1
|
Shang T, Jia Z, Li J, Cao H, Xu H, Cong L, Ma D, Wang X, Liu J. Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance. J Hematol Oncol 2025; 18:32. [PMID: 40102937 PMCID: PMC11921735 DOI: 10.1186/s13045-025-01684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
In the domain of addressing cancer resistance, challenges such as limited effectiveness and treatment resistance remain persistent. Hypoxia is a key feature of solid tumors and is strongly associated with poor prognosis in cancer patients. Another significant portion of the development of acquired drug resistance is attributed to tumor stemness. Cancer stem cells (CSCs), a small tumor cell subset with self-renewal and proliferative abilities, are crucial for tumor initiation, metastasis, and intra-tumoral heterogeneity. Studies have shown a significant association between hypoxia and CSCs in the context of tumor resistance. Recent studies reveal a strong link between hypoxia and tumor stemness, which together promote tumor survival and progression during treatment. This review elucidates the interplay between hypoxia and CSCs, as well as their correlation with resistance to therapeutic drugs. Targeting pivotal genes associated with hypoxia and stemness holds promise for the development of novel therapeutics to combat tumor resistance.
Collapse
Affiliation(s)
- Tongxuan Shang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayi Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Heng Cao
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Cong
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dongxu Ma
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiang Wang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Jiang LW, Li ZX, Ji X, Jiang T, Wang XK, Weng CB. Investigating the relevance of nucleotide metabolism in the prognosis of glioblastoma through bioinformatics models. Sci Rep 2025; 15:5363. [PMID: 39948153 PMCID: PMC11825681 DOI: 10.1038/s41598-025-88970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Nucleotide metabolism (NM) is a fundamental process that enables the rapid growth of tumors. Glioblastoma (GBM) primarily relies on NM for its invasion, leading to severe clinical outcomes. This study focuses on NM to identify potential biomarkers associated with GBM. Publicly available databases were used as the primary data source for this study, excluding biological tissue samples. We identified and evaluated key genes involved in NM, followed by developing and validating a prognostic model. Patients were classified into high- and low-risk groups based on this model, and the two groups were compared with respect to cellular immunity and mutation profiles. The biomarkers were confirmed using real-time reverse-transcriptase polymerase chain reaction. Our study identified UPP1, CDA, NUDT1, and ADSL as significant biomarkers associated with prognosis, all of which were upregulated in patients with GBM. The risk score and clinical factors such as age, sex, GBM stage, MGMT promoter status, and IDH mutation status were found to be independent prognostic factors. Patients with glioblastoma showed a higher overall mutation burden. Using bioinformatics, this study identifies key factors associated with NM in GBM that may influence patient prognosis. This study enhances our understanding of GBM, provides valuable insights for further research, and serves as a reference for evaluating patient outcomes.
Collapse
Affiliation(s)
- Lu-Wei Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China
- Department of Neurosurgery, Anhui Public Health Clinical Center, Hefei, 230012, China
| | - Zi-Xuan Li
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiao Ji
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China
- Department of Neurosurgery, Anhui Public Health Clinical Center, Hefei, 230012, China
| | - Tao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China.
- Department of Neurosurgery, Anhui Public Health Clinical Center, Hefei, 230012, China.
| | - Xu-Kou Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China
- Department of Neurosurgery, Anhui Public Health Clinical Center, Hefei, 230012, China
| | - Chuan-Bo Weng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, China
- Department of Neurosurgery, Anhui Public Health Clinical Center, Hefei, 230012, China
| |
Collapse
|
3
|
Khiabani NA, Doustvandi MA, Story D, Nobari SA, Hajizadeh M, Petersen R, Dunbar G, Rossignol J. Glioblastoma therapy: State of the field and future prospects. Life Sci 2024; 359:123227. [PMID: 39537100 DOI: 10.1016/j.lfs.2024.123227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GB) is a cancerous brain tumor that originates from glial cells and leads to thousands of deaths each year and a five-year survival of only 6.8 %. Treatments for GB include surgery, chemotherapy, radiation, and immunotherapy. GB is an incurable fatal disease, necessitating the development of innovative strategies to find a developing effective therapy. Genetic therapies may be crucial in treating GB by identifying the mutations and amplifications of multiple genes, which drive its proliferation and spread. Use of small interfering RNAs (siRNAs) provides a novel technology used to suppress the genes associated with disease, which forms a basis for targeted therapy in GB and its stem cell population, which are recognized for their ability to develop resistance to chemotherapy and tumorigenic capabilities. This review examines the use of siRNAs in GB, emphasizing their effectiveness in suppressing key oncogenes and signaling pathways associated with tumor development, invasion, stemness, and resistance to standard treatments. siRNA-based gene silencing is a promising approach for developing targeted therapeutics against GB and associated stem cell populations, potentially enhancing patient outcomes and survival rates in this devastating disease.
Collapse
Affiliation(s)
- Nadia Allahyarzadeh Khiabani
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Darren Story
- Department of Psychology, Saginaw Valley State University, University Center, MI 48710, USA
| | | | | | - Robert Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
4
|
Han J, Liang J, Zhou W, Zhang M, Jin T. Association between NUDT17 polymorphisms and breast cancer risk. Expert Rev Mol Diagn 2024; 24:459-466. [PMID: 38756100 DOI: 10.1080/14737159.2024.2353700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Breast cancer (BC) is the leading cause of cancer death among women worldwide. The nudix hydrolase 17 (NUDT17) may play notable roles in cancer growth and metastasis. In this study, we explored the importance of NUDT17 gene polymorphism in patients with BC. METHODS In our study, 563 BC patients and 552 healthy controls participated. We used logistic regression analysis to calculate odds ratios (OR) and 95% confidence intervals (CI), and multifactor dimension reduction (MDR) analysis of SNP-SNP interactions. Finally, UALCAN and THPA databases were used for bioinformatics analysis. RESULTS The rs9286836 G allele was associated with a decreased the BC risk (p = 0.022), and the carriers of rs2004659 G allele had a 32% decreased risk of BC than individuals with allele A (p = 0.004). In the four genetic models, rs9286836 and rs2004659 reduced the risk of BC. Additionally, we found that the NUDT17 SNPs were associated with BC risk under age, tumor size, and clinical stage stratification. The MDR analysis showed that the five-locus interaction model was the best in the multi-locus model. CONCLUSION Our study found that NUDT17 single nucleotide polymorphisms are associated with BC susceptibility in Chinese Han population.
Collapse
Affiliation(s)
- Junhui Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Jing Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Wenqian Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Man Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- College of Life Science, Northwest University, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Roy D, Subramaniam B, Chong WC, Bornhorst M, Packer RJ, Nazarian J. Zebrafish-A Suitable Model for Rapid Translation of Effective Therapies for Pediatric Cancers. Cancers (Basel) 2024; 16:1361. [PMID: 38611039 PMCID: PMC11010887 DOI: 10.3390/cancers16071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric cancers are the leading cause of disease-related deaths in children and adolescents. Most of these tumors are difficult to treat and have poor overall survival. Concerns have also been raised about drug toxicity and long-term detrimental side effects of therapies. In this review, we discuss the advantages and unique attributes of zebrafish as pediatric cancer models and their importance in targeted drug discovery and toxicity assays. We have also placed a special focus on zebrafish models of pediatric brain cancers-the most common and difficult solid tumor to treat.
