1
|
Meyer CE, Vukelic N, Mariadason JM, Kipp AP. Connecting concentrations of copper, selenium, and zinc with transcriptomic and proteomic data of well-characterized human colorectal cancer cell lines. J Trace Elem Med Biol 2025; 89:127638. [PMID: 40179449 DOI: 10.1016/j.jtemb.2025.127638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/18/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) incidence is associated with lower circulating selenium and zinc and elevated copper concentrations. Moreover, copper and selenium accumulate within tumor tissue, indicating a disturbed homeostasis of these essential trace elements in CRC. OBJECTIVE This study aimed to identify associations between CRC characteristics (based on genomic, transcriptomic and proteomic data) and trace element concentrations. METHODS The concentrations of copper, selenium, and zinc were measured in 83 human CRC cell lines and correlated with transcript and protein expression levels to identify trace element-related gene signatures. By using publicly available gene expression data from The Cancer Genome Atlas we investigated the association between those signatures with the survival probability of CRC patients. RESULTS The CRC cell lines differed in their copper (fold change 7.3), selenium (fold change 6), and zinc (fold change 2.6) concentrations. The concentrations were not associated with genetic or cellular characteristics, except for lower copper concentrations in KRAS mutant cells. Expression levels of known copper- and zinc-related proteins correlated significantly with the respective trace element concentrations, serving as a proxy for trace element concentrations in tumors, and with patient survival. This was not the case for selenium and selenoproteins. In addition, an unbiased approach identified novel high and low copper- and zinc-related gene expression signatures significantly associated with patient's outcome. CONCLUSION Herein we identify gene signatures associated with intracellular copper and zinc concentrations in CRC cell lines. Extrapolating these signatures to primary colorectal tumors revealed that they can inform outcome of CRC patients.
Collapse
Affiliation(s)
- Caroline E Meyer
- Department of Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Natalia Vukelic
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | | | - Anna P Kipp
- Department of Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
2
|
Liu M, Wang J, Liu M. Lysyl oxidase inhibitors in colorectal cancer progression. Transl Oncol 2025; 52:102233. [PMID: 39675250 PMCID: PMC11713484 DOI: 10.1016/j.tranon.2024.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
The lysine oxidase (LOX) family, consisting of LOX and LOX-like-1-4 (LOXL1-LOXL4), catalyses the cross-linking reaction of collagen and elastin in the extracellular matrix (ECM). Numerous studies have demonstrated that LOX family members are dysregulated in a variety of cancers, including colorectal cancer (CRC), and play a key role in cancer cell migration, proliferation, invasion and metastasis. Targeting LOX family proteins with specific inhibitors has therefore been developed as a new therapeutic strategy for cancer. In this paper, we review the role of LOX enzymes in the development and progression of CRC. In addition, we address recent advances in the development of LOX/LOXL inhibitors, highlighting the potential use of this inhibitor as an effective and complementary treatment for CRC.
Collapse
Affiliation(s)
- Muxian Liu
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China
| | - Jie Wang
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China
| | - Meihong Liu
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China.
| |
Collapse
|
3
|
Pascual‐Reguant L, Serra‐Camprubí Q, Datta D, Cianferoni D, Kourtis S, Gañez‐Zapater A, Cannatá C, Espinar L, Querol J, García‐López L, Musa‐Afaneh S, Guirola M, Gkanogiannis A, Miró Canturri A, Guzman M, Rodríguez O, Herencia‐Ropero A, Arribas J, Serra V, Serrano L, Tian TV, Peiró S, Sdelci S. Interactions between BRD4S, LOXL2, and MED1 drive cell cycle transcription in triple-negative breast cancer. EMBO Mol Med 2023; 15:e18459. [PMID: 37937685 PMCID: PMC10701626 DOI: 10.15252/emmm.202318459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) often develops resistance to single-agent treatment, which can be circumvented using targeted combinatorial approaches. Here, we demonstrate that the simultaneous inhibition of LOXL2 and BRD4 synergistically limits TNBC proliferation in vitro and in vivo. Mechanistically, LOXL2 interacts in the nucleus with the short isoform of BRD4 (BRD4S), MED1, and the cell cycle transcriptional regulator B-MyB. These interactions sustain the formation of BRD4 and MED1 nuclear transcriptional foci and control cell cycle progression at the gene expression level. The pharmacological co-inhibition of LOXL2 and BRD4 reduces BRD4 nuclear foci, BRD4-MED1 colocalization, and the transcription of cell cycle genes, thus suppressing TNBC cell proliferation. Targeting the interaction between BRD4S and LOXL2 could be a starting point for the development of new anticancer strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Laura Pascual‐Reguant
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | | | - Debayan Datta
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Antoni Gañez‐Zapater
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Chiara Cannatá
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Lorena Espinar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Laura García‐López
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sara Musa‐Afaneh
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Guirola
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Anestis Gkanogiannis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Andrea Miró Canturri
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Marta Guzman
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Olga Rodríguez
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Joaquin Arribas
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de CáncerMonforte de LemosMadridSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autónoma de BarcelonaBellaterraSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Violeta Serra
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Tian V Tian
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
4
|
Li X, Shan J, Chen X, Cui H, Wen G, Yu Y. Decellularized diseased tissues: current state-of-the-art and future directions. MedComm (Beijing) 2023; 4:e399. [PMID: 38020712 PMCID: PMC10661834 DOI: 10.1002/mco2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianyang Shan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Bui CB, To KD, Vu DM, Nguyen QG, Nguyen HT, Nguyen SB. Denatured collagen inhibits neuroblastoma tumor-sphere migration and growth via the LOX/LOXL2 - FAK signaling pathway. J Therm Biol 2023; 115:103624. [PMID: 37399743 DOI: 10.1016/j.jtherbio.2023.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/16/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023]
Abstract
A complex interplay exists within the tumor microenvironment and extracellular matrix, which could contribute to solid tumor progression. Collagen, a major component of the extracellular matrix, may correlate with cancer prognosis. While thermal ablation has shown promise as a minimally invasive treatment of solid tumors, its impact on collagen is still unknown. In this study, we demonstrate that thermal ablation, but not cryo-ablation, induces irreversible collagen denaturation in a neuroblastoma sphere model. Prolonged collagen denaturation resulted in a significant reduction in sphere stiffness, migration, and proliferation, and an increase in apoptosis. Mechanistic analysis revealed that collagen denaturation inhibited collagen cross-linking, reduced extracellular LOX/LOXL2 expression, and resulted in decreased phosphorylation of FAK. Downstream of FAK, we observed reduced epithelial to mesenchymal transition, attenuated CDC42 expression, and decreased migration. Collectively, these results suggest that denatured collagen presents a novel target for modulating the tumor microenvironment and treating solid cancers via the LOX1/LOXL2-FAK signaling pathway.
