NSCLC"; "NSCLC Biomarkers"; "African Americans/Hispanic Americans/Caucasian Americans NSCLC incidence." Systematic reviews, meta-analyses, and studies outside of the US were excluded. A total of 195 articles were initially identified and after excluding 156 which did not meet eligibility criteria, 38 were included in this investigation. Results: Studies included in this analysis focused on racial/ethnic disparities in the following common genetic mutations observed in NSCLC: KRAS, EGFR, TP53, PIK3CA, ALK Translocations, ROS-1 Rearrangements, STK11, MET, and BRAF. Results across studies varied with respect to absolute differential expression. No significant differences in frequencies of specific genetic mutational profiles were noted between racial/ethnic groups. However, for HAs, lower mutational frequencies in KRAS and STK11 genes were observed. In genetic ancestry level analyses, multiple studies suggest that African ancestry is associated with a higher frequency of EGFR mutations. Conversely, Latin ancestry is associated with TP53 mutations. At the genomic level, several novel predisposing variants associated with African ancestry and increased risk of NSCLC were discovered. Family history among all racial/ethnic groups was also considered a risk factor for NSCLC. Conclusion: Results from racially and ethnically diverse studies can elucidate driving factors that may increase susceptibility and subsequent lung cancer risk across different racial/ethnic groups. Identification of biomarkers that can be used as diagnostic, prognostic, and therapeutic tools may help improve lung cancer survival among high-risk populations.
Collapse
Affiliation(s)
| | - Jennie L. Williams
- Stony Brook Medicine, Department of Family, Population, and Preventive Medicine, Stony Brook, NY, United States
| | - Barbara Nemesure
- Stony Brook Medicine, Department of Family, Population, and Preventive Medicine, Stony Brook, NY, United States
| |
Collapse
|
9
|
Weber D, Ibn-Salem J, Sorn P, Suchan M, Holtsträter C, Lahrmann U, Vogler I, Schmoldt K, Lang F, Schrörs B, Löwer M, Sahin U. Accurate detection of tumor-specific gene fusions reveals strongly immunogenic personal neo-antigens. Nat Biotechnol 2022; 40:1276-1284. [PMID: 35379963 PMCID: PMC7613288 DOI: 10.1038/s41587-022-01247-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2022] [Indexed: 02/03/2023]
Abstract
Cancer-associated gene fusions are a potential source for highly immunogenic neoantigens, but the lack of computational tools for accurate, sensitive identification of personal gene fusions has limited their targeting in personalized cancer immunotherapy. Here we present EasyFuse, a machine learning computational pipeline for detecting cancer-specific gene fusions in transcriptome data obtained from human cancer samples. EasyFuse predicts personal gene fusions with high precision and sensitivity, outperforming previously described tools. By testing immunogenicity with autologous blood lymphocytes from patients with cancer, we detected pre-established CD4+ and CD8+ T cell responses for 10 of 21 (48%) and for 1 of 30 (3%) identified gene fusions, respectively. The high frequency of T cell responses detected in patients with cancer supports the relevance of individual gene fusions as neoantigens that might be targeted in personalized immunotherapies, especially for tumors with low mutation burden.
Collapse
Affiliation(s)
- D Weber
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - J Ibn-Salem
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - P Sorn
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - M Suchan
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - C Holtsträter
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | | | | | | | - F Lang
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - B Schrörs
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - M Löwer
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - U Sahin
- TRON − Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany,BioNTech SE, Mainz, Germany,Johannes Gutenberg University Mainz, Mainz, Germany,corresponding author:
| |
Collapse
|
10
|
Davidson NM, Chen Y, Sadras T, Ryland GL, Blombery P, Ekert PG, Göke J, Oshlack A. JAFFAL: detecting fusion genes with long-read transcriptome sequencing. Genome Biol 2022; 23:10. [PMID: 34991664 PMCID: PMC8739696 DOI: 10.1186/s13059-021-02588-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
In cancer, fusions are important diagnostic markers and targets for therapy. Long-read transcriptome sequencing allows the discovery of fusions with their full-length isoform structure. However, due to higher sequencing error rates, fusion finding algorithms designed for short reads do not work. Here we present JAFFAL, to identify fusions from long-read transcriptome sequencing. We validate JAFFAL using simulations, cell lines, and patient data from Nanopore and PacBio. We apply JAFFAL to single-cell data and find fusions spanning three genes demonstrating transcripts detected from complex rearrangements. JAFFAL is available at https://github.com/Oshlack/JAFFA/wiki .
