1
|
Guo Y, Zhang B, Zhang H, Gao Y, Zhao H, Jiang P, Yu QQ. Pulmonary enteric adenocarcinoma with progression disease after second - line therapy: a case report. Front Oncol 2025; 15:1509026. [PMID: 39917173 PMCID: PMC11798808 DOI: 10.3389/fonc.2025.1509026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Pulmonary enteric adenocarcinoma (PEAC, also known as Enteric-type adenocarcinoma of the lung, lung - ETAC) is a rare subtype of non-small cell lung cancer (NSCLC) that has the same morphological and immunohistochemical characteristics as colorectal adenocarcinoma and requires gastroenteroscopy to rule out lesions of enteric origin. As a rare solid tumor in lung cancer, PEAC has unique clinical outcome, imaging, pathological and molecular characteristics, and poor prognosis. However, the molecular characteristics and therapeutic biomarkers of PEAC are unclear, and its treatment remains challenging. In this case, we describe a 61-year-old man diagnosed with advanced primary PEAC with KRAS mutation. In the case of unknown PD-L1 expression status, first-line treatment was given to lung adenocarcinoma regimen (immunotherapy combined with chemotherapy), progression occurred after 2 cycles, and progression-free survival (PFS) was 1.5 months. Then the second-line XELOX regimen (oxaliplatin combined with capecitabine) was adjusted. The lesions were significantly reduced after 2 and 4 cycles, and the disease progressed again after 6 cycles, with a PFS of 4.5 months. Anlotinib targeted drugs were selected for third-line treatment, but considering the overall poor condition of the patient, the patient himself refused further treatment. Finally, after discharge, the patient went to the local hospital for nutritional support and symptomatic treatment. The results suggest that standard first-line therapies (immunotherapy plus chemotherapy) and colorectal cancer regimens may have a relatively limited impact on survival in KRAS-driver positive advanced PEAC.
Collapse
Affiliation(s)
- Ya Guo
- Department of Oncology, Jining No.1 People’s Hospital, Jining, China
| | - Bin Zhang
- Department of Oncology, Jining No.1 People’s Hospital, Jining, China
| | - Heng Zhang
- Radiology Department, Jining No.1 People’s Hospital, Jining, China
| | - Yunbin Gao
- Department of Oncology, Jining No.1 People’s Hospital, Jining, China
| | - Haibo Zhao
- Department of Oncology, Jining No.1 People’s Hospital, Jining, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining No.1 People’s Hospital, Jining, China
| | - Qing-Qing Yu
- Translational Pharmaceutical Laboratory, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
2
|
Luo ZH, Luo XY, Luo XQ, Jin AF, Zeng QY. Case report: 18F-FDG PET/CT in pulmonary enteric adenocarcinoma. Front Oncol 2024; 14:1447453. [PMID: 39469650 PMCID: PMC11513299 DOI: 10.3389/fonc.2024.1447453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Pulmonary enteric adenocarcinoma (PEAC), an uncommon variant of lung cancer, presents significant diagnostic challenges due to its overlapping characteristics with colorectal adenocarcinomas. We present a case of a 55-year-old non-smoking female patient diagnosed with PEAC. The patient's initial symptoms included fever, cough, and sputum production, with air space consolidation on CT, leading to an initial diagnosis of pneumonia. Sputum culture after admission showed no growth of bacteria and fungi. Anti-inflammatory therapy was not ideal. Subsequent bronchoscopy with endobronchial ultrasound and biopsy confirmed the diagnosis of PEAC. Gastroscopy and colonoscopy yielded negative results, and a PET/CT scan revealed an FDG-avid lesion in the right middle lobe, with no other significant hypermetabolic gastrointestinal lesions, thereby excluding an extrapulmonary primary gastrointestinal malignancy. The patient was ultimately staged as PEAC (T4N1M0, stage IIIb). She declined anti-tumor therapy and experienced clinical deterioration during follow-up. This case report expands the radiological spectrum of PEAC, adds to the limited literature, and emphasizes the role of 18F-FDG PET/CT in diagnosing such diseases. It also underscores the importance of a multidisciplinary approach in the management of PEAC.
Collapse
Affiliation(s)
- Zhe-Huang Luo
- Department of Nuclear Medicine, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xiao-Yan Luo
- Clinical Laboratory, Jiangxi Provincial Children’s Hospital, Children's Hospital Affiliated to Nanchang Medical College, Nanchang, China
| | - Xiu-Qin Luo
- Cardio-Thoracic Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Ai-Fang Jin
- Department of Nuclear Medicine, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Qing-Yun Zeng
- Department of Nuclear Medicine, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
3
|
Malmros K, Lindholm A, Vidarsdottir H, Jirström K, Nodin B, Botling J, Mattsson JSM, Micke P, Planck M, Jönsson M, Staaf J, Brunnström H. Diagnostic gastrointestinal markers in primary lung cancer and pulmonary metastases. Virchows Arch 2024; 485:347-357. [PMID: 37349623 PMCID: PMC11329406 DOI: 10.1007/s00428-023-03583-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Histopathological diagnosis of pulmonary tumors is essential for treatment decisions. The distinction between primary lung adenocarcinoma and pulmonary metastasis from the gastrointestinal (GI) tract may be difficult. Therefore, we compared the diagnostic value of several immunohistochemical markers in pulmonary tumors. Tissue microarrays from 629 resected primary lung cancers and 422 resected pulmonary epithelial metastases from various sites (whereof 275 colorectal cancer) were investigated for the immunohistochemical expression of CDH17, GPA33, MUC2, MUC6, SATB2, and SMAD4, for comparison with CDX2, CK20, CK7, and TTF-1. The most sensitive markers for GI origin were GPA33 (positive in 98%, 60%, and 100% of pulmonary metastases from colorectal cancer, pancreatic cancer, and other GI adenocarcinomas, respectively), CDX2 (99/40/100%), and CDH17 (99/0/100%). In comparison, SATB2 and CK20 showed higher specificity, with expression in 5% and 10% of mucinous primary lung adenocarcinomas and both in 0% of TTF-1-negative non-mucinous primary lung adenocarcinomas (25-50% and 5-16%, respectively, for GPA33/CDX2/CDH17). MUC2 was negative in all primary lung cancers, but positive only in less than half of pulmonary metastases from mucinous adenocarcinomas from other organs. Combining six GI markers did not perfectly separate primary lung cancers from pulmonary metastases including subgroups such as mucinous adenocarcinomas or CK7-positive GI tract metastases. This comprehensive comparison suggests that CDH17, GPA33, and SATB2 may be used as equivalent alternatives to CDX2 and CK20. However, no single or combination of markers can categorically distinguish primary lung cancers from metastatic GI tract cancer.
