1
|
Drobish I, Ackerman H. Elevating uric acid as an antimalarial target. Trends Parasitol 2025:S1471-4922(25)00127-8. [PMID: 40404548 DOI: 10.1016/j.pt.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Accepted: 05/01/2025] [Indexed: 05/24/2025]
Abstract
Malaria causes hundreds of thousands of deaths each year in children, and many survivors are left with lasting neurological injury. While we have effective parasite-killing drugs, we need treatments that target disease mechanisms to improve outcomes. Bond et al. recently reported uric acid as a potential target for anti-disease therapy.
Collapse
Affiliation(s)
- Ian Drobish
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA; Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, USA; Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Hans Ackerman
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Chen Z, Chen R, Wang J, Zhu L, Niu J, Li M, Wu K, Mo J, Zheng S, Liu B, Zhou P, Lan T. Ligusticum cycloprolactam ameliorates hyperuricemic nephropathy through inhibition of TLR4/NF-κB signaling. J Nutr Biochem 2025; 139:109864. [PMID: 39952622 DOI: 10.1016/j.jnutbio.2025.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Hyperuricemia is a metabolic disease attributed to a sustained dysregulation of purine metabolism, manifesting as consistently elevated blood uric acid levels. Hyperuricemic nephropathy (HN) is a renal complication of hyperuricemia. It is characterized by the deposition of urate crystals, inflammatory cell infiltration and tubulointerstitial injury. Ligusticum cycloprolactam (LIGc) is a novel monomeric derivative of the active ingredient ligustilide (LIG) from Angelica sinensis (Oliv.). LIG demonstrates anti-inflammatory and antioxidant properties. Nevertheless, the therapeutic potential of LIGc to ameliorate HN required further investigation. Our study revealed that LIGc effectively reduced serum uric acid and attenuated HN in mice induced by co-administering potassium oxonate and hypoxanthine. Our research demonstrated that LIGc treatment improved renal function in mice with HN by regulating the expression of uric acid transporters. Histopathological analysis showed that LIGc treatment reduced tubular damage, inflammatory infiltration and interstitial collagen deposition. Mechanistically, LIGc alleviated renal injury by inhibiting the TLR4/NF-κB signaling pathway both in vivo and in vitro. Our study revealed that LIGc effectively mitigated HN by attenuating the inflammatory response through the TLR4/NF-κB signaling pathway, providing new perspectives for the treatment of HN.
Collapse
Affiliation(s)
- Zhe Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Rong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiamin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Lin Zhu
- Department of Pediatric Nephrology and Rheumatology, Sichuan Provincial Maternity and Child Health Care Hospital, Sichuan Clinical Research Center for pediatric nephrology, Chengdu, Sichuan, China
| | - Jie Niu
- Department of Pediatric Nephrology and Rheumatology, Sichuan Provincial Maternity and Child Health Care Hospital, Sichuan Clinical Research Center for pediatric nephrology, Chengdu, Sichuan, China
| | - Minghui Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Kaireng Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Juxian Mo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Siqi Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ping Zhou
- Department of Pediatric Nephrology and Rheumatology, Sichuan Provincial Maternity and Child Health Care Hospital, Sichuan Clinical Research Center for pediatric nephrology, Chengdu, Sichuan, China.
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China; College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Wang J, He Q, Sun W, Li W, Yang Y, Cui W, Yang X. The Association Between the Triglyceride Glucose Index and Hyperuricemia: A Dose-Response Meta-Analysis. Nutrients 2025; 17:1462. [PMID: 40362772 PMCID: PMC12073563 DOI: 10.3390/nu17091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Background: The triglyceride glucose (TyG) index has been correlated with all kinds of diseases. However, its association with hyperuricemia is still a subject of controversy. Methods: This meta-analysis encompassed relevant studies on the TyG index and hyperuricemia obtained from electronic databases, from the launch date until March 2025. The effect sizes and corresponding 95% confidence intervals (CIs) were obtained using a random effects model. Results: Twenty-six trials with 637,954 subjects were incorporated in this study. It was revealed that the TyG index was linked to hyperuricemia (OR = 2.67; 95% CI: 2.34, 3.04; p < 0.001). A dose-response analysis demonstrated that with each 1 mg/dL rise in the TyG index, the risk of being diagnosed with hyperuricemia increased by 2.07 times (OR = 2.07; 95% CI: 1.89, 2.25; p < 0.001). Conclusions: The TyG index has an association with hyperuricemia. Given the constraints identified in our meta-analysis, further cohort studies will be essential to confirm this correlation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China; (J.W.); (W.S.); (W.L.); (Y.Y.); (W.C.)
| | - Qiang He
- Department of Radiation Hygiene, School of Public Health, Jilin University, Changchun 130021, China;
| | - Wenhui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China; (J.W.); (W.S.); (W.L.); (Y.Y.); (W.C.)
| | - Wei Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China; (J.W.); (W.S.); (W.L.); (Y.Y.); (W.C.)
| | - Yuting Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China; (J.W.); (W.S.); (W.L.); (Y.Y.); (W.C.)