Collapse
Affiliation(s)
- Nadia M Davidson
- Peter MacCallum Cancer Centre, Victoria, Australia.
- School of BioSciences, University of Melbourne, Victoria, Australia.
- The Walter and Eliza Hall Institute, Victoria, Australia.
| | - Ying Chen
- Genome Institute of Singapore, Singapore, Singapore
| | - Teresa Sadras
- Peter MacCallum Cancer Centre, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia
| | - Georgina L Ryland
- Peter MacCallum Cancer Centre, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia
- Centre for Cancer Research, University of Melbourne, Victoria, Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia
| | - Paul G Ekert
- Peter MacCallum Cancer Centre, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia
- Children's Cancer Institute, Lowy Cancer Centre, UNSW, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW, Sydney, NSW, Australia
- Murdoch Children's Research Institute, Victoria, Australia
| | - Jonathan Göke
- Genome Institute of Singapore, Singapore, Singapore
- National Cancer Centre Singapore, Singapore, Singapore
| | - Alicia Oshlack
- Peter MacCallum Cancer Centre, Victoria, Australia.
- School of BioSciences, University of Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Dosage sensitivity and exon shuffling shape the landscape of polymorphic duplicates in Drosophila and humans. Nat Ecol Evol 2021; 6:273-287. [PMID: 34969986 DOI: 10.1038/s41559-021-01614-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022]
Abstract
Despite polymorphic duplicate genes' importance for the early stages of duplicate gene evolution, they are less studied than old gene duplicates. Two essential questions thus remain poorly addressed: how does dosage sensitivity, imposed by stoichiometry in protein complexes or by X chromosome dosage compensation, affect the emergence of complete duplicate genes? Do introns facilitate intergenic and intragenic chimaerism as predicted by the theory of exon shuffling? Here, we analysed new data for Drosophila and public data for humans, to characterize polymorphic duplicate genes with respect to dosage, exon-intron structures and allele frequencies. We found that complete duplicate genes are under dosage constraint induced by protein stoichiometry but potentially tolerated by X chromosome dosage compensation. We also found that in the intron-rich human genome, gene fusions and intragenic duplications extensively use intronic breakpoints generating in-frame proteins, in accordance with the theory of exon shuffling. Finally, we found that only a small proportion of complete or partial duplicates are at high frequencies, indicating the deleterious nature of dosage or gene structural changes. Altogether, we demonstrate how mechanistic factors including dosage sensitivity and exon-intron structure shape the short-term functional consequences of gene duplication.