Collapse
Affiliation(s)
- Karina Malmros
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, SE-221 00, Lund, Sweden
| | - Andreas Lindholm
- Department of Genetics and Pathology, Laboratory Medicine Region Skåne, SE-205 02, Malmö, Sweden
| | - Halla Vidarsdottir
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, SE-221 00, Lund, Sweden
- Department of Surgery, Landspitali University Hospital, Hringbraut, 101, Reykjavik, Iceland
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, SE-221 00, Lund, Sweden
- Department of Genetics and Pathology, Laboratory Medicine Region Skåne, SE-221 85, Lund, Sweden
| | - Björn Nodin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, SE-221 00, Lund, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University and Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Johanna S M Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University and Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University and Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Maria Planck
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-223 81, Lund, Sweden
- Division of Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University, SE-221 85, Lund, Sweden
| | - Mats Jönsson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-223 81, Lund, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE-223 81, Lund, Sweden
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, SE-223 81, Lund, Sweden
| | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, SE-221 00, Lund, Sweden.
- Department of Genetics and Pathology, Laboratory Medicine Region Skåne, SE-221 85, Lund, Sweden.
| |
Collapse
|
4
|
Liu J, Chang X, Qian L, Chen S, Xue Z, Wu J, Luo D, Huang B, Fan J, Guo T, Nie X. Proteomics-Derived Biomarker Panel Facilitates Distinguishing Primary Lung Adenocarcinomas With Intestinal or Mucinous Differentiation From Lung Metastatic Colorectal Cancer. Mol Cell Proteomics 2024; 23:100766. [PMID: 38608841 PMCID: PMC11092395 DOI: 10.1016/j.mcpro.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The diagnosis of primary lung adenocarcinomas with intestinal or mucinous differentiation (PAIM) remains challenging due to the overlapping histomorphological, immunohistochemical (IHC), and genetic characteristics with lung metastatic colorectal cancer (lmCRC). This study aimed to explore the protein biomarkers that could distinguish between PAIM and lmCRC. To uncover differences between the two diseases, we used tandem mass tagging-based shotgun proteomics to characterize proteomes of formalin-fixed, paraffin-embedded tumor samples of PAIM (n = 22) and lmCRC (n = 17).Then three machine learning algorithms, namely support vector machine (SVM), random forest, and the Least Absolute Shrinkage and Selection Operator, were utilized to select protein features with diagnostic significance. These candidate proteins were further validated in an independent cohort (PAIM, n = 11; lmCRC, n = 19) by IHC to confirm their diagnostic performance. In total, 105 proteins out of 7871 proteins were significantly dysregulated between PAIM and lmCRC samples and well-separated two groups by Uniform Manifold Approximation and Projection. The upregulated proteins in PAIM were involved in actin cytoskeleton organization, platelet degranulation, and regulation of leukocyte chemotaxis, while downregulated ones were involved in mitochondrial transmembrane transport, vasculature development, and stem cell proliferation. A set of ten candidate proteins (high-level expression in lmCRC: CDH17, ATP1B3, GLB1, OXNAD1, LYST, FABP1; high-level expression in PAIM: CK7 (an established marker), NARR, MLPH, S100A14) was ultimately selected to distinguish PAIM from lmCRC by machine learning algorithms. We further confirmed using IHC that the five protein biomarkers including CDH17, CK7, MLPH, FABP1 and NARR were effective biomarkers for distinguishing PAIM from lmCRC. Our study depicts PAIM-specific proteomic characteristics and demonstrates the potential utility of new protein biomarkers for the differential diagnosis of PAIM and lmCRC. These findings may contribute to improving the diagnostic accuracy and guide appropriate treatments for these patients.
Collapse
Affiliation(s)
- Jiaying Liu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liujia Qian
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Shuo Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangzhi Xue
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Junhua Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiannan Guo
- Center for ProtTalks, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Jacobsen F, Pushpadevan R, Viehweger F, Freytag M, Schlichter R, Gorbokon N, Büscheck F, Luebke AM, Putri D, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Fraune C, Bernreuther C, Lebok P, Sauter G, Minner S, Steurer S, Simon R, Burandt E, Dum D, Lutz F, Marx AH, Krech T, Clauditz TS. Cadherin-17 (CDH17) expression in human cancer: A tissue microarray study on 18,131 tumors. Pathol Res Pract 2024; 256:155175. [PMID: 38452580 DOI: 10.1016/j.prp.2024.155175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Cadherin-17 (CDH17) is a membranous cell adhesion protein predominantly expressed in intestinal epithelial cells. CDH17 is therefore considered a possible diagnostic and therapeutic target. This study was to comprehensively determine the expression of CDH17 in cancer and to further assess the diagnostic utility of CDH17 immunohistochemistry (IHC). A tissue microarray containing 14,948 interpretable samples from 150 different tumor types and subtypes as well as 76 different normal tissue types was analyzed by IHC. In normal tissues, a membranous CDH17 staining was predominantly seen in the epithelium of the intestine and pancreatic excretory ducts. In tumors, 53 of 150 analyzed categories showed CDH17 positivity including 26 categories with at least one strongly positive case. CDH17 positivity was most common in epithelial and neuroendocrine colorectal neoplasms (50.0%-100%), other gastrointestinal adenocarcinomas (42.7%-61.6%), mucinous ovarian cancer (61.1%), pancreatic acinar cell carcinoma (28.6%), cervical adenocarcinoma (52.6%), bilio-pancreatic adenocarcinomas (40.5-69.8%), and other neuroendocrine neoplasms (5.6%-100%). OnIy 9.9% of 182 pulmonary adenocarcinomas were CDH17 positive. In colorectal adenocarcinomas, reduced CDH17 staining was linked to high pT (p = 0.0147), nodal metastasis (p = 0.0041), V1 (p = 0.0025), L1 (p = 0.0054), location in the right colon (p = 0.0033), and microsatellite instability (p < 0.0001). The CDH17 expression level was unrelated to tumor phenotype in gastric and pancreatic cancer. In summary, our comprehensive overview on CDH17 expression in human tumors identified various tumor entities that might often benefit from anti-CDH17 therapies and suggest utility of CDH17 IHC for the distinction of metastatic gastrointestinal or bilio-pancreatic adenocarcinomas (often positive) from primary pulmonary adenocarcinomas (mostly negative).
Collapse
Affiliation(s)
- Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramesh Pushpadevan
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Morton Freytag
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Devita Putri
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Kishikawa S, Hayashi T, Takamochi K, Ura A, Sasahara N, Saito T, Suzuki K, Yao T. Frequent nuclear β-catenin expression in pulmonary enteric-type adenocarcinoma according to the current World Health Organization criteria. Virchows Arch 2023; 483:699-703. [PMID: 37740071 DOI: 10.1007/s00428-023-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Based on the current World Health Organization classification criteria, five of 3895 consecutive cases of surgically resected primary lung carcinomas (0.13%) categorized as enteric-type were analyzed. Three cases completely comprised tumor cells that resemble colorectal adenocarcinoma, while the other two cases exhibited features of conventional adenocarcinomas admixed with enteric components. Immunohistochemically, all patients expressed at least three of the five intestinal markers: CDX2, CK20, HNF4α, MUC2, and SATB2. None of the patients expressed TTF-1 and NKX3.1. Three cases showed nuclear accumulation of β-catenin, indicating activation of the Wnt/β-catenin signaling pathway; APC mutations were detected in one of these cases. TP53 mutations were detected in three cases. Mutated EGFR or ALK fusions were not detected. Our study demonstrates that pulmonary enteric-type adenocarcinomas share immunohistochemical features and genetic alterations with colorectal adenocarcinomas, which are characterized by frequent activation of the Wnt/β-catenin signaling pathway and a lack of actionable mutations.
