1
|
Ohtsuka S, Kato H, Ishikawa R, Watanabe H, Miyazaki R, Katsuragi SY, Yoshimura K, Yamada H, Sakai Y, Inoue Y, Takanashi Y, Sekihara K, Funai K, Sugimura H, Shinmura K. STIL Overexpression Is Associated with Chromosomal Numerical Abnormalities in Non-Small-Cell Lung Carcinoma Through Centrosome Amplification. Curr Oncol 2024; 31:7936-7949. [PMID: 39727708 PMCID: PMC11674966 DOI: 10.3390/curroncol31120585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
STIL is a regulatory protein essential for centriole biogenesis, and its dysregulation has been implicated in various diseases, including malignancies. However, its role in non-small-cell lung carcinoma (NSCLC) remains unclear. In this study, we examined STIL expression and its potential association with chromosomal numerical abnormalities (CNAs) in NSCLC using The Cancer Genome Atlas (TCGA) dataset, immunohistochemical analysis, and in vitro experiments with NSCLC cell lines designed to overexpress STIL. TCGA data revealed upregulated STIL mRNA expression in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), the two major subtypes of NSCLC. Immunohistochemical analysis of cases from our hospital (LUAD, n = 268; LUSC, n = 98) revealed STIL protein overexpression. To elucidate the functional role of STIL, an inducible STIL-overexpressing H1299 NSCLC cell line was generated. Overexpression of STIL in these cells promoted centrosome amplification, leading to chromosomal instability. Finally, analysis of arm-level chromosomal copy number alterations from the TCGA dataset revealed that elevated STIL mRNA expression was associated with CNAs in both LUAD and LUSC. These findings suggest that STIL overexpression is associated with CNAs in NSCLC, likely through centrosome amplification, which is linked to chromosomal instability and might represent a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Shunsuke Ohtsuka
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Rei Ishikawa
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
| | - Ryosuke Miyazaki
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Shin-ya Katsuragi
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
| | - Yusuke Takanashi
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (Y.T.); (K.S.); (K.F.)
| | - Keigo Sekihara
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (Y.T.); (K.S.); (K.F.)
| | - Kazuhito Funai
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (Y.T.); (K.S.); (K.F.)
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
- Kyoundo Hospital, Sasaki Foundation, Tokyo 101-0062, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.O.); (H.K.); (R.I.); (H.W.); (R.M.); (S.-y.K.); (K.Y.); (H.Y.); (Y.S.); (H.S.)
| |
Collapse
|
2
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Halcrow EFJ, Mazza R, Diversi A, Enright A, D’Avino PP. Midbody Proteins Display Distinct Dynamics during Cytokinesis. Cells 2022; 11:cells11213337. [PMID: 36359734 PMCID: PMC9656288 DOI: 10.3390/cells11213337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The midbody is an organelle that forms between the two daughter cells during cytokinesis. It co-ordinates the abscission of the nascent daughter cells and is composed of a multitude of proteins that are meticulously arranged into distinct temporal and spatial localization patterns. However, very little is known about the mechanisms that regulate the localization and function of midbody proteins. Here, we analyzed the temporal and spatial profiles of key midbody proteins during mitotic exit under normal conditions and after treatment with drugs that affect phosphorylation and proteasome-mediated degradation to decipher the impacts of post-translational modifications on midbody protein dynamics. Our results highlighted that midbody proteins show distinct spatio-temporal dynamics during mitotic exit and cytokinesis that depend on both ubiquitin-mediated proteasome degradation and phosphorylation/de-phosphorylation. They also identified two discrete classes of midbody proteins: ‘transient’ midbody proteins—including Anillin, Aurora B and PRC1—which rapidly accumulate at the midbody after anaphase onset and then slowly disappear, and ‘stable’ midbody proteins—including CIT-K, KIF14 and KIF23—which instead persist at the midbody throughout cytokinesis and also post abscission. These two classes of midbody proteins display distinct interaction networks with ubiquitylation factors, which could potentially explain their different dynamics and stability during cytokinesis.