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China; (J.W.); (W.S.); (W.L.); (Y.Y.); (W.C.)
| | - Xiangshan Yang
- Department of Radiation Hygiene, School of Public Health, Jilin University, Changchun 130021, China;
| |
Collapse
|
4
|
Liu Y, Sheng S, Wu L, Wang H, Xue H, Wang R. Flavonoid-rich extract of Paederia scandens (Lour.) Merrill improves hyperuricemia by regulating uric acid metabolism and gut microbiota. Food Chem 2025; 471:142857. [PMID: 39823906 DOI: 10.1016/j.foodchem.2025.142857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Paederia scandens (Lour.) Merrill flavonoid-rich extract (PSMF) has shown excellent xanthine oxidase (XOD) inhibitory activity in our previous study. However, the efficacy of PSMF in mitigating hyperuricemia (HUA) remains to be elucidated. In this study, we investigated the effects and mechanisms of PSMF on alleviating in HUA mice. The results showed that PSMF intervention reduced serum levels of uric acid (UA), creatinine (CRE), and blood urea nitrogen (BUN), and inhibited the activities of XOD and adenosine deaminase (ADA). In addition, PSMF treatment not only attenuated the inflammatory response and renal damage but also regulated the expression of UA synthesis genes and UA excretion genes. Finally, PSMF ameliorated gut microbiota dysbiosis in HUA mice by enriching the abundance of short-chain fatty acid (SCFA)-producing bacteria. In summary, PSMF appears to be a promising natural source for the prevention and treatment of HUA.
Collapse
Affiliation(s)
- Yuyi Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shanling Sheng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Linye Wu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Huixian Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hui Xue
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ruimin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Zhou S, Wen X, Lessing DJ, Chu W. Uric Acid-Degrading Lacticaseibacillus paracasei CPU202306 Ameliorates Hyperuricemia by Regulating Uric Acid Metabolism and Intestinal Microecology in Mice. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10532-3. [PMID: 40205164 DOI: 10.1007/s12602-025-10532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Hyperuricemia, characterized by elevated levels of uric acid in the blood, poses a significant health threat due to its association with various adverse health outcomes, and lactic acid bacteria from the gut microbiota may offer solutions. Our investigation focused on Lacticaseibacillus paracasei CPU202306, isolated from fermented pickles for its potent uric acid degradation and probiotic properties. This bacterium effectively reduced blood uric acid levels by breaking down uric acid and inhibiting hepatic xanthine oxidase (XOD) and adenosine deaminase (ADA) enzymes. Additionally, it stimulated the production of short-chain fatty acid (SCFAs) in the colon, enhancing the expression of uric acid secretion transport proteins (ATP-binding cassette sub-family G member 2 and organic anion transporter 3) while suppressing absorption transport proteins (glucose transporter 9 and uric acid transporter 1). This orchestrated process promoted uric acid excretion. L. paracasei CPU202306 also improved gut microbiota health by reinforcing tight junction proteins, shifting the microbiota to a healthier composition, and reducing harmful bacteria. This transformation inhibited kidney TLR4/MyD88/NF-κB inflammatory signaling, leading to a significant decrease in pro-inflammatory cytokines and an increase in anti-inflammatory cytokines, mitigating kidney inflammation. Furthermore, the bacterium supported kidney health by influencing amino acid metabolic pathways linked to the gut-kidney axis. In summary, our study highlights the diverse mechanisms through which L. paracasei CPU202306 addresses hyperuricemia, showcasing its therapeutic potential for this condition.
Collapse
Affiliation(s)
- Shuxin Zhou
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Wen
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Duncan James Lessing
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Weihua Chu
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Lin HH, Liang YH, Chyau CC, Tseng CY, Zhang JQ, Chen JH. Desmodium caudatum (Thunb.) DC. extract attenuates hyperuricemia-induced renal fibrosis via modulating TGF-β1 pathway and uric acid transporters: Evidence from in vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119609. [PMID: 40064319 DOI: 10.1016/j.jep.2025.119609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Desmodium caudatum (Thunb.) DC., a traditional Chinese medicinal herb, has been used to treat conditions such as rheumatic back pain, diarrhea, jaundice-related hepatitis, and abscesses; it also serves as an anthelmintic. The extract of Desmodium caudatum (Thunb.) DC. (DCE) is also known for its antioxidant and anti-inflammatory properties. However, its impact on kidney fibrosis remains unclear. AIM OF THE STUDY This study investigated whether DCE can alleviate hyperuricemia-induced kidney fibrosis by modulating the transforming growth factor-β1 (TGF-β1) pathway, activating epithelial-mesenchymal transition (EMT), and regulating uric acid transporters. MATERIALS AND METHODS NRK52E cells were exposed to uric acid (UA) followed by DCE and isovitexin (IV) for 24 h. Cell damage was assessed using an Oxidative Stress Kit, ELISA, Gelatin Zymography, and Western blotting. In parallel, adenine-induced C57BL/6 mice received DCE and IV treatment for 11 weeks. After sacrifice, renal injury was assessed through histopathological examination and protein expression analysis of fibrosis markers, EMT indicators, and uric acid transporters. RESULTS DCE reduced reactive oxygen species (ROS) accumulation in uric acid-induced NRK52E cells and inhibited EMT by suppressing TGF-β1 and Slug while restoring E-cadherin expression. DCE treatment reduced fibrosis-related proteins (CTGF, collagen I, fibronectin, and α-SMA) in UA-treated cells and modulated uric acid transporters by increasing ABCG2 and OAT3 while decreasing URAT1 and GLUT9. In adenine-induced hyperuricemic C57BL/6 mice, DCE administration reduced serum uric acid levels and xanthine oxidase activity. Histological analysis showed that DCE attenuated renal fibrosis through decreased glomerular atrophy, reduced collagen deposition, and diminished α-SMA and fibronectin expression. CONCLUSION Our study demonstrates that DCE exerts protective benefits against hyperuricemia-induced renal fibrosis. The potential mechanism may involve suppressing the TGF-β1 signaling pathway and regulating the uric acid transporter, thereby mitigating kidney injury.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Yu-Hsuan Liang
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu County, Taichung, 43302, Taiwan
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Jun-Quan Zhang
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan.