Collapse
Affiliation(s)
- Satsuki Kishikawa
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Graduate School of Medicine, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ayako Ura
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Noriko Sasahara
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Takashi Yao
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| |
Collapse
|
7
|
Fassi E, Mandruzzato M, Zamparini M, Bianchi S, Petrelli F, Baggi A, Alberti A, Grisanti S, Berruti A. Clinical presentation and outcome of patients with enteric-type adenocarcinoma of the lung: A pooled analysis of published cases. Lung Cancer 2023; 179:107176. [PMID: 37015149 DOI: 10.1016/j.lungcan.2023.107176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Enteric-type adenocarcinoma of the lung (lung-ETAC, former pulmonary enteric adenocarcinoma, PEAC) is a rare subtype of non-small cell lung cancer (NSCLC), which shares morphological and immunohistochemical features with lung and colorectal adenocarcinoma. Few data are available on patient prognosis, possible prognostic factors and systemic approach to metastatic disease. We performed a pooled analysis and a systematic review of published lung-ETAC, along with an additional case description. Thirty-one eligible publications were identified, providing data from 126 patients. In the 127 patients overall analyzed, median overall survival (OS) was 56.0 (range 36.7-75.3) months in early-stage patients and 14.0 (range 4.5-23.5) months in those with advanced/metastatic disease. Median disease-free survival (DFS) after radical surgery was 24 (range 22.6-35.1) months. Smoking status (HR 4.304, 95% CI: 1.261-14.693, p = 0.020) and node involvement (HR 1.853, 95% CI: 1.179-2.911, p = 0.007) were the negative independent prognostic factors at multivariate analysis. As regards systemic therapies for advanced cases, no firm conclusions were drawn about the efficacy of lung cancer-oriented chemotherapy regimens as opposed to colon cancer-oriented ones. Molecular analysis of lung-ETAC revealed a relatively high mutational rate, with alterations in several druggable molecular pathways, KRAS and NRAS (31%) were the most frequently mutated oncogenes, followed by ROS1 (15%), RET (13%), BRAF (11%), EGFR (8%) and ALK (6%). Moreover, 3 (15%) out of 20 cases showed DNA mismatch repair deficiency (dMMR). In conclusion, advanced lung-ETAC patients appeared to have a better prognosis compared to other subtypes of NSCLC. Moreover, the mutational rate and microsatellite instability found in lung-ETACs suggest that a significant proportion of these patients could benefit from target therapies and immunotherapy.
Collapse
Affiliation(s)
- Elena Fassi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia. ASST Spedali Civili, Brescia, Italy
| | - Marcella Mandruzzato
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia. ASST Spedali Civili, Brescia, Italy
| | - Manuel Zamparini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia. ASST Spedali Civili, Brescia, Italy
| | - Susanna Bianchi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia. ASST Spedali Civili, Brescia, Italy
| | | | - Alice Baggi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia. ASST Spedali Civili, Brescia, Italy
| | - Andrea Alberti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia. ASST Spedali Civili, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia. ASST Spedali Civili, Brescia, Italy.
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia. ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
8
|
Lu Y, Chai Y, Qiu J, Zhang J, Wu M, Fu Z, Wang Y, Qin C. Integrated omics analysis reveals the epigenetic mechanism of visceral hypersensitivity in IBS-D. Front Pharmacol 2023; 14:1062630. [PMID: 37007011 PMCID: PMC10064328 DOI: 10.3389/fphar.2023.1062630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Background and objective: IBS-D is a common functional bowel disease with complex etiology and without biomarker. The pathological and physiological basis of IBS-D focuses on visceral hypersensitivity. However, its epigenetic mechanism remains elusive. Our study aimed to integrate the relationship between differentially expressed miRNAs, mRNAs and proteins in IBS-D patients in order to reveal epigenetic mechanism of visceral hypersensitivity from transcription and protein levels and provide the molecular basis for discovering biomarkers of IBS-D.Methods: The intestinal biopsies from IBS-D patients and healthy volunteers were obtained for high-throughput sequencing of miRNAs and mRNAs. The differential miRNAs were selected and verified by q-PCR experiment followed by target mRNA prediction. Biological functions were respectively analyzed for target mRNAs, differential mRNAs and the previously identified differential proteins in order to explore the characteristic involved visceral hypersensitivity. At last, interaction analysis of miRNAs, mRNAs and proteins was performed for the epigenetic regulation mechanism from transcription and protein levels.Results: Thirty-three miRNAs were found to be differentially expressed in IBS-D and five of them were further confirmed, including upregulated hsa-miR-641, hsa-miR-1843, hsa-let-7d-3p and downregulated hsa-miR-219a-5p, hsa-miR-19b-1-5p. In addition, 3,812 differential mRNAs were identified. Thirty intersecting molecules were found from the analysis on the target mRNAs of miRNAs and mRNAs. Fourteen intersecting molecules were obtained from the analysis on the target mRNAs and proteins, and thirty-six intersecting molecules were identified from analysis on the proteins and different mRNAs. According to the integrated analysis of miRNA-mRNA-protein, we noticed two new molecules COPS2 regulated by hsa-miR-19b-1-5p and MARCKS regulated by hsa-miR-641. Meanwhile some critical signaling pathways in IBS-D were found such as MAPK, GABAergic synapse, Glutamatergic synapse, and Adherens junction.Conclusion: The expressions of hsa-miR-641, hsa-miR-1843, hsa-let-7d-3p, hsa-miR-219a-5p, and hsa-miR-19b-1-5p in the intestinal tissues of IBS-D patients were significantly different. Moreover, they could regulate a variety of molecules and signaling pathways, which were involved in the multifaceted and multilevel mechanism of visceral hypersensitivity of IBS-D.