Collapse
Affiliation(s)
- Chi-Bao Bui
- Unit of Molecular Biology, City Children's Hospital, Ho Chi Minh City, Vietnam; School of Medicine, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam
| | - Kha Dong To
- School of Medicine, Ho Chi Minh City, Vietnam; University College London, London, United Kingdom; Vietnam National University, Ho Chi Minh City, Vietnam
| | - Diem My Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Quynh-Giang Nguyen
- School of Medicine, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hiep Thi Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
| | - Si-Bao Nguyen
- School of Medicine, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
6
|
Qiu Z, Qiu S, Mao W, Lin W, Peng Q, Chang H. LOXL2 reduces 5-FU sensitivity through the Hedgehog/BCL2 signaling pathway in colorectal cancer. Exp Biol Med (Maywood) 2023; 248:457-468. [PMID: 36573458 PMCID: PMC10281539 DOI: 10.1177/15353702221139203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/16/2022] [Indexed: 09/29/2023] Open
Abstract
Elevated expression of lysyl oxidase-like 2 (LOXL2) contributes to the malignant tumor progression in multiple cancers. However, the role of LOXL2 in the 5-fluorouracil (5-FU) resistance of colorectal cancer (CRC) remains unclear. This study aimed to explore the effects of LOXL2 on 5-FU sensitivity in CRC. The mRNA and protein levels of LOXL2 were explored in public databases by bioinformatics, validated in clinical tissues using immunohistochemistry, and detected in 5-FU treated cell lines. The 50% inhibitory concentrations (IC50) values were quantified based on the cell viability at different concentrations of 5-FU with CCK-8 assays. Colony formation and flow cytometry assays were performed to measure the proliferation and apoptosis rates. Gene set enrichment and correlation analyses were conducted to identify the probable mechanism of LOXL2 in TCGA samples. Critical molecules of the Hedgehog signaling pathway and anti-apoptotic BCL2 in protein levels were detected with Western blotting. It concluded that LOXL2 was up-regulated and positively linked to the unfavorable prognosis of CRC patients. The LOXL2 expression increased with the rising 5-FU concentrations, especially at 20 and 40 μM. Elevated LOXL2 promoted the resistance to 5-FU, augmented the proliferation, and inhibited 5-FU-induced apoptosis of CRC cells. LOXL2 activated the Hedgehog signaling pathway by promoting the expression of SMO, GLI1, and GLI2, leading to the upregulation of downstream target gene BCL2 in CRC cells. Moreover, the Hedgehog signaling pathway inhibitor cyclopamine blocked the BCL2 upregulation mediated by LOXL2. This study has demonstrated that LOXL2 can reduce 5-FU sensitivity through the Hedgehog/BCL2 signaling pathway in CRC.
Collapse
Affiliation(s)
- Zhize Qiu
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Shiqi Qiu
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Wenli Mao
- Department of General Internal Medicine, The People’s Hospital of Xiangzhou District, Zhuhai 519000, China
| | - Wu Lin
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Qiqi Peng
- Department of General Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai 519000, China
| | - Hao Chang
- Department of Cancer Research, Hanyu Biomed Center Beijing, Beijing, 102488, China
| |
Collapse
|
7
|
Copper Exposure Induces Epithelial-Mesenchymal Transition-Related Fibrotic Change via Autophagy and Increase Risk of Lung Fibrosis in Human. Antioxidants (Basel) 2023; 12:antiox12020532. [PMID: 36830091 PMCID: PMC9952124 DOI: 10.3390/antiox12020532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023] Open
Abstract
Copper is an essential trace element involved in several vital biological processes of the human body. However, excess exposure to copper caused by occupational hazards and environmental contamination, such as food, water, and air, damages human health. In this study, in vitro cell culture model and epidemiologic studies were conducted to evaluate the effect of copper on lung fibrosis. In vitro, treatment of CuSO4 in lung epithelial cells at 100 μM consistently decreases cell viability in alveolar type (A549) and human bronchial epithelial (HBE) cells. CuSO4 promotes epithelial-mesenchymal transition (EMT) as shown by increased cell migration and increased EMT marker and fibrotic gene expressions. Besides, CuSO4 induced cell autophagy, with an increased LC3, PINK, and decreased p62 expression. Inhibition of ROS by N-acetylcysteine reversed the CuSO4-induced PINK1, LC3, and Snail expressions. Inhibition of autophagy by chloroquine reverses the CuSO4-induced EMT changes. Nature flavonoids, especially kaempferol, and fustin, were shown to inhibit Copper-induced EMT. In humans, a unit increase in urinary copper concentration was significantly associated with an increased risk of lung fibrotic changes (odds ratio [OR] = 1.17, 95% confidence interval [CI] = 1.01-1.36, p = 0.038). These results indicated that Copper is a risk factor for lung fibrosis through activation of the ROS-autophagy-EMT pathway, which can be reversed by flavonoids.
Collapse
|
8
|
Gong L, Zhang Y, Yang Y, Yan Q, Ren J, Luo J, Tiu YC, Fang X, Liu B, Lam RHW, Lam K, Lee AW, Guan X. Inhibition of lysyl oxidase-like 2 overcomes adhesion-dependent drug resistance in the collagen-enriched liver cancer microenvironment. Hepatol Commun 2022; 6:3194-3211. [PMID: 35894804 PMCID: PMC9592791 DOI: 10.1002/hep4.1966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/13/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is considered to be one of the vital mediators of tumor progression. Extracellular matrix (ECM), infiltrating immune cells, and stromal cells collectively constitute the complex ecosystem with varied biochemical and biophysical properties. The development of liver cancer is strongly tied with fibrosis and cirrhosis that alters the microenvironmental landscape, especially ECM composition. Enhanced deposition and cross-linking of type I collagen are frequently detected in patients with liver cancer and have been shown to facilitate tumor growth and metastasis by epithelial-to-mesenchymal transition. However, information on the effect of collagen enrichment on drug resistance is lacking. Thus, the present study has comprehensively illustrated phenotypical and mechanistic changes in an in vitro mimicry of collagen-enriched TME and revealed that collagen enrichment could induce 5-fluorouracil (5FU) and sorafenib resistance in liver cancer cells through hypoxia-induced up-regulation of lysyl oxidase-like 2 (LOXL2). LOXL2, an enzyme that facilitates collagen cross-linking, enhances cell adhesion-mediated drug resistance by activating the integrin alpha 5 (ITGA5)/focal adhesion kinase (FAK)/phosphoinositide 3-kinase (PI3K)/rho-associated kinase 1 (ROCK1) signaling axis. Conclusion: We demonstrated that inhibition of LOXL2 in a collagen-enriched microenvironment synergistically promotes the efficacy of sorafenib and 5FU through deterioration of focal adhesion signaling. These findings have clinical implications for developing LOXL2-targeted strategies in patients with chemoresistant liver cancer and especially for those patients with advanced fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Yu Zhang
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
- Department of Pediatric OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuma Yang
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Qian Yan
- Department of Colorectal SurgeryGuangdong Institute Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jifeng Ren
- Department of Biomedical EngineeringCity University of Hong KongHong KongChina
- School of Biomedical EngineeringCapital Medical UniversityBeijingChina
| | - Jie Luo
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Yuen Chak Tiu
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Xiaona Fang
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Beilei Liu
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Raymond Hiu Wai Lam
- Department of Biomedical EngineeringCity University of Hong KongHong KongChina
| | - Ka‐On Lam
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Anne Wing‐Mui Lee
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Xin‐Yuan Guan
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
- State Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
9
|
Meier AA, Go EP, Moon HJ, Desaire H, Mure M. Mass Spectrometry-Based Disulfide Mapping of Lysyl Oxidase-like 2. Int J Mol Sci 2022; 23:5879. [PMID: 35682561 PMCID: PMC9180022 DOI: 10.3390/ijms23115879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 01/09/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) catalyzes the oxidative deamination of peptidyl lysines and hydroxylysines to promote extracellular matrix remodeling. Aberrant activity of LOXL2 has been associated with organ fibrosis and tumor metastasis. The lysine tyrosylquinone (LTQ) cofactor is derived from Lys653 and Tyr689 in the amine oxidase domain via post-translational modification. Based on the similarity in hydrodynamic radius and radius of gyration, we recently proposed that the overall structures of the mature LOXL2 (containing LTQ) and the precursor LOXL2 (no LTQ) are very similar. In this study, we conducted a mass spectrometry-based disulfide mapping analysis of recombinant LOXL2 in three forms: a full-length LOXL2 (fl-LOXL2) containing a nearly stoichiometric amount of LTQ, Δ1-2SRCR-LOXL2 (SRCR1 and SRCR2 are truncated) in the precursor form, and Δ1-3SRCR-LOXL2 (SRCR1, SRCR2, SRCR3 are truncated) in a mixture of the precursor and the mature forms. We detected a set of five disulfide bonds that is conserved in both the precursor and the mature recombinant LOXL2s. In addition, we detected a set of four alternative disulfide bonds in low abundance that is not associated with the mature LOXL2. These results suggest that the major set of five disulfide bonds is retained post-LTQ formation.
