1
|
Gao Y, Tang Y. Emerging roles of prohibitins in cancer: an update. Cancer Gene Ther 2025; 32:357-370. [PMID: 40057573 DOI: 10.1038/s41417-025-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
The prohibitin (PHB) family, including PHB1 and its homolog PHB2, is ubiquitously located in different cellular compartments and plays roles in fundamental cellular processes such as proliferation, differentiation, and apoptosis. Accumulating evidence has indicated that this family contributes to the development of numerous diseases in particular cancers. Aberrant expressions of PHBs can been observed in diverse types of human cancer. Depending on their cell compartment-specific attributes and interacting proteins, PHBs are tightly linked to almost all aspects of cancer biology and have distinct bidirectional functions of tumor-suppression or tumor-promotion. However, the roles of PHBs in cancer have yet to be fully characterized and understood. This review provides an updated overview of the pleiotropic effects of PHBs and emphasizes their characteristic roles in each cancer respectively, with the great expectation to identify potential targets for therapeutic approaches and promising molecular biomarkers for cancer diagnosis and prognostic monitor.
Collapse
Affiliation(s)
- Yunliang Gao
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, Changsha, China
- Hunan Clinical Research Center of Minimally Invasive Urology, Changsha, China
| | - Yuanyuan Tang
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Jain S, Narwal M, Omair Anwar M, Prakash N, Mohmmed A. Unravelling the anti-apoptotic role of Plasmodium falciparum Prohibitin-2 (PfPhb2) in maintaining mitochondrial homeostasis. Mitochondrion 2024; 79:101956. [PMID: 39245193 DOI: 10.1016/j.mito.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The functional mitochondrion is vital for the propagation of the malaria parasite in the human host. Members of the SPFH protein family, Prohibitins (PHBs), are known to play crucial roles in maintaining mitochondrial homeostasis and cellular functions. Here, we have functionally characterized the homologue of the Plasmodium falciparumProhibitin-2 (PfPhb2) protein. A transgenic parasite line, generated using the selection-linked integration (SLI) strategy for C-terminal tagging, was utilized for cellular localization as well as for inducible knock-down of PfPhb2. We show that PfPhb2 localizes in the parasite mitochondrion during the asexual life cycle. Inducible knock-down of PfPhb2 by GlmS ribozyme caused no significant effect on the growth and multiplication of parasites. However, depletion of PfPhb2 under mitochondrial-specific stress conditions, induced by inhibiting the essential mitochondrial AAA-protease, ClpQ protease, results in enhanced inhibition of parasite growth, mitochondrial ROS production, mitochondrial membrane potential loss and led to mitochondrial fission/fragmentation, ultimately culminating in apoptosis-like cell-death. Further, PfPhb2 depletion renders the parasites more susceptible to mitochondrial targeting drug proguanil. These data suggest the functional involvement of PfPhb2 along with ClpQ protease in stabilization of various mitochondrial proteins to maintain mitochondrial homeostasis and functioning. Overall, we show that PfPhb2 has an anti-apoptotic role in maintaining mitochondrial homeostasis in the parasite.
Collapse
Affiliation(s)
- Shilpi Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Monika Narwal
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Md Omair Anwar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Neha Prakash
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|
3
|
Rajendran R, Suman S, Divakaran SJ, Swatikrishna S, Tripathi P, Jain R, Sagar K, Rajakumari S. Sesaminol alters phospholipid metabolism and alleviates obesity-induced NAFLD. FASEB J 2024; 38:e23835. [PMID: 39037555 DOI: 10.1096/fj.202400412rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
The prevalence of obesity-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance is increasing worldwide. We previously demonstrated that sesaminol increases thermogenesis in adipocytes, improves insulin sensitivity, and mitigates obesity in mice. In this study, we demonstrated that sesaminol increased mitochondrial activity and reduced ROS production in hepatocytes. Therefore, we delve into the metabolic action of sesaminol in obesity-induced NAFLD or metabolic dysfunction-associated liver disease (MAFLD). Here, we report that sesaminol induces OXPHOS proteins and mitochondrial function in vivo. Further, our data suggest that sesaminol administration reduces hepatic triacylglycerol accumulation and LDL-C levels. Prominently, the lipidomics analyses revealed that sesaminol administration decreased the major phospholipids such as PC, PE, PI, CL, and PS to maintain membrane lipid homeostasis in the liver upon HFD challenge. Besides, SML reduced ePC and SM molecular species and increased PA levels in the HFD-fed mice. Also, sesaminol renders anti-inflammatory properties and dampens fibrosis markers in the liver. Remarkably, SML lowers the hepatic levels of ALT and AST enzymes and alleviates NAFLD in diet-induced obese mice. The molecular docking analysis identifies peroxisome proliferator-activated receptors as potential endogenous receptors for sesaminol. Together, our study demonstrates plant lignan sesaminol as a potential small molecule that alters the molecular species of major phospholipids, including sphingomyelin and ether-linked PCs in the liver tissue, improves metabolic parameters, and alleviates obesity-induced fatty liver disease in mice.
Collapse
Affiliation(s)
- Rajprabu Rajendran
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sanskriti Suman
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Soumya Jaya Divakaran
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sahu Swatikrishna
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Purnima Tripathi
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rashi Jain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Karan Sagar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sona Rajakumari
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Srivastava A, Mishra S, Avadhesh, Shekher A, Rai V, Dhasmana A, Das J, Perenzoni D, Iori R, Gupta SC. Moringin, an isothiocyanate modulates multiple cellular signalling molecules in breast cancer cells. Cell Signal 2024; 119:111181. [PMID: 38643946 DOI: 10.1016/j.cellsig.2024.111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Prohibitin (PHB) is a pleiotropic molecule with a variety of known functions and subcellular locations. PHB's function in breast cancer is poorly understood. Herein, we report that PHB is expressed in cancer types of diverse origin including breast cancer. The cancer patients with changes in PHB were reported to have significantly reduced 'overall survival' in comparison to the cases without alterations in PHB. The expression of PHB was increased by H2O2 and also by Moringin (MG), which is an isothiocyanate derived from the seeds of Moringa oleifera. MG interacted with PHB, DRP1, and SLP2 and inhibited the growth of MCF-7 and MDAMB-231 cells. The isothiocyanate triggered apoptosis in breast cancer cells as revealed by AO/PI assay, phosphatidylserine externalization, cell cycle analysis and DAPI staining. MG induced proapoptotic proteins expression such as cytochrome c, p53, and cleaved caspase-7. Further, cell survival proteins such as survivin, Bcl-2, and Bcl-xL were suppressed. A depolarization of membrane potential suggested that the apoptosis was triggered through mitochondria. The isothiocyanate suppressed the cancer cell migration and interacted with NF-κB subunits. MG suppressed p65 nuclear translocation induced by TNF-α. The reactive oxygen species generation was also induced by the isothiocyanate in breast cancer cells. MG also modulated the expression of lncRNAs. Collectively, the functions of PHB in breast cancer growth is evident from this study. The activities of MG against breast cancer might result from its ability to modulate multiple cancer-related targets.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Shruti Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Avadhesh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India; Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Anupam Dhasmana
- Department of Bioscience and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun 248 016, India; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Jayanta Das
- Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, India
| | - Daniele Perenzoni
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Renato Iori
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, India.