Collapse
Affiliation(s)
- Debasish Roy
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Bavani Subramaniam
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Wai Chin Chong
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Miriam Bornhorst
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Roger J. Packer
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, 8032 Zurich, Switzerland
| |
Collapse
|
6
|
Fan Y, Wang T, Lei J, Fei F, Liu J, Liu Y. Effects of postoperative radiotherapy and docetaxel and PD-1 inhibitors on the survival and safety of glioblastoma patients: a systematic review and meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1326. [PMID: 36660707 PMCID: PMC9843395 DOI: 10.21037/atm-22-2670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Background The present standard treatment rarely allows the complete removal of glioblastoma (GBM). So postoperative treatments are provided to prevent or delay tumor recurrence. The overall survival (OS) rate and safety of postoperative chemotherapy alone, or combined with radiotherapy (RT), or programmed cell death-1 (PD-1) inhibitor in GBM is still unclear. The present goal was to explore postoperative treatment's effect on the survival and safety of patients with GBM. Methods We searched the mainstream online databases for clinical studies of RT and chemotherapy and PD-1 inhibitors in the treatment of GBM published up to May 2020. The patients in the experimental group accepted an anti-PD-1 drug alone and RT + chemotherapy, whereas the controlled patients were treated with docetaxel alone. The literature qualities were assessed using Cochrane Risk of Bias 2.0, and studies were assigned. The meta-analysis was conducted by RevMan 5.4 software. Results A total of 927 articles were identified through the online database search. The articles unable to meet the inclusion criteria were excluded leaving 6 studies for inclusion in the study. Compared with docetaxel-based chemotherapy for GBM, combined RT chemotherapy and PD-1 inhibitor therapy had better OS [mean difference (MD), -1.75; 95% confidence interval (CI): -2.99 to -0.51; P=0.006] and progression-free survival (PFS) and a lower incidence of adverse reactions (MD, -7.03; 95% CI: -7.64 to -6.42; P<0.00001) above grade III. Conclusions Postoperative combination of RT and chemotherapy and PD-1 inhibitors had some advantages over docetaxel in terms of effectiveness. More clinical trials are needed to confirm effectiveness.
Collapse
Affiliation(s)
- Yingjun Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Lei
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Fei
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Larsson S, Kettunen P, Carén H. Orthotopic Transplantation of Human Paediatric High-Grade Glioma in Zebrafish Larvae. Brain Sci 2022; 12:brainsci12050625. [PMID: 35625011 PMCID: PMC9139401 DOI: 10.3390/brainsci12050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Brain tumours are the most common cause of death among children with solid tumours, and high-grade gliomas (HGG) are among the most devastating forms with very poor outcomes. In the search for more effective treatments for paediatric HGG, there is a need for better experimental models. To date, there are no xenograft zebrafish models developed for human paediatric HGG; existing models rely on adult cells. The use of paediatric models is of great importance since it is well known that the genetic and epigenetic mechanisms behind adult and paediatric disease differ greatly. In this study, we present a clinically relevant in vivo model based on paediatric primary glioma stem cell (GSC) cultures, which after orthotopic injection into the zebrafish larvae, can be monitored using confocal imaging over time. We show that cells invade the brain tissue and can be followed up to 8 days post-injection while they establish in the fore/mid brain. This model offers an in vivo system where tumour invasion can be monitored and drug treatments quickly be evaluated. The possibility to monitor patient-specific cells has the potential to contribute to a better understanding of cellular behaviour and personalised treatments in the future.
Collapse
Affiliation(s)
- Susanna Larsson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
- Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Correspondence: ; Tel.: +46-31-786-3838
| |
Collapse
|
8
|
Wilms C, Lepka K, Häberlein F, Edwards S, Felsberg J, Pudelko L, Lindenberg TT, Poschmann G, Qin N, Volbracht K, Prozorovski T, Meuth SG, Kahlert UD, Remke M, Aktas O, Reifenberger G, Bräutigam L, Odermatt B, Berndt C. Glutaredoxin 2 promotes SP-1-dependent CSPG4 transcription and migration of wound healing NG2 glia and glioma cells: Enzymatic Taoism. Redox Biol 2021; 49:102221. [PMID: 34952462 PMCID: PMC8715126 DOI: 10.1016/j.redox.2021.102221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 01/11/2023] Open
Abstract
Redox regulation of specific cysteines via oxidoreductases of the thioredoxin family is increasingly being recognized as an important signaling pathway. Here, we demonstrate that the cytosolic isoform of the vertebrate-specific oxidoreductase Glutaredoxin 2 (Grx2c) regulates the redox state of the transcription factor SP-1 and thereby its binding affinity to both the promoter and an enhancer region of the CSPG4 gene encoding chondroitin sulfate proteoglycan nerve/glial antigen 2 (NG2). This leads to an increased number of NG2 glia during in vitro oligodendroglial differentiation and promotes migration of these wound healing cells. On the other hand, we found that the same mechanism also leads to increased invasion of glioma tumor cells. Using in vitro (human cell lines), ex vivo (mouse primary cells), and in vivo models (zebrafish), as well as glioblastoma patient tissue samples we provide experimental data highlighting the Yin and Yang of redox signaling in the central nervous system and the enzymatic Taoism of Grx2c. CSPG4 promoter binding of the transcription factor SP-1 depends on glutaredoxin 2 Cytosolic glutaredoxin 2 promotes oligodendrocyte differentiation into NG2 glia Migration and wound healing capacity of NG2 glia is increased by glutaredoxin 2 Glutaredoxin 2 increases invasion of human glioblastoma cells in vitro and in vivo
Collapse
Affiliation(s)
- Christina Wilms
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Klaudia Lepka
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Felix Häberlein
- Institute for Anatomy, Medical Faculty, University Bonn, Germany
| | | | - Jörg Felsberg
- Institute of Neuropathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Linda Pudelko
- Zebrafish Core Facility, Karolinska Institute, Stockholm, Sweden
| | | | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, HeinrichHeineUniversity Düsseldorf, Germany
| | - Nan Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Pediatric Neuro-Oncogenomics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Katrin Volbracht
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Tim Prozorovski
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Ulf D Kahlert
- Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, Otto-von-Guericke-University Magdeburg, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Pediatric Neuro-Oncogenomics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Lars Bräutigam
- Zebrafish Core Facility, Karolinska Institute, Stockholm, Sweden
| | | | - Carsten Berndt
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
9
|
Bialkowski K, Szpila A. Specific 8-oxo-dGTPase activity of MTH1 (NUDT1) protein as a quantitative marker and prognostic factor in human colorectal cancer. Free Radic Biol Med 2021; 176:257-264. [PMID: 34624481 DOI: 10.1016/j.freeradbiomed.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 11/27/2022]
Abstract
The MTH1 (NUDT1) gene, because it is frequently upregulated in many types of human cancers, has been considered a general marker of carcinogenesis for over two decades. The MTH1 protein hydrolyzes the oxidized mutagenic DNA precursor, 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), to the corresponding 5'-monophosphate and inorganic pyrophosphate. This prevents its incorporation into DNA by DNA polymerases and protects cells from the accumulation of 8-oxo-dGTP-induced point mutations. Elevated MTH1 mRNA and protein in many types of human cancer indicate a worse prognosis. However, the enzymatic activity of MTH1 has remained largely uninvestigated in this context. Therefore, we have set out to determine the specific 8-oxo-dGTPase activity of MTH1 in 57 pairs of human colorectal cancers (CRC) and adjacent cancer-free tissues (CFCF). The goal was to ascertain the potential for measuring this enzymatic activity as a way to differentiate cancerous from non-cancerous specimens of the intestine, as well as defining its capabilities as a prognostic value for disease-free survival. We found that 79% of CRC tumors exhibited a higher MTH1 activity than did CFCF, with a significant 1.6-fold increase in overall median value (p < 1E-6). The 8-oxo-dGTPase in both tissues was proportional to the corresponding levels of MTH1 protein, as assayed by Western blotting. Activity higher than the ROC-optimized threshold (AUC = 0.71) indicated cancerous tissue, with a 54% sensitivity and an 83% specificity. Postoperative fate followed for up to 100 months showed that higher 8-oxo-dGTPase, in either the CFCF or the CRC tumor, clearly lowered the probability of a relapse-free survival, although borderline statistical significance (p < 0.05) was crossed only for the CFCF.