Collapse
Affiliation(s)
- Yaoyao Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuna Chai
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| | - Jianli Qiu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingmin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Menglin Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Fu
- Department of General Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongfu Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| | - Chongzhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| |
Collapse
|
9
|
Liu Y, Lu T, Yuan M, Chen R, Lu J, Wang H, Wu Z, Wang Y. Genomic and transcriptomic insights into the precision treatment of pulmonary enteric adenocarcinoma. Lung Cancer 2023; 179:107169. [PMID: 37003209 DOI: 10.1016/j.lungcan.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Pulmonary enteric adenocarcinoma (PEAC) is a rare subtype of lung adenocarcinoma. More investigations about precision therapy in PEAC were required to improve the prognosis. METHODS Twenty-four patients with PEAC were enrolled in this study. Tumor tissue samples were available from 17 patients for both DNA and RNA based next-generation sequencing, PD-L1 IHC staining and PCR-based microsatellite instability (MSI) analysis. RESULTS TP53 (70.6%) and KRAS (47.1%) were the most frequently mutated genes in PEAC. For KRAS mutations, the prevalence of G12D (37.5%) and G12V (37.5%) was higher than G12A (12.5%) and G12C (12.5%). Actionable mutations in receptor tyrosine kinase (including one EGFR and two ALK mutations), PI3K/mTOR, RAS/RAF/MEK, homologous recombination repair (HRR) and cell cycle signaling pathways were identified in 94.1% of patients with PEAC. While PD-L1 expression was observed in 17.6% (3/17) patients, no MSI-H patients were identified. Transcriptomic data showed that two patients with positive PD-L1 expression had relatively high immune infiltration. In addition, prolonged survival was obtained with the treatment of osimertinib, ensartinib, and immunotherapy combined with chemotherapy in two EGFR-mutated, one ALK-rearranged, and one PD-L1 expressed patients, respectively. CONCLUSION PEAC is a disease of genetic heterogeneity. The administration of EGFR and ALK inhibitors was effective in patients with PEAC. PD-L1 expression and KRAS mutation type may be used as predictive biomarkers for immunotherapy in PEAC. This study provided both theoretical basis and clinical evidence for PEAC.
Collapse
|
10
|
Xu X, Chen D, Wu X, Wang Q. A pulmonary enteric adenocarcinoma patient harboring a rare EGFR exon 19 P753S mutation: Case report and review. Front Oncol 2022; 12:988625. [PMID: 36212391 PMCID: PMC9538506 DOI: 10.3389/fonc.2022.988625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Pulmonary enteric adenocarcinoma (PEAC) is a rare subtype of non–small cell lung cancer (NSCLC), accounting for about 0.6% of all primary lung adenocarcinoma. Although epidermal growth factor receptor (EGFR) mutation is common in primary lung adenocarcinoma, it is rarely reported in PEAC. This case report describes a PEAC patient with co-mutations of EGFR, Kirsten rat sarcoma viral oncogene (KRAS), and TP53, being treated with immunotherapy combined with chemotherapy. A 69-year-old man complained of cough and expectoration with bloody sputum for 2 weeks. The lung-enhanced CT scan showed a massive soft tissue shadow, about 46 × 35 mm in the lower lobe of the right lung. The neoplasm sample in the lower lobe of the right lung was obtained using CT-guided fine-needle aspiration (FNA). Immunohistochemical assays showed that the tumor was positive for CK7, CDX-2, C-MET, and villin. Gastroscopy and rectal colonoscopy had been performed respectively to exclude a diagnosis of colorectal adenocarcinoma. The patient was finally diagnosed with pulmonary intestinal adenocarcinoma. Next-generation sequencing (NGS) analysis showed a rare EGFR exon 19 missense mutation (c.2257C>T, p.P753S), KRAS exon 2 missense mutation (c.35G>T, p.G12V), and TP53 exon 5 missense mutation (c.401T>C, p.F134S). The lung-enhanced CT scan showed that the tumor shrank after four cycles of chemotherapy combined with immunotherapy. We hope that this case report can increase the understanding of this rare type of tumor and provide new molecular indications for diagnosis and individualized treatment. Furthermore, the combination of chemotherapy and immunotherapy seems to be an effective therapy for PEAC. Whether the use of immunotherapy can provide clinical benefits needs to be further explored with more samples in future studies.
Collapse
Affiliation(s)
- Xiaohu Xu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Chen
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qi Wang,
| |
Collapse
|
11
|
Dum D, Lennartz M, Menz A, Kluth M, Hube-Magg C, Weidemann S, Fraune C, Luebke AM, Hornsteiner L, Bernreuther C, Simon R, Clauditz TS, Sauter G, Uhlig R, Hinsch A, Kind S, Jacobsen F, Möller K, Wilczak W, Steurer S, Minner S, Burandt E, Marx AH, Krech T, Lebok P. Villin expression in human tumours: a tissue microarray study on 14,398 tumours. Expert Rev Mol Diagn 2022; 22:665-675. [PMID: 35866621 DOI: 10.1080/14737159.2022.2104122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Villin is a protein of the brush border of epithelial cells which is used as an immunohistochemical marker for colorectal and gastrointestinal neoplasms. However, other tumor entities can also express villin. METHODS To comprehensively determine villin expression, tissue microarrays containing 14,398 samples from 118 different tumor types as well as 608 samples of 76 different normal tissues were analyzed by immunohistochemistry. RESULTS Villin was found in 54 of 118 tumor categories, including 36 tumor categories with strong staining. Villin expression was frequent in colorectal, upper gastrointestinal tract, pancreatobiliary, and renal tumors as well as in mucinous ovarian cancers, yolk sac tumors and in neuroendocrine neoplasms. Reduced villin expression was linked to advanced pT stage, lymph vessel invasion and microsatellite instability (p≤0.0006) in colorectal adenocarcinoma. In summary, our data demonstrate that villin expression is most common in gastrointestinal, pancreatobiliary, and neuroendocrine neoplasms, yolk sac tumors and mucinous ovarian cancers. CONCLUSION Our data support a high utility of villin immunohistochemistry for the identification of tumors with gastrointestinal, pancreatobiliary, and yolk sac tumor origin. However, considering that at least a weak villin positivity in some tumor cells occurred in 54 different tumor categories, villin immunohistochemistry should be applied as a part of a marker panel rather than as a stand-alone marker.