Collapse
|
12
|
Bim LV, Carneiro TNR, Buzatto VC, Colozza-Gama GA, Koyama FC, Thomaz DMD, de Jesus Paniza AC, Lee EA, Galante PAF, Cerutti JM. Molecular Signature Expands the Landscape of Driver Negative Thyroid Cancers. Cancers (Basel) 2021; 13:5184. [PMID: 34680332 PMCID: PMC8534197 DOI: 10.3390/cancers13205184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy. However, the cytological diagnosis of follicular thyroid carcinoma (FTC), Hürthle cell carcinoma (HCC), and follicular variant of papillary thyroid carcinoma (FVPTC) and their benign counterparts is a challenge for preoperative diagnosis. Nearly 20-30% of biopsied thyroid nodules are classified as having indeterminate risk of malignancy and incur costs to the health care system. Based on that, 120 patients were screened for the main driver mutations previously described in thyroid cancer. Subsequently, 14 mutation-negative cases that are the main source of diagnostic errors (FTC, HCC, or FVPTC) underwent RNA-Sequencing analysis. Somatic variants in candidate driver genes (ECD, NUP98,LRP1B, NCOR1, ATM, SOS1, and SPOP) and fusions were described. NCOR1 and SPOP variants underwent validation. Moreover, expression profiling of driver-negative samples was compared to 16 BRAF V600E, RAS, or PAX8-PPARg positive samples. Negative samples were separated in two clusters, following the expression pattern of the RAS/PAX8-PPARg or BRAF V600E positive samples. Both negative groups showed distinct BRS, ERK, and TDS scores, tumor mutation burden, signaling pathways and immune cell profile. Altogether, here we report novel gene variants and describe cancer-related pathways that might impact preoperative diagnosis and provide insights into thyroid tumor biology.
Collapse
Affiliation(s)
- Larissa Valdemarin Bim
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Thaise Nayane Ribeiro Carneiro
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Vanessa Candiotti Buzatto
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo 01308-060, SP, Brazil; (V.C.B.); (F.C.K.); (P.A.F.G.)
| | - Gabriel Avelar Colozza-Gama
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Fernanda C. Koyama
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo 01308-060, SP, Brazil; (V.C.B.); (F.C.K.); (P.A.F.G.)
| | - Debora Mota Dias Thomaz
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Ana Carolina de Jesus Paniza
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA;
| | - Pedro Alexandre Favoretto Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo 01308-060, SP, Brazil; (V.C.B.); (F.C.K.); (P.A.F.G.)
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo 04039-032, SP, Brazil; (L.V.B.); (T.N.R.C.); (G.A.C.-G.); (D.M.D.T.); (A.C.d.J.P.)
| |
Collapse
|
13
|
Newtson A, Reyes H, Devor EJ, Goodheart MJ, Bosquet JG. Identification of Novel Fusion Transcripts in High Grade Serous Ovarian Cancer. Int J Mol Sci 2021; 22:ijms22094791. [PMID: 33946483 PMCID: PMC8125626 DOI: 10.3390/ijms22094791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Fusion genes are structural chromosomal rearrangements resulting in the exchange of DNA sequences between genes. This results in the formation of a new combined gene. They have been implicated in carcinogenesis in a number of different cancers, though they have been understudied in high grade serous ovarian cancer. This study used high throughput tools to compare the transcriptome of high grade serous ovarian cancer and normal fallopian tubes in the interest of identifying unique fusion transcripts within each group. Indeed, we found that there were significantly more fusion transcripts in the cancer samples relative to the normal fallopian tubes. Following this, the role of fusion transcripts in chemo-response and overall survival was investigated. This led to the identification of fusion transcripts significantly associated with overall survival. Validation was performed with different analytical platforms and different algorithms to find fusion transcripts.
Collapse
Affiliation(s)
- Andreea Newtson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (M.J.G.); (J.G.B.)