| |
Collapse
|
5
|
Jiao K, Xu G, Liu Y, Yang Z, Xiang L, Chen Z, Xu C, Zuo Y, Wu Z, Zheng N, Xu W, Zhang L, Liu Y. UBXN1 promotes liver tumorigenesis by regulating mitochondrial homeostasis. J Transl Med 2024; 22:485. [PMID: 38773518 PMCID: PMC11110256 DOI: 10.1186/s12967-024-05208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND The maintenance of mitochondrial homeostasis is critical for tumor initiation and malignant progression because it increases tumor cell survival and growth. The molecular events controlling mitochondrial integrity that facilitate the development of hepatocellular carcinoma (HCC) remain unclear. Here, we report that UBX domain-containing protein 1 (UBXN1) hyperactivation is essential for mitochondrial homeostasis and liver tumorigenesis. METHODS Oncogene-induced mouse liver tumor models were generated with the Sleeping Beauty (SB) transposon delivery system. Assessment of HCC cell growth in vivo and in vitro, including tumour formation, colony formation, TUNEL and FACS assays, was conducted to determine the effects of UBXN1 on HCC cells, as well as the involvement of the UBXN1-prohibitin (PHB) interaction in mitochondrial function. Coimmunoprecipitation (Co-IP) was used to assess the interaction between UBXN1 and PHB. Liver hepatocellular carcinoma (LIHC) datasets and HCC patient samples were used to assess the expression of UBXN1. RESULTS UBXN1 expression is commonly upregulated in human HCCs and mouse liver tumors and is associated with poor overall survival in HCC patients. UBXN1 facilitates the growth of human HCC cells and promotes mouse liver tumorigenesis driven by the NRas/c-Myc or c-Myc/shp53 combination. UBXN1 interacts with the inner mitochondrial membrane protein PHB and sustains PHB expression. UBXN1 inhibition triggers mitochondrial damage and liver tumor cell apoptosis. CONCLUSIONS UBXN1 interacts with PHB and promotes mitochondrial homeostasis during liver tumorigenesis.
Collapse
Affiliation(s)
- Kun Jiao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guiqin Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaojuan Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lvzhu Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - You Zuo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhibai Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ningqian Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wangjie Xu
- Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yongzhong Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Liu N, Ding Y, Zhou H, Chang X, Lou L. Dual-specificity phosphatase 1 interacts with prohibitin 2 to improve mitochondrial quality control against type-3 cardiorenal syndrome. Int J Med Sci 2024; 21:547-561. [PMID: 38322592 PMCID: PMC10845262 DOI: 10.7150/ijms.90484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024] Open
Abstract
Type-3 cardiorenal syndrome (CRS-3) is acute kidney injury followed by cardiac injury/dysfunction. Mitochondrial injury may impair myocardial function during CRS-3. Since dual-specificity phosphatase 1 (DUSP1) and prohibitin 2 (PHB2) both promote cardiac mitochondrial quality control, we assessed whether these proteins were dysregulated during CRS-3-related cardiac depression. We found that DUSP1 was downregulated in heart tissues from a mouse model of CRS-3. DUSP1 transgenic (DUSP1Tg) mice were protected from CRS-3-induced myocardial damage, as evidenced by their improved heart function and myocardial structure. CRS-3 induced the inflammatory response, oxidative stress and mitochondrial dysfunction in wild-type hearts, but not in DUSP1Tg hearts. DUSP1 overexpression normalized cardiac mitochondrial quality control during CRS-3 by suppressing mitochondrial fission, restoring mitochondrial fusion, re-activating mitophagy and augmenting mitochondrial biogenesis. We found that DUSP1 sustained cardiac mitochondrial quality control by binding directly to PHB2 and maintaining PHB2 phosphorylation, while CRS-3 disrupted this physiological interaction. Transgenic knock-in mice carrying the Phb2S91D variant were less susceptible to cardiac depression upon CRS-3, due to a reduced inflammatory response, suppressed oxidative stress and improved mitochondrial quality control in their heart tissues. Thus, CRS-3-induced myocardial dysfunction can be attributed to reduced DUSP1 expression and disrupted DUSP1/PHB2 binding, leading to defective cardiac mitochondrial quality control.
Collapse
Affiliation(s)
- Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiu Ding
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Zhou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chang
- Cardiovascular department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Long Lou
- Kunming Municipal Hospital of Traditional Chinese Medicine, Yunnan, China
| |
Collapse
|
7
|
Qi A, Lamont L, Liu E, Murray SD, Meng X, Yang S. Essential Protein PHB2 and Its Regulatory Mechanisms in Cancer. Cells 2023; 12:cells12081211. [PMID: 37190120 DOI: 10.3390/cells12081211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Prohibitins (PHBs) are a highly conserved class of proteins and have an essential role in transcription, epigenetic regulation, nuclear signaling, mitochondrial structural integrity, cell division, and cellular membrane metabolism. Prohibitins form a heterodimeric complex, consisting of two proteins, prohibitin 1 (PHB1) and prohibitin 2 (PHB2). They have been discovered to have crucial roles in regulating cancer and other metabolic diseases, functioning both together and independently. As there have been many previously published reviews on PHB1, this review focuses on the lesser studied prohibitin, PHB2. The role of PHB2 in cancer is controversial. In most human cancers, overexpressed PHB2 enhances tumor progression, while in some cancers, it suppresses tumor progression. In this review, we focus on (1) the history, family, and structure of prohibitins, (2) the essential location-dependent functions of PHB2, (3) dysfunction in cancer, and (4) the promising modulators to target PHB2. At the end, we discuss future directions and the clinical significance of this common essential gene in cancer.
Collapse
Affiliation(s)
- Amanda Qi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lillie Lamont
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Evelyn Liu
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sarina D Murray
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Xiangbing Meng
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Lee YE, Lim HJ, Park JH, Kim HR, Kang MG, Cho YK, Shin JH, Shin MG. Overexpression of Prohibitin 2 Protein is Associated with Adverse Prognosis in Cytogenetically Normal Acute Myeloid Leukemia. Ann Lab Med 2022; 42:585-589. [PMID: 35470276 PMCID: PMC9057826 DOI: 10.3343/alm.2022.42.5.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Cytogenetically normal acute myeloid leukemia (CN-AML) accounts for 40%–50% of all AML cases. Despite advances in understanding the molecular pathophysiology of CN-AML, its clinical outcome remains unsatisfactory and unpredictable. To investigate its clinical implication in CN-AML, we measured the expression of prohibitin 2 (PHB2) using immunohistochemical staining (IHCS) of paraffin-embedded bone marrow sections from 134 CN-AML patients. IHCS results were semi-quantitatively scored. Clinical outcome was analyzed in comparison with other prognostic markers, including NPM1 polymorphism and FLT3 internal tandem duplication, and WT1 and BAALC mRNA expression. Except for BAALC mRNA expression, the known molecular markers showed no prognostic effect in the CN-AML patients. PHB2 protein overexpression was significantly associated with adverse prognosis in CN-AML patients. The PHB2 protein expression status may serve as an independent prognostic indicator in CN-AML.