Collapse
Affiliation(s)
- David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Hornsteiner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| |
Collapse
|
12
|
Zhang Z, Xiahou Z, Wu W, Song Y. Nitrogen Metabolism Disorder Accelerates Occurrence and Development of Lung Adenocarcinoma: A Bioinformatic Analysis and In Vitro Experiments. Front Oncol 2022; 12:916777. [PMID: 35903696 PMCID: PMC9315097 DOI: 10.3389/fonc.2022.916777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Nitrogen metabolism (NM) plays a pivotal role in immune regulation and the occurrence and development of cancers. The aim of this study was to construct a prognostic model and nomogram using NM-related genes for the evaluation of patients with lung adenocarcinoma (LUAD). Methods The differentially expressed genes (DEGs) related to NM were acquired from The Cancer Genome Atlas (TCGA) database. Consistent clustering analysis was used to divide them into different modules, and differentially expressed genes and survival analysis were performed. The survival information of patients was combined with the expressing levels of NM-related genes that extracted from TCGA and Gene Expression Omnibus (GEO) databases. Subsequently, univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) regression were used to build a prognostic model. GO and KEGG analysis were elaborated in relation with the mechanisms of NM disorder (NMD). Meanwhile, immune cells and immune functions related to NMD were discussed. A nomogram was built according to the univariate and multivariate Cox analysis to identify independent risk factors. Finally, real-time fluorescent quantitative PCR (RT-PCR) and Western bolt (WB) were used to verify the expression level of hub genes. Results There were 138 differential NM-related genes that were divided into two gene modules. Sixteen NM-related genes were used to build a prognostic model and the receiver operating characteristic curve (ROC) showed that the efficiency was reliable. GO and KEGG analysis suggested that NMD accelerated development of LUAD through the Wnt signaling pathway. The level of activated dendritic cells (aDCs) and type II interferon response in the low-risk group was higher than that of the high-risk group. A nomogram was constructed based on ABCC2, HMGA2, and TN stages, which was identified as four independent risk factors. Finally, RT-PCR and WB showed that CDH17, IGF2BP1, IGFBP1, ABCC2, and HMGA2 were differently expressed between human lung fibroblast (HLF) cells and cancer cells. Conclusions High NM levels were revealed as a poor prognosis of LUAD. NMD regulates immune system through affecting aDCs and type II interferon response. The prognostic model with NM-related genes could be used to effectively evaluate the outcomes of patients.
Collapse
Affiliation(s)
- Zexin Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Wenfeng Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- *Correspondence: Yafeng Song,
| |
Collapse
|
13
|
Xie M, Chen D, Li Y, Liu X, Kuang D, Li X. Genetic mutation profiles and immune microenvironment analysis of pulmonary enteric adenocarcinoma. Diagn Pathol 2022; 17:30. [PMID: 35172862 PMCID: PMC8849039 DOI: 10.1186/s13000-022-01206-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/25/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pulmonary enteric adenocarcinoma (PEAC) has distinctive clinical outcomes, radiographic, pathological and molecular characteristics. The prognosis of patients with PEAC was poor. However, molecular profiles and therapeutic biomarkers of PEAC remain elusive. METHODS In the present study, the hospitalized patients with PEAC admitted to Tongji Hospital in Wuhan from January 1, 2014 to November 20, 2020 were retrospectively enrolled and followed until December 10, 2020. Comprehensive genomic profiling of tumor tissue from the PEAC patients were performed and compared with lung adenocarcinoma, colorectal cancer and metastatic colorectal carcinoma. Tumor immune microenvironment analysis were evaluated. RESULTS There were 10 patients with PEAC enrolled. 70% of patients were male and the median age of onset was 63 years (interquartile range, 55-72). There were six early-stage patients (Stage IA to IIB) and four stage IV patients. Molecular analysis revealed the most common gene mutations included TP53 (57%, 4/7) and KRAS (57%, 4/7) mutations. There were 40% mutations occurred in genes encoding receptor tyrosine kinases (RTKs). 100% of patients (8/8) were microsatellite stability (MSS). The median level of TMB was 6.0 (interquartile range, 4.5-7.0) mutations/Mb. Three of 10 patients showed low PD-L1 expression (tumor proportion score < 10%) and the others were PD-L1 negative. A small subset of CD8+, CD3+, CD68+ T cells were observed and were mainly distributed in the cancer stroma. CONCLUSION This study demonstrated that PEAC was characterized by low-frequency RTK gene mutation, high KRAS mutation, low PD-L1 expression, low TMB, and low CD8+ T cells infiltration.
Collapse
Affiliation(s)
- Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dong Chen
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dong Kuang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
14
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
15
|
Janjua KA, Shahzad R, Shehzad A. Development of Novel Cancer Biomarkers for Diagnosis and Prognosis. CANCER BIOMARKERS IN DIAGNOSIS AND THERAPEUTICS 2022:277-343. [DOI: 10.1007/978-981-16-5759-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Inoue H, Matsushima J, Kobayashi S, Sairenchi T, Hirata H, Chida M, Ota S, Ban S, Matsumura Y. Expression of nSATB2 in Neuroendocrine Carcinomas of the Lung: Frequent Immunopositivity of Large Cell Neuroendocrine Carcinoma with a Diagnostic Pitfall. Int J Surg Pathol 2021; 30:151-159. [PMID: 34913369 DOI: 10.1177/10668969211065757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Small cell lung carcinoma (SCLC) and pulmonary large cell neuroendocrine carcinoma (LCNEC) are both classified as lung neuroendocrine carcinoma (NEC). It has recently been reported that the special AT-rich sequence-binding protein 2 (STAB2), known as a colorectal cancer marker, is also expressed in NECs occurring in various organs including the lung. However, few studies have examined any differences of SATB2 immunopositivity between SCLC and LCNEC. We investigated SATB2 expression in 45 SCLC and 14 LCNEC cases using immunohistochemistry as well as the expression of caudal-type homeobox 2 (CDX2) and keratin (KRT) 20. The LCNEC cases were more frequently positive for SATB2 (ten out of 14, 71%) than the SCLC ones (seventeen out of 45, 38%) with a statistically significance (P = 0.035). Furthermore, two LCNEC cases were positive for CDX2 while no positive findings were observed for any SCLC cases, the difference of which, however, was not statistically significant (P = 0.053). KRT20 was negative in all LCNEC and SCLC cases. These results require our attention when we use SATB2 and CDX2 as colorectal cancer markers because their expression in pulmonary NECs can lead to a misdiagnosis that the tumor is of metastatic colorectal adenocarcinoma, especially when the patient has a past history of colorectal cancer. Analyzing the relationship between the demographic/clinical variables and the SATB2 expression in the SCLC cases, just high Brinkman index (≥ 600) was significantly related to the positivity of SATB2 (P = 0.017), which is interesting considering the strong relationship between SCLC and smoking.
Collapse
Affiliation(s)
- Hiromichi Inoue
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Jun Matsushima
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Satoru Kobayashi
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | | | - Hirokuni Hirata
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | | | - Satoshi Ota
- 37009Teine Keijinkai Hospital, Sapporo, Japan
| | - Shinichi Ban
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Yuji Matsumura
- 26263Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| |
Collapse
|
17
|
Gong J, Fan Y, Lu H. Pulmonary enteric adenocarcinoma. Transl Oncol 2021; 14:101123. [PMID: 34000642 PMCID: PMC8141771 DOI: 10.1016/j.tranon.2021.101123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/22/2022] Open
Abstract
Synthetically expounded the clinical characteristics of PEAC. Systematically described the differentiation of PEAC from primary lung adenocarcinoma and MCRC. Found patients with PEAC may have high frequencies of HER2 and MMR mutations. Proposed a new conjecture that patients with PEAC might benefit from anti-HER2 therapy and immune checkpoint inhibitors.