Collapse
Affiliation(s)
| | | | | | - Heather Desaire
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (A.A.M.); (E.P.G.); (H.-J.M.)
| | - Minae Mure
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (A.A.M.); (E.P.G.); (H.-J.M.)
| |
Collapse
|
10
|
Su Y, Zhang X, Li S, Xie W, Guo J. Emerging roles of the copper-CTR1 axis in tumorigenesis. Mol Cancer Res 2022; 20:1339-1353. [PMID: 35604085 DOI: 10.1158/1541-7786.mcr-22-0056] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Physiological roles of copper in metabolic homeostasis have been well established, however, whether and how copper is dysregulated in tumors and contributes to tumorigenesis are not recapitulated. Here, we comprehensively summarize the potential origins of copper accumulation in diseases especially in cancers by dysregulating copper transporter 1 (CTR1) or ATPase copper transporting alpha/beta (ATP7A/B) and further demonstrate the underlying mechanism of copper contributing to tumorigenesis. Specifically, in addition to modulating reactive oxygen species (ROS), angiogenesis, immune response, and metabolic homeostasis, copper recently has drawn more attention by directly binding to oncoproteins such as MEK, ULK, Memo, and PDK1 to activate distinct oncogenic signals and account for tumorigenesis. In the end, we disclose the emerging applications of copper in cancer diagnosis and highlight the promising strategies to target the copper-CTR1 axis for cancer therapies.
Collapse
Affiliation(s)
- Yaqing Su
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Xiaomei Zhang
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Shaoqiang Li
- The First Affiliatd Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Jianping Guo
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| |
Collapse
|
11
|
Marques-Magalhães Â, Cruz T, Costa ÂM, Estêvão D, Rios E, Canão PA, Velho S, Carneiro F, Oliveira MJ, Cardoso AP. Decellularized Colorectal Cancer Matrices as Bioactive Scaffolds for Studying Tumor-Stroma Interactions. Cancers (Basel) 2022; 14:cancers14020359. [PMID: 35053521 PMCID: PMC8773780 DOI: 10.3390/cancers14020359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
More than a physical structure providing support to tissues, the extracellular matrix (ECM) is a complex and dynamic network of macromolecules that modulates the behavior of both cancer cells and associated stromal cells of the tumor microenvironment (TME). Over the last few years, several efforts have been made to develop new models that accurately mimic the interconnections within the TME and specifically the biomechanical and biomolecular complexity of the tumor ECM. Particularly in colorectal cancer, the ECM is highly remodeled and disorganized and constitutes a key component that affects cancer hallmarks, such as cell differentiation, proliferation, angiogenesis, invasion and metastasis. Therefore, several scaffolds produced from natural and/or synthetic polymers and ceramics have been used in 3D biomimetic strategies for colorectal cancer research. Nevertheless, decellularized ECM from colorectal tumors is a unique model that offers the maintenance of native ECM architecture and molecular composition. This review will focus on innovative and advanced 3D-based models of decellularized ECM as high-throughput strategies in colorectal cancer research that potentially fill some of the gaps between in vitro 2D and in vivo models. Our aim is to highlight the need for strategies that accurately mimic the TME for precision medicine and for studying the pathophysiology of the disease.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Tânia Cruz
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Ângela Margarida Costa
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Diogo Estêvão
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Elisabete Rios
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Pedro Amoroso Canão
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Sérgia Velho
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Fátima Carneiro
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Maria José Oliveira
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Patrícia Cardoso
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| |
Collapse
|
12
|
Canter JA, Ernst SE, Peters KM, Carlson BA, Thielman NRJ, Grysczyk L, Udofe P, Yu Y, Cao L, Davis CD, Gladyshev VN, Hatfield DL, Tsuji PA. Selenium and the 15kDa Selenoprotein Impact Colorectal Tumorigenesis by Modulating Intestinal Barrier Integrity. Int J Mol Sci 2021; 22:10651. [PMID: 34638991 PMCID: PMC8508755 DOI: 10.3390/ijms221910651] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 01/19/2023] Open
Abstract
Selenoproteins play important roles in many cellular functions and biochemical pathways in mammals. Our previous study showed that the deficiency of the 15 kDa selenoprotein (Selenof) significantly reduced the formation of aberrant crypt foci (ACF) in a mouse model of azoxymethane (AOM)-induced colon carcinogenesis. The objective of this study was to examine the effects of Selenof on inflammatory tumorigenesis, and whether dietary selenium modified these effects. For 20 weeks post-weaning, Selenof-knockout (KO) mice and littermate controls were fed diets that were either deficient, adequate or high in sodium selenite. Colon tumors were induced with AOM and dextran sulfate sodium. Surprisingly, KO mice had drastically fewer ACF but developed a similar number of tumors as their littermate controls. Expression of genes important in inflammatory colorectal cancer and those relevant to epithelial barrier function was assessed, in addition to structural differences via tissue histology. Our findings point to Selenof's potential role in intestinal barrier integrity and structural changes in glandular and mucin-producing goblet cells in the mucosa and submucosa, which may determine the type of tumor developing.