Collapse
|
4
|
Heumos S, Dehn S, Bräutigam K, Codrea MC, Schürch CM, Lauer UM, Nahnsen S, Schindler M. Multiomics surface receptor profiling of the NCI-60 tumor cell panel uncovers novel theranostics for cancer immunotherapy. Cancer Cell Int 2022; 22:311. [PMID: 36221114 PMCID: PMC9555072 DOI: 10.1186/s12935-022-02710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors (ICI) has revolutionized cancer therapy. However, therapeutic targeting of inhibitory T cell receptors such as PD-1 not only initiates a broad immune response against tumors, but also causes severe adverse effects. An ideal future stratified immunotherapy would interfere with cancer-specific cell surface receptors only. METHODS To identify such candidates, we profiled the surface receptors of the NCI-60 tumor cell panel via flow cytometry. The resulting surface receptor expression data were integrated into proteomic and transcriptomic NCI-60 datasets applying a sophisticated multiomics multiple co-inertia analysis (MCIA). This allowed us to identify surface profiles for skin, brain, colon, kidney, and bone marrow derived cell lines and cancer entity-specific cell surface receptor biomarkers for colon and renal cancer. RESULTS For colon cancer, identified biomarkers are CD15, CD104, CD324, CD326, CD49f, and for renal cancer, CD24, CD26, CD106 (VCAM1), EGFR, SSEA-3 (B3GALT5), SSEA-4 (TMCC1), TIM1 (HAVCR1), and TRA-1-60R (PODXL). Further data mining revealed that CD106 (VCAM1) in particular is a promising novel immunotherapeutic target for the treatment of renal cancer. CONCLUSION Altogether, our innovative multiomics analysis of the NCI-60 panel represents a highly valuable resource for uncovering surface receptors that could be further exploited for diagnostic and therapeutic purposes in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Simon Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.,Biomedical Data Science, Dept. of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Sandra Dehn
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | | | - Marius C Codrea
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital Tübingen, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.,Biomedical Data Science, Dept. of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Proteomic analysis reveals USP7 as a novel regulator of palmitic acid-induced hepatocellular carcinoma cell death. Cell Death Dis 2022; 13:563. [PMID: 35732625 PMCID: PMC9217975 DOI: 10.1038/s41419-022-05003-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023]
Abstract
Nutrient surplus and consequent free fatty acid accumulation in the liver cause hepatosteatosis. The exposure of free fatty acids to cultured hepatocyte and hepatocellular carcinoma cell lines induces cellular stress, organelle adaptation, and subsequent cell death. Despite many studies, the mechanism associated with lipotoxicity and subsequent cell death still remains poorly understood. Here, we have used the proteomics approach to circumvent the mechanism for lipotoxicity using hepatocellular carcinoma cells as a model. Our quantitative proteomics data revealed that ectopic lipids accumulation in cells severely affects the ubiquitin-proteasomal system. The palmitic acid (PA) partially lowered the expression of deubiquitinating enzyme USP7 which subsequently destabilizes p53 and promotes mitotic entry of cells. Our global phosphoproteomics analysis also provides strong evidence of an altered cell cycle checkpoint proteins' expression that abrogates early G2/M checkpoints recovery with damaged DNA and induced mitotic catastrophe leading to hepatocyte death. We observe that palmitic acid prefers apoptosis-inducing factor (AIF) mediated cell death by depolarizing mitochondria and translocating AIF to the nucleus. In summary, the present study provides evidence of PA-induced hepatocellular death mediated by deubiquitinase USP7 downregulation and subsequent mitotic catastrophe.