| |
Collapse
|
7
|
Kong X, Zhao L, Huang H, Kang Q, Lu J, Zhu J. Isorhamnetin ameliorates hyperuricemia by regulating uric acid metabolism and alleviates renal inflammation through the PI3K/AKT/NF-κB signaling pathway. Food Funct 2025; 16:2840-2856. [PMID: 40111208 DOI: 10.1039/d4fo04867a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Hyperuricemia is a chronic metabolic disease with high incidence, and it has become a severe health risk in modern times. Isorhamnetin is a natural flavonoid found in a variety of plants, especially fruits such as buckthorn. The in vivo hyperuricemia ameliorating effect of isorhamnetin and the specific molecular mechanism were profoundly investigated using a hyperuricemia mouse model in this study. Results indicated that isorhamnetin showed a significant uric acid-lowering effect in mice. Isorhamnetin was able to reduce uric acid production by inhibiting XOD activity. Furthermore, it reduced the expression of GLUT9 to inhibit uric acid reabsorption and enhanced the expression of ABCG2, OAT1, and OAT3 to promote uric acid excretion. Metabolomics analysis revealed that gavage administration of isorhamnetin restored purine metabolism and riboflavin metabolism disorders and thus significantly alleviated hyperuricemia in mice. Furthermore, the alleviating effect of isorhamnetin on hyperuricemia-induced renal inflammation and its specific mechanism were explored through network pharmacology and molecular validation experiments. Network pharmacology predicted that seven targets were enriched in the PI3K/AKT pathway (CDK6, SYK, KDR, RELA, PIK3CG, IGF1R, and MCL1) and four targets were enriched in the NF-κB pathway (SYK, PARP1, PTGS2, and RELA). Western blot analysis validated that isorhamnetin inhibited the phosphorylation of PI3K and AKT and down-regulated the expression of NF-κB p65. It indicated that isorhamnetin could inhibit the PI3K/AKT/NF-κB signaling pathway to reduce the levels of renal inflammatory factors (TNF-α, IL-β and IL-6) and ultimately ameliorate hyperuricemia-induced renal inflammation in mice. This study provides a comprehensive and strong theoretical basis for the application of isorhamnetin in the field of functional foods or dietary supplements to improve hyperuricemia.
Collapse
Affiliation(s)
- Xiaoran Kong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - He Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China
| |
Collapse
|
8
|
Jutabha P, Kumar V, Anzai N, Rice PJ, Lightner JW, Endou H, Wempe MF. Benzbromarone Analog SAR: Potent hURAT1 (SLC22A12) Inhibitors and Drug Transporter Interaction Studies. Drug Des Devel Ther 2025; 19:1377-1392. [PMID: 40026329 PMCID: PMC11872064 DOI: 10.2147/dddt.s474398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose There were two main purposes for this study. One, to report two benzbromarone analogs and test their in vitro activity in the URAT1 inhibition assay; and two, to probe the structure-activity relationship (SAR) of various benzbromarone analogs regarding other drug transporters that may play a role in the uric acid uptake/elimination interplay. Methods In brief, chemical synthesis of two benzbromarone analogs was prepared using methods analogous to those reported. Furthermore, drug transporter protein inhibition was investigated in vitro using oocytes expressing hURAT1, hURATv1 (GLUT9), hOAT1, hOAT3, hOAT10, hNPT4, OATP1B1, OATP1B3 and OATP2B1 prepared and utilized to conduct inhibition studies. In addition, one novel benzbromarone analog was studied via in vivo rat pharmacokinetic experiments to determine apparent oral bioavailability. Results Two analogs, 6-fluoro-benzbromarone (5) and 5,6-difluoro-benzbromarone (9), were synthetically prepared and 5 had a hURAT1 IC50 inhibition of 18 ± 4 nM, while analog (9) had an IC50 of 245 ± 64 nM. Analog (5) had good oral bioavailability (Fa) >0.6 in rat. Eadie-Hofstee plot and double-reciprocal plot of the Michaelis-Menten equation are summarized for benzbromarone (2) and its major Phase I metabolite 6-hydroxy-benzbromarone (3). Conclusion These results illustrate that the Km for [14C]UA uptake was not altered in the presence of 2 or 3, but rather the Vmax was reduced in the presence of inhibitors when added to the uptake solutions. As a result, these data support the notion that 2 and 3 inhibit [14C]UA uptake by non-competitive inhibition and not at the URAT1 binding site.
Collapse
Affiliation(s)
- Promsuk Jutabha
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, 10540, Thailand
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, 321-0293, Japan
| | - Vijay Kumar
- Department of Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, 321-0293, Japan
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Peter J Rice
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacology, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Janet W Lightner
- Department of Pharmacology, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Hitoshi Endou
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, 181-8611, Japan
| | - Michael F Wempe
- Department of Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Biological and Physical Sciences, Kentucky State University, Frankfort, KY, 40601, USA
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Zuo Y, Li T, Yang S, Chen X, Tao X, Dong D, Liu F, Zhu Y. Contribution and expression of renal drug transporters in renal cell carcinoma. Front Pharmacol 2025; 15:1466877. [PMID: 40034145 PMCID: PMC11873565 DOI: 10.3389/fphar.2024.1466877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Renal cell carcinoma (RCC) is a common substantive tumor. According to incomplete statistics, RCC incidence accounts for approximately 90% of renal malignant tumors, and is the second most prevalent major malignant tumor in the genitourinary system, following bladder cancer. Only 10%-15% of chemotherapy regimens for metastatic renal cell carcinoma (mRCC) are effective, and mRCC has a high mortality. Drug transporters are proteins located on the cell membrane that are responsible for the absorption, distribution, and excretion of drugs. Lots of drug transporters are expressed in the kidneys. Changes in carrier function weaken balance, cause disease, or modify the effectiveness of drug treatment. The changes in expression of these transporters during cancer pathology results in multi-drug resistance to cancer chemotherapy. In the treatment of RCC, the study of drug transporters helps to optimize treatment regimens, improve therapeutic effects, and reduce drug side effects. In this review, we summarize advances in the role of renal drug transporters in the genesis, progression, and treatment of RCC.