Collapse
Affiliation(s)
- Jessica A. Canter
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Sarah E. Ernst
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Kristin M. Peters
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Bradley A. Carlson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Noelle R. J. Thielman
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
- Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Lara Grysczyk
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Precious Udofe
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| | - Yunkai Yu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (L.C.)
| | - Liang Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (L.C.)
| | - Cindy D. Davis
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD 20817, USA;
| | - Vadim N. Gladyshev
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA;
| | - Dolph L. Hatfield
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Petra A. Tsuji
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA; (J.A.C.); (S.E.E.); (K.M.P.); (N.R.J.T.); (L.G.); (P.U.)
| |
Collapse
|
13
|
Farhat A, Ferns GA, Ashrafi K, Arjmand MH. Lysyl Oxidase Mechanisms to Mediate Gastrointestinal Cancer Progression. Gastrointest Tumors 2021; 8:33-40. [PMID: 34568293 DOI: 10.1159/000511244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023] Open
Abstract
Background Malignancy is a complex process resulting from different changes such as extracellular matrix (ECM) remodeling and stiffness. One of the important enzymes that contribute to ECM remodeling is lysyl oxidase (Lox) that is overexpressed in different types of human cancers. Because of the high prevalence and poor survival of gastrointestinal (GI) malignancies in this review, we discuss the association between Lox activity and the progression of GI cancers. Lox proteins are a group of extracellular enzymes that catalyzed the cross-linking of collagen and elastin, so they have important roles in the control of structure and homeostasis of ECM. Abnormal activation and expression of the Lox family of proteins lead to changes in the ECM toward increased rigidity and fibrosis. Stiffness of ECM can contribute to the pathogenesis of cancers. Summary Dysregulation of Lox expression is a factor in both fibrotic diseases and cancer. ECM stiffness by Lox overactivity creates a physical barrier against intratumoral concentration of chemotherapeutic drugs and facilitates cancer inflammation, angiogenesis, and metastasis. Key Message Because of the roles of Lox in GI cancers, development targeting Lox protein isotypes may be an appropriate strategy for treatment of GI cancers and improvement in survival of patients.
Collapse
Affiliation(s)
- Ahmadshah Farhat
- Neonatal Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, United Kingdom
| | - Korosh Ashrafi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Hassan Arjmand
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Kim MS, Ha SE, Wu M, Zogg H, Ronkon CF, Lee MY, Ro S. Extracellular Matrix Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:9185. [PMID: 34502094 PMCID: PMC8430714 DOI: 10.3390/ijms22179185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular microenvironment composition and changes therein play an extremely important role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a majority of the tumor stroma, significantly contribute to the development of the tumor microenvironment. These alterations within the ECM and formation of the tumor microenvironment ultimately lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and become cancerous, if the ECM does not support these neoplastic cells, further development, invasion, and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is also affected by the ECM and many studies have been conducted to unravel the complex association between the two. Here we summarize the importance of several ECM components in colorectal cancer as well as their potential roles as biomarkers.
Collapse
Affiliation(s)
- Min-Seob Kim
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Se-Eun Ha
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Charles F. Ronkon
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moon-Young Lee
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| |
Collapse
|
15
|
Wu S, Xing X, Wang Y, Zhang X, Li M, Wang M, Wang Z, Chen J, Gao D, Zhao Y, Chen R, Ren Z, Zhang K, Cui J. The pathological significance of LOXL2 in pre-metastatic niche formation of HCC and its related molecular mechanism. Eur J Cancer 2021; 147:63-73. [PMID: 33618200 DOI: 10.1016/j.ejca.2021.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The mechanisms underlying the contribution of primary tumour to pre-metastatic niche formation remains largely unknown in hepatocellular carcinoma (HCC). We previously reported that the released LOXL2 from HCC cells under higher stiffness stimulation facilitated the formation of lung pre-metastatic niche. Here, we further clarified the pathological role of LOXL2 in promoting lung pre-metastatic niche formation and lung metastasis occurrence in HCC and its relevant molecular mechanism. METHODS Using two different animal models and an in vitro system of mechanically tuneable gel mirroring lung tissue stiffness, we explored the underlying mechanism of LOXL2 in pre-metastatic niche formation. RESULTS We applied tail vein injection of CM-LV-LOXL2-OEsimulating tumour-released soluble factors to induce lung pre-metastatic niche formation and found that the injected LOXL2 remarkably enhanced CD11b+/CD45+ bone marrow-derived cells (BMDCs) recruitment and fibronectin expression in lung. Subsequently, LOXL2-overexpressed xenograft HCC models validated that tumour-secreted LOXL2 significantly promoted the occurrence of pulmonary metastasis. In vitro, LOXL2 and LOXL2-caused matrix stiffening not only obviously upregulated the expressions of MMP9 and fibronectin in lung fibroblasts, but also evidently increased the number of adherent HCC cells and the expression of chemokine CXCL12. The activation of PI3K-AKT pathway mediated LOXL2-upregulated fibronectin. HCC patients in High-LOXL2 group had higher ratio of tumour recurrence than HCC patients in Low-LOXL2 group, supporting a significance of LOXL2 in HCC progression and unfavourable outcome. CONCLUSION Primary tumour-released LOXL2 promotes lung pre-metastatic niche formation and lung metastasis occurrence. LOXL2-caused matrix stiffening synergistically regulates lung pre-metastatic niche formation. Targeting LOXL2-induced lung pre-metastatic niche may be a novel intervention approach against HCC metastasis.
Collapse
Affiliation(s)
- Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Xiaoxia Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China
| | - Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Mimi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Yan Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Kezhi Zhang
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, PR China.
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China.
| |
Collapse
|
16
|
A Theoretical Approach to Coupling the Epithelial-Mesenchymal Transition (EMT) to Extracellular Matrix (ECM) Stiffness via LOXL2. Cancers (Basel) 2021; 13:cancers13071609. [PMID: 33807227 PMCID: PMC8037024 DOI: 10.3390/cancers13071609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Epithelial-mesenchymal transition (EMT) is a key process in cancer progression through which cells weaken their cell-cell adhesion and gain mobility and invasive traits. Besides chemical signaling, recent studies have established the connection of EMT to mechanical microenvironment, such as the stiffness of extracellular matrix (ECM). LOXL2 is representative of a family of enzymes that promotes fiber cross-linking in ECM. With increased cross-linking comes increased stiffness, which induces EMT that can, in turn, elevate LOXL2 levels. As such, a positive feedback loop among EMT, LOXL2, and ECM stiffness can be formed. We built a mathematical model on a core biochemical reaction network featuring this feedback loop, and showed how strongly it drives EMT. We also illustrated mechanistically how cross-linking connects with stiffness, using a mechanical model of collagen (a major component of ECM). Using this theoretical framework, we demonstrated the heterogeneity of LOXL2/stiffness and its implications on migrating cancer cells that could seed metastasis, the growth of secondary malignant tumors. This framework can inspire experimental studies of more fine-grained mechanotransduction and biomechanical heterogeneity in cancers. Abstract The epithelial-mesenchymal transition (EMT) plays a critical role in cancer progression, being responsible in many cases for the onset of the metastatic cascade and being integral in the ability of cells to resist drug treatment. Most studies of EMT focus on its induction via chemical signals such as TGF-β or Notch ligands, but it has become increasingly clear that biomechanical features of the microenvironment such as extracellular matrix (ECM) stiffness can be equally important. Here, we introduce a coupled feedback loop connecting stiffness to the EMT transcription factor ZEB1, which acts via increasing the secretion of LOXL2 that leads to increased cross-linking of collagen fibers in the ECM. This increased cross-linking can effectively increase ECM stiffness and increase ZEB1 levels, thus setting a positive feedback loop between ZEB1 and ECM stiffness. To investigate the impact of this non-cell-autonomous effect, we introduce a computational approach capable of connecting LOXL2 concentration to increased stiffness and thereby to higher ZEB1 levels. Our results indicate that this positive feedback loop, once activated, can effectively lock the cells in a mesenchymal state. The spatial-temporal heterogeneity of the LOXL2 concentration and thus the mechanical stiffness also has direct implications for migrating cells that attempt to escape the primary tumor.