Collapse
|
6
|
Fernandes MT, Yassuda V, Bragança J, Link W, Ferreira BI, De Sousa-Coelho AL. Tribbles Gene Expression Profiles in Colorectal Cancer. GASTROINTESTINAL DISORDERS 2021; 3:218-236. [DOI: https:/doi.org/10.3390/gidisord3040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
Collapse
Affiliation(s)
- Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Victor Yassuda
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisboa, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Bibiana I. Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Estudos e Desenvolvimento em Saúde (CES), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
7
|
Fernandes MT, Yassuda V, Bragança J, Link W, Ferreira BI, De Sousa-Coelho AL. Tribbles Gene Expression Profiles in Colorectal Cancer. GASTROINTESTINAL DISORDERS 2021; 3:218-236. [DOI: 10.3390/gidisord3040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
Collapse
Affiliation(s)
- Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Victor Yassuda
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisboa, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Bibiana I. Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Estudos e Desenvolvimento em Saúde (CES), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Shin SB, Kim CH, Jang HR, Yim H. Combination of Inhibitors of USP7 and PLK1 has a Strong Synergism against Paclitaxel Resistance. Int J Mol Sci 2020; 21:E8629. [PMID: 33207738 PMCID: PMC7697005 DOI: 10.3390/ijms21228629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
USP7 is a promising target for the development of cancer treatments because of its high expression and the critical functions of its substrates in carcinogenesis of several different carcinomas. Here, we demonstrated the effectiveness of targeting USP7 in advanced malignant cells showing high levels of USP7, especially in taxane-resistant cancer. USP7 knockdown effectively induced cell death in several cancer cells of lung, prostate, and cervix. Depletion of USP7 induced multiple spindle pole formation in mitosis, and, consequently, resulted in mitotic catastrophe. When USP7 was blocked in the paclitaxel-resistant lung cancer NCI-H460TXR cells, which has resistance to mitotic catastrophe, NCI-H460TXR cells underwent apoptosis effectively. Furthermore, combination treatment with the mitotic kinase PLK1 inhibitor volasertib and the USP7 inhibitor P22077 showed a strong synergism through down-regulation of MDR1/ABCB1 in paclitaxel-resistant lung cancer. Therefore, we suggest USP7 is a promising target for cancer therapy, and combination therapy with inhibitors of PLK1 and USP7 may be valuable for treating paclitaxel-resistant cancers, because of their strong synergism.
Collapse
Affiliation(s)
| | | | | | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea; (S.-B.S.); (C.-H.K.); (H.-R.J.)
| |
Collapse
|
9
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Kennedy K, Thomas R, Durrant J, Jiang T, Motsinger-Reif A, Breen M. Genome-wide DNA copy number analysis and targeted transcriptional analysis of canine histiocytic malignancies identifies diagnostic signatures and highlights disruption of spindle assembly complex. Chromosome Res 2019; 27:179-202. [PMID: 31011867 DOI: 10.1007/s10577-019-09606-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Abstract
Canine histiocytic malignancies (HM) are rare across the general dog population, but overrepresented in certain breeds, such as Bernese mountain dog and flat-coated retriever. Accurate diagnosis relies on immunohistochemical staining to rule out histologically similar cancers with different prognoses and treatment strategies (e.g., lymphoma and hemangiosarcoma). HM are generally treatment refractory with overall survival of less than 6 months. A lack of understanding regarding the mechanisms of disease development and progression hinders development of novel therapeutics. While the study of human tumors can benefit veterinary medicine, the rarity of the suggested orthologous disease (dendritic cell sarcoma) precludes this. This study aims to improve the understanding of underlying disease mechanisms using genome-wide DNA copy number and gene expression analysis of spontaneous HM across several dog breeds. Extensive DNA copy number disruption was evident, with losses of segments of chromosomes 16 and 31 detected in 93% and 72% of tumors, respectively. Droplet digital PCR (ddPCR) evaluation of these regions in numerous cancer specimens effectively discriminated HM from other common round cell tumors, including lymphoma and hemangiosarcoma, resulting in a novel, rapid diagnostic aid for veterinary medicine. Transcriptional analysis demonstrated disruption of the spindle assembly complex, which is linked to genomic instability and reduced therapeutic impact in humans. A key signature detected was up-regulation of Matrix Metalloproteinase 9 (MMP9), supported by an immunohistochemistry-based assessment of MMP9 protein levels. Since MMP9 has been linked with rapid metastasis and tumor aggression in humans, the data in this study offer a possible mechanism of aggression in HM.