Collapse
Affiliation(s)
- Karol Bialkowski
- Department of Clinical Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.
| | - Anna Szpila
- Department of Clinical Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
10
|
Sanjiv K, Calderón-Montaño JM, Pham TM, Erkers T, Tsuber V, Almlöf I, Höglund A, Heshmati Y, Seashore-Ludlow B, Nagesh Danda A, Gad H, Wiita E, Göktürk C, Rasti A, Friedrich S, Centio A, Estruch M, Våtsveen TK, Struyf N, Visnes T, Scobie M, Koolmeister T, Henriksson M, Wallner O, Sandvall T, Lehmann S, Theilgaard-Mönch K, Garnett MJ, Östling P, Walfridsson J, Helleday T, Warpman Berglund U. MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia. Cancer Res 2021; 81:5733-5744. [PMID: 34593524 PMCID: PMC9397639 DOI: 10.1158/0008-5472.can-21-0061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/25/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy, exhibiting high levels of reactive oxygen species (ROS). ROS levels have been suggested to drive leukemogenesis and is thus a potential novel target for treating AML. MTH1 prevents incorporation of oxidized nucleotides into the DNA to maintain genome integrity and is upregulated in many cancers. Here we demonstrate that hematologic cancers are highly sensitive to MTH1 inhibitor TH1579 (karonudib). A functional precision medicine ex vivo screen in primary AML bone marrow samples demonstrated a broad response profile of TH1579, independent of the genomic alteration of AML, resembling the response profile of the standard-of-care treatments cytarabine and doxorubicin. Furthermore, TH1579 killed primary human AML blast cells (CD45+) as well as chemotherapy resistance leukemic stem cells (CD45+Lin-CD34+CD38-), which are often responsible for AML progression. TH1579 killed AML cells by causing mitotic arrest, elevating intracellular ROS levels, and enhancing oxidative DNA damage. TH1579 showed a significant therapeutic window, was well tolerated in animals, and could be combined with standard-of-care treatments to further improve efficacy. TH1579 significantly improved survival in two different AML disease models in vivo. In conclusion, the preclinical data presented here support that TH1579 is a promising novel anticancer agent for AML, providing a rationale to investigate the clinical usefulness of TH1579 in AML in an ongoing clinical phase I trial. SIGNIFICANCE: The MTH1 inhibitor TH1579 is a potential novel AML treatment, targeting both blasts and the pivotal leukemic stem cells while sparing normal bone marrow cells.
Collapse
Affiliation(s)
- Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Therese M. Pham
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tom Erkers
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Viktoriia Tsuber
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Höglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yaser Heshmati
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Akhilesh Nagesh Danda
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elisee Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Göktürk
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Azita Rasti
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Friedrich
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anders Centio
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Montserrat Estruch
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thea Kristin Våtsveen
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,KG Jebsen Center for B cell malignancies, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nona Struyf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Torkild Visnes
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Olov Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Sandvall
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Haematology, Uppsala University, Uppsala, Sweden
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Rigshospitalet/National Univ. Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Päivi Östling
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Julian Walfridsson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Oxcia AB, Stockholm, Sweden.,Corresponding Author: Ulrika Warpman Berglund, Department of Oncology Pathology, Karolinska Institute, Tomtebodavägen 23A, Stockholm 17121, Sweden or Oxcia AB, Norrbackagatan 70C, SE-113 34 Stockholm, Sweden. Phone: 46-73-2709605; E-mail: or
| |
Collapse
|
11
|
Shi J, Xiong Z, Wang K, Yuan C, Huang Y, Xiao W, Meng X, Chen Z, Lv Q, Miao D, Liang H, Xu T, Xie K, Yang H, Zhang X. HIF2α promotes tumour growth in clear cell renal cell carcinoma by increasing the expression of NUDT1 to reduce oxidative stress. Clin Transl Med 2021; 11:e592. [PMID: 34841698 PMCID: PMC8567048 DOI: 10.1002/ctm2.592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The key role of hypoxia-inducible factor 2alpha (HIF2α) in the process of renal cancer has been confirmed. In the field of tumour research, oxidative stress is also considered to be an important influencing factor. However, the relationship and biological benefits of oxidative stress and HIF2α in ccRCC remain unclear. This research attempts to explore the effect of oxidative stress on the cancer-promoting effect of HIF2α in ccRCC and reveal its mechanism of action. METHODS The bioinformatics analysis for ccRCC is based on whole transcriptome sequencing and TCGA database. The detection of the expression level of related molecules is realised by western blot and PCR. The expression of Nucleoside diphosphate-linked moiety X-type motif 1 (NUDT1) was knocked down by lentiviral infection technology. The functional role of NUDT1 were further investigated by CCK8 assays, transwell assays and cell oxidative stress indicator detection. The exploration of related molecular mechanisms is realised by Luciferase assays and Chromatin immunoprecipitation (ChIP) assays. RESULTS Molecular screening based on knockdown HIF2α sequencing data and oxidative stress related data sets showed that NUDT1 is considered to be an important molecule for the interaction of HIF2α with oxidative stress. Subsequent experimental results showed that NUDT1 can cooperate with HIF2α to promote the progression of ccRCC. And this biological effect was found to be caused by the oxidative stress regulated by NUDT1. Mechanistically, HIF2α transcription activates the expression of NUDT1, thereby inhibiting oxidative stress and promoting the progression of ccRCC. CONCLUSIONS This research clarified a novel mechanism by which HIF2α stabilises sirtuin 3 (SIRT3) through direct transcriptional activation of NUDT1, thereby inhibiting oxidative stress to promote the development of ccRCC. It provided the possibility for the selection of new therapeutic targets for ccRCC and the study of combination medication regimens.
Collapse
Affiliation(s)
- Jian Shi
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Zhiyong Xiong
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Keshan Wang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Changfei Yuan
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Yu Huang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Wen Xiao
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xiangui Meng
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Zhixian Chen
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qingyang Lv
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Daojia Miao
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Huageng Liang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Tianbo Xu
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Kairu Xie
- Department of Pathogenic BiologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Hongmei Yang
- Department of Pathogenic BiologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xiaoping Zhang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
12
|
Liu Z, Chen W, Zhang Z, Wang J, Yang YK, Hai L, Wei Y, Qiao J, Sun Y. Whole-Genome Methylation Analysis Revealed ART-Specific DNA Methylation Pattern of Neuro- and Immune-System Pathways in Chinese Human Neonates. Front Genet 2021; 12:696840. [PMID: 34589113 PMCID: PMC8473827 DOI: 10.3389/fgene.2021.696840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
The DNA methylation of human offspring can change due to the use of assisted reproductive technology (ART). In order to find the differentially methylated regions (DMRs) in ART newborns, cord blood maternal cell contamination and parent DNA methylation background, which will add noise to the real difference, must be removed. We analyzed newborns’ heel blood from six families to identify the DMRs between ART and natural pregnancy newborns, and the genetic model of methylation was explored, meanwhile we analyzed 32 samples of umbilical cord blood of infants born with ART and those of normal pregnancy to confirm which differences are consistent with cord blood data. The DNA methylation level was lower in ART-assisted offspring at the whole genome-wide level. Differentially methylated sites, DMRs, and cord blood differentially expressed genes were enriched in the important pathways of the immune system and nervous system, the genetic patterns of DNA methylation could be changed in the ART group. A total of three imprinted genes and 28 housekeeping genes which were involved in the nervous and immune systems were significant different between the two groups, six of them were detected both in heel blood and cord blood. We concluded that there is an ART-specific DNA methylation pattern involved in neuro- and immune-system pathways of human ART neonates, providing an epigenetic basis for the potential long-term health risks in ART-conceived neonates.