Collapse
|
17
|
Genetic Drivers of Head and Neck Squamous Cell Carcinoma: Aberrant Splicing Events, Mutational Burden, HPV Infection and Future Targets. Genes (Basel) 2021; 12:genes12030422. [PMID: 33804181 PMCID: PMC7998272 DOI: 10.3390/genes12030422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancers include cancers that originate from a variety of locations. These include the mouth, nasal cavity, throat, sinuses, and salivary glands. These cancers are the sixth most diagnosed cancers worldwide. Due to the tissues they arise from, they are collectively named head and neck squamous cell carcinomas (HNSCC). The most important risk factors for head and neck cancers are infection with human papillomavirus (HPV), tobacco use and alcohol consumption. The genetic basis behind the development and progression of HNSCC includes aberrant non-coding RNA levels. However, one of the most important differences between healthy tissue and HNSCC tissue is changes in the alternative splicing of genes that play a vital role in processes that can be described as the hallmarks of cancer. These changes in the expression profile of alternately spliced mRNA give rise to various protein isoforms. These protein isoforms, alternate methylation of proteins, and changes in the transcription of non-coding RNAs (ncRNA) can be used as diagnostic or prognostic markers and as targets for the development of new therapeutic agents. This review aims to describe changes in alternative splicing and ncRNA patterns that contribute to the development and progression of HNSCC. It will also review the use of the changes in gene expression as biomarkers or as the basis for the development of new therapies.
Collapse
|
18
|
Sun L. COPS8 in cutaneous melanoma: an oncogene that accelerates the malignant development of tumor cells and predicts poor prognosis. Biosci Biotechnol Biochem 2021; 85:242-250. [PMID: 33604618 DOI: 10.1093/bbb/zbaa017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the roles of COP9 signalosome subunit 8 (COPS8) and its underlying mechanism in cutaneous melanoma. Bioinformatics tools were utilized to analyze the expression of COPS8 in cutaneous melanoma, while Kaplan-Meier analysis was employed to assess the correlation between COPS8 and patients' overall survival. The proliferation, migration, and invasion of cells were estimated by CCK8, colony formation, and Transwell assays. Western blot was used to check the expression of epithelial-mesenchymal transition (EMT)-related proteins. Results showed that COPS8 was up-regulated and predicted a poor clinical outcome for cutaneous melanoma patients. Knockdown of COPS8 inhibited cutaneous melanoma cell proliferation, migration and invasion, whereas overexpression of COPS8 resulted in the opposite outcomes. The up-regulation of E-cadherin and down-regulation of N-cadherin, vimentin, and snail were caused by silencing COPS8 while their expression showed contrary trends in cells with overexpressed COPS8. Collectively, COPS8 is up-regulated and promotes cutaneous melanoma progression via regulating EMT.
Collapse
Affiliation(s)
- Liangliang Sun
- Department of Dermatology, Daqing Oilfield General Hospital, No. 9 ZhongKang street, Daqing City, Heilongjiang Province, P. R. China
| |
Collapse
|
19
|
Targeting Lysyl Oxidase Family Meditated Matrix Cross-Linking as an Anti-Stromal Therapy in Solid Tumours. Cancers (Basel) 2021; 13:cancers13030491. [PMID: 33513979 PMCID: PMC7865543 DOI: 10.3390/cancers13030491] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary To improve efficacy of solid cancer treatment, efforts have shifted towards targeting both the cancer cells and the surrounding tumour tissue they grow in. The lysyl oxidase (LOX) family of enzymes underpin the fibrotic remodeling of the tumour microenvironment to promote both cancer growth, spread throughout the body and modulate response to therapies. This review examines how the lysyl oxidase family is involved in tumour development, how they can be targeted, and their potential as diagnostic and prognostic biomarkers in solid tumours. Abstract The lysyl oxidase (LOX) family of enzymes are a major driver in the biogenesis of desmoplastic matrix at the primary tumour and secondary metastatic sites. With the increasing interest in and development of anti-stromal therapies aimed at improving clinical outcomes of cancer patients, the Lox family has emerged as a potentially powerful clinical target. This review examines how lysyl oxidase family dysregulation in solid cancers contributes to disease progression and poor patient outcomes, as well as an evaluation of the preclinical landscape of LOX family targeting therapeutics. We also discuss the suitability of the LOX family as a diagnostic and/or prognostic marker in solid tumours.
Collapse
|
20
|
Wang F, Sun G, Peng C, Chen J, Quan J, Wu C, Lian X, Tang W, Xiang D. ZEB1 promotes colorectal cancer cell invasion and disease progression by enhanced LOXL2 transcription. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:9-23. [PMID: 33532019 PMCID: PMC7847496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/11/2020] [Indexed: 06/12/2023]
Abstract
Disease progression after curative surgery is still the main challenge for colorectal cancer (CRC). Identifying biomarkers and precise mechanisms in CRC disease progression is necessary for therapeutic improvement. As a transcription factor, ZEB1 promotes malignancy, but the precise mechanism by which ZEB1-dependent transcriptional regulation remains largely undefined. In this study, the transcriptional regulation of lysyl oxidase-like 2 (LOXL2) by ZEB1 in CRC was investigated. Our data show that ZEB1 enhanced LOXL2 transcription through direct binding to its promoter. The gain of function assays of ZEB1 showed increased cell proliferation, migration, and invasion. The inhibition of LOXL2 impaired the invasion and migratory ability of CRC cells, but had no effect on cell proliferation in vitro and in vivo. Immunohistochemical staining of tumor tissues indicated that elevated ZEB1/LOXL2 expression was significantly associated with lymph node metastasis and TNM stage. More importantly, elevated ZEB1/LOXL2 expression was an independent prognostic factor in CRC patients. These findings provide a molecular basis for the promotion of an invasive cancer phenotype by ZEB1-LOXL2 overexpression. Our results identify ZEB1/LOXL2 as a prognostic biomarker and potential therapeutic target against progression of CRC.
Collapse
Affiliation(s)
- Fan Wang
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Guiyin Sun
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Chunfang Peng
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Jiangyan Chen
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Jin Quan
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Chunrong Wu
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Xiaojuan Lian
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Weijun Tang
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| | - Debing Xiang
- Oncology Department, Jiangjin District Central Hospital Chongqing 402260, China
| |
Collapse
|
21
|
Ye M, Song Y, Pan S, Chu M, Wang ZW, Zhu X. Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy. Pharmacol Ther 2020; 215:107633. [PMID: 32693113 DOI: 10.1016/j.pharmthera.2020.107633] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The lysyl oxidase (LOX) family is comprised of LOX and four LOX-like proteins (LOXL1, LOXL2, LOXL3, and LOXL4), and mainly functions in the remodeling of extracellular matrix (ECM) and the cross-linking of collagen and elastic fibers. Recently, a growing body of research has demonstrated that LOX family is critically involved in the regulation of cancer cell proliferation, migration, invasion and metastasis. In this review, we discuss the roles of LOX family members in the development and progression of different types of human cancers. Furthermore, we also describe the potential inhibitors of LOX family proteins and highlight that LOX family might be an important therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Miaomiao Ye
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yizuo Song
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China..