Collapse
Affiliation(s)
- Young Eun Lee
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ha Jin Lim
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ju Heon Park
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hye Ran Kim
- College of Korean Medicine, Dongshin University, Naju, Korea
| | - Min-Gu Kang
- Department of Laboratory Medicine, Gwangyang Sarang General Hospital, Gwangyang, Korea
| | - Young Kuk Cho
- Department of Medical Laboratory Science, Seoyeong University, Gwangju, Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Myung Geun Shin
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University and Chonnam National University Hwasun Hospital, Hwasun, Korea.,Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
9
|
Singh K, Rustagi Y, Abouhashem AS, Tabasum S, Verma P, Hernandez E, Pal D, Khona DK, Mohanty SK, Kumar M, Srivastava R, Guda PR, Verma SS, Mahajan S, Killian JA, Walker LA, Ghatak S, Mathew-Steiner SS, Wanczyk K, Liu S, Wan J, Yan P, Bundschuh R, Khanna S, Gordillo GM, Murphy MP, Roy S, Sen CK. Genome-wide DNA hypermethylation opposes healing in chronic wound patients by impairing epithelial-to-mesenchymal transition. J Clin Invest 2022; 132:157279. [PMID: 35819852 PMCID: PMC9433101 DOI: 10.1172/jci157279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
An extreme chronic wound tissue microenvironment causes epigenetic gene silencing. An unbiased whole-genome methylome was studied in the wound-edge tissue of patients with chronic wounds. A total of 4,689 differentially methylated regions (DMRs) were identified in chronic wound-edge skin compared with unwounded human skin. Hypermethylation was more frequently observed (3,661 DMRs) in the chronic wound-edge tissue compared with hypomethylation (1,028 DMRs). Twenty-six hypermethylated DMRs were involved in epithelial-mesenchymal transition (EMT). Bisulfite sequencing validated hypermethylation of a predicted specific upstream regulator TP53. RNA-Seq analysis was performed to qualify findings from methylome analysis. Analysis of the downregulated genes identified the TP53 signaling pathway as being significantly silenced. Direct comparison of hypermethylation and downregulated genes identified 4 genes, ADAM17, NOTCH, TWIST1, and SMURF1, that functionally represent the EMT pathway. Single-cell RNA-Seq studies revealed that these effects on gene expression were limited to the keratinocyte cell compartment. Experimental murine studies established that tissue ischemia potently induces wound-edge gene methylation and that 5′-azacytidine, inhibitor of methylation, improved wound closure. To specifically address the significance of TP53 methylation, keratinocyte-specific editing of TP53 methylation at the wound edge was achieved by a tissue nanotransfection-based CRISPR/dCas9 approach. This work identified that reversal of methylation-dependent keratinocyte gene silencing represents a productive therapeutic strategy to improve wound closure.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Yashika Rustagi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Ahmed S Abouhashem
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Saba Tabasum
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Priyanka Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Edward Hernandez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, India
| | - Dolly K Khona
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sujit K Mohanty
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Manishekhar Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Rajneesh Srivastava
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Poornachander R Guda
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sumit S Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sanskruti Mahajan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jackson A Killian
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Logan A Walker
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Subhadip Ghatak
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Shomita S Mathew-Steiner
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Kristen Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Pearlly Yan
- Comprehensive Cancer Center, Ohio State University, Columbus, United States of America
| | - Ralf Bundschuh
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Savita Khanna
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Gayle M Gordillo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Michael P Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sashwati Roy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Chandan K Sen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| |
Collapse
|
10
|
Simsek HU, Albayrak MGB, Kasap M, Simsek T, Akpinar G, Guler SA, Canturk NZ. Elucidation of the changes occurring at the proteome level in ovaries of high-fat diet-induced obese rats. Cell Biochem Funct 2022; 40:278-297. [PMID: 35285971 DOI: 10.1002/cbf.3693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
High-fat diet-induced obesity adversely affects the female reproductive system. The metabolic changes that the high-fat diet causes on the ovaries have not been elucidated. Herein, to understand the molecular and cellular mechanisms underlying the effects of long-term high-fat diet-fed, the changes in the global proteomic profile of the rat ovaries were investigated. The female rats were randomly divided into two groups based on their diets: the ones that were fed with the high-fat diet and the other ones that were fed with the control diet for 18 weeks. To identify differentially expressed proteins, the changes in ovary proteomes were investigated by two-dimensional electrophoresis coupled to matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight and label-free quantification with nano-high performance liquid chromatography to tandem mass spectrometry (nHPLC-MS/MS). A total of 80 proteins were differentially regulated. The upregulated proteins were involved in responses to chemical and organic substances, cytokines, external stimuli, and lipids. These proteins were particularly associated with vesicles, microbodies, and cell surface proteins. The downregulated proteins were involved in biological processes associated with cellular respiration. Those proteins created a network consisting of proteins involved in aerobic respiration and energy generation. Our results demonstrated that the mechanisms related to energy production in the ovary tissue were particularly affected by the high-fat diet.
Collapse
Affiliation(s)
- Hayal U Simsek
- Department of Obstetrics and Gynecology, Kocaeli University Faculty of Medicine, Izmit, Kocaeli, Turkey
| | - Merve G B Albayrak
- Department of Medical Biology, Kocaeli University Faculty of Medicine, Izmit, Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology, Kocaeli University Faculty of Medicine, Izmit, Kocaeli, Turkey
| | - Turgay Simsek
- Department of General Surgery, Kocaeli University Faculty of Medicine, Izmit, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Kocaeli University Faculty of Medicine, Izmit, Kocaeli, Turkey
| | - Sertac A Guler
- Department of General Surgery, Kocaeli University Faculty of Medicine, Izmit, Kocaeli, Turkey
| | - Nuh Z Canturk
- Department of General Surgery, Kocaeli University Faculty of Medicine, Izmit, Kocaeli, Turkey
| |
Collapse
|
11
|
Yun YR, Lee SY, Seo B, Kim H, Shin MG, Yang S. Sensitive electrochemical immunosensor to detect prohibitin 2, a potential blood cancer biomarker. Talanta 2022; 238:123053. [PMID: 34801909 DOI: 10.1016/j.talanta.2021.123053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
Blood cancers are difficult to cure completely and frequently show a poor prognosis. Recently, prohibitin 2 (PHB2) has been shown to be a potential biomarker for blood cancers. Sandwich ELISA can be used as a reference method for quantitative analysis of PHB2; however, ELISA can be challenging for early diagnosis and continuous monitoring method due to the need for large sample volumes (25 μL <), technical expertise, complex procedure, relative high cost, and non-portability. Thus, this study developed a sensitive and time efficient electrochemical immunosensor for detecting PHB2 from a blood cancer patient. It is a simple and portable platform consisting of a disposable electrode and blood sample volume of 4 μL. The sensor uses a gold nanostructured electrode and square wave voltammetry (SWV) measurement of a horseradish peroxidase (HRP) label to amplify the electrochemical signal. The immunosensor could quantitatively detect PHB2 with high sensitivity (limit of detection [LoD] = 0.04 ng/mL) and satisfactory reproducibility (relative standard deviation [RSD] <5.2%). The sensor achieved an LoD of 0.63 ng/mL with satisfactory recovery (89.1-104.7%) and reproducibility (RSD <6.4%) with PHB2 spiked into white blood cell (WBC) lysates. When the sensor was compared to a reference ELISA to determine the PHB2 concentrations in WBC lysate samples from healthy patients and those with blood cancer, the correlation coefficient (R2) was 0.996. A 3.3-fold difference was detected in the measured PHB2 concentration between blood cancer patients and healthy individuals. Accordingly, this study suggests a sensitive and accurate analytical method for quantitatively detecting the PHB2 in blood samples.