Collapse
Affiliation(s)
- Yawen Zuo
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tong Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fang Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Gong Z, Zhang L, Shi Y. The potential role of uric acid in women with polycystic ovary syndrome. Gynecol Endocrinol 2024; 40:2323725. [PMID: 39718393 DOI: 10.1080/09513590.2024.2323725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 12/25/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder among women of reproductive age and is associated with a variety of multi-system complications. The prevailing treatment strategy for PCOS is to individualize the interventions based on individual symptoms and patient complaints. However, optimal efficacy in treatment necessitates a focus on addressing the underlying pathogenic mechanisms. Uric acid (UA), the end product of purine metabolism, has been suggested to be involved in the development of several diseases, including PCOS. However, the precise mechanisms by which UA may affect PCOS remain incompletely understood. This literature review aims to investigate the correlation between UA and the various clinical presentations of PCOS, such as hyperandrogenism, insulin resistance (IR), ovulation disorders, obesity, and other related manifestations, through the analysis of epidemiological and clinical studies. The purpose of this study is to improve our comprehension of how UA contributes to each aspect of PCOS and their interrelationship, thus identifying the potential role of UA as a facilitator of PCOS. Furthermore, we explore potential pathways linking UA and PCOS, and propose therapeutic interventions based on these findings to optimize the management of this condition.
Collapse
Affiliation(s)
- Zhentao Gong
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Lingshan Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yingli Shi
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
11
|
Chen Y, Yan S, Yang J, Zhang Y, Suo H, Song J. Integrated microbiome and metabolome analysis reveals the key role of taurohyocholate in the treatment of hyperuricemia with Lacticaseibacillus rhamnosus 2016SWU.05.0601. Food Res Int 2024; 197:115234. [PMID: 39593318 DOI: 10.1016/j.foodres.2024.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/15/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
The incidence of hyperuricemia (HUA) is on the rise, posing a significant threat to human health. Several probiotics have shown potential in treating HUA; however, the critical role of intestinal metabolites in this therapy remains inadequately understood. Our study demonstrated that Lacticaseibacillus rhamnosus 2016SWU.05.0601 not only reduced the expression levels of xanthine dehydrogenase and the content and activity of xanthine oxidase in the liver but also regulated the uric acid transporters expression in the kidney, thereby attenuating HUA in mice. Additionally, L. rhamnosus 2016SWU.05.0601 modulated the gut microbiota and metabolite abundance in HUA mice. Correlation analysis revealed that the gut microbiota metabolite taurohyocholate played a vital role in the treatment of HUA by L. rhamnosus 2016SWU.05.0601, as confirmed in HUA cell models. Our research provides a significant theoretical basis for elucidating the mechanisms by which probiotics alleviate HUA and for developing functional ingredients for HUA treatment.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shenglan Yan
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Jing Yang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, PR China.
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
12
|
Menna P, Salvatorelli E. Humans and Rodents: The Case of hOAT4 and mOat5. J Pharmacol Exp Ther 2024; 391:375-377. [PMID: 39562012 DOI: 10.1124/jpet.124.002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 11/21/2024] Open
Affiliation(s)
- Pierantonio Menna
- Department of Science and Technology for Sustainable Development and One Health (P.M.), Fondazione Policlinico (P.M.), and Department of Medicine (E.S.), University Campus Bio-Medico, Rome, Italy
| | - Emanuela Salvatorelli
- Department of Science and Technology for Sustainable Development and One Health (P.M.), Fondazione Policlinico (P.M.), and Department of Medicine (E.S.), University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
13
|
Martinez-Guerrero LJ, Zhang X, Wright SH, Cherrington NJ. Characterization of Human Organic Anion Transporter 4 (hOAT4) and Mouse Oat5 (mOat5) As Functional Orthologs for Renal Anion Uptake and Efflux Transport. J Pharmacol Exp Ther 2024; 391:378-386. [PMID: 38627096 PMCID: PMC11585314 DOI: 10.1124/jpet.123.001979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/09/2024] [Indexed: 11/21/2024] Open
Abstract
Organic anions (OAs) are compounds including drugs or toxicants that are negatively charged at physiologic pH and are typically transported by organic anion transporters (OATs). Human OAT4 (SLC22A11) is expressed in the apical membrane of renal proximal tubules. Although there is no rodent ortholog of hOAT4, rodents express Oat5 (Slc22a19), an anion exchanger that is also localized to the apical membrane of renal proximal tubule cells. The purpose of this study was to determine the functional similarity between mouse Oat5 and human OAT4. Chinese hamster ovary (CHO) cells expressing SLC22A11 or Slc22a19 were used to assess the transport characteristics of radiolabeled ochratoxin (OTA). We determined the kinetics of OTA transport; the resulting Michaelis constant (Kt) and maximal rate of mediated substrate transport (Jmax) values were very similar for both hOAT4 and mOat5: Kt 3.9 and 7.2 μM, respectively, and Jmax 4.4 and 3.9 pmol/cm2, respectively. For the profile of OTA inhibition by OAs, IC50 values were determined for several clinically important drugs and toxicants. The resulting IC50 values ranged from 9 μM for indomethacin to ∼600 μM for the diuretic hydrochlorothiazide. We measured the efflux of OTA from preloaded cells; both hOAT4 and mOat5 supported the efflux of OTA. These data support the hypothesis that OAT4 and Oat5 are functional orthologs and share selectivity for OTA both for reabsorption and secretion. SIGNIFICANCE STATEMENT: This study compares the selectivity profile between human organic anion transporter (OAT4) and mouse Oat5. Our data revealed a similar selectivity profile for ochratoxin A (OTA) reabsorption and secretion by these two transporters, thereby supporting the hypothesis that hOAT4 and mOat5, although not genetic orthologs, behave as functional orthologs for both uptake and efflux. These data will be instrumental in selecting an appropriate animal model when studying the renal disposition of anionic drugs and toxicants.