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
22
|
Cao C, Lin S, Zhi W, Lazare C, Meng Y, Wu P, Gao P, Wei J, Wu P. LOXL2 Expression Status Is Correlated With Molecular Characterizations of Cervical Carcinoma and Associated With Poor Cancer Survival via Epithelial-Mesenchymal Transition (EMT) Phenotype. Front Oncol 2020; 10:284. [PMID: 32211324 PMCID: PMC7067748 DOI: 10.3389/fonc.2020.00284] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
As molecular analyses based on high-throughput sequencing have developed, the molecular classification of cancer has facilitated clinical work. The aim of the present study was to identify a new potential therapeutic target for cervical carcinoma by molecular analyses. We firstly tested the LOXL2 expression pattern in 50 paired normal cervix and cervical carcinoma via qPCR and immunohistochemistry, and the LOXL2 expression pattern was found to be in accordance with public datasets from Gene Expression Omnibus (GEO). Then, we comprehensively rewired the 176 cervical carcinoma samples from The Cancer Genome Atlas (TCGA), subsequently clustered the samples into two groups corresponding to LOXL2 expression to determined the associations between LOXL2 expression status and molecular characterizations of cervical carcinoma. In vitro assays for further verifying the correlations in SiHa-shLOXL2 and HeLa-shLOXL2 cell lines. In this study, we found that LOXL2 highly expressed in carcinoma tissue, with 14 CpG islands of LOXL2 promoter that were significantly and negatively associated with its expression in cervical carcinoma. And there were notable correlations among LOXL2 expression status and molecular characterizations of cervical carcinoma, including diagnostic age, HPV A7 types, mRNA molecular clusters, miRNA molecular clusters, and DNA methylation molecular clusters et al. In addition, high LOXL2 expression was negatively correlated with lower tumor mutation density, especially in EP300, ERBB2, EGFR and NOTCH2, and was negatively correlated with lower expression of APOBEC3 family genes, such as APOBEC3A, APOBEC3B, APOBEC3D, and APOBEC3G. Furthermore, high LOXL2 expression was associated with poor overall (OS) and poor disease-free survival (DFS) in cervical carcinoma, and was associated with higher epithelial-mesenchymal transition (EMT) score, enrichment of extracellular matrix (ECM) signaling, the phenotype that was found to be associated with poor prognosis in cervical carcinoma from TCGA. Conversely, the ability of cell proliferation and cell migration were reversed in LOXL2 knock-down cervical cell lines via regulating the genes' expression of EMT phenotype in vitro. Overall, we demonstrated the correlation between LOXL2 expression status and cancer molecular characterizations of cervical carcinoma, and identified LOXL2 may serve as a therapeutic target for such carcinoma.
Collapse
Affiliation(s)
- Canhui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shitong Lin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhua Zhi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cordelle Lazare
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Meng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peipei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juncheng Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Chopra V, Sangarappillai RM, Romero‐Canelón I, Jones AM. Lysyl Oxidase Like‐2 (LOXL2): An Emerging Oncology Target. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vriddhi Chopra
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| | | | | | - Alan M. Jones
- School of PharmacyUniversity of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
24
|
Liu C, Guo T, Sakai A, Ren S, Fukusumi T, Ando M, Sadat S, Saito Y, Califano JA. A novel splice variant of LOXL2 promotes progression of human papillomavirus-negative head and neck squamous cell carcinoma. Cancer 2019; 126:737-748. [PMID: 31721164 DOI: 10.1002/cncr.32610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most frequently diagnosed cancers worldwide. LOXL2 demonstrates alternative splicing events in patients with human papillomavirus (HPV)-negative HNSCC. The current study explored the role of a dominant LOXL2 variant in HPV-negative HNSCC. METHODS Expression of the LOXL2 variant was analyzed using The Cancer Genome Atlas cohorts and validated using quantitative reverse transcriptase-polymerase chain reaction in a separate primary tumor set. The authors defined the effect of LOXL2 splice variants in assays for cell proliferation using a cell viability assay and colony formation assay. Cell migration and invasion were examined using a cell scratch assay and transwell cell migration and invasion assay in LOXL2 splice variant gain and loss of expression cells. Western blot analysis and gene set enrichment analysis were used to explore the potential mechanism of the LOXL2 splice variant in HPV-negative HNSCC. RESULTS Expression of a novel LOXL2 variant was found to be upregulated in The Cancer Genome Atlas HPV-negative HNSCC, and confirmed in the separate primary tumor validation set. Analyses of loss and gain of function demonstrated that this LOXL2 variant enhanced proliferation, migration, and invasion in HPV-negative HNSCC cells and activated the FAK/AKT pathway. A total of 837 upregulated and 820 downregulated genes and 526 upregulated and 124 downregulated pathways associated with LOXL2 variant expression were identified using gene set enrichment analysis, which helped in developing a better understanding of the networks activated by this LOXL2 variant in patients with HPV-negative HNSCC. CONCLUSIONS The novel LOXL2 variant can promote the progression of HPV-negative HNSCC, in part through FAK/AKT pathway activation, which may provide a new potential therapeutic target among patients with HPV-negative HNSCC.