Collapse
Affiliation(s)
- Young-Ran Yun
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seung Yeob Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Bokyung Seo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital (CNUHH), Hwasun, Republic of Korea
| | - Sung Yang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; School of Mechanical Engineering, GIST, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Ayala-Marin YM, Grant AH, Rodriguez G, Kirken RA. Quadruple and Truncated MEK3 Mutants Identified from Acute Lymphoblastic Leukemia Promote Degradation and Enhance Proliferation. Int J Mol Sci 2021; 22:12210. [PMID: 34830095 PMCID: PMC8618549 DOI: 10.3390/ijms222212210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Compared to other ethnicities, Hispanic children incur the highest rates of leukemia, and most cases are diagnosed as Acute Lymphoblastic Leukemia (ALL). Despite improved treatment and survival for ALL, disproportionate health outcomes in Hispanics persist. Thus, it is essential to identify oncogenic mutations within this demographic to aid in the development of new strategies to diagnose and treat ALL. Using whole-exome sequencing, five single nucleotide polymorphisms within mitogen-activated protein kinase 3 (MAP2K3) were identified in an ALL cancer patient library from the U.S./Mexico border. MAP2K3 R26T and P11T are located near the substrate-binding site, while R65L and R67W localized to the kinase domain. Truncated-MAP2K3 mutant Q73* was also identified. Transfection in HEK293 cells showed that the quadruple-MEK3 mutant (4M-MEK3) impacted protein stability, inducing degradation and reducing expression. The expression of 4M-MEK3 could be rescued by cysteine/serine protease inhibition, and proteasomal degradation of truncated-MEK3 occurred in a ubiquitin-independent manner. MEK3 mutants displayed reduced auto-phosphorylation and enzymatic activity, as seen by decreases in p38 phosphorylation. Furthermore, uncoupling of the MEK3/p38 signaling pathway resulted in less suppressive activity on HEK293 cell viability. Thus, disruption of MEK3 activation may promote proliferative signals in ALL. These findings suggest that MEK3 represents a potential therapeutic target for treating ALL.
Collapse
Affiliation(s)
| | | | | | - Robert A. Kirken
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA; (Y.M.A.-M.); (A.H.G.); (G.R.)
| |
Collapse
|
13
|
Belser M, Walker DW. Role of Prohibitins in Aging and Therapeutic Potential Against Age-Related Diseases. Front Genet 2021; 12:714228. [PMID: 34868199 PMCID: PMC8636131 DOI: 10.3389/fgene.2021.714228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
A decline in mitochondrial function has long been associated with age-related health decline. Several lines of evidence suggest that interventions that stimulate mitochondrial autophagy (mitophagy) can slow aging and prolong healthy lifespan. Prohibitins (PHB1 and PHB2) assemble at the mitochondrial inner membrane and are critical for mitochondrial homeostasis. In addition, prohibitins (PHBs) have diverse roles in cell and organismal biology. Here, we will discuss the role of PHBs in mitophagy, oxidative phosphorylation, cellular senescence, and apoptosis. We will also discuss the role of PHBs in modulating lifespan. In addition, we will review the links between PHBs and diseases of aging. Finally, we will discuss the emerging concept that PHBs may represent an attractive therapeutic target to counteract aging and age-onset disease.
Collapse
Affiliation(s)
- Misa Belser
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Wang K, Qi Y, Wang X, Liu Y, Zhao M, Zhou D, Zhang Y, Wang Y, Yu R, Zhou X. GOLPH3 promotes glioma progression by enhancing PHB2-mediated autophagy. Am J Cancer Res 2021; 11:2106-2123. [PMID: 34094672 PMCID: PMC8167689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023] Open
Abstract
Due to the hypoxia and nutrient deficiency microenvironment, malignant glioma exhibits high autophagy activity and autophagy plays a significant role in the occurrence and development of glioma. However, the potential molecular mechanism of autophagy in glioma remains unknown. In this study, we demonstrated that Golgi phosphorylation protein 3 (GOLPH3), a highly conserved protein basically concentrates in the trans-Golgi network, promoted glioma autophagy. Inhibiting autophagy by using chloroquine suppressed the stimulating effect of GOLPH3 on glioma malignant development both in vitro and in vivo. Mechanistically, GOLPH3 interacted with and recruited prohibitin-2 (PHB2), an autophagy receptor of mitochondrion, and LC3-II. PHB2 promoted cell autophagy and down-regulation of PHB2 abolished the effect of GOLPH3 on autophagy. On the side, the relative mRNA and protein levels of GOLPH3 and PHB2 were positively associated with each other and both also correlated with autophagy in glioma tissues. Together, our results revealed that GOLPH3 promotes glioma progression by enhancing PHB2-mediated autophagy and inhibiting autophagy may benefit glioma patients with GOLPH3 high level. The novel GOLPH3-PHB2-autophagy axis maybe a potential and prospective therapeutic target for gliomas.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Yanhua Qi
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Yushuai Liu
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Min Zhao
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Ding Zhou
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Yan Wang
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
| |
Collapse
|
15
|
Xia L, Liu Y, Zhang S, Yang Y, Zhou Z, Tu J. Can Prohibitin 1 be a Safeguard against liver disease? Ann Hepatol 2020; 18:790-795. [PMID: 31558419 DOI: 10.1016/j.aohep.2019.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 02/04/2023]
Abstract
Prohibitin (PHB) 1 is involved in multiple regulatory pathways in liver disease to protect hepatocytes, and its function is associated with subcellular localization. PHB1 located in the nucleus, cytoplasm and the mitochondrial inner membrane has anti-oxidative stress and anti-inflammatory effects in hepatitis and cirrhosis, which can protect liver cells from damage caused by inflammatory factors and reactive oxygen species (ROS) stimulation. The low expression of PHB1 located in the nucleus of liver cancer cells inhibits the proliferation and metastasis of liver cancer; thus, PHB1 exhibits the function of a tumor suppressor gene. Understanding the mechanisms of PHB1 in liver diseases may be useful for further research on the disease and may provide new ideas for the development of targeted therapeutic drugs in the future. Therefore, this review puts forward an overview of the role of PHB1 and its protective mechanism in liver diseases.