Collapse
Affiliation(s)
- Katherine Kennedy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Sentinel Biomedical Incorporated, Centennial Biomedical Campus, Raleigh, NC, 27607, USA
| | - Rachael Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jessica Durrant
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Tao Jiang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA.,Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA.,Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA. .,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA. .,Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA. .,Duke Cancer Institute, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Georges A, Coyaud E, Marcon E, Greenblatt J, Raught B, Frappier L. USP7 Regulates Cytokinesis through FBXO38 and KIF20B. Sci Rep 2019; 9:2724. [PMID: 30804394 PMCID: PMC6389929 DOI: 10.1038/s41598-019-39368-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 01/13/2023] Open
Abstract
The ubiquitin specific protease 7 (USP7 or HAUSP) is known to regulate a variety of cellular processes by binding and deubiquitylating specific target proteins. To gain a more comprehensive understanding of its interactions and functions, we used affinity purification coupled to mass spectrometry to profile USP7 interactions. This revealed a novel interaction with FBXO38, a poorly characterized F-box protein. We showed that USP7 stabilizes FBXO38 dependent on its catalytic activity by protecting FBXO38 from proteasomal degradation. We used a BioID approach to profile the protein interactions (and putative functions) of FBXO38, revealing an interaction with KIF20B, a Kinesin-6 protein required for efficient cytokinesis. FBXO38 was shown to function independently from an SCF complex to stabilize KIF20B. Consequently, depletion of either FBXO38 or USP7 led to dramatic decreases in KIF20B levels and KIF20B at the midbody, which were manifested in cytokinetic defects. Furthermore, cytokinetic defects associated with USP7 silencing were rescued by restoring FBXO38 or KIF20B. The results indicate a novel mechanism of regulating cytokinesis through USP7 and FBXO38.
Collapse
Affiliation(s)
- Anna Georges
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Etienne Coyaud
- The Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Donnelly Centre, University of Toronto, Toronto, Canada
| | - Brian Raught
- The Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
USP7: Structure, substrate specificity, and inhibition. DNA Repair (Amst) 2019; 76:30-39. [PMID: 30807924 DOI: 10.1016/j.dnarep.2019.02.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/07/2019] [Indexed: 12/24/2022]
Abstract
Turnover of cellular proteins is regulated by Ubiquitin Proteasome System (UPS). Components of this pathway, including the proteasome, ubiquitinating enzymes and deubiquitinating enzymes, are highly specialized and tightly regulated. In this mini-review we focus on the de-ubiquitinating enzyme USP7, and summarize latest advances in understanding its structure, substrate specificity and relevance to human cancers. There is increasing interest in UPS components as targets for cancer therapy and here we also overview the recent progress in the development of small molecule inhibitors that target USP7.
Collapse
|
13
|
Yeasmin Khusbu F, Chen FZ, Chen HC. Targeting ubiquitin specific protease 7 in cancer: A deubiquitinase with great prospects. Cell Biochem Funct 2018; 36:244-254. [PMID: 29781103 DOI: 10.1002/cbf.3336] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/21/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Deubiquitinase (DUB)-mediated cleavage of ubiquitin chain balances ubiquitination and deubiquitination for determining protein fate. USP7 is one of the best characterized DUBs and functionally important. Numerous proteins have been identified as potential substrates and binding partners of USP7; those play crucial roles in diverse array of cellular and biological processes including tumour suppression, cell cycle, DNA repair, chromatin remodelling, and epigenetic regulation. This review aims at summarizing the current knowledge of this wide association of USP7 with many cellular processes that enlightens the possibility of abnormal USP7 activity in promoting oncogenesis and the importance of identification of specific inhibitors.