- Correspondence: ; Tel.: +1-319-356-2015
| | - Henry Reyes
- Department of Obstetrics and Gynecology, University of Buffalo, Buffalo, NY 14260, USA;
| | - Eric J. Devor
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Michael J. Goodheart
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (M.J.G.); (J.G.B.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Jesus Gonzalez Bosquet
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (M.J.G.); (J.G.B.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| |
Collapse
|
14
|
Mansouri S, Suppiah S, Mamatjan Y, Paganini I, Liu JC, Karimi S, Patil V, Nassiri F, Singh O, Sundaravadanam Y, Rath P, Sestini R, Gensini F, Agnihotri S, Blakeley J, Ostrow K, Largaespada D, Plotkin SR, Stemmer-Rachamimov A, Ferrer MM, Pugh TJ, Aldape KD, Papi L, Zadeh G. Epigenomic, genomic, and transcriptomic landscape of schwannomatosis. Acta Neuropathol 2021; 141:101-116. [PMID: 33025139 PMCID: PMC7785562 DOI: 10.1007/s00401-020-02230-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023]
Abstract
Schwannomatosis (SWNTS) is a genetic cancer predisposition syndrome that manifests as multiple and often painful neuronal tumors called schwannomas (SWNs). While germline mutations in SMARCB1 or LZTR1, plus somatic mutations in NF2 and loss of heterozygosity in chromosome 22q have been identified in a subset of patients, little is known about the epigenomic and genomic alterations that drive SWNTS-related SWNs (SWNTS-SWNs) in a majority of the cases. We performed multiplatform genomic analysis and established the molecular signature of SWNTS-SWNs. We show that SWNTS-SWNs harbor distinct genomic features relative to the histologically identical non-syndromic sporadic SWNs (NS-SWNS). We demonstrate the existence of four distinct DNA methylation subgroups of SWNTS-SWNs that are associated with specific transcriptional programs and tumor location. We show several novel recurrent non-22q deletions and structural rearrangements. We detected the SH3PXD2A-HTRA1 gene fusion in SWNTS-SWNs, with predominance in LZTR1-mutant tumors. In addition, we identified specific genetic, epigenetic, and actionable transcriptional programs associated with painful SWNTS-SWNs including PIGF, VEGF, MEK, and MTOR pathways, which may be harnessed for management of this syndrome.
Collapse
Affiliation(s)
- Sheila Mansouri
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Suganth Suppiah
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Yasin Mamatjan
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Irene Paganini
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Jeffrey C Liu
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Shirin Karimi
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Vikas Patil
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Farshad Nassiri
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | - Olivia Singh
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada
| | | | - Prisni Rath
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Roberta Sestini
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Francesca Gensini
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Sameer Agnihotri
- Department of Neurological Surgery, Children's Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Scott R Plotkin
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Marcela Maria Ferrer
- División de Neurocirugía and División Genética, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Trevor J Pugh
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Laura Papi
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gelareh Zadeh
- Princess Margaret Cancer Center and MacFeeters-Hamilton Center for Neuro-Oncology Research, University Health Network, Wilkins Family Chair in Brain Tumor Research, 14-701 PMCRT, 101 College St, Toronto, ON, M5G 1L7, Canada.
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Canada.
- Krembil Brain Institute, Toronto, Canada.
| |
Collapse
|
15
|
Fejzo MS, Chen HW, Anderson L, McDermott MS, Karlan B, Konecny GE, Slamon DJ. Analysis in epithelial ovarian cancer identifies KANSL1 as a biomarker and target gene for immune response and HDAC inhibition. Gynecol Oncol 2020; 160:539-546. [PMID: 33229045 DOI: 10.1016/j.ygyno.2020.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE There is an immunoreactive subtype of ovarian cancer with a favorable prognosis, but the majority of ovarian cancers have limited immune reactivity. The reason for this is poorly understood. This study aimed to approach this question by identifying prognostically relevant genes whose prognostic mRNA expression levels correlated with a genomic event. METHODS Expression microarray and 5-year survival data on 170 ovarian tumors and aCGH data on 45 ovarian cancer cell lines were used to identify amplified/deleted genes associated with prognosis. Three immune-response genes were identified mapping to epigenetically modified chromosome 6p21.3. Genes were searched for roles in epigenetic modification, identifying KANSL1. Genome-wide association studies were searched to identify genetic variants in KANSL1 associated with altered immune profile. Sensitivity to HDAC inhibition in cell lines with KANSL1 amplification/rearrangement was studied. RESULTS Expression of 196 genes was statistically significantly associated with survival, and expression levels correlated with copy number variations for 82 of them. Among these, 3 immune-response genes (HCP5, PSMB8, PSMB9) clustered together at epigenetically modified chromosome 6p21.3 and their expression was inversely correlated to epigenetic modification gene KANSL1. KANSL1 is amplified/rearranged in ovarian cancer, associated with lymphocyte profile, a biomarker for response to HDAC inhibition, and may drive expression of immune-response genes. CONCLUSION This study identifies 82 genes with prognostic relevance and genomic alteration in ovarian cancer. Among these, immune-response genes have correlated expression which is associated with 5-year survival. KANSL1 may be a master gene altering immune-response gene expression at 6p21.3 and drive response to HDAC inhibitors. Future research should investigate KANSL1 and determine whether targeting it alters the immune profile of ovarian cancer and improves survival, HDAC inhibition, and/or immunotherapy response.