Collapse
Affiliation(s)
- Chao Liu
- Moores Cancer Center, University of California at San Diego, San Diego, California.,Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Theresa Guo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Akihiro Sakai
- Moores Cancer Center, University of California at San Diego, San Diego, California
| | - Shuling Ren
- Moores Cancer Center, University of California at San Diego, San Diego, California.,Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Takahito Fukusumi
- Moores Cancer Center, University of California at San Diego, San Diego, California
| | - Mizuo Ando
- Moores Cancer Center, University of California at San Diego, San Diego, California
| | - Sayed Sadat
- Moores Cancer Center, University of California at San Diego, San Diego, California
| | - Yuki Saito
- Moores Cancer Center, University of California at San Diego, San Diego, California
| | - Joseph A Califano
- Moores Cancer Center, University of California at San Diego, San Diego, California.,Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California at San Diego, San Diego, California
| |
Collapse
|
25
|
Zhang Y, Liu W, Xu J. Prognostic utility and clinical significance of lysyl oxidase-like 2 protein expression in digestive system cancers. J Cell Physiol 2019; 234:20713-20720. [PMID: 30997684 DOI: 10.1002/jcp.28677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Lysyl oxidase-like 2 (LOXL2) participates in the occurrence and development of digestive system cancers (DSCs). The aim of this study was to determine whether LOXL2 protein could serve as a prognostic biomarker in patients with DSCs. Relevant studies published before October 1, 2018 were identified from a comprehensive literature review in PubMed, Web of Science, and Embase. This meta-analysis was conducted via STATA/SE 14.1 software. Finally, a total of 12 publications and 6 different kinds of DSCs were identified. Meta-analysis indicated that increased expression of LOXL2 protein was significantly correlated with reduced overall survival (hazard ratios [HR]: 1.52; 95% confidence interval [CI]: 1.32-1.72) and worse progression-free survival/disease-free survival (HR: 2.15; 95% CI: 1.48-2.83) in cases with DSCs. In addition, clinicopathological parameters, including tumor invasion, lymph node metastasis, distant metastasis, and clinical stage were significantly related to LOXL2 protein expression in DSCs. High LOXL2 protein expression is significantly associated with worse clinical outcomes in DSCs and its expression level may represent a candidate prognostic biomarker in these cancers.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, The First People's Hospital of Neijiang, Neijiang, P. R. China
| | - Wanwei Liu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, Meizhou, Guangdong, P. R. China
| | - Jiwei Xu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, Meizhou, Guangdong, P. R. China
| |
Collapse
|
26
|
Smentoch J, Szade J, Żaczek AJ, Eltze E, Semjonow A, Brandt B, Bednarz-Knoll N. Low Numbers of Vascular Vessels Correlate to Progression in Hormone-Naïve Prostate Carcinomas Undergoing Radical Prostatectomy. Cancers (Basel) 2019; 11:cancers11091356. [PMID: 31547460 PMCID: PMC6770894 DOI: 10.3390/cancers11091356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Vascularization influences tumor development by supporting the nutrition and dissemination of tumor cells. On the other hand, a low number of vascular vessels (VVlow) may induce hypoxia, accounting for selection of resistant clone(s) of tumor cells. This study aimed to evaluate the prognostic significance of vascular (VV) and lymphatic vessels (LV) in prostate cancer (PCa). Tumor samples from 400 PCa patients undergoing radical prostatectomy (RP) were prepared in duplex as tissue microarrays. Numbers of VV and LV were evaluated using immunohistochemistry detecting CD34 and podoplanin, respectively, and correlated to clinical data, biochemical recurrence (BR), and proteins analyzed in tumor cells. VVlow and LV were found in 32% and 43% of patients with informative PCa samples, respectively. VVlow correlated with a shorter time to BR 3, 5, and 10 years after RP in hormone-naïve patients (p = 0.028, p = 0.027 and p = 0.056, respectively). It was also shown to be an independent prognostic factor 5 years after surgery (multivariate analysis, p = 0.046). Tumors characterized by VVlow expressed the epithelial cell adhesion molecule, EpCAM, less frequently (p = 0.016) and revealed a borderline correlation to increased levels of tumor cell invasion marker Loxl-2 (p = 0.059). No correlations were found for LV. In summary, VVlow in hormone-naïve patients undergoing RP has prognostic potential and seems to be related to an aggressive phenotype of tumor cells.
Collapse
Affiliation(s)
- Julia Smentoch
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk 80-214, Poland;
| | - Anna J. Żaczek
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
| | - Elke Eltze
- Institute of Pathology Saarbruecken-Rastpfuhl, Saarbruecken 66113, Germany;
| | - Axel Semjonow
- Department of Urology, Prostate Center, University Clinic Münster, Münster 48149, Germany;
| | - Burkhard Brandt
- Institute of Clinical Chemistry, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany;
| | - Natalia Bednarz-Knoll
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
- Correspondence: ; Tel.: +48-58-349-14-34
| |
Collapse
|
27
|
Sanada T, Islam A, Kaminota T, Kirino Y, Tanimoto R, Yoshimitsu H, Yano H, Mizuno Y, Okada M, Mitani S, Ugumori T, Tanaka J, Hato N. Elevated exosomal lysyl oxidase like 2 is a potential biomarker for head and neck squamous cell carcinoma. Laryngoscope 2019; 130:E327-E334. [PMID: 31219623 DOI: 10.1002/lary.28142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The secretory enzyme lysyl oxidase like 2 (LOXL2) is speculated to contribute to tumor progression through its functions in the remodeling of extracellular matrix and epithelial-mesenchymal transition. We previously identified elevated expression of LOXL2 in metastatic human head and neck squamous cell carcinoma (HNSCC) cells in a mouse lymph node metastases model. Here we performed a case series study examining LOXL2 expression levels in human serum from HNSCC patients to evaluate whether LOXL2 is worth evaluation in a large cohort study. METHODS LOXL2 protein levels in three serum samples from HNSCC patients were assessed by immunoblotting and LOXL2 tissue expression was examined in one human tongue squamous cell carcinoma (SCC) tissue by immunohistochemistry as a representative of HNSCC tissue. Serum samples were further fractionated in exosomes and supernatants by ultracentrifugation, which were then subjected to immunoblot and in vitro LOX activity analyses. Exosomal LOXL2 levels of 36 serum samples from HNSCC patients and seven healthy volunteers were measured using polymer sedimentation exosome preparation followed by ELISA measurement and subjected to statistical analyses. RESULTS Immunoblot analyses revealed that LOXL2 was present in serum exosomal fractions from three HNSCC patients, and we observed approximately threefold higher levels of LOXL2 in HNSCC patients compared with three healthy volunteers. Immunohistochemical LOXL2 staining was detected in HNSCC cells in addition to non-cancerous lipid tissues and some muscles in human tongue HNSCC tissue. Further measurements of exosomal LOXL2 by ELISA showed over ninefold higher mean LOXL2 levels in patients compared with controls. Statistical analysis revealed a correlation between elevated serum exosomal LOXL2 levels and low-grade, but not high-grade, HNSCC. CONCLUSIONS Our case series study that elevated serum exosomal LOXL2 levels exhibited a correlation with low-grade HNSCCs. A follow-up large cohort clinical study will be required to determine the potential clinical utility of LOXL2 as a new biomarker and/or therapy target for HNSCCs. LEVEL OF EVIDENCE 4 Laryngoscope, 130:E327-E334, 2020.
Collapse
Affiliation(s)
- Tomoyoshi Sanada
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Afsana Islam
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Teppei Kaminota
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Yui Kirino
- School of Medicine, Ehime University, Ehime, Japan
| | | | | | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Yosuke Mizuno
- Department of Pathological Diagnosis, Matsuyama Red Cross Hospital, Ehime, Japan
| | - Masahiro Okada
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Souhei Mitani
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Tohru Ugumori
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Naohito Hato
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| |
Collapse
|
28
|
Zhou H, Li G, Huang S, Feng Y, Zhou A. SOX9 promotes epithelial-mesenchymal transition via the Hippo-YAP signaling pathway in gastric carcinoma cells. Oncol Lett 2019; 18:599-608. [PMID: 31289532 PMCID: PMC6546990 DOI: 10.3892/ol.2019.10387] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
SRY-box 9 (SOX9) is overexpressed in a number of human tumors, including gastric cancer (GC). However, the function of SOX9 in the development of GC remains unknown. In the present study, SOX9 activated the Hippo-yes-associated protein (YAP) signaling pathway to enhance the epithelial-mesenchymal transition in GC cell lines. The results suggested that SOX9 knockdown inhibited invasion, proliferation and migration of GC cells. Furthermore, SOX9 silencing upregulated the expression of E-cadherin, an epithelial marker, and downregulated the expression of mesenchymal markers, including snail family transcriptional repressor 1, vimentin and N-cadherin. SOX9 overexpression increased the expression of the aforementioned markers. SOX9 significantly affected YAP phosphorylation and total YAP protein levels, suggesting that SOX9 is involved in the Hippo-YAP signaling pathway. The current study revealed that SOX9 may be involved in the pathogenesis of GC, and further elucidation of the pathways involved may support the development of novel therapeutic options for the treatment of GC.