Collapse
Affiliation(s)
- Zongzhi Liu
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Wei Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zilong Zhang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,Tianjin Novogene Bioinformatic Technology Co., Ltd.,, Tianjin, China
| | - Junyun Wang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Yi-Kun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuan Wei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yingli Sun
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| |
Collapse
|
13
|
Shahzad U, Taccone MS, Kumar SA, Okura H, Krumholtz S, Ishida J, Mine C, Gouveia K, Edgar J, Smith C, Hayes M, Huang X, Derry WB, Taylor MD, Rutka JT. Modeling human brain tumors in flies, worms, and zebrafish: From proof of principle to novel therapeutic targets. Neuro Oncol 2021; 23:718-731. [PMID: 33378446 DOI: 10.1093/neuonc/noaa306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For decades, cell biologists and cancer researchers have taken advantage of non-murine species to increase our understanding of the molecular processes that drive normal cell and tissue development, and when perturbed, cause cancer. The advent of whole-genome sequencing has revealed the high genetic homology of these organisms to humans. Seminal studies in non-murine organisms such as Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio identified many of the signaling pathways involved in cancer. Studies in these organisms offer distinct advantages over mammalian cell or murine systems. Compared to murine models, these three species have shorter lifespans, are less resource intense, and are amenable to high-throughput drug and RNA interference screening to test a myriad of promising drugs against novel targets. In this review, we introduce species-specific breeding strategies, highlight the advantages of modeling brain tumors in each non-mammalian species, and underscore the successes attributed to scientific investigation using these models. We conclude with an optimistic proposal that discoveries in the fields of cancer research, and in particular neuro-oncology, may be expedited using these powerful screening tools and strategies.
Collapse
Affiliation(s)
- Uswa Shahzad
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Michael S Taccone
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sachin A Kumar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Hidehiro Okura
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Stacey Krumholtz
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Joji Ishida
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Coco Mine
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Kyle Gouveia
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Julia Edgar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Christian Smith
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Madeline Hayes
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Xi Huang
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - W Brent Derry
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - James T Rutka
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Reimunde P, Pensado-López A, Carreira Crende M, Lombao Iglesias V, Sánchez L, Torrecilla-Parra M, Ramírez CM, Anfray C, Torres Andón F. Cellular and Molecular Mechanisms Underlying Glioblastoma and Zebrafish Models for the Discovery of New Treatments. Cancers (Basel) 2021; 13:1087. [PMID: 33802571 PMCID: PMC7961726 DOI: 10.3390/cancers13051087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most common of all brain malignant tumors; it displays a median survival of 14.6 months with current complete standard treatment. High heterogeneity, aggressive and invasive behavior, the impossibility of completing tumor resection, limitations for drug administration and therapeutic resistance to current treatments are the main problems presented by this pathology. In recent years, our knowledge of GBM physiopathology has advanced significantly, generating relevant information on the cellular heterogeneity of GBM tumors, including cancer and immune cells such as macrophages/microglia, genetic, epigenetic and metabolic alterations, comprising changes in miRNA expression. In this scenario, the zebrafish has arisen as a promising animal model to progress further due to its unique characteristics, such as transparency, ease of genetic manipulation, ethical and economic advantages and also conservation of the major brain regions and blood-brain-barrier (BBB) which are similar to a human structure. A few papers described in this review, using genetic and xenotransplantation zebrafish models have been used to study GBM as well as to test the anti-tumoral efficacy of new drugs, their ability to interact with target cells, modulate the tumor microenvironment, cross the BBB and/or their toxicity. Prospective studies following these lines of research may lead to a better diagnosis, prognosis and treatment of patients with GBM.
Collapse
Affiliation(s)
- Pedro Reimunde
- Department of Medicine, Campus de Oza, Universidade da Coruña, 15006 A Coruña, Spain
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Martín Carreira Crende
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Vanesa Lombao Iglesias
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Marta Torrecilla-Parra
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain; (M.T.-P.); (C.M.R.)
| | - Cristina M. Ramírez
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain; (M.T.-P.); (C.M.R.)
| | - Clément Anfray
- IRCCS Istituto Clinico Humanitas, Via A. Manzoni 56, 20089 Rozzano, Milan, Italy;
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- IRCCS Istituto Clinico Humanitas, Via A. Manzoni 56, 20089 Rozzano, Milan, Italy;
| |
Collapse
|
15
|
Wright RHG, Beato M. Role of the NUDT Enzymes in Breast Cancer. Int J Mol Sci 2021; 22:2267. [PMID: 33668737 PMCID: PMC7956304 DOI: 10.3390/ijms22052267] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Despite global research efforts, breast cancer remains the leading cause of cancer death in women worldwide. The majority of these deaths are due to metastasis occurring years after the initial treatment of the primary tumor and occurs at a higher frequency in hormone receptor-positive (Estrogen and Progesterone; HR+) breast cancers. We have previously described the role of NUDT5 (Nudix-linked to moiety X-5) in HR+ breast cancer progression, specifically with regards to the growth of breast cancer stem cells (BCSCs). BCSCs are known to be the initiators of epithelial-to-mesenchyme transition (EMT), metastatic colonization, and growth. Therefore, a greater understanding of the proteins and signaling pathways involved in the metastatic process may open the door for therapeutic opportunities. In this review, we discuss the role of NUDT5 and other members of the NUDT family of enzymes in breast and other cancer types. We highlight the use of global omics data based on our recent phosphoproteomic analysis of progestin signaling pathways in breast cancer cells and how this experimental approach provides insight into novel crosstalk mechanisms for stratification and drug discovery projects aiming to treat patients with aggressive cancer.
Collapse
Affiliation(s)
- Roni H. G. Wright
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08003 Barcelona, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Life Science, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
16
|
Hu M, Ning J, Mao L, Yu Y, Wu Y. Antitumour activity of TH1579, a novel MTH1 inhibitor, against castration-resistant prostate cancer. Oncol Lett 2020; 21:62. [PMID: 33281973 PMCID: PMC7709546 DOI: 10.3892/ol.2020.12324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/02/2020] [Indexed: 11/26/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) treatment still remains difficult. The aim of the present study was to determine the antitumour efficacy of the MutT homolog 1 (MTH1) inhibitor, TH1579, against castration-resistant prostate cancer. PC-3 and DU-145 prostate cancer cells were treated with different concentrations of TH1579. C4-2 cells with or without androgen receptor (AR) were also treated with TH1579 to assess AR function. Cell survival, 8-oxo-dG levels and DNA damage were measured using cell viability assays, western blotting, immunofluorescence analysis and flow cytometry. TH1579 inhibited CRPC cell proliferation in a dose-dependent manner. The viabilities of PC-3 and DU-145 cells treated with 1 µM of TH1579 were 28.6 and 24.1%, respectively. The viabilities of C4-2 cells with and without AR treated with 1 µM TH1579 were 10.6 and 19.0%, respectively. Moreover, TH1579 treatment increased 8-oxo-dG levels, as well as the number of 53BP1 and γH2A.X foci, resulting in increased DNA double-strand breakage and apoptosis in PC-3 and DU-145 cells. The findings of the present study demonstrated that TH1579 exerted strong antitumour effects on CRPC cells, and may therefore be used as a potential therapeutic agent for the clinical treatment of CRPC.