Collapse
Affiliation(s)
- Marlena S Fejzo
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.
| | - Hsiao-Wang Chen
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Lee Anderson
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | | | - Beth Karlan
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | | | - Dennis J Slamon
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| |
Collapse
|
16
|
Labuhn M, Perkins K, Matzk S, Varghese L, Garnett C, Papaemmanuil E, Metzner M, Kennedy A, Amstislavskiy V, Risch T, Bhayadia R, Samulowski D, Hernandez DC, Stoilova B, Iotchkova V, Oppermann U, Scheer C, Yoshida K, Schwarzer A, Taub JW, Crispino JD, Weiss MJ, Hayashi Y, Taga T, Ito E, Ogawa S, Reinhardt D, Yaspo ML, Campbell PJ, Roberts I, Constantinescu SN, Vyas P, Heckl D, Klusmann JH. Mechanisms of Progression of Myeloid Preleukemia to Transformed Myeloid Leukemia in Children with Down Syndrome. Cancer Cell 2019; 36:123-138.e10. [PMID: 31303423 PMCID: PMC6863161 DOI: 10.1016/j.ccell.2019.06.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/07/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
Myeloid leukemia in Down syndrome (ML-DS) clonally evolves from transient abnormal myelopoiesis (TAM), a preleukemic condition in DS newborns. To define mechanisms of leukemic transformation, we combined exome and targeted resequencing of 111 TAM and 141 ML-DS samples with functional analyses. TAM requires trisomy 21 and truncating mutations in GATA1; additional TAM variants are usually not pathogenic. By contrast, in ML-DS, clonal and subclonal variants are functionally required. We identified a recurrent and oncogenic hotspot gain-of-function mutation in myeloid cytokine receptor CSF2RB. By a multiplex CRISPR/Cas9 screen in an in vivo murine TAM model, we tested loss-of-function of 22 recurrently mutated ML-DS genes. Loss of 18 different genes produced leukemias that phenotypically, genetically, and transcriptionally mirrored ML-DS.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 21
- Cytokine Receptor Common beta Subunit/genetics
- Disease Models, Animal
- Disease Progression
- Down Syndrome/diagnosis
- Down Syndrome/genetics
- GATA1 Transcription Factor/genetics
- GATA1 Transcription Factor/metabolism
- Gene Expression Regulation, Leukemic
- Genetic Predisposition to Disease
- HEK293 Cells
- Humans
- Leukemia, Myeloid/diagnosis
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemoid Reaction/diagnosis
- Leukemoid Reaction/genetics
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Mutation
- Phenotype
- Transcription, Genetic
Collapse
Affiliation(s)
- Maurice Labuhn
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Kelly Perkins
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Sören Matzk
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Leila Varghese
- Ludwig Institute for Cancer Research Brussels Branch, 1200 Brussels, Belgium
| | - Catherine Garnett
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Elli Papaemmanuil
- Departments of Epidemiology and Biostatistics and Cancer Biology, MSKCC, New York, NY 10065, USA
| | - Marlen Metzner
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Alison Kennedy
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | | | - Thomas Risch
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Raj Bhayadia
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - David Samulowski
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - David Cruz Hernandez
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Bilyana Stoilova
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Valentina Iotchkova
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Udo Oppermann
- Botnar Research Centre, NDORMS, Oxford NIHR BRC and Structural Genomics Consortium, UK University of Oxford, Oxford OX3 7LD, UK
| | - Carina Scheer
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8315 Japan
| | - Adrian Schwarzer
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Mitchell J Weiss
- Hematology Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yasuhide Hayashi
- Institute of Physiology and Medicine, Jobu University, Takasaki-shi, Gunma 370-0033, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8315 Japan; Center for Hematology and Regenerative Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, 45122 Essen, Germany
| | | | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Irene Roberts
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; Department of Paediatrics, University of Oxford, Oxford OX3 9DS, UK
| | | | - Paresh Vyas
- MRC MHU, BRC Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology, WIMM, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; Department of Haematology, Oxford University Hospitals NHS Trust, Oxford OX3 7LE, UK.