Collapse
Affiliation(s)
- Hailang Zhou
- Department of Gastroenterology, Medical Center for Digestive Diseases, People's Hospital of Lianshui, Huaian, Jiangsu 223400, P.R. China
| | - Guiqin Li
- Department of Gastroenterology, Medical Center for Digestive Diseases, People's Hospital of Lianshui, Huaian, Jiangsu 223400, P.R. China
| | - Shu Huang
- Department of Gastroenterology, Medical Center for Digestive Diseases, People's Hospital of Lianshui, Huaian, Jiangsu 223400, P.R. China
| | - Yadong Feng
- Department of Gastroenterology, Medical Center for Digestive Diseases, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Aijun Zhou
- Department of Gastroenterology, Medical Center for Digestive Diseases, People's Hospital of Lianshui, Huaian, Jiangsu 223400, P.R. China
| |
Collapse
|
29
|
Mechanism for oral tumor cell lysyl oxidase like-2 in cancer development: synergy with PDGF-AB. Oncogenesis 2019; 8:34. [PMID: 31086173 PMCID: PMC6513832 DOI: 10.1038/s41389-019-0144-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular lysyl oxidases (LOX and LOXL1–LOXL4) are critical for collagen biosynthesis. LOXL2 is a marker of poor survival in oral squamous cell cancer. We investigated mechanisms by which tumor cell secreted LOXL2 targets proximal mesenchymal cells to enhance tumor growth and metastasis. This study identified the first molecular mechanism for LOXL2 in the promotion of cancer via its enzymatic modification of a non-collagenous substrate in the context of paracrine signaling between tumor cells and resident fibroblasts. The role and mechanism of active LOXL2 in promoting oral cancer was evaluated and employed a novel LOXL2 small molecule inhibitor, PSX-S1C, administered to immunodeficient, and syngeneic immunocompetent orthotopic oral cancer mouse models. Tumor growth, histopathology, and metastases were monitored. In vitro mechanistic studies with conditioned tumor cell medium treatment of normal human oral fibroblasts were carried out in the presence and absence of the LOXL2 inhibitor to identify signaling mechanisms promoted by LOXL2 activity. Inhibition of LOXL2 attenuated cancer growth and lymph node metastases in the orthotopic tongue mouse models. Immunohistochemistry data indicated that LOXL2 expression in and around tumors was decreased in mice treated with the inhibitor. Inhibition of LOXL2 activity by administration of PXS-S1C to mice reduced tumor cell proliferation, accompanied by changes in morphology and in the expression of epithelial to mesenchymal transition markers. In vitro studies identified PDGFRβ as a direct substrate for LOXL2, and indicated that LOXL2 and PDGF-AB together secreted by tumor cells optimally activated PDGFRβ in fibroblasts to promote proliferation and the tendency toward fibrosis via ERK activation, but not AKT. Optimal fibroblast proliferation in vitro required LOXL2 activity, while tumor cell proliferation did not. Thus, tumor cell-derived LOXL2 in the microenvironment directly targets neighboring resident cells to promote a permissive local niche, in addition to its known role in collagen maturation.
Collapse
|
30
|
Zhang X, Huang J, You F, Li W, Zou Z. Prognostic and clinicopathological significance of LOXL2 in cancers: A systematic review and meta-analysis. J Cell Physiol 2019; 234:21369-21379. [PMID: 31032923 DOI: 10.1002/jcp.28746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lysyl oxidase-like 2 (LOXL2) is an extracellular matrix (ECM)-modifying enzyme which can regulate the tensile strength of connective tissues by crosslink of collagen and elastin. Numerous studies have claimed correlations between LOXL2 expression and prognosis or clinicopathological characteristics in various cancers. However, the validities of these claims are still in question. To address these experimental results, a meta-analysis was done to assess the prognostic and clinicopathological significance of LOXL2 expression in various cancers. METHODS The keywords were used for searching systematically in PubMed, Web of Science, Embase, Wanfang database, and CNKI. Stata SE15.0 was used for meta-analysis. The hazard ratio (HR) and odds ratios (ORs) were pooled to assess the relationship between LOXL2 expression and overall survival (OS), disease-free survival (DFS), and clinicopathological parameters. RESULTS Seventeen studies with 3,881 patients were considered as valid studies. The results indicated that the patients who had a positive LOXL2 expression had a shorter OS (HR 1.60, 95% CI 1.26-1.94, p < 0.001) or DFS (HR 1.46, 95% CI 1.14-1.78, p < 0.001). For clinicopathological parameters, statistical significances were presented in age (OR 1.34, 95% CI 1.13-1.58, p = 0.001), lymph node metastasis (OR 2.20, 95% CI 1.37-3.53, p < 0.001), tumor size (OR 1.46, 95% CI 1.15-1.85, p = 0.002), and vascular invasion (OR 1.82, 95% CI 1.33-2.48, p < 0.001). CONCLUSIONS The results demonstrate that positive LOXL2 expression presents poorer OS and worse clinicopathological parameters. LOXL2 may be an effective biomarker to evaluate the prognosis in different type of cancers.
Collapse
Affiliation(s)
- Xuerui Zhang
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, Nanchang, Jiangxi, China
| | - Junfu Huang
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, Nanchang, Jiangxi, China
| | - Fan You
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, Nanchang, Jiangxi, China
| | - Wang Li
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, Nanchang, Jiangxi, China
| | - Zhenhong Zou
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Wang C, Xu S, Tian Y, Ju A, Hou Q, Liu J, Fu Y, Luo Y. Lysyl Oxidase-Like Protein 2 Promotes Tumor Lymphangiogenesis and Lymph Node Metastasis in Breast Cancer. Neoplasia 2019; 21:413-427. [PMID: 30925417 PMCID: PMC6439287 DOI: 10.1016/j.neo.2019.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Tumor lymphangiogenesis has been previously documented to predict regional lymph node metastasis and promote the spread to distant organs. However, the underlying mechanism initiating tumor lymphangiogenesis remains unclear. Here we described a novel role of tumor cell-derived Lysyl Oxidase-like protein 2 (LOXL2) in promoting lymphangiogenesis and lymph node metastasis in breast cancer. Immunohistochemistry (IHC) analysis of samples from breast cancer patients showed that the expression of LOXL2 was positively correlated with lymphatic vessel density and breast cancer malignancy. In animal studies, LOXL2-overexpressing breast cancer cells significantly increased lymphangiogenesis and lymph node metastasis, whereas knockdown of LOXL2 suppressed both processes. In order to study the mechanisms of lymphangiogenesis progression, we performed further in vitro investigations and the data revealed that LOXL2 significantly enhanced lymphatic endothelial cells (LECs) invasion and tube formation through directly activation of the Akt-Snail and Erk pathways. Moreover, LOXL2 also stimulated fibroblasts to secrete high level of pro- lymphangiogenic factors VEGF-C and SDF-1α. Taken together, our study elucidates a novel function of tumor cell secreted LOXL2 in lymphangiogenesis and lymph node metastasis, demonstrating that LOXL2 serves as a promising target for anti-lymphangiogenesis and anti-metastasis therapies for breast cancer.
Collapse
Affiliation(s)
- Chunying Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siran Xu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), School of Life Sciences, Peking University, Beijing, China
| | - Yang Tian
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anji Ju
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaoyun Hou
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics; Beijing Key Laboratory for Protein Therapeutics; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|