Collapse
Affiliation(s)
- Lucy J Martinez-Guerrero
- Department of Pharmacology and Toxicology (L.J.M.-G., X.Z., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona
| | - Xiaohong Zhang
- Department of Pharmacology and Toxicology (L.J.M.-G., X.Z., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- Department of Pharmacology and Toxicology (L.J.M.-G., X.Z., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology (L.J.M.-G., X.Z., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona
| |
Collapse
|
14
|
Wang XL, Li L, Meng X. Interplay between the Redox System and Renal Tubular Transport. Antioxidants (Basel) 2024; 13:1156. [PMID: 39456410 PMCID: PMC11505102 DOI: 10.3390/antiox13101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The kidney plays a critical role in maintaining the homeostasis of body fluid by filtration of metabolic wastes and reabsorption of nutrients. Due to the overload, a vast of energy is required through aerobic metabolism, which inevitably leads to the generation of reactive oxygen species (ROS) in the kidney. Under unstressed conditions, ROS are counteracted by antioxidant systems and maintained at low levels, which are involved in signal transduction and physiological processes. Accumulating evidence indicates that the reduction-oxidation (redox) system interacts with renal tubular transport. Redox imbalance or dysfunction of tubular transport leads to renal disease. Here, we discuss the ROS and antioxidant systems in the kidney and outline the metabolic dysfunction that is a common feature of renal disease. Importantly, we describe the key molecules involved in renal tubular transport and their relationship to the redox system and, finally, summarize the impact of their dysregulation on the pathogenesis and progression of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Lianjian Li
- Department of Vascular Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Hubei Academy of Chinese Medicine, Wuhan 430061, China;
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
15
|
Suo Y, Fedor JG, Zhang H, Tsolova K, Shi X, Sharma K, Kumari S, Borgnia M, Zhan P, Im W, Lee SY. Molecular basis of the urate transporter URAT1 inhibition by gout drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612563. [PMID: 39314352 PMCID: PMC11419087 DOI: 10.1101/2024.09.11.612563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hyperuricemia is a condition when uric acid, a waste product of purine metabolism, accumulates in the blood1. Untreated hyperuricemia can lead to crystal formation of monosodium urate in the joints, causing a painful inflammatory disease known as gout. These conditions are associated with many other diseases and affect a significant and increasing proportion of the population2-4. The human urate transporter 1 (URAT1) is responsible for the reabsorption of ~90% of uric acid in the kidneys back into the blood, making it a primary target for treating hyperuricemia and gout5. Despite decades of research and development, clinically available URAT1 inhibitors have limitations because the molecular basis of URAT1 inhibition by gout drugs remains unknown5. Here we present cryo-electron microscopy structures of URAT1 alone and in complex with three clinically relevant inhibitors: benzbromarone, lesinurad, and the novel compound TD-3. Together with functional experiments and molecular dynamics simulations, we reveal that these inhibitors bind selectively to URAT1 in inward-open states. Furthermore, we discover differences in the inhibitor dependent URAT1 conformations as well as interaction networks, which contribute to drug specificity. Our findings illuminate a general theme for URAT1 inhibition, paving the way for the design of next-generation URAT1 inhibitors in the treatment of gout and hyperuricemia.
Collapse
Affiliation(s)
- Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Justin G. Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Han Zhang
- Departments of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Kalina Tsolova
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P.R. China
| | - Kedar Sharma
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Shweta Kumari
- Departments of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Mario Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P.R. China
| | - Wonpil Im
- Departments of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| |
Collapse
|
16
|
Mehmood A, Iftikhar A, Chen X. Food-derived bioactive peptides with anti-hyperuricemic activity: A comprehensive review. Food Chem 2024; 451:139444. [PMID: 38678657 DOI: 10.1016/j.foodchem.2024.139444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/01/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Hyperuricemia (HU) is a metabolic disorder caused by the overproduction or underexcretion of uric acid (UA) in the human body. Several approved drugs for the treatment of HU are available in the market; however, all these allopathic drugs exhibit multiple side effects. Therefore, the development of safe and effective anti-HU drugs is an urgent need. Natural compounds derived from foods and plants have the potential to decrease UA levels. Recently, food-derived bioactive peptides (FBPs) have gained attention as a functional ingredient owing to their biological activities. In the current review, we aim to explore the urate-lowering potential and the underlying mechanisms of FBPs. We found that FBPs mitigate HU by reducing blood UA levels through inhibiting key enzymes such as xanthine oxidase, increasing renal UA excretion, inhibiting renal UA reabsorption, increasing anti-oxidant activities, regulating inflammatory mediators, and addressing gut microbiota dysbiosis. In conclusion, FBPs exhibit strong potential to ameliorate HU.