Pulmonary enteric adenocarcinoma (PEAC) is an exceptionally rare subtype of non–small cell lung cancer (NSCLC). It is characterized by pathological features similar to those of colorectal adenocarcinoma. Most patients with PEAC have almost no special clinical manifestations, and it is often difficult to differentiate from metastatic colorectal adenocarcinoma (MCRC). As a special type of lung adenocarcinoma, PEAC has unique mutation expression and immune characteristics; its mutation profile shows higher Kirsten rat sarcoma viral oncogene (KRAS), human epidermal growth factor receptor-2 (HER2) , DNA mismatch repair(MMR) mutation rates, and much lower epidermal growth factor receptor (EGFR) rate. So in the future, targeted therapy may tend to be a new light in the treatment of PEAC. As for immunohistochemistry (IHC), CDX-2, villin, and CK7 are significantly positive in PEAC. This review focuses on the pathologic features, immunohistochemical examination, mutation analysis, diagnosis, treatment, and prognosis of PEAC.
Collapse
Affiliation(s)
- Jiali Gong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, 310022, PR China
| | - Ying Fan
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, 310022, PR China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hongyang Lu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, PR China; Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, 310022, PR China.
| |
Collapse
|
18
|
Weidemann S, Böhle JL, Contreras H, Luebke AM, Kluth M, Büscheck F, Hube-Magg C, Höflmayer D, Möller K, Fraune C, Bernreuther C, Rink M, Simon R, Menz A, Hinsch A, Lebok P, Clauditz T, Sauter G, Uhlig R, Wilczak W, Steurer S, Burandt E, Krech R, Dum D, Krech T, Marx A, Minner S. Napsin A Expression in Human Tumors and Normal Tissues. Pathol Oncol Res 2021; 27:613099. [PMID: 34257582 PMCID: PMC8262149 DOI: 10.3389/pore.2021.613099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/26/2021] [Indexed: 11/25/2022]
Abstract
Background: Novel aspartic proteinase of the pepsin family A (Napsin A, TAO1/TAO2) is a functional aspartic proteinase which is involved in the maturation of prosurfactant protein B in type II pneumocytes and the lysosomal protein catabolism in renal cells. Napsin A is highly expressed in adenocarcinomas of the lung and is thus commonly used to affirm this diagnosis. However, studies have shown that other tumors can also express Napsin A. Methods: To comprehensively determine Napsin A expression in normal and tumor tissue, 11,957 samples from 115 different tumor types and subtypes as well as 500 samples of 76 different normal tissue types were evaluable by immunohistochemistry on tissue microarrays. Results: Napsin A expression was present in 16 different tumor types. Adenocarcinoma of the lung (85.6%), clear cell adenocarcinoma of the ovary (71.7%), clear cell adenocarcinoma of the endometrium (42.8%), papillary renal cell carcinoma (40.2%), clear cell (tubulo) papillary renal cell carcinoma (16.7%), endometrial serous carcinoma (9.3%), papillary thyroid carcinoma (9.3%) and clear cell renal cell carcinoma (8.2%) were among the tumors with the highest prevalence of Napsin A positivity. In papillary and clear cell renal cell carcinoma, reduced Napsin A expression was linked to adverse clinic-pathological features (p ≤ 0.03). Conclusion: This methodical approach enabled us to identify a ranking order of tumors according to their relative prevalence of Napsin A expression. The data also show that loss of Napsin A is linked to tumor dedifferentiation in renal cell carcinomas.
Collapse
Affiliation(s)
- Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Lukas Böhle
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrina Contreras
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
De Michele S, Remotti HE, Del Portillo A, Lagana SM, Szabolcs M, Saqi A. SATB2 in Neoplasms of Lung, Pancreatobiliary, and Gastrointestinal Origins. Am J Clin Pathol 2021; 155:124-132. [PMID: 32914850 DOI: 10.1093/ajcp/aqaa118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Special AT-rich binding protein 2 (SATB2) immunohistochemistry (IHC) has high sensitivity and specificity for colorectal adenocarcinoma (CRC), but data on its expression in specific subsets of pulmonary, gastric, small bowel, and pancreatobiliary adenocarcinomas (ADCAs) are relatively limited or discordant. We assessed SATB2 expression in a large cohort of ADCAs from these sites to determine its reliability in distinguishing CRC from them. METHODS SATB2 IHC was performed on 335 neoplasms, including 40 lung ADCAs, 165 pancreatobiliary neoplasms (34 intraductal papillary mucinous neoplasms [IPMNs], 19 pancreatic ADCAs, 112 cholangiocarcinomas [CCs]), and 35 gastric, 13 small bowel, 36 ampullary (AMP), and 46 CRC ADCAs. The cases were evaluated for positivity (defined as ≥5% nuclear staining), and an H-score was calculated based on the percentage of SATB2+ cells and staining intensity. Analysis was performed to determine the optimal H-score threshold to separate CRC and non-CRC. RESULTS SATB2 was positive in 3% of lung, 2% of CC, 17% of gastric, 38% of small bowel, and 6% of AMP ADCAs. All pancreatic ADCA/IPMNs were negative, and 87% CRCs were positive. CONCLUSIONS SATB2 is not entirely specific for colorectal origin and can be expressed in a subset of gastrointestinal ADCAs. It is most useful in the differential of CRC vs lung and pancreatobiliary ADCAs.
Collapse
Affiliation(s)
- Simona De Michele
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| | - Helen E Remotti
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| | - Armando Del Portillo
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| | - Stephen M Lagana
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| | - Matthias Szabolcs
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| | - Anjali Saqi
- Department of Pathology and Cell Biology at Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
20
|
Abouelkhair MB, Mabrouk SH, Zaki SSA, Nada OH, Hakim SA. The Diagnostic Value of Cadherin 17 and CDX2 Expression as Immunohistochemical Markers in Colorectal Adenocarcinoma. J Gastrointest Cancer 2020; 52:960-969. [PMID: 32929682 DOI: 10.1007/s12029-020-00513-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Colorectal cancer is a major cause of morbidity and mortality throughout the world. Although the diagnosis of colorectal cancer is straightforward in primary site, yet it may represent a diagnostic problem in metastatic tumor of unknown primary origin. Hence, immunohistochemical analysis in combination with morphologic assessment and correlation with clinical data becomes crucial, because it is important to specify the primary site of metastasis since some specific tumor types may respond well to targeted molecular therapies. Therefore, establishment of reliable diagnostic markers that confirm or rule out colorectal origin is mandatory. AIM To study the expression of cadherin 17 and CDX2 in colorectal carcinoma and to evaluate their diagnostic roles in identifying metastatic colonic from non-colonic adenocarcinomas in cancer of unknown primary site. DESIGN AND METHODS This retrospective study included 65 cases of adenocarcinomas: 35 cases of colorectal adenocarcinoma (primary or metastatic) and 30 cases of non-colorectal adenocarcinoma. They were retrieved from the archives of Pathology Department of Ain Shams University and Ain Shams University Specialized Hospitals during the period from 2010 to 2015. Immunohistochemical study was performed using cadherin 17 and CDX2 antibodies. RESULTS The sensitivity and specificity of CDX2 and cadherin 17 are 97.1% and 53.3% and 100% and 50% in detecting colonic adenocarcinoma respectively. The PPV, NPV, and overall accuracy of CDX2 versus cadherin 17 were 70.8%, 94.1%, and 76.9% versus 70%, 100%, and 76.9% respectively. CONCLUSION Cadherin 17 is a more sensitive marker than CDX2 in diagnosis of carcinoma of unknown primary site especially when colorectal carcinoma is suspected.