Collapse
Affiliation(s)
- Mingqiu Hu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Jing Ning
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Likai Mao
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Yuanyuan Yu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| | - Yu Wu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233040, P.R. China
| |
Collapse
|
17
|
Bhavya B, Easwer HV, Vilanilam GC, Anand CR, Sreelakshmi K, Urulangodi M, Rajalakshmi P, Neena I, Padmakrishnan CJ, Menon GR, Krishnakumar K, Deepti AN, Gopala S. MutT Homolog1 has multifaceted role in glioma and is under the apparent orchestration by Hypoxia Inducible factor1 alpha. Life Sci 2020; 264:118673. [PMID: 33130078 DOI: 10.1016/j.lfs.2020.118673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
AIMS The study focused on the expression and role of a recent potential cancer therapeutic target protein, MutT Homolog1 (MTH1). MTH1 gets activated in an increased reactive oxygen species (ROS) environment and removes the oxidized nucleotides from the cell. The study aimed to check the role of MTH1 in DNA damage and apoptosis, migration and angiogenesis and also to examine its regulation in glioma. MAIN METHODS The experiments were carried out in human glioma tissue samples and brain tissues of epilepsy patients (non-tumor control). We used two human glioblastomas cell lines, U87MG and U251MG cells. In order to study the role of MTH1 in glioma and to analyze the relation of MTH1 with Hif1α, we have used MTH1 siRNA and Hif1α siRNA respectively. KEY FINDINGS We found an increased expression of MTH1 in glioma tissues compared to the non-tumor brain tissues. Correlation analysis revealed that those samples showing reduced expression of MTH1 also had high levels of DNA damage and apoptotic markers, while diminished expression of angiogenesis regulators and levels of migration. MTH1 knockdown in vitro by siRNA in tumor cell lines corroborates the above observation. This justifies the emergence of MTH1 inhibitors as potential first-in-class drugs. Mechanistically, our observations suggest that Hif1α may modulate MTH1 expression. SIGNIFICANCE We found elevated MTH1 expression in glioma irrespective of their grades, while its inhibition affects multiple tumor progression pathways, and that targeting Hif1α could simulate the same.
Collapse
Affiliation(s)
- Bharathan Bhavya
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - H V Easwer
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - G C Vilanilam
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - C R Anand
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - K Sreelakshmi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Madhusoodanan Urulangodi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - P Rajalakshmi
- Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Issac Neena
- Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - C J Padmakrishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Girish R Menon
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - K Krishnakumar
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - A N Deepti
- Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India.
| |
Collapse
|
18
|
You Y, Ru X, Lei W, Li T, Xiao M, Zheng H, Chen Y, Zhang L. Developing the novel bioinformatics algorithms to systematically investigate the connections among survival time, key genes and proteins for Glioblastoma multiforme. BMC Bioinformatics 2020; 21:383. [PMID: 32938364 PMCID: PMC7646399 DOI: 10.1186/s12859-020-03674-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors and its average survival time is less than 1 year after diagnosis. RESULTS Firstly, this study aims to develop the novel survival analysis algorithms to explore the key genes and proteins related to GBM. Then, we explore the significant correlation between AEBP1 upregulation and increased EGFR expression in primary glioma, and employ a glioma cell line LN229 to identify relevant proteins and molecular pathways through protein network analysis. Finally, we identify that AEBP1 exerts its tumor-promoting effects by mainly activating mTOR pathway in Glioma. CONCLUSIONS We summarize the whole process of the experiment and discuss how to expand our experiment in the future.
Collapse
Affiliation(s)
- Yujie You
- College of Computer Science, Sichuan University, Chengdu, 610065 China
| | - Xufang Ru
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Wanjing Lei
- College of Computer Science, Sichuan University, Chengdu, 610065 China
| | - Tingting Li
- College of Mathematics and Statistics, Southwest University, Chongqing, 400715 P.R. China
| | - Ming Xiao
- College of Computer Science, Sichuan University, Chengdu, 610065 China
| | - Huiru Zheng
- School of Computing, Ulster University, Coleraine, Londonderry, Northern Ireland, UK
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu, 610065 China
| |
Collapse
|
19
|
Chen Z, Chen C, Zhou T, Duan C, Wang Q, Zhou X, Zhang X, Wu F, Hua Y, Lin F. A high-throughput drug combination screen identifies an anti-glioma synergism between TH588 and PI3K inhibitors. Cancer Cell Int 2020; 20:337. [PMID: 32714096 PMCID: PMC7376673 DOI: 10.1186/s12935-020-01427-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor. More than half of GBMs contain mutation(s) of PTEN/PI3K/AKT, making inhibitors targeting the PI3K pathway very attractive for clinical investigation. However, so far, PI3K/AKT/mTOR inhibitors have not achieved satisfactory therapeutic effects in clinical trials of GBM. In this study, we aimed to develop a high-throughput screening method for high-throughput identification of potential targeted agents that synergize with PI3K inhibitors in GBM. Methods A Sensitivity Index (SI)-based drug combination screening method was established to evaluate the interactions between BKM120, a pan-PI3K inhibitor, and compounds from a library of 606 target-selective inhibitors. Proliferation, colony and 3D spheroid formation assays, western blotting, comet assay, γ-H2AX staining were used to evaluate the anti-glioma effects of the top-ranked candidates. The drug combination effects were analyzed by the Chou-Talalay method. Results Six compounds were successfully identified from the drug screen, including three previously reported compounds that cause synergistic antitumor effects with PI3K/mTOR inhibitors. TH588, an putative MTH1 inhibitor exhibited significant synergy with BKM120 in suppressing the proliferation, colony formation and 3D spheroid formation of GBM cells. Further investigation revealed that both DNA damage and apoptosis were markedly enhanced upon combination treatment with TH588 and BKM120. Finally, activation of PI3K or overexpression of AKT compromised the anti-glioma efficacy of TH588. Conclusions The screening method developed in this study demonstrated its usefulness in the rapid identification of synergistic drug combinations of PI3K inhibitors and targeted agents.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Chao Chen
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Tingting Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Chao Duan
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohui Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Xia Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Fangrong Wu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China
| | - Yunfen Hua
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Nanjing, Jiangning District China.,Institute for Brain Tumors, Key Laboratory of Rare Metabolic Diseases, The Affiliated Cancer Hospital of Nanjing Medical University; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, China
| |
Collapse
|
20
|
Das I, Gad H, Bräutigam L, Pudelko L, Tuominen R, Höiom V, Almlöf I, Rajagopal V, Hansson J, Helleday T, Egyházi Brage S, Warpman Berglund U. AXL and CAV-1 play a role for MTH1 inhibitor TH1579 sensitivity in cutaneous malignant melanoma. Cell Death Differ 2020; 27:2081-2098. [PMID: 31919461 PMCID: PMC7308409 DOI: 10.1038/s41418-019-0488-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous malignant melanoma (CMM) is the deadliest form of skin cancer and clinically challenging due to its propensity to develop therapy resistance. Reactive oxygen species (ROS) can induce DNA damage and play a significant role in CMM. MTH1 protein protects from ROS damage and is often overexpressed in different cancer types including CMM. Herein, we report that MTH1 inhibitor TH1579 induced ROS levels, increased DNA damage responses, caused mitotic arrest and suppressed CMM proliferation leading to cell death both in vitro and in an in vivo xenograft CMM zebrafish disease model. TH1579 was more potent in abrogating cell proliferation and inducing cell death in a heterogeneous co-culture setting when compared with CMM standard treatments, vemurafenib or trametinib, showing its broad anticancer activity. Silencing MTH1 alone exhibited similar cytotoxic effects with concomitant induction of mitotic arrest and ROS induction culminating in cell death in most CMM cell lines tested, further emphasizing the importance of MTH1 in CMM cells. Furthermore, overexpression of receptor tyrosine kinase AXL, previously demonstrated to contribute to BRAF inhibitor resistance, sensitized BRAF mutant and BRAF/NRAS wildtype CMM cells to TH1579. AXL overexpression culminated in increased ROS levels in CMM cells. Moreover, silencing of a protein that has shown opposing effects on cell proliferation, CAV-1, decreased sensitivity to TH1579 in a BRAF inhibitor resistant cell line. AXL-MTH1 and CAV-1-MTH1 mRNA expressions were correlated as seen in CMM clinical samples. Finally, TH1579 in combination with BRAF inhibitor exhibited a more potent cell killing effect in BRAF mutant cells both in vitro and in vivo. In summary, we show that TH1579-mediated efficacy is independent of BRAF/NRAS mutational status but dependent on the expression of AXL and CAV-1.