Collapse
Affiliation(s)
- Farjana Yeasmin Khusbu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Fang-Zhi Chen
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Han-Chun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Stockum A, Snijders AP, Maertens GN. USP11 deubiquitinates RAE1 and plays a key role in bipolar spindle formation. PLoS One 2018; 13:e0190513. [PMID: 29293652 PMCID: PMC5749825 DOI: 10.1371/journal.pone.0190513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/15/2017] [Indexed: 11/26/2022] Open
Abstract
Correct segregation of the mitotic chromosomes into daughter cells is a highly regulated process critical to safeguard genome stability. During M phase the spindle assembly checkpoint (SAC) ensures that all kinetochores are correctly attached before its inactivation allows progression into anaphase. Upon SAC inactivation, the anaphase promoting complex/cyclosome (APC/C) E3 ligase ubiquitinates and targets cyclin B and securin for proteasomal degradation. Here, we describe the identification of Ribonucleic Acid Export protein 1 (RAE1), a protein previously shown to be involved in SAC regulation and bipolar spindle formation, as a novel substrate of the deubiquitinating enzyme (DUB) Ubiquitin Specific Protease 11 (USP11). Lentiviral knock-down of USP11 or RAE1 in U2OS cells drastically reduces cell proliferation and increases multipolar spindle formation. We show that USP11 is associated with the mitotic spindle, does not regulate SAC inactivation, but controls ubiquitination of RAE1 at the mitotic spindle, hereby functionally modulating its interaction with Nuclear Mitotic Apparatus protein (NuMA).
Collapse
Affiliation(s)
- Anna Stockum
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Norfolk Place, London, United Kingdom
| | - Ambrosius P. Snijders
- Francis Crick Institute, The Crick Mass Spectrometry Science Technology Platform, 1 Midland Road, London, United Kingdom
| | - Goedele N. Maertens
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Norfolk Place, London, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|
16
|
Kahl VFS, da Silva J, da Silva FR. Influence of exposure to pesticides on telomere length in tobacco farmers: A biology system approach. Mutat Res 2016; 791-792:19-26. [PMID: 27566293 DOI: 10.1016/j.mrfmmm.2016.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
Various pesticides in the form of mixtures must be used to keep tobacco crops pest-free. Recent studies have shown a link between occupational exposure to pesticides in tobacco crops and increased damage to the DNA, mononuclei, nuclear buds and binucleated cells in buccal cells as well as micronuclei in lymphocytes. Furthermore, pesticides used specifically for tobacco crops shorten telomere length (TL) significantly. However, the molecular mechanism of pesticide action on telomere length is not fully understood. Our study evaluated the interaction between a complex mixture of chemical compounds (tobacco cultivation pesticides plus nicotine) and proteins associated with maintaining TL, as well as the biological processes involved in this exposure by System Biology tools to provide insight regarding the influence of pesticide exposure on TL maintenance in tobacco farmers. Our analysis showed that one cluster was associated with TL proteins that act in bioprocesses such as (i) telomere maintenance via telomere lengthening; (ii) senescence; (iii) age-dependent telomere shortening; (iv) DNA repair (v) cellular response to stress and (vi) regulation of proteasome ubiquitin-dependent protein catabolic process. We also describe how pesticides and nicotine regulate telomere length. In addition, pesticides inhibit the ubiquitin proteasome system (UPS) and consequently increase proteins of the shelterin complex, avoiding the access of telomerase in telomere and, nicotine activates UPS mechanisms and promotes the degradation of human telomerase reverse transcriptase (hTERT), decreasing telomerase activity.