Collapse
Affiliation(s)
- Lei Xia
- Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Yuling Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Sujun Zhang
- Medical Research Center, University of South China, Hengyang, Hunan, China
| | - Yurong Yang
- Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Zhigang Zhou
- The First Affiliated Hospital, University of South China, Hengyang, Hunan, China.
| | - Jian Tu
- The First Affiliated Hospital, University of South China, Hengyang, Hunan, China; Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China.
| |
Collapse
|
16
|
Cosialls AM, Sánchez-Vera I, Pomares H, Perramon-Andújar J, Sanchez-Esteban S, Palmeri CM, Iglesias-Serret D, Saura-Esteller J, Núñez-Vázquez S, Lavilla R, González-Barca EM, Pons G, Gil J. The BCL-2 family members NOXA and BIM mediate fluorizoline-induced apoptosis in multiple myeloma cells. Biochem Pharmacol 2020; 180:114198. [PMID: 32798467 DOI: 10.1016/j.bcp.2020.114198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins. In this study, we have assessed the pro-apoptotic effect of fluorizoline in 3 different multiple myeloma cell lines and 12 primary samples obtained from treatment-naïve multiple myeloma patients. Fluorizoline induced apoptosis in both multiple myeloma cell lines and primary samples at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline. Moreover, fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. Finally, NOXA-depletion by CRISPR/Cas9 in cells that do not express BIM conferred resistance to fluorizoline-induced apoptosis in multiple myeloma cells. These results suggest that targeting prohibitins could be a new therapeutic strategy for myeloma multiple.
Collapse
Affiliation(s)
- Ana M Cosialls
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ismael Sánchez-Vera
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Helena Pomares
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain; Servei d'Hematologia Clínica, Institut Català d'Oncologia, Oncobell-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Judit Perramon-Andújar
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra Sanchez-Esteban
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Claudia M Palmeri
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Iglesias-Serret
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain; Facultat de Medicina, Universitat de Vic - Universitat Central de Catalunya (UVic- UCC), Vic, Barcelona, Spain
| | - José Saura-Esteller
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rodolfo Lavilla
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Medicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Eva M González-Barca
- Servei d'Hematologia Clínica, Institut Català d'Oncologia, Oncobell-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
17
|
Guo WW, Chen LH, Yin W, Mo LX. Aberrant Expression of Prohibitin Is Related to Prognosis of Nasal Extranodal Natural Killer/T Cell Lymphoma, Nasal Type. Oncol Res Treat 2020; 43:491-497. [PMID: 32756049 DOI: 10.1159/000509094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Nasal extranodal natural killer (NK)/T cell lymphoma, nasal type (ENKTCL) is a high-grade Epstein-Barr virus (EBV)-associated malignancy with poor outcomes. There are few biomarkers for the accurate diagnosis and prognostic prediction of the disease. The aim of this study was to investigate the clinicopathological significance of prohibitin (PHB) expression in nasal ENKTCL. METHODS The expression level of PHB was detected via immunohistochemical staining in 49 nasal ENKTCL tissues and age- and sex-matched controls of 30 nasal mucosa-reactive lymphoid hyperplasia (NRLH) tissues. The correlations between the PHB expression and clinicopathological features of patients with nasal ENKTCL were evaluated. RESULTS The results indicated a significantly decreased expression of PHB in nasal ENKTCL tissues compared with in NRLH tissues. Low-level PHB expression was significantly associated with younger age and fever (p = 0.008 and 0.018, respectively). The Kaplan-Meier analysis showed that the cytoplasm expression level of PHB in nasal ENKTCL was inversely related to overall survival (p = 0.046). CONCLUSIONS PHB may be a potential diagnostic marker and prognostic predictor of nasal ENKTCL.
Collapse
Affiliation(s)
- Wen Wen Guo
- Department of Pathology, People's Hospital of Guangxi Province, Nanning, China
| | - Ling Hui Chen
- Department of Pathology, People's Hospital of Guangxi Province, Nanning, China
| | - Wu Yin
- Department of Pathology, People's Hospital of Guangxi Province, Nanning, China
| | - Lan Xiang Mo
- Department of Pathology, People's Hospital of Guangxi Province, Nanning, China,
| |
Collapse
|
18
|
Zhang H, Yin C, Liu X, Bai X, Wang L, Xu H, Ju J, Zhang L. Prohibitin 2/PHB2 in Parkin-Mediated Mitophagy: A Potential Therapeutic Target for Non-Small Cell Lung Carcinoma. Med Sci Monit 2020; 26:e923227. [PMID: 32320388 PMCID: PMC7191963 DOI: 10.12659/msm.923227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Mitophagy, a selective autophagy process, plays various roles in tumors. Prohibitin 2 (PHB2) is an inner-mitochondrial membrane protein that participates in parkin-induced mitophagy. However, the role of PHB2 in non-small cell lung carcinoma (NSCLC) has not been previously reported. Material/Methods PHB2 protein or PHB2-mRNA in NSCLC and paired normal tissues was determined by Western blot, qRT-PCR, and immunohistochemical staining. Cell proliferation was detected by CCK-8 assay. Cell migration was evaluated by wound healing and transwell migration assays. A 3D live-cell confocal system was used to monitor autophagic flux. Mitochondrial autolysosomes were observed by transmission electron microscopy (TEM). Finally, we performed JC-1 assay to measure mitochondrial membrane potential (MMP). Results The level of PHB2 was significantly increased in human NSCLC specimens compared to paired adjacent specimens. Inhibition of PHB2 expression attenuated mitophagy in A549 and H1299 cells, as indicated by decreased levels of LC3 II/I and parkin markers and increased level of p62 protein. Furthermore, the inhibition caused reduction in mitochondrial autolysosomes and autophagic flux, as shown by TEM and live-cell imaging, respectively. In addition, PHB2 inhibition caused a remarkable increase in MMP and suppressed the proliferation and migration of A549 and H1299 cells. Conclusions Our results suggest that downregulation of PHB2 reduced parkin-mediated mitophagy, which suppressed proliferation and migration of A549 and H1299 cells.