Collapse
Affiliation(s)
- Mariam B Abouelkhair
- Department of Pathology, Faculty of Medicine, Ain Shams University, Abbasseya Square, Cairo, 11561, Egypt
| | - Shadia H Mabrouk
- Department of Pathology, Faculty of Medicine, Ain Shams University, Abbasseya Square, Cairo, 11561, Egypt
| | - Sahar S A Zaki
- Department of Pathology, Faculty of Medicine, Ain Shams University, Abbasseya Square, Cairo, 11561, Egypt
| | - Ola H Nada
- Department of Pathology, Faculty of Medicine, Ain Shams University, Abbasseya Square, Cairo, 11561, Egypt
| | - Sarah A Hakim
- Department of Pathology, Faculty of Medicine, Ain Shams University, Abbasseya Square, Cairo, 11561, Egypt.
| |
Collapse
|
21
|
Abstract
Pulmonary enteric adenocarcinoma (PEAC) is an extremely rare type of non-small cell lung cancer (NSCLC) with a histologic pattern that mimics metastatic colorectal cancer (MCC). The main clinical symptoms in PEAC patients are dyspnoea, coughing, hemoptysis, and chest and back pain. The first article about PEAC appeared in 1991 in the form of a case report. As a variant of invasive lung carcinoma, only a small number of case reports and clinical research studies have been carried out, and the only one guidance on diagnosis and treatment is the WHO Tumor Classification book. It is important for doctors to distinguish PEAC from MCC to extend survival time and improve the quality of life. We reviewed the existing literature regarding the diagnosis, treatment, and prognosis of PEAC to provide some valuable clinical references.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Cao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Palmirotta R, Lovero D, D'Oronzo S, Todisco A, Internò V, Mele F, Stucci LS, Silvestris F. Pulmonary enteric adenocarcinoma: an overview. Expert Rev Mol Med 2020; 22:e1. [PMID: 32340641 DOI: 10.1017/erm.2020.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Most commonly described as sporadic, pulmonary adenocarcinoma with enteric differentiation (PAED) is a rare variant of invasive lung cancer recently established and recognised by the World Health Organization. This tumour is highly heterogeneous and shares several morphological features with pulmonary and colorectal adenocarcinomas. Our objective is to summarise current research on PAED, focusing on its immunohistochemical and molecular features as potential tools for differential diagnosis from colorectal cancer, as well as prognosis definition and therapeutic choice. PAED exhibits an 'entero-like' pathological morphology in more than half cases, expressing at least one of the typical immunohistochemical markers of enteric differentiation, namely CDX2, CK20 or MUC2. For this reason, this malignancy appears often indistinguishable from a colorectal cancer metastasis, making the differential diagnosis laborious. Although standard diagnostic criteria have not been established yet, in the past few years, a number of approaches have been addressed, aimed at defining specific immunohistochemical and molecular signatures. Based on previously published literature, we have collected and analysed molecular and immunohistochemical data on this rare neoplasm, and have described the state of the art on diagnostic criteria as well as major clinical and therapeutic implications.The analysis of data from 295 patients from 58 published articles allowed us to identify the most represented immunohistochemical and molecular markers, as well as major differences between Asian PAEDs and those diagnosed in European/North American countries. The innovative molecular approaches, exploring driver mutations or new gene alterations, could help to identify rare prognostic factors and guide future tailored therapeutic approaches to this rare neoplasm.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.zza G. Cesare, 11 - 70124Bari, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.zza G. Cesare, 11 - 70124Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.zza G. Cesare, 11 - 70124Bari, Italy
- IRCCS-Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco, 65, 70124Bari, Italy
| | - Annalisa Todisco
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.zza G. Cesare, 11 - 70124Bari, Italy
| | - Valeria Internò
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.zza G. Cesare, 11 - 70124Bari, Italy
| | - Fabio Mele
- IRCCS-Istituto Tumori 'Giovanni Paolo II', Viale Orazio Flacco, 65, 70124Bari, Italy
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.zza G. Cesare, 11 - 70124Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.zza G. Cesare, 11 - 70124Bari, Italy
| |
Collapse
|
23
|
Oh HH, Joo YE. Novel biomarkers for the diagnosis and prognosis of colorectal cancer. Intest Res 2020; 18:168-183. [PMID: 31766836 PMCID: PMC7206347 DOI: 10.5217/ir.2019.00080] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is among the most common malignancies and remains a major cause of cancer-related death worldwide. Despite recent advances in surgical and multimodal therapies, the overall survival of advanced CRC patients remains very low. Cancer progression, including invasion and metastasis, is a major cause of death among CRC patients. The underlying mechanisms of action resulting in cancer progression are beginning to unravel. The reported molecular and biochemical mechanisms that might contribute to the phenotypic changes in favor of carcinogenesis include apoptosis inhibition, enhanced tumor cell proliferation, increased invasiveness, cell adhesion perturbations, angiogenesis promotion, and immune surveillance inhibition. These events may contribute to the development and progression of cancer. A biomarker is a molecule that can be detected in tissue, blood, or stool samples to allow the identification of pathological conditions such as cancer. Thus, it would be beneficial to identify reliable and practical molecular biomarkers that aid in the diagnostic and therapeutic processes of CRC. Recent research has targeted the development of biomarkers that aid in the early diagnosis and prognostic stratification of CRC. Despite that, the identification of diagnostic, prognostic, and/or predictive biomarkers remains challenging, and previously identified biomarkers might be insufficient to be clinically applicable or offer high patient acceptability. Here, we discuss recent advances in the development of molecular biomarkers for their potential usefulness in early and less-invasive diagnosis, treatment, and follow-up of CRC.