Collapse
Affiliation(s)
- Vivian Francília Silva Kahl
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| | | |
Collapse
|
17
|
Zhang C, Lu J, Zhang QW, Zhao W, Guo JH, Liu SL, Wu YL, Jiang B, Gao FH. USP7 promotes cell proliferation through the stabilization of Ki-67 protein in non-small cell lung cancer cells. Int J Biochem Cell Biol 2016; 79:209-221. [PMID: 27590858 DOI: 10.1016/j.biocel.2016.08.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 08/07/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
The Ki-67 antigen (Ki-67) is the most reliable immunohistochemical marker for evaluation of cell proliferation in non-small cell lung cancer. However, the mechanisms underlying the regulation of protein levels of Ki-67 in non-small cell lung cancer have remained elusive. In this study, we found that Ki-67 and ubiquitin-specific processing protease 7 (USP7) protein were highly expressed in the nucleus of non-small cell lung cancer cells. Furthermore, statistical analysis uncovered the existence of a strong correlation between Ki-67 and USP7 levels. We could also show that the protein levels of Ki-67 in non-small cell lung cancer cells significantly decreased after treatment with P22077, a selective chemical inhibitor of USP7, while the Ki-67 mRNA levels were unperturbed. Similar results were obtained by knocking down USP7 using short hairpin RNA (shRNA) in lung cancer cells. Interestingly, we noticed that ubiquitination levels of Ki-67 increased dramatically in USP7-silenced cells. The tests in vitro and vivo showed a significant delay in tumor cell growth upon knockdown of USP7. Additionally, drug sensitivity tests indicated that USP7-silenced A549 cells had enhanced sensitivity to paclitaxel and docetaxel, while there was no significant change in sensitivity toward carboplatin and cisplatin. Taken together, these data strongly suggest that the overexpression of USP7 might promote cell proliferation by deubiquitinating Ki-67 protein, thereby maintaining its high levels in the non-small cell lung cancer. Our study also hints potential for the development of deubiquitinase-based therapies, especially those targeting USP7 to improve the condition of patients diagnosed with non-small cell lung cancer.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Jing Lu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Quan-Wu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Wei Zhao
- Department of Pathology, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou 213003, China
| | - Jia-Hui Guo
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Shan-Ling Liu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Jiang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China.
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China.
| |
Collapse
|
18
|
Lim KH, Song MH, Baek KH. Decision for cell fate: deubiquitinating enzymes in cell cycle checkpoint. Cell Mol Life Sci 2016; 73:1439-55. [PMID: 26762302 PMCID: PMC11108577 DOI: 10.1007/s00018-015-2129-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/03/2015] [Accepted: 12/30/2015] [Indexed: 09/29/2022]
Abstract
All organs consisting of single cells are consistently maintaining homeostasis in response to stimuli such as free oxygen, DNA damage, inflammation, and microorganisms. The cell cycle of all mammalian cells is regulated by protein expression in the right phase to respond to proliferation and apoptosis signals. Post-translational modifications (PTMs) of proteins by several protein-editing enzymes are associated with cell cycle regulation by their enzymatic functions. Ubiquitination, one of the PTMs, is also strongly related to cell cycle regulation by protein degradation or signal transduction. The importance of deubiquitinating enzymes (DUBs), which have a reversible function for ubiquitination, has recently suggested that the function of DUBs is also important for determining the fate of proteins during cell cycle processing. This article reviews and summarizes the diverse roles of DUBs, including DNA damage, cell cycle processing, and regulation of histone proteins, and also suggests the possibility for therapeutic targets.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Myoung-Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea.
| |
Collapse
|
19
|
Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, Wang X, Chen M, Chen J, Yang J, Kong C, Li B, Peng C, Wong CCL, Hou F, Zhang Y. Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7). PLoS One 2015; 10:e0145023. [PMID: 26678539 PMCID: PMC4683056 DOI: 10.1371/journal.pone.0145023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Mixed lineage leukemia 5 (MLL5) protein is a trithorax family histone 3 lysine 4 (H3K4) methyltransferase that regulates diverse biological processes, including cell cycle progression, hematopoiesis and cancer. The mechanisms by which MLL5 protein stability is regulated have remained unclear to date. Here, we showed that MLL5 protein stability is cooperatively regulated by O-GlcNAc transferase (OGT) and ubiquitin-specific protease 7 (USP7). Depletion of OGT in cells led to a decrease in the MLL5 protein level through ubiquitin/proteasome-dependent proteolytic degradation, whereas ectopic expression of OGT protein suppressed MLL5 ubiquitylation. We further identified deubiquitinase USP7 as a novel MLL5-associated protein using mass spectrometry. USP7 stabilized the MLL5 protein through direct binding and deubiquitylation. Loss of USP7 induced degradation of MLL5 protein. Conversely, overexpression of USP7, but not a catalytically inactive USP7 mutant, led to decreased ubiquitylation and increased MLL5 stability. Co-immunoprecipitation and co-immunostaining assays revealed that MLL5, OGT and USP7 interact with each other to form a stable ternary complex that is predominantly located in the nucleus. In addition, upregulation of MLL5 expression was correlated with increased expression of OGT and USP7 in human primary cervical adenocarcinomas. Our results collectively reveal a novel molecular mechanism underlying regulation of MLL5 protein stability and provide new insights into the functional interplay among O-GlcNAc transferase, deubiquitinase and histone methyltransferase.