Collapse
Affiliation(s)
- Han Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Chuntong Yin
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Xin Liu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Xue Bai
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Lei Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Honglin Xu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Jin Ju
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
19
|
De Rasmo D, Ferretta A, Russo S, Ruggieri M, Lasorella P, Paolicelli D, Trojano M, Signorile A. PBMC of Multiple Sclerosis Patients Show Deregulation of OPA1 Processing Associated with Increased ROS and PHB2 Protein Levels. Biomedicines 2020; 8:biomedicines8040085. [PMID: 32290388 PMCID: PMC7235786 DOI: 10.3390/biomedicines8040085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease in which activated lymphocytes affect the central nervous system. Increase of reactive oxygen species (ROS), impairment of mitochondria-mediated apoptosis and mitochondrial alterations have been reported in peripheral lymphocytes of MS patients. Mitochondria-mediated apoptosis is regulated by several mechanisms and proteins. Among others, optic atrophy 1 (OPA1) protein plays a key role in the regulating mitochondrial dynamics, cristae architecture and release of pro-apoptotic factors. Very interesting, mutations in OPA1 gene, have been associated with multiple sclerosis-like disorder. We have analyzed OPA1 and some factors involved in its regulation. Fifteen patients with MS and fifteen healthy control subjects (HC) were enrolled into the study and peripheral blood mononuclear cells (PBMCs) were isolated. H2O2 level was measured spectrofluorimetrically, OPA1, PHB2, SIRT3, and OMA1 were analyzed by western blotting. Statistical analysis was performed using Student's t-test. The results showed that PBMC of MS patients were characterized by a deregulation of OPA1 processing associated with increased H2O2 production, inactivation of OMA1 and increase of PHB2 protein level. The presented data suggest that the alteration of PHB2, OMA1, and OPA1 processing could be involved in resistance towards apoptosis. These molecular parameters could also be useful to assess disease activity.
Collapse
Affiliation(s)
- Domenico De Rasmo
- CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70126 Bari, Italy
- Correspondence: (D.D.R.); (A.S.); Tel.: +39-080-547-8529 (D.D.R. & A.S.)
| | - Anna Ferretta
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.F.); (S.R.); (M.R.); (P.L.); (D.P.); (M.T.)
| | - Silvia Russo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.F.); (S.R.); (M.R.); (P.L.); (D.P.); (M.T.)
| | - Maddalena Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.F.); (S.R.); (M.R.); (P.L.); (D.P.); (M.T.)
| | - Piergiorgio Lasorella
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.F.); (S.R.); (M.R.); (P.L.); (D.P.); (M.T.)
| | - Damiano Paolicelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.F.); (S.R.); (M.R.); (P.L.); (D.P.); (M.T.)
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.F.); (S.R.); (M.R.); (P.L.); (D.P.); (M.T.)
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.F.); (S.R.); (M.R.); (P.L.); (D.P.); (M.T.)
- Correspondence: (D.D.R.); (A.S.); Tel.: +39-080-547-8529 (D.D.R. & A.S.)
| |
Collapse
|
20
|
Beltran C, Pardo R, Bou-Teen D, Ruiz-Meana M, Villena JA, Ferreira-González I, Barba I. Enhancing Glycolysis Protects against Ischemia-Reperfusion Injury by Reducing ROS Production. Metabolites 2020; 10:metabo10040132. [PMID: 32235559 PMCID: PMC7240969 DOI: 10.3390/metabo10040132] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 01/26/2023] Open
Abstract
After myocardial ischemia-reperfusion, fatty acid oxidation shows fast recovery while glucose oxidation rates remain depressed. A metabolic shift aimed at increasing glucose oxidation has shown to be beneficial in models of myocardial ischemia-reperfusion. However, strategies aimed at increasing glucose consumption in the clinic have provided mixed results and have not yet reached routine clinical practice. A better understanding of the mechanisms underlying the protection afforded by increased glucose oxidation may facilitate the transfer to the clinic. The purpose of this study was to evaluate if the modulation of reactive oxygen species (ROS) was involved in the protection afforded by increased glucose oxidation. Firstly, we characterized an H9C2 cellular model in which the use of glucose or galactose as substrates can modulate glycolysis and oxidative phosphorylation pathways. In this model, there were no differences in morphology, cell number, or ATP and PCr levels. However, galactose-grown cells consumed more oxygen and had an increased Krebs cycle turnover, while cells grown in glucose had increased aerobic glycolysis rate as demonstrated by higher lactate and alanine production. Increased aerobic glycolysis was associated with reduced ROS levels and protected the cells against simulated ischemia-reperfusion injury. Furthermore, ROS scavenger N-acetyl cysteine (NAC) was able to reduce the amount of ROS and to prevent cell death. Lastly, cells grown in galactose showed higher activation of mTOR/Akt signaling pathways. In conclusion, our results provide evidence indicating that metabolic shift towards increased glycolysis reduces mitochondrial ROS production and prevents cell death during ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Claudia Beltran
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d’Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain; (C.B.); (D.B.-T.); (M.R.-M.)
| | - Rosario Pardo
- Laboratory of Metabolism and Obesity, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain; (R.P.); (J.A.V.)
| | - Diana Bou-Teen
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d’Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain; (C.B.); (D.B.-T.); (M.R.-M.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d’Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain; (C.B.); (D.B.-T.); (M.R.-M.)
| | - Josep A. Villena
- Laboratory of Metabolism and Obesity, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain; (R.P.); (J.A.V.)
- Centro de Investigación Biomédica en Red sobre Diabetes y Enfermedades Metabólicas Asociadas (CIBER-DEM), 28029 Madrid, Spain
| | - Ignacio Ferreira-González
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d’Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain; (C.B.); (D.B.-T.); (M.R.-M.)
- Centro de Investigación Biomédica en Red sobre Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence: (I.F.-G.); (I.B.)
| | - Ignasi Barba
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d’Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain; (C.B.); (D.B.-T.); (M.R.-M.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain
- Facultat de Medicina. Universitat de Vic – Universitat Central de Catalunya (UVic- UCC), 08500 Vic, Barcelona, Spain
- Correspondence: (I.F.-G.); (I.B.)