Collapse
Affiliation(s)
- Arshad Mehmood
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad 38000, Pakistan and Akhtar Saeed College of Pharmacy, Rawalpindi, Pakistan
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Huang X, Hu L, Tao S, Xue T, Hou C, Li J. Relationship between uric acid to high-density cholesterol ratio (UHR) and circulating α-klotho: evidence from NHANES 2007-2016. Lipids Health Dis 2024; 23:244. [PMID: 39123222 PMCID: PMC11312937 DOI: 10.1186/s12944-024-02234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE To investigate the relationship between uric acid to high-density lipoprotein cholesterol ratio (UHR) and circulating α-klotho levels in U.S. adults. METHODS A cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2016. Circulating α-klotho was defined as the dependent variable and UHR was defined as the independent variable. Multivariable linear regression was performed to assess the relationship between the independent and dependent variables. The nonlinear relationship and effect size between UHR and α-klotho were evaluated using smooth curve fitting and threshold effect analysis. Subgroup analysis and sensitivity analysis were conducted to determine the stability of the results. The diagnostic performance of UHR and α-klotho in common elderly diseases was compared using ROC (Receiver Operating Characteristic) analysis. RESULTS Among 12,849 participants, there was a negative relationship between the UHR and circulating α-klotho. In the fully adjusted overall model, each unit increase in UHR was associated with a decrease of 4.1 pg/mL in α-klotho. The threshold effect analysis showed that before the inflection point of 8.2, each unit increase in UHR was associated with a decrease of 15.0 pg/mL in α-klotho; beyond the inflection point of 8.2, each unit increase in UHR was associated with a decrease of 2.8 pg/mL in α-klotho. Subgroup analyses and sensitivity analysis indicated that the relationship between UHR and α-klotho remained stable across most populations. The ROC diagnostic test indicated that the evaluative efficacy of UHR in diagnosing age-related diseases was comparable to that of α-klotho. CONCLUSION This study revealed that the UHR was associated with the circulating α-klotho concentration, with a negative association observed in most cases. This finding suggested that the UHR might be a promising indicator for evaluating circulating α-klotho levels.
Collapse
Affiliation(s)
- Xuanchun Huang
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Lanshuo Hu
- Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shiyi Tao
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Xue
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Chengzhi Hou
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
| | - Jun Li
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
| |
Collapse
|
18
|
Hao L, Ding Y, Fan Y, Tian Q, Liu Y, Guo Y, Zhang J, Hou H. Identification of Hyperuricemia Alleviating Peptides from Yellow Tuna Thunnus albacares. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12083-12099. [PMID: 38757561 DOI: 10.1021/acs.jafc.3c09901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The development of food-derived antihyperuricemic substances is important for alleviating hyperuricemia (HUA) and associated inflammation. Here, novel peptides fromThunnus albacares (TAP) with strong antihyperuricemic activity were prepared. TAP was prepared by alkaline protease (molecular weight <1000 Da), with an IC50 value of xanthine oxidase inhibitory activity of 2.498 mg/mL, and 5 mg/mL TAP could reduce uric acid (UA) by 33.62% in human kidney-2 (HK-2) cells (P < 0.01). Mice were fed a high-purine diet and injected with potassium oxonate to induce HUA. Oral administration of TAP (600 mg/kg/d) reduced serum UA significantly by 42.22% and increased urine UA by 79.02% (P < 0.01) via regulating urate transporters GLUT9, organic anion transporter 1, and ATP-binding cassette subfamily G2. Meantime, TAP exhibited hepatoprotective and nephroprotective effects, according to histological analysis. Besides, HUA mice treated with TAP showed anti-inflammatory activity by decreasing the levels of toll-like receptor 4, nuclear factors-κB p65, NLRP3, ASC, and Caspase-1 in the kidneys (P < 0.01). According to serum non-targeted metabolomics, 91 differential metabolites between the MC and TAP groups were identified, and purine metabolism was considered to be the main pathway for TAP alleviating HUA. In a word, TAP exhibited strong antihyperuricemic activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Li Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Yulian Ding
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Yan Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
- College of Marine Life Sciences, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P.R. China
| | - Qiaoji Tian
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Yang Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Yueting Guo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Jian Zhang
- Qingdao Langyatai Group Co., Ltd, No. 3316 Sansha Road, Qingdao, Shandong Province 266400, P.R. China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, P.R. China
- Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, P.R. China
| |
Collapse
|
19
|
Bian J, Chen H, Sun J, Han S, Qi M, Pan Q. Retinol dehydrogenase 12 (RDH12) knock out may cause hyperuricemia phenotype in mice. Biochem Biophys Res Commun 2024; 709:149809. [PMID: 38552555 DOI: 10.1016/j.bbrc.2024.149809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Hyperuricemia is a chronic metabolic disease caused by purine metabolism disorder. And several gene loci and transporter proteins that associated with uric acid transport functions have been identified. Retinol Dehydrogenase 12 (RDH12), recognized for its role in safeguarding photoreceptors, and our study investigated the potential impact of Rdh12 mutations on other organs and diseases, particularly hyperuricemia. We assessed Rdh12 mRNA expression levels in various tissues and conducted serum biochemical analyses in Rdh12-/- mice. Compared with the wild type, significant alterations in serum uric acid levels and kidney-related biochemical indicators have been revealed. Then further analysis, including quantitative RT-PCR of gene expression in the liver and kidney, highlighted variations in the expression levels of specific genes linked to hyperuricemia. And renal histology assessment exposed mild pathological lesions in the kidneys of Rdh12-/- mice. In summary, our study suggests that Rdh12 mutations impact not only retinal function but also contribute to hyperuricemia and renal disease phenotypes in mice. Our finding implies that individuals with Rdh12 mutations may be prone to hyperuricemia and gout, emphasizing the significance of preventive measures and regular examinations in daily life.