Collapse
Affiliation(s)
- Xiaodan Ding
- Department of Immunology, Nanjing Medical University, Jiangsu, China
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Jiang
- Shanghai Red House Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- * E-mail: (WJ); (YZ)
| | - Peipei Zhou
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lulu Liu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Institute of Biology and Medical Sciences, Soochow University, Jiangsu, China
| | - Xiaoling Wan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiujie Yuan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xizi Wang
- College of life science, Sun Yet-Sen University, Guangzhou, China
| | - Miao Chen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Jun Chen
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Jing Yang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chao Kong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bin Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Catherine C. L. Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fajian Hou
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (WJ); (YZ)
| |
Collapse
|
20
|
Abstract
To ensure duplication of the entire genome, eukaryotic DNA replication initiates from thousands of replication origins. The replication forks move through the chromatin until they encounter forks from neighboring origins. During replication fork termination forks converge, the replisomes disassemble and topoisomerase II resolves the daughter DNA molecules. If not resolved efficiently, terminating forks result in genomic instability through the formation of pathogenic structures. Our recent findings shed light onto the mechanism of replisome disassembly upon replication fork termination. We have shown that termination-specific polyubiquitylation of the replicative helicase component – Mcm7, leads to dissolution of the active helicase in a process dependent on the p97/VCP/Cdc48 segregase. The inhibition of terminating helicase disassembly resulted in a replication termination defect. In this extended view we present hypothetical models of replication fork termination and discuss remaining and emerging questions in the DNA replication termination field.
Collapse
Key Words
- CMG, Cdc45, Mcm2–7, GINS complex
- CRL, cullin-RING ligase
- D loop, displacement loop
- DDR, DNA damage response
- DNA replication
- DSB, double strand break
- DUB, deubiquitylating enzyme
- ER, endoplasmic reticulum
- ERAD, endoplasmic reticulum associated protein degradation
- GINS, Go-Ichi-Ni-San, complex made of Sld5, Psf1, Psf2, Psf3
- ICL, intra-strand crosslink
- MCM, Minichromosome maintenance
- Mcm2–7
- OriC, chromosomal replication origin
- R loop, RNA:DNA hybrid
- RING, really interesting gene
- RPC, Replisome Progression Complex
- Ter, termination site
- Tus-Ter, terminus utilisation substance - termination
- Xenopus
- p97 segregase
- replication termination
- replicative helicase
- replisome
- ubiquitin
Collapse
Affiliation(s)
- Rachael Bailey
- a School of Cancer Sciences; University of Birmingham ; Birmingham , UK
| | | | | |
Collapse
|
21
|
Abstract
Deubiquitinases (DUBs) play important roles and therefore are potential drug targets in various diseases including cancer and neurodegeneration. In this review, we recapitulate structure-function studies of the most studied DUBs including USP7, USP22, CYLD, UCHL1, BAP1, A20, as well as ataxin 3 and connect them to regulatory mechanisms and their growing protein interaction networks. We then describe DUBs that have been associated with endocrine carcinogenesis with a focus on prostate, ovarian, and thyroid cancer, pheochromocytoma, and adrenocortical carcinoma. The goal is enhancing our understanding of the connection between dysregulated DUBs and cancer to permit the design of therapeutics and to establish biomarkers that could be used in diagnosis and prognosis.
Collapse
Affiliation(s)
- Roland Pfoh
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Ira Kay Lacdao
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Vivian Saridakis
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| |
Collapse
|