| |
Collapse
|
21
|
Bentayeb H, Aitamer M, Petit B, Dubanet L, Elderwish S, Désaubry L, de Gramont A, Raymond E, Olivrie A, Abraham J, Jauberteau MO, Troutaud D. Prohibitin (PHB) expression is associated with aggressiveness in DLBCL and flavagline-mediated inhibition of cytoplasmic PHB functions induces anti-tumor effects. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:450. [PMID: 31684984 PMCID: PMC6830009 DOI: 10.1186/s13046-019-1440-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphomas (DLBCLs) are aggressive lymphomas accounting for approximately a third of non-Hodgkin lymphomas. Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are scaffold proteins that promote mitochondria homeostasis and consequently cell survival, but biological functions of cytoplasmic PHBs remain largely unknown in DLBCL. METHODS PHB expression was analyzed in 82 DLBCL biopsies and five DLBCL cell lines by immunohistochemistry (IHC) and Western blotting. Pharmacological inhibition of PHB using the synthetic flavagline FL3 was realized in vitro to gain insight PHB cellular functions. Effects of FL3 on DLBCL cell line viability, apoptosis, C-Raf-ERK-MNK-eIF4E signaling pathway and eIF4F complex formation and activity were evaluated by XTT assay, annexin V-FITC/PI dual staining and Western blotting respectively. Subcutaneous DLBCL xenograft model in SCID mice was also performed to determine in vivo FL3 effect. RESULTS As in DLBCL cell lines, PHB1 and PHB2 were expressed in germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes. In patient samples, high PHB levels were associated with higher serum LDH (PHB1 and PHB2), IPIaa (PHB2), and Ki-67 (PHB2) expression. Higher PHB1 expression tends to be associated with shorter event-free survival (EFS) in patients, especially in male patients. FL3 induced apoptosis of DLBCL cell lines that was associated with inhibition of the ERK-MNK-eIF4E signaling pathway, including aggressive double/triple-hit DLBCL cell lines. This resulted in altered eIF4F complex formation and activity leading to a reduction of Bcl-2 and c-Myc expression levels. Moreover, FL3 strongly downregulated DLBCL cellular levels of Akt protein and AKT mRNA. FL3 antitumor activity was also confirmed in vivo in a murine xenograft model. CONCLUSION Our data indicate that PHB overexpression is associated with markers of tumor aggressiveness in DLBCL, and that targeting PHBs may be a therapeutic option, notably in aggressive subtypes.
Collapse
Affiliation(s)
| | | | - Barbara Petit
- Laboratoire d'Anatomie-Pathologique, CHU de Limoges, Limoges, France
| | | | | | - Laurent Désaubry
- UMR 7203, CNRS - Université Paris Sorbonne, Paris, France.,Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | | | - Eric Raymond
- AFR Oncology, 1 place Paul Verlaine, Boulogne-Billancourt, France.,Groupe Hospitalier Saint-Joseph, Paris, France
| | - Agnès Olivrie
- Service d'Hématologie Clinique, CHU de Limoges, Limoges, France
| | - Julie Abraham
- Service d'Hématologie Clinique, CHU de Limoges, Limoges, France
| | - Marie-Odile Jauberteau
- EA3842, Université de Limoges, Limoges, France.,Service d'Immunologie, CHU Limoges, Limoges, France
| | | |
Collapse
|
22
|
Human Ovarian Cancer Tissue Exhibits Increase of Mitochondrial Biogenesis and Cristae Remodeling. Cancers (Basel) 2019; 11:cancers11091350. [PMID: 31547300 PMCID: PMC6770021 DOI: 10.3390/cancers11091350] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic cancer characterized by an elevated apoptosis resistance that, potentially, leads to chemo-resistance in the recurrent disease. Mitochondrial oxidative phosphorylation was found altered in OC, and mitochondria were proposed as a target for therapy. Molecular evidence suggests that the deregulation of mitochondrial biogenesis, morphology, dynamics, and apoptosis is involved in carcinogenesis. However, these mitochondrial processes remain to be investigated in OC. Eighteen controls and 16 OC tissues (serous and mucinous) were collected. Enzymatic activities were performed spectrophotometrically, mitochondrial DNA (mtDNA) content was measured by real-time-PCR, protein levels were determined by Western blotting, and mitochondrial number and structure were measured by electron microscopy. Statistical analysis was performed using Student’s t-test, Mann-Whitney U test, and principal component analysis (PCA). We found, in OC, that increased mitochondrial number associated with increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and mitochondrial transcription factor A (TFAM) protein levels, as well as mtDNA content. The OC mitochondria presented an increased maximum length, as well as reduced cristae width and junction diameter, associated with increased optic atrophy 1 protein (OPA1) and prohibitin 2 (PHB2) protein levels. In addition, in OC tissues, augmented cAMP and sirtuin 3 (SIRT3) protein levels were observed. PCA of the 25 analyzed biochemical parameters classified OC patients in a distinct group from controls. We highlight a “mitochondrial signature” in OC that could result from cooperation of the cAMP pathway with the SIRT3, OPA1, and PHB2 proteins.
Collapse
|
23
|
Mitochondrial Metabolism in Cancer. A Tangled Topic. Which Role for Proteomics? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:1-16. [DOI: 10.1007/978-981-13-8367-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Li L, Martin-Levilain J, Jiménez-Sánchez C, Karaca M, Foti M, Martinou JC, Maechler P. In vivo stabilization of OPA1 in hepatocytes potentiates mitochondrial respiration and gluconeogenesis in a prohibitin-dependent way. J Biol Chem 2019; 294:12581-12598. [PMID: 31285263 DOI: 10.1074/jbc.ra119.007601] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Patients with fatty liver diseases present altered mitochondrial morphology and impaired metabolic function. Mitochondrial dynamics and related cell function require the uncleaved form of the dynamin-like GTPase OPA1. Stabilization of OPA1 might then confer a protective mechanism against stress-induced tissue damages. To study the putative role of hepatic mitochondrial morphology in a sick liver, we expressed a cleavage-resistant long form of OPA1 (L-OPA1Δ) in the liver of a mouse model with mitochondrial liver dysfunction (i.e. the hepatocyte-specific prohibitin-2 knockout (Hep-Phb2-/-) mice). Liver prohibitin-2 deficiency caused excessive proteolytic cleavage of L-OPA1, mitochondrial fragmentation, and increased apoptosis. These molecular alterations were associated with lipid accumulation, abolished gluconeogenesis, and extensive liver damage. Such liver dysfunction was associated with severe hypoglycemia. In prohibitin-2 knockout mice, expression of L-OPA1Δ by in vivo adenovirus delivery restored the morphology but not the function of mitochondria in hepatocytes. In prohibitin-competent mice, elongation of liver mitochondria by expression of L-OPA1Δ resulted in excessive glucose production associated with increased mitochondrial respiration. In conclusion, mitochondrial dynamics participates in the control of hepatic glucose production.
Collapse
Affiliation(s)
- Lingzi Li
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland.,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | - Juliette Martin-Levilain
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland.,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | - Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland.,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | - Melis Karaca
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland.,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland.,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | - Jean-Claude Martinou
- Cell Biology Department, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1206 Geneva, Switzerland .,Faculty Diabetes Centre, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| |
Collapse
|
25
|
Mitophagy in Cancer: A Tale of Adaptation. Cells 2019; 8:cells8050493. [PMID: 31121959 PMCID: PMC6562743 DOI: 10.3390/cells8050493] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
:In the past years, we have learnt that tumors co-evolve with their microenvironment, and that the active interaction between cancer cells and stromal cells plays a pivotal role in cancer initiation, progression and treatment response. Among the players involved, the pathways regulating mitochondrial functions have been shown to be crucial for both cancer and stromal cells. This is perhaps not surprising, considering that mitochondria in both cancerous and non-cancerous cells are decisive for vital metabolic and bioenergetic functions and to elicit cell death. The central part played by mitochondria also implies the existence of stringent mitochondrial quality control mechanisms, where a specialized autophagy pathway (mitophagy) ensures the selective removal of damaged or dysfunctional mitochondria. Although the molecular underpinnings of mitophagy regulation in mammalian cells remain incomplete, it is becoming clear that mitophagy pathways are intricately linked to the metabolic rewiring of cancer cells to support the high bioenergetic demand of the tumor. In this review, after a brief introduction of the main mitophagy regulators operating in mammalian cells, we discuss emerging cell autonomous roles of mitochondria quality control in cancer onset and progression. We also discuss the relevance of mitophagy in the cellular crosstalk with the tumor microenvironment and in anti-cancer therapy responses.