Collapse
Affiliation(s)
- Hyung-Hoon Oh
- Department of Internal Medicine, 3rd Fleet Medical Corps, Republic of Korea Navy, Yeongam, Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
24
|
Naik R, Galande S. SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2019; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Rutika Naik
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
25
|
Ma L, Wolkow N, Jakobiec FA. Choroidal Mucinous Metastatic Adenocarcinoma from the Colon: A Diagnostic Challenge. Ocul Oncol Pathol 2019; 5:66-74. [PMID: 30675480 DOI: 10.1159/000487598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/06/2018] [Indexed: 01/19/2023] Open
Abstract
An enucleated globe was submitted from an outside hospital to the Ophthalmic Pathology Laboratory for evaluation. There was a minimal amount of accompanying clinical history. Histopathologic examination revealed a mucinous adenocarcinoma of the choroid. The determination of the origin of the tumor proved to be challenging based on the lack of a definitive systemic diagnosis. Initial suspicions that the tumor may represent a breast carcinoma were disproved when immunohistochemical biomarkers for breast carcinoma were negative. Similarly, typical markers of colon adenocarcinoma were not expressed. Positive immunostaining with a newer immunohistochemical marker, SATB2, and defects in DNA mismatch repair helped to confirm that the ocular metastasis was of colonic origin. Further clinical evaluation including imaging studies established that the patient had a primary colonic adenocarcinoma with widespread systemic metastases. The diagnostic utility and biologic significance of these latest immunohistochemical biomarkers for colon cancer are reviewed. Clinicians are encouraged to provide detailed clinical histories with the tissue specimens to enable the discovery of undetected "silent primaries" at the time an ocular metastasis develops and is discovered.
Collapse
Affiliation(s)
- Lina Ma
- David G. Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Natalie Wolkow
- David G. Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Frederick A Jakobiec
- David G. Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Nikolouzakis TK, Vassilopoulou L, Fragkiadaki P, Sapsakos TM, Papadakis GZ, Spandidos DA, Tsatsakis AM, Tsiaoussis J. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review). Oncol Rep 2018; 39:2455-2472. [PMID: 29565457 PMCID: PMC5983921 DOI: 10.3892/or.2018.6330] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is among the most common cancers. In fact, it is placed in the third place among the most diagnosed cancer in men, after lung and prostate cancer, and in the second one for the most diagnosed cancer in women, following breast cancer. Moreover, its high mortality rates classifies it among the leading causes of cancer‑related death worldwide. Thus, in order to help clinicians to optimize their practice, it is crucial to introduce more effective tools that will improve not only early diagnosis, but also prediction of the most likely progression of the disease and response to chemotherapy. In that way, they will be able to decrease both morbidity and mortality of their patients. In accordance with that, colon cancer research has described numerous biomarkers for diagnostic, prognostic and predictive purposes that either alone or as part of a panel would help improve patient's clinical management. This review aims to describe the most accepted biomarkers among those proposed for use in CRC divided based on the clinical specimen that is examined (tissue, faeces or blood) along with their restrictions. Lastly, new insight in CRC monitoring will be discussed presenting promising emerging biomarkers (telomerase activity, telomere length and micronuclei frequency).
Collapse
Affiliation(s)
| | - Loukia Vassilopoulou
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Crete, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Crete, Greece
| | - Theodoros Mariolis Sapsakos
- Laboratory of Anatomy and Histology, Nursing School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Z. Papadakis
- Foundation for Research and Technology Hellas (FORTH), Institute of Computer Sciences (ICS), Computational Biomedicine Laboratory (CBML), 71003 Heraklion, Crete, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Aristides M. Tsatsakis
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71409 Heraklion, Crete, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
27
|
Chen M, Liu P, Yan F, Xu S, Jiang Q, Pan J, He M, Shen P. Distinctive features of immunostaining and mutational load in primary pulmonary enteric adenocarcinoma: implications for differential diagnosis and immunotherapy. J Transl Med 2018; 16:81. [PMID: 29587865 PMCID: PMC5870381 DOI: 10.1186/s12967-018-1449-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
Background Primary pulmonary enteric adenocarcinoma (PEAC) is an extremely rare variant of invasive lung cancer. It is highly heterogeneous while shares some common morphologic and immunohistochemical features with usual pulmonary adenocarcinoma (PAC) and colorectal adenocarcinoma (CRAC), making the differential diagnosis difficult. At present there are only limited studies about distinctive features of primary PEAC and the results are often inconsistent. Methods We retrospectively analyzed total 129 primary PEACs and 50 CRACs that were published since 1991 or diagnosed in our centre. Among them eight typical samples of primary PEACs and usual PACs were detected by targeted exome sequencing. Results The combination of CK7+/CDX2+ acquires high sensitivity (71.3%) and specificity (82%) in differential diagnosis of PEACs from CRAC. The primary PEACs harbor a high incidence of KRAS mutation but almost absent of EGFR mutation. Moreover, compared with usual PACs, the primary PEACs have higher nonsynonymous tumor mutation burden and more frequent MMR mutation. Conclusions The combination of CK7+/CDX2+ immunostaining and the distinctive genetic signatures, including low incidence of sensitivity genes mutations and high tumor mutation burden, is an important supplementary to the clinical differential diagnosis of primary PEACs. Our findings thus have significant implications for development of individualized treatment strategy in these patients.
Collapse
Affiliation(s)
- Ming Chen
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Pu Liu
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Feifei Yan
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Suzhen Xu
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Qi Jiang
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Jingying Pan
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Mengye He
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Peng Shen
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
28
|
Miyaoka M, Hatanaka K, Iwazaki M, Nakamura N. CK7/CK20 Double-Negative Pulmonary Enteric Adenocarcinoma With Histopathological Evaluation of Transformation Zone Between Enteric Adenocarcinoma and Conventional Pulmonary Adenocarcinoma. Int J Surg Pathol 2018; 26:464-468. [PMID: 29411669 DOI: 10.1177/1066896918756737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a rare case of pulmonary enteric adenocarcinoma (PEA) exhibiting a immunohistochemical feature of CK7/CK20 double-negativity by evaluating the transformation zone between PEA and conventional pulmonary adenocarcinoma (CPA). A 75-year-old man was found to have a mass, 40 mm in diameter, in the right lower lobe on chest computed tomography, and underwent right lower lobectomy. Histologically, the tumor was composed of a PEA and CPA component. The dominant PEA component had medium to large complex glands with tall columnar cells with eosinophilic cytoplasm and brush-border. The CPA component comprised small to medium glands with cuboidal cells. Moreover, intermediate glands (INT), which had cuboidal to tall columnar cells, with morphological features between PEA and CPA, was also observed in the transformation area. Immunohistochemically, the PEA component was negative for CK7, CK20, and TTF-1, and positive for CDX2 and SATB2 (weak): the CPA component was negative for CK20, CDX2, and SATB2, and positive for CK7 and TTF-1: the INT were negative for SATB2, with intermingled positive signals for CK7, CK20, TTF-1, and CDX2. The final diagnosis was PEA based on the CPA component and not colorectal carcinoma. To distinguish CK7-negative PEA from metastatic colorectal carcinoma, careful examination for a CPA component is very useful along with clinical information. There are no reports that discuss about process of oncogenesis, de novo sequence or transformation from CPA of PEA. This is the first reported case of CK7/CK20 double-negative PEA, with analysis of the transformation zone between PEA and CPA components.
Collapse
Affiliation(s)
- Masashi Miyaoka
- 1 Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | | - Naoya Nakamura
- 1 Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|