Collapse
Affiliation(s)
- Ishani Das
- Department of Oncology-Pathology, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Helge Gad
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, S10 2RX, UK
| | - Lars Bräutigam
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Linda Pudelko
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Rainer Tuominen
- Department of Oncology-Pathology, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Ingrid Almlöf
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Varshni Rajagopal
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, S-171 64, Stockholm, Sweden
- Department of Oncology, Karolinska University Hospital, S-171 76, Stockholm, Sweden
| | - Thomas Helleday
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, S10 2RX, UK
| | - Suzanne Egyházi Brage
- Department of Oncology-Pathology, Karolinska Institutet, S-171 64, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, S-171 64, Stockholm, Sweden.
| |
Collapse
|
21
|
Ou Q, Ma N, Yu Z, Wang R, Hou Y, Wang Z, Chen F, Li W, Bi J, Ma J, Zhang L, Su Q, Huang X. Nudix hydrolase 1 is a prognostic biomarker in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:7363-7379. [PMID: 32341205 PMCID: PMC7202498 DOI: 10.18632/aging.103083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
We investigated the prognostic significance of Nudix hydrolase 1 (NUDT1) in hepatocellular carcinoma (HCC). NUDT1 mRNA and protein levels were significantly higher in HCC tissues than normal liver tissues. The level of NUDT1 expression correlated with tumor grade, stage, size, differentiation, degree of vascular invasion, overall survival (OS), and disease-free survival (DFS) in HCC patients. Multivariate analysis showed that NUDT1 expression was an independent prognostic factor for OS and DFS in HCC patients. We constructed a prognostic nomogram with NUDT1 expression, AFP levels, vascular invasion, Child-Pugh classification, age, sex, AJCC staging, and tumor differentiation as variables. This nomogram was highly accurate in predicting the 5-year OS of HCC patients (c-index= 0.709; AUC= 0.740). NUDT1 silencing in HCC cells significantly reduced their survival, colony formation, migration, and invasiveness. Gene set enrichment analysis showed that biological pathways related to cell cycle, fatty acid metabolism, bile acid and bile salt metabolism, and PLK1 signaling were associated with NUDT1, as were the gene ontology terms "DNA binding transcription activator activity," "RNA polymerase II," "nuclear division," and "transmembrane transporter activity." Our study thus demonstrates that NUDT1 is a prognostic biomarker with therapeutic potential in HCC patients.
Collapse
Affiliation(s)
- Qifeng Ou
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ning Ma
- Department of Gastrointestinal Surgery and Hernia Center, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510000, China
| | - Zheng Yu
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Rongchang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Yucheng Hou
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ziming Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Fan Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiong Bi
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieyi Ma
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Longjuan Zhang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiao Su
- Animal Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
22
|
Moukengue B, Brown HK, Charrier C, Battaglia S, Baud'huin M, Quillard T, Pham TM, Pateras IS, Gorgoulis VG, Helleday T, Heymann D, Berglund UW, Ory B, Lamoureux F. TH1579, MTH1 inhibitor, delays tumour growth and inhibits metastases development in osteosarcoma model. EBioMedicine 2020; 53:102704. [PMID: 32151797 PMCID: PMC7063190 DOI: 10.1016/j.ebiom.2020.102704] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Osteosarcoma (OS) is the most common primary malignant bone tumour. Unfortunately, no new treatments are approved and over the last 30 years the survival rate remains only 30% at 5 years for poor responders justifying an urgent need of new therapies. The Mutt homolog 1 (MTH1) enzyme prevents incorporation of oxidized nucleotides into DNA and recently developed MTH1 inhibitors may offer therapeutic potential as MTH1 is overexpressed in various cancers. Methods The aim of this study was to evaluate the therapeutic benefits of targeting MTH1 with two chemical inhibitors, TH588 and TH1579 on human osteosarcoma cells. Preclinical efficacy of TH1579 was assessed in human osteosarcoma xenograft model on tumour growth and development of pulmonary metastases. Findings MTH1 is overexpressed in OS patients and tumour cell lines, compared to mesenchymal stem cells. In vitro, chemical inhibition of MTH1 by TH588 and TH1579 decreases OS cells viability, impairs their cell cycle and increases apoptosis in OS cells. TH1579 was confirmed to bind MTH1 by CETSA in OS model. Moreover, 90 mg/kg of TH1579 reduces in vivo tumour growth by 80.5% compared to non-treated group at day 48. This result was associated with the increase in 8-oxo-dG integration into tumour cells DNA and the increase of apoptosis. Additionally, TH1579 also reduces the number of pulmonary metastases. Interpretation All these results strongly provide a pre-clinical proof-of-principle that TH1579 could be a therapeutic option for patients with osteosarcoma. Funding This study was supported by La Ligue Contre le Cancer, la SFCE and Enfants Cancers Santé.
Collapse
Affiliation(s)
- Brice Moukengue
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Hannah K Brown
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; University of Sheffield, INSERM, European Associated Laboratory "Sarcoma Research Unit", Medical School, S10 2RX, Sheffield, UK
| | - Céline Charrier
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Séverine Battaglia
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Marc Baud'huin
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France; CHU de Nantes, Nantes, France
| | - Thibaut Quillard
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Therese M Pham
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Ioannis S Pateras
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Centre, The University of Manchester, Manchester, UK
| | - Thomas Helleday
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Dominique Heymann
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; University of Sheffield, INSERM, European Associated Laboratory "Sarcoma Research Unit", Medical School, S10 2RX, Sheffield, UK; INSERM, U1232, CRCINA, Institut de Cancérologie de l'Ouest, University of Nantes, Université d'Angers, Blvd Jacques Monod, 44805 Saint-Herblain, France
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Benjamin Ory
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France
| | - Francois Lamoureux
- Université de Nantes, INSERM, U1238, Sarcomes osseux et remodelage des tissus calcifiés, Team 3, Epistress, Rue Gaston Veil, 44035 Nantes cedex, France.