Collapse
|
26
|
Alavi MV. Targeted OMA1 therapies for cancer. Int J Cancer 2019; 145:2330-2341. [PMID: 30714136 DOI: 10.1002/ijc.32177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
The mitochondrial inner membrane proteins OMA1 and OPA1 belong to the BAX/BAK1-dependent apoptotic signaling pathway, which can be regulated by tumor protein p53 and the prohibitins PHB and PHB2 in the context of neoplastic disease. For the most part these proteins have been studied separate from each other. Here, I argue that the OMA1 mechanism of action represents the missing link between p53 and cytochrome c release. The mitochondrial fusion protein OPA1 is cleaved by OMA1 in a stress-dependent manner generating S-OPA1. Excessive S-OPA1 can facilitate outer membrane permeabilization upon BAX/BAK1 activation through its membrane shaping properties. p53 helps outer membrane permeabilization in a 2-step process. First, cytosolic p53 activates BAX/BAK1 at the mitochondrial surface. Then, in a second step, p53 binds to prohibitin thereby releasing the restraint on OMA1. This activates OMA1, which cleaves OPA1 and promotes cytochrome c release. Clearly, OMA1 and OPA1 are not root causes for cancer. Yet many cancer cells rely on this pathway for survival, which can explain why loss of p53 function promotes tumor growth and confers resistance to chemotherapies.
Collapse
|
27
|
Signorile A, Sgaramella G, Bellomo F, De Rasmo D. Prohibitins: A Critical Role in Mitochondrial Functions and Implication in Diseases. Cells 2019; 8:cells8010071. [PMID: 30669391 PMCID: PMC6356732 DOI: 10.3390/cells8010071] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are ubiquitously expressed, and are present in the nucleus, cytosol, and mitochondria. Depending on the cellular localization, PHB1 and PHB2 have distinctive functions, but more evidence suggests a critical role within mitochondria. In fact, PHB proteins are highly expressed in cells that heavily depend on mitochondrial function. In mitochondria, these two proteins assemble at the inner membrane to form a supra-macromolecular structure, which works as a scaffold for proteins and lipids regulating mitochondrial metabolism, including bioenergetics, biogenesis, and dynamics in order to determine the cell fate, death, or life. PHB alterations have been found in aging and cancer, as well as neurodegenerative, cardiac, and kidney diseases, in which significant mitochondrial impairments have been observed. The molecular mechanisms by which prohibitins regulate mitochondrial function and their role in pathology are reviewed and discussed herein.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Giuseppe Sgaramella
- Water Research Institute (IRSA), National Research Council (CNR), Viale F. De Blasio, 5, 70132 Bari, Italy.
| | - Francesco Bellomo
- Laboratory of Nephrology, Department of Rare Diseases, Bambino Gesù Children's Hospital, Viale di S. Paolo, 15, 00149 Rome, Italy.
| | - Domenico De Rasmo
- Institute of Biomembrane, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70126 Bari, Italy.
| |
Collapse
|
28
|
Mavila N, Tang Y, Berlind J, Ramani K, Wang J, Mato JM, Lu SC. Prohibitin 1 Acts As a Negative Regulator of Wingless/Integrated-Beta-Catenin Signaling in Murine Liver and Human Liver Cancer Cells. Hepatol Commun 2018; 2:1583-1600. [PMID: 30556043 PMCID: PMC6287485 DOI: 10.1002/hep4.1257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
Prohibitin1 (PHB1) is a mitochondrial chaperone with diverse functions that include cell proliferation, apoptosis, and mitochondrial homoeostasis. Liver‐specific Phb1 knockout (KO) mice develop spontaneous injury and hepatocellular carcinoma (HCC). Our previous work demonstrated that PHB1 negatively regulates the H19‐insulin‐like growth factor 2 (IGF2)‐H19‐IGF2 axis signaling pathway and E‐box activity in hepatocytes and HCC cells. Phb1 KO livers exhibited increased expression of multiple wingless/integrated (WNT) target genes compared to control littermates. Therefore, we hypothesized that PHB1 is a negative regulator of WNT‐beta‐catenin signaling in the liver. Analysis of livers from Phb1 KO mice demonstrated an activation of the WNT‐beta‐catenin pathway as determined by phosphorylation of glycogen synthase kinase 3 (GSK3)betaserine [Ser]9 and protein kinase B (AKT)Ser473. Phb1 KO livers showed increased messenger RNA (mRNA) levels of multiple WNT ligands, with Wnt7a (79‐fold), Wnt10a (12‐fold), and Wnt16 (48‐fold) being most highly overexpressed compared to control littermates. Subcellular fractionation of liver cells from Phb1 KO mice indicated that hepatocytes are the main source of WNT ligands. Immunostaining and cellular colocalization analysis of Phb1 KO livers demonstrated expression of WNT7a, WNT10a, and WNT16 in hepatocytes. Chromatin immunoprecipitation revealed increased binding of transcription factor E2F1 (E2F1) to the Wnt10a promoter in Phb1 KO livers and WNT9A in HepG2 cells. PHB1 silencing in HepG2 cells activated WNT signaling, whereas its overexpression caused inactivation of this pathway. PHB1 silencing in HepG2 cells induced the expression of multiple WNT ligands of which WNT9A induction was partly regulated through E2F1. Conclusion: PHB1 acts as a negative regulator of WNT signaling, and its down‐regulation causes the induction of multiple WNT ligands and downstream activation of canonical WNT‐beta‐catenin signaling in murine liver and human HCC cells, in part through E2F1.
Collapse
Affiliation(s)
- Nirmala Mavila
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences Cedars Sinai Medical Center Los Angeles CA
| | - Yuanyuan Tang
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Department of Oncology The Second Xiangya Hospital, Central South University Changsha China
| | - Joshua Berlind
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| | - Komal Ramani
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA.,Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences Cedars Sinai Medical Center Los Angeles CA
| | - Jiaohong Wang
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Technology Park of Bizkaia Derio Spain
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Department of Medicine Cedars Sinai Medical Center Los Angeles CA
| |
Collapse
|
29
|
Zi Xu YX, Ande SR, Mishra S. Prohibitin: A new player in immunometabolism and in linking obesity and inflammation with cancer. Cancer Lett 2018; 415:208-216. [DOI: 10.1016/j.canlet.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
|