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany; Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany.
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
17
|
Sheikh BN, Guhathakurta S, Akhtar A. The non-specific lethal (NSL) complex at the crossroads of transcriptional control and cellular homeostasis. EMBO Rep 2019; 20:e47630. [PMID: 31267707 PMCID: PMC6607013 DOI: 10.15252/embr.201847630] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
The functionality of chromatin is tightly regulated by post-translational modifications that modulate transcriptional output from target loci. Among the post-translational modifications of chromatin, reversible ε-lysine acetylation of histone proteins is prominent at transcriptionally active genes. Lysine acetylation is catalyzed by lysine acetyltransferases (KATs), which utilize the central cellular metabolite acetyl-CoA as their substrate. Among the KATs that mediate lysine acetylation, males absent on the first (MOF/KAT8) is particularly notable for its ability to acetylate histone 4 lysine 16 (H4K16ac), a modification that decompacts chromatin structure. MOF and its non-specific lethal (NSL) complex members have been shown to localize to gene promoters and enhancers in the nucleus, as well as to microtubules and mitochondria to regulate key cellular processes. Highlighting their importance, mutations or deregulation of NSL complex members has been reported in both human neurodevelopmental disorders and cancer. Based on insight gained from studies in human, mouse, and Drosophila model systems, this review discusses the role of NSL-mediated lysine acetylation in a myriad of cellular functions in both health and disease. Through these studies, the importance of the NSL complex in regulating core transcriptional and signaling networks required for normal development and cellular homeostasis is beginning to emerge.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
| | - Sukanya Guhathakurta
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
- Faculty of BiologyAlbert Ludwig University of FreiburgFreiburgGermany
| | - Asifa Akhtar
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
| |
Collapse
|
18
|
Detection of novel fusion-transcripts by RNA-Seq in T-cell lymphoblastic lymphoma. Sci Rep 2019; 9:5179. [PMID: 30914738 PMCID: PMC6435891 DOI: 10.1038/s41598-019-41675-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Fusions transcripts have been proven to be strong drivers for neoplasia-associated mutations, although their incidence in T-cell lymphoblastic lymphoma needs to be determined yet. Using RNA-Seq we have selected 55 fusion transcripts identified by at least two of three detection methods in the same tumour. We confirmed the existence of 24 predicted novel fusions that had not been described in cancer or normal tissues yet, indicating the accuracy of the prediction. Of note, one of them involves the proto oncogene TAL1. Other confirmed fusions could explain the overexpression of driver genes such as COMMD3-BMI1, LMO1 or JAK3. Five fusions found exclusively in tumour samples could be considered pathogenic (NFYG-TAL1, RIC3-TCRBC2, SLC35A3-HIAT1, PICALM MLLT10 and MLLT10-PICALM). However, other fusions detected simultaneously in normal and tumour samples (JAK3-INSL3, KANSL1-ARL17A/B and TFG-ADGRG7) could be germ-line fusions genes involved in tumour-maintaining tasks. Notably, some fusions were confirmed in more tumour samples than predicted, indicating that the detection methods underestimated the real number of existing fusions. Our results highlight the potential of RNA-Seq to identify new cryptic fusions, which could be drivers or tumour-maintaining passenger genes. Such novel findings shed light on the searching for new T-LBL biomarkers in these haematological disorders.
Collapse
|