| |
Collapse
|
23
|
Abad E, Graifer D, Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Lett 2020; 474:106-117. [PMID: 31968219 DOI: 10.1016/j.canlet.2020.01.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
The cancer stem cell (CSC) model defines tumors as hierarchically organized entities, containing a small population of tumorigenic CSC, or tumour-initiating cells, placed at the apex of this hierarchy. These cells may share common qualities with chemo- and radio-resistant cancer cells and contribute to self-renewal activities resulting in tumour formation, maintenance, growth and metastasis. Yet, it remains obscure what self-defense mechanisms are utilized by these cells against the chemotherapeutic drugs or radiotherapy. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis. In line with this note, an increased DDR that prevents CSC and chemoresistant cells from genotoxic pressure of chemotherapeutic drugs or radiation may be responsible for cancer metastasis. In this review, we focus on the current knowledge concerning the role of DDR in CSC and resistant cancer cells and describe the existing opportunities of re-sensitizing such cells to modulate therapeutic treatment effects.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
24
|
Shen Y, Zhang L, Piao S, Li L, Li J, Xia Y, Li J, Saiyin W. NUDT1: A potential independent predictor for the prognosis of patients with oral squamous cell carcinoma. J Oral Pathol Med 2019; 49:210-218. [PMID: 31732994 DOI: 10.1111/jop.12974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yuchen Shen
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Lei Zhang
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Songlin Piao
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Lili Li
- Department of Implant Dentistry The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Jianhao Li
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Yanyun Xia
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Jichen Li
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Harbin Medical University Harbin China
| | - Wuliji Saiyin
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Harbin Medical University Harbin China
| |
Collapse
|
25
|
Pudelko L, Edwards S, Balan M, Nyqvist D, Al-Saadi J, Dittmer J, Almlöf I, Helleday T, Bräutigam L. An orthotopic glioblastoma animal model suitable for high-throughput screenings. Neuro Oncol 2019; 20:1475-1484. [PMID: 29750281 DOI: 10.1093/neuonc/noy071] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Glioblastoma (GBM) is an aggressive form of brain cancer with poor prognosis. Although murine animal models have given valuable insights into the GBM disease biology, they cannot be used in high-throughput screens to identify and profile novel therapies. The only vertebrate model suitable for large-scale screens, the zebrafish, has proven to faithfully recapitulate biology and pathology of human malignancies, and clinically relevant orthotopic zebrafish models have been developed. However, currently available GBM orthotopic zebrafish models do not support high-throughput drug discovery screens. Methods We transplanted both GBM cell lines as well as patient-derived material into zebrafish blastulas. We followed the behavior of the transplants with time-lapse microscopy and real-time in vivo light-sheet microscopy. Results We found that GBM material transplanted into zebrafish blastomeres robustly migrated into the developing nervous system, establishing an orthotopic intracranial tumor already 24 hours after transplantation. Detailed analysis revealed that our model faithfully recapitulates the human disease. Conclusion We have developed a robust, fast, and automatable transplantation assay to establish orthotopic GBM tumors in zebrafish. In contrast to currently available orthotopic zebrafish models, our approach does not require technically challenging intracranial transplantation of single embryos. Our improved zebrafish model enables transplantation of thousands of embryos per hour, thus providing an orthotopic vertebrate GBM model for direct application in drug discovery screens.
Collapse
Affiliation(s)
- Linda Pudelko
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Steven Edwards
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Mirela Balan
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nyqvist
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Al-Saadi
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johannes Dittmer
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bräutigam
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Michel M, Visnes T, Homan EJ, Seashore-Ludlow B, Hedenström M, Wiita E, Vallin K, Paulin CBJ, Zhang J, Wallner O, Scobie M, Schmidt A, Jenmalm-Jensen A, Warpman Berglund U, Helleday T. Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS OMEGA 2019; 4:11642-11656. [PMID: 31460271 PMCID: PMC6682003 DOI: 10.1021/acsomega.9b00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Due to a polar or even charged binding interface, DNA-binding proteins are considered extraordinarily difficult targets for development of small-molecule ligands and only a handful of proteins have been targeted successfully to date. Recently, however, it has been shown that development of selective and efficient inhibitors of 8-oxoguanine DNA glycosylase is possible. Here, we describe the initial druggability assessment of DNA glycosylases in a computational setting and experimentally investigate several methods to target endonuclease VIII-like 1 (NEIL1) with small-molecule inhibitors. We find that DNA glycosylases exhibit good predicted druggability in both DNA-bound and -unbound states. Furthermore, we find catalytic sites to be highly flexible, allowing for a range of interactions and binding partners. One flexible catalytic site was rationalized for NEIL1 and further investigated experimentally using both a biochemical assay in the presence of DNA and a thermal shift assay in the absence of DNA.
Collapse
Affiliation(s)
- Maurice Michel
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Torkild Visnes
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Department
of Biotechnology and Nanomedicine, SINTEF
Industry, N-7465 Trondheim, Norway
| | - Evert J. Homan
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | | | - Elisée Wiita
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Karl Vallin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Cynthia B. J. Paulin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Jiaxi Zhang
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Olov Wallner
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Martin Scobie
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Andreas Schmidt
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Annika Jenmalm-Jensen
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Sheffield
Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, S10 2RX Sheffield, U.K.
| |
Collapse
|
27
|
Patterson JC, Joughin BA, Prota AE, Mühlethaler T, Jonas OH, Whitman MA, Varmeh S, Chen S, Balk SP, Steinmetz MO, Lauffenburger DA, Yaffe MB. VISAGE Reveals a Targetable Mitotic Spindle Vulnerability in Cancer Cells. Cell Syst 2019; 9:74-92.e8. [PMID: 31302152 PMCID: PMC6688637 DOI: 10.1016/j.cels.2019.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 08/30/2018] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
Abstract
There is an unmet need for new antimitotic drug combinations that target cancer-specific vulnerabilities. Based on our finding of elevated biomolecule oxidation in mitotically arrested cancer cells, we combined Plk1 inhibitors with TH588, an MTH1 inhibitor that prevents detoxification of oxidized nucleotide triphosphates. This combination showed robust synergistic killing of cancer, but not normal, cells that, surprisingly, was MTH1-independent. To dissect the underlying synergistic mechanism, we developed VISAGE, a strategy integrating experimental synergy quantification with computational-pathway-based gene expression analysis. VISAGE predicted, and we experimentally confirmed, that this synergistic combination treatment targeted the mitotic spindle. Specifically, TH588 binding to β-tubulin impaired microtubule assembly, which when combined with Plk1 blockade, synergistically disrupted mitotic chromosome positioning to the spindle midzone. These findings identify a cancer-specific mitotic vulnerability that is targetable using Plk1 inhibitors with microtubule-destabilizing agents and highlight the general utility of the VISAGE approach to elucidate molecular mechanisms of drug synergy.
Collapse
Affiliation(s)
- Jesse C Patterson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tobias Mühlethaler
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Oliver H Jonas
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Matthew A Whitman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shohreh Varmeh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sen Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland; Biozentrum, University of Basel 4056 Basel, Switzerland
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Yaffe
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Zhou W, Ma L, Yang J, Qiao H, Li L, Guo Q, Ma J, Zhao L, Wang J, Jiang G, Wan X, Adam Goscinski M, Ding L, Zheng Y, Li W, Liu H, Suo Z, Zhao W. Potent and specific MTH1 inhibitors targeting gastric cancer. Cell Death Dis 2019; 10:434. [PMID: 31164636 PMCID: PMC6547740 DOI: 10.1038/s41419-019-1665-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/22/2023]
Abstract
Human mutT homolog 1(MTH1), the oxidized dNTP pool sanitizer enzyme, has been reported to be highly expressed in various malignant tumors. However, the oncogenic role of MTH1 in gastric cancer remains to be determined. In the current study, we found that MTH1 was overexpressed in human gastric cancer tissues and cells. Using an in vitro MTH1 inhibitor screening system, the compounds available in our laboratory were screened and the small molecules containing 5-cyano-6-phenylpyrimidine structure were firstly found to show potently and specifically inhibitory effect on MTH1, especially compound MI-743 with IC50 = 91.44 ± 1.45 nM. Both molecular docking and target engagement experiments proved that MI-743 can directly bind to MTH1. Moreover, MI-743 could not only inhibit cell proliferation in up to 16 cancer cell lines, especially gastric cancer cells HGC-27 and MGC-803, but also significantly induce MTH1-related 8-oxo-dG accumulation and DNA damage. Furthermore, the growth of xenograft tumours derived by injection of MGC-803 cells in nude mice was also significantly inhibited by MI-743 treatment. Importantly, MTH1 knockdown by siRNA in those two gastric cancer cells exhibited the similar findings. Our findings indicate that MTH1 is highly expressed in human gastric cancer tissues and cell lines. Small molecule MI-743 with 5-cyano-6-phenylpyrimidine structure may serve as a novel lead compound targeting the overexpressed MTH1 for gastric cancer treatment.
Collapse
Affiliation(s)
- Wenjuan Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
- Department of Pathology, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Jing Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hui Qiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Lingyu Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Qian Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Jinlian Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Junwei Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiangbin Wan
- Department of General Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, 450001, China
| | - Mariusz Adam Goscinski
- Department of Urology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0379, Norway
| | - Lina Ding
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yichao Zheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Zhenhe Suo
- Department of Pathology, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway.