Collapse
Affiliation(s)
- Jiaxin Bian
- Department of Ophthalmology, Zhejiang University Medical School First Affiliated Hospital, Hangzhou, 310000, China; Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, 310000, China; HVP-China, Hangzhou, 310000, China
| | - Hongyu Chen
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, 310000, China
| | - Junhui Sun
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuai Han
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310000, China
| | - Ming Qi
- Department of Ophthalmology, Zhejiang University Medical School First Affiliated Hospital, Hangzhou, 310000, China; Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, 310000, China; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Department of Laboratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310000, China; DIAN Diagnostics, Hangzhou, 310000, China; Department of Pathology and Laboratory of Medicine, University of Rochester Medical Centre, Rochester, NY, 14609, USA; HVP-China, Hangzhou, 310000, China.
| | - Qing Pan
- Department of Ophthalmology, Zhejiang University Medical School First Affiliated Hospital, Hangzhou, 310000, China.
| |
Collapse
|
20
|
Ciarimboli G. Overcoming Biological Barriers: Importance of Membrane Transporters in Homeostasis, Disease, and Disease Treatment 2.0. Int J Mol Sci 2024; 25:5521. [PMID: 38791559 PMCID: PMC11122643 DOI: 10.3390/ijms25105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This editorial summarizes the seven scientific papers published in the Special Issue "Overcoming Biological Barriers: Importance of Membrane Transporters in Homeostasis, Disease, and Disease Treatment 2 [...].
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
21
|
Lin P, Liufu S, Wang J, Hou Z, Liang Y, Wang H, Li B, Cao N, Liu W, Huang Y, Tian Y, Xu D, Li X, Fu X. Effects of stocking density on the homeostasis of uric acid and related liver and kidney functions in ducks. Anim Biosci 2024; 37:952-961. [PMID: 38271963 PMCID: PMC11065707 DOI: 10.5713/ab.23.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE Stocking density (SD) is an important issue in the poultry industry, which is related to the production performance, intestinal health and immune status. In the present study, the effects of SD on the metabolism and homeostasis of uric acid as well as the related functions of the liver and kidney in ducks were examined. METHODS A total of 360 healthy 56-day-old Shan-ma ducks were randomly divided into the low stocking density (n = 60, density = 5 birds/m2), medium stocking density (n = 120, density = 10 birds/m2) and high stocking density groups (HSD; n = 180, density = 15 birds/m2). Samples were collected in the 3rd, 6th, and 9th weeks of the experiment for analysis. RESULTS The serum levels of uric acid, lipopolysaccharide and inflammatory cytokines (interleukin-1β [IL-1β], IL-8, and tumor necrosis factor-α [TNF-α]) were increased significantly in the HSD group. Serious histopathological lesions could be seen in both the livers and kidneys in the HSD group in the 9th week. The mRNA expression levels of inflammatory cytokines (IL-8 and TNF-α) and related pathway components (toll-like receptor 4, myeloid differentiation primary response gene 88, and nuclear factor-κB) were increased significantly in both the livers and kidneys in the HSD group. The mRNA expression levels of enzymes (adenosine deaminase, xanthine oxidase, phosphoribosyl pyrophosphate amidotransferase, and phosphoribosyl pyrophosphate synthetase 1) related to the synthesis of uric acid increased significantly in the livers in the HSD group. However, the mRNA expression level of solute carrier family 2 member 9, which plays an important role in the excretion of uric acid by the kidney, was decreased significantly in the kidneys in the HSD group. CONCLUSION These results indicated that a higher SD could cause tissue inflammatory lesions in the liver and kidney and subsequently affect the metabolism and homeostasis of uric acid, and is helpful for guiding decisions related to the breeding and production of ducks.