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
29
|
Vargas-Patron LA, Agudelo-Dueñas N, Madrid-Wolff J, Venegas JA, González JM, Forero-Shelton M, Akle V. Xenotransplantation of Human glioblastoma in Zebrafish larvae: in vivo imaging and proliferation assessment. Biol Open 2019; 8:bio.043257. [PMID: 31085547 PMCID: PMC6550087 DOI: 10.1242/bio.043257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent type of primary brain tumor. Treatment options include maximal surgical resection and drug-radiotherapy combination. However, patient prognosis remains very poor, prompting the search for new models for drug discovery and testing, especially those that allow assessment of in vivo responses to treatment. Zebrafish xenograft models have an enormous potential to study tumor behavior, proliferation and cellular interactions. Here, an in vivo imaging and proliferation assessment method of human GBM xenograft in zebrafish larvae is introduced. Zebrafish larvae microinjected with fluorescently labeled human GBM cells were screened daily using a stereomicroscope and imaged by light sheet fluorescence microscopy (LSFM); volumetric modeling and composite reconstructions were done in single individuals. Larvae containing tumors were enzymatically dissociated, and proliferation of cancer cells was measured using dye dilution by flow cytometry. GBM micro-tumors formed mainly in the zebrafish yolk sac and perivitelline space following injection in the yolk sac, with an engraftment rate of 73%. Daily image analysis suggested cellular division, as micro-tumors progressively grew with differentiated fluorescence intensity signals. Using dye dilution assay by flow cytometry, at least three GBM cells' division cycles were identified. The combination of LSFM and flow cytometry allows assessment of proliferation and tumor growth of human GBM inside zebrafish, making it a useful model to identify effective anti-proliferative agents in a preclinical setting.
Collapse
Affiliation(s)
- Luis A Vargas-Patron
- Laboratory of Neurosciences and Circadian Rhythms, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia.,Biomedical Sciences Laboratory, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| | - Nathalie Agudelo-Dueñas
- Laboratory of Neurosciences and Circadian Rhythms, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia.,Biophysics Group, Department of Physics, Universidad de los Andes, Bogota, 111711, Colombia
| | - Jorge Madrid-Wolff
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogota, 111711, Colombia
| | - Juan A Venegas
- Biomedical Sciences Laboratory, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| | - John M González
- Biomedical Sciences Laboratory, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| | - Manu Forero-Shelton
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogota, 111711, Colombia
| | - Veronica Akle
- Laboratory of Neurosciences and Circadian Rhythms, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| |
Collapse
|
30
|
Rai P, Sobol RW. Mechanisms of MTH1 inhibition-induced DNA strand breaks: The slippery slope from the oxidized nucleotide pool to genotoxic damage. DNA Repair (Amst) 2019; 77:18-26. [PMID: 30852368 DOI: 10.1016/j.dnarep.2019.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Unlike normal tissues, tumor cells possess a propensity for genomic instability, resulting from elevated oxidant levels produced by oncogenic signaling and aberrant cellular metabolism. Thus, targeting mechanisms that protect cancer cells from the tumor-inhibitory consequences of their redox imbalance and spontaneous DNA-damaging events is expected to have broad-spectrum efficacy and a high therapeutic index. One critical mechanism for tumor cell protection from oxidant stress is the hydrolysis of oxidized nucleotides. Human MutT homolog 1 (MTH1), the mammalian nudix (nucleoside diphosphate X) pyrophosphatase (NUDT1), protects tumor cells from oxidative stress-induced genomic DNA damage by cleansing the nucleotide pool of oxidized purine nucleotides. Depletion or pharmacologic inhibition of MTH1 results in genomic DNA strand breaks in many cancer cells. However, the mechanisms underlying how oxidized nucleotides, thought mainly to be mutagenic rather than genotoxic, induce DNA strand breaks are largely unknown. Given the recent therapeutic interest in targeting MTH1, a better understanding of such mechanisms is crucial to its successful translation into the clinic and in identifying the molecular contexts under which its inhibition is likely to be beneficial. Here we provide a comprehensive perspective on MTH1 function and its importance in protecting genome integrity, in the context of tumor-associated oxidative stress and the mechanisms that likely lead to irreparable DNA strand breaks as a result of MTH1 inhibition.
Collapse
Affiliation(s)
- Priyamvada Rai
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, United States; Sylvester Comprehensive Cancer Center, Miami, FL, 33136, United States.
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, United States.
| |
Collapse
|
31
|
Arczewska KD, Stachurska A, Wojewódzka M, Karpińska K, Kruszewski M, Nilsen H, Czarnocka B. hMTH1 is required for maintaining migration and invasion potential of human thyroid cancer cells. DNA Repair (Amst) 2018; 69:53-62. [PMID: 30055508 DOI: 10.1016/j.dnarep.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
Cancer cells, including thyroid cancer cells, suffer from oxidative stress damaging multiple cellular targets, such as DNA and the nucleotide pool. The human MutT homologue 1 (hMTH1) controls the oxidative DNA damage load by sanitizing the nucleotide pool from the oxidized DNA precursor, 8-oxodGTP. It has previously been shown that hMTH1 is essential for cancer cell proliferation and survival, therefore hMTH1 inhibition has been proposed as a novel anticancer therapeutic strategy. Here we show that thyroid cancer cells respond to siRNA mediated hMTH1 depletion with increased DNA damage load and moderately reduced proliferation rates, but without detectable apoptosis, cell-cycle arrest or senescence. Importantly, however, hMTH1 depletion significantly reduced migration and invasion potential of the thyroid cancer cells. Accordingly, our results allow us to propose that hMTH1 may be a therapeutic target in thyroid malignancy, especially for controlling metastasis.
Collapse
Affiliation(s)
- Katarzyna D Arczewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Anna Stachurska
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Maria Wojewódzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
| | - Kamila Karpińska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland.
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Sykehusveien 25, Lørenskog, Norway.
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
32
|
Versano Z, Shany E, Freedman S, Tuval-Kochen L, Leitner M, Paglin S, Toren A, Yalon M. MutT homolog 1 counteracts the effect of anti-neoplastic treatments in adult and pediatric glioblastoma cells. Oncotarget 2018; 9:27547-27563. [PMID: 29938005 PMCID: PMC6007941 DOI: 10.18632/oncotarget.25547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/19/2018] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma, a fatal disease in both adult and pediatric patients, currently has limited treatment options that offer no more than temporary relief. Our experiments with adult and pediatric glioblastoma cell lines showed that radiation induces a dose-dependent increase in the level of MutT homolog 1 (MTH1) - an enzyme that hydrolyzes oxidized purine nucleoside triphosphates. Similarly, the combination of vorinostat, which is a histone deacetylase inhibitor, and ABT-888, which is a PARP-1 inhibitor, enhanced clonogenic death and increased the MTH1 level, relative to each treatment alone. This result suggests that the MTH1 level is directly related to the damage that is inflicted upon the cells, and its activity protects them against anti-neoplastic therapy. Indeed, the MTH1 inhibitor TH588 and MTH1 siRNA increased glioblastoma's response to both radiation and the combination of vorinostat and ABT-888. TH588 also inhibited glioblastoma's capacity for migration and invasion. In normal fibroblasts, low radiation doses and the combination of vorinostat and ABT-888 decreased the level of the enzyme. TH588 did not alter the fibroblasts’ response to radiation and only mildly affected their response to the combination of vorinostat and ABT-888. In summary, the inhibition of MTH1 is required to better realize the therapeutic potential of anti-neoplastic treatments in glioblastoma.
Collapse
Affiliation(s)
- Ziv Versano
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eitan Shany
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Shany Freedman
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liron Tuval-Kochen
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Leitner
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Shoshana Paglin
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Amos Toren
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michal Yalon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan 52621, Israel.,The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan 52621, Israel
| |
Collapse
|