Collapse
Affiliation(s)
- Peiyi Lin
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Sui Liufu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Jinhui Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Zhanpeng Hou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Yu Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Haiyue Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Bingxin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Wenjun Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Xiujin Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center of Guangdong, Guangzhou, 510225, China
| |
Collapse
|
22
|
Andreeva-Gateva P, Hristov M, Strokova-Stoilova M, Ivanova N, Sabit Z, Surcheva S, Beliakov M, Karakashev G, Sukhov I, Belinskaya D, Shestakova N. Therapeutic potential of orally applied KB-R7943 in streptozotocin-induced neuropathy in rats. Heliyon 2024; 10:e27367. [PMID: 38524546 PMCID: PMC10958225 DOI: 10.1016/j.heliyon.2024.e27367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Both peripheral neuropathy and depression can be viewed as neurodegeneration's consequences of diabetes, at least in part coexisting with or resulting from sodium-calcium dysbalance. This study aims to assess the therapeutic potential of the orally applied reverse-mode inhibitor of the sodium-calcium exchanger (NCX) KB-R7943 in the streptozotocin (STZ) diabetes model in rats. A pilot pharmacokinetic (PK) study with high-performance liquid chromatography with high-resolution tandem mass spectrometric detection revealed higher drug exposure (AUC), lower volume of distribution (Vd) and clearance (Cl), and faster decline of the plasma concentration (ƛ) in rats with diabetes vs. controls. Brain and heart accumulation and urinary excretion of the unmetabolized KB-R7943 at least 24 h were also demonstrated in all rats. However, heart and hippocampus KB-R7943 penetration (AUCtissue/AUCplasma) was higher in controls vs. diabetic rats. The development of thermal, mechanical, and chemical-induced allodynia was assessed with the Cold plate test (CPT), Randall-Stiletto (R-S) test, and 0.5% formalin test (FT). Amitriptyline 10 mg/kg, KB-R7943 5 mg/kg, or 10 mg/kg p.o once daily was applied from the 28th to the 49th day. The body weight, coat status, CPT, R-S, and FT were evaluated on days (-5), 0, and 42. On day 41, a forced swim test and 24-h spontaneous physical activities were assessed. The chronic treatment effects were calculated as % of the maximum. A dose-depended amelioration of neuropathic and depression-like effects was demonstrated. The oral application of KB-R7943 for potentially treating neurodegenerative consequences of diabetes merits further studies. The brain, heart, and kidneys are essential contributors to the PKs of this drug, and their safety involvement needs to be further characterized.
Collapse
Affiliation(s)
- Pavlina Andreeva-Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Bulgaria
| | - Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Bulgaria
| | | | - Natasha Ivanova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Bulgaria
- Institute of Neurobiology, BAS, Bulgaria
| | - Zafer Sabit
- Department of Pathophysiology, Faculty of Medicine, Medical University of Sofia, Bulgaria
| | - Slavina Surcheva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Bulgaria
| | - Mihail Beliakov
- Laboratory of Chemical Analytical Control and Biotesting, Research Institute of Hygiene, Occupational Pathology and Human Ecology, St Petersburg, Russia
| | - Georgi Karakashev
- Laboratory of Chemical Analytical Control and Biotesting, Research Institute of Hygiene, Occupational Pathology and Human Ecology, St Petersburg, Russia
| | - Ivan Sukhov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Daria Belinskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Natalia Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| |
Collapse
|
23
|
Xiong C, Deng J, Wang X, Hou Q, Zhuang S. Pharmacological inhibition of Src family kinases attenuates hyperuricemic nephropathy. Front Pharmacol 2024; 15:1352730. [PMID: 38576481 PMCID: PMC10991786 DOI: 10.3389/fphar.2024.1352730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Hyperuricemia is an independent risk factor for chronic kidney disease and contributes to renal fibrosis. This study aims to investigate the effect of Src family kinase (SFK) inhibition on the development of hyperuricemic nephropathy (HN) and the mechanisms involved. In a rat model of HN, feeding rats a mixture of adenine and potassium oxonate increased Src phosphorylation, severe glomerular sclerosis, and renal interstitial fibrosis, accompanied by renal dysfunction and increased urine microalbumin excretion. Administration of PP1, a highly selective SFK inhibitor, prevented renal dysfunction, reduced urine microalbumin, and inhibited activation of renal interstitial fibroblasts and expression of extracellular proteins. PP1 treatment also inhibited hyperuricemia-induced activation of the TGF-β1/Smad3, STAT3, ERK1/2, and NF-κB signaling pathways and expression of multiple profibrogenic cytokines/chemokines in the kidney. Furthermore, PP1 treatment significantly reduced serum uric acid levels and xanthine oxidase activity. Thus, blocking Src can attenuate development of HN via a mechanism associated with the suppression of TGF-β1 signaling, inflammation, and uric acid production. The results suggest that Src inhibition might be a promising therapeutic strategy for HN.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Department of Nephrology, The First Affiliated Hospital of Dongguan, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jin Deng
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xin Wang
- Department of Nephrology, The First Affiliated Hospital of Dongguan, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qidi Hou
- Department of Nephrology, The First Affiliated Hospital of Dongguan, Guangdong Medical University, Dongguan, Guangdong, China
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, RI, United States
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Yanai H, Adachi H, Hakoshima M, Iida S, Katsuyama H. A Possible Therapeutic Application of the Selective Inhibitor of Urate Transporter 1, Dotinurad, for Metabolic Syndrome, Chronic Kidney Disease, and Cardiovascular Disease. Cells 2024; 13:450. [PMID: 38474414 PMCID: PMC10931163 DOI: 10.3390/cells13050450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The reabsorption of uric acid (UA) is mainly mediated by urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidneys. Dotinurad inhibits URAT1 but does not inhibit other UA transporters, such as GLUT9, ATP-binding cassette transporter G2 (ABCG2), and organic anion transporter 1/3 (OAT1/3). We found that dotinurad ameliorated the metabolic parameters and renal function in hyperuricemic patients. We consider the significance of the highly selective inhibition of URAT1 by dotinurad for metabolic syndrome, chronic kidney disease (CKD), and cardiovascular disease (CVD). The selective inhibition of URAT1 by dotinurad increases urinary UA in the proximal tubules, and this un-reabsorbed UA may compete with urinary glucose for GLUT9, reducing glucose reabsorption. The inhibition by dotinurad of UA entry via URAT1 into the liver and adipose tissues increased energy expenditure and decreased lipid synthesis and inflammation in rats. Such effects may improve metabolic parameters. CKD patients accumulate uremic toxins, including indoxyl sulfate (IS), in the body. ABCG2 regulates the renal and intestinal excretion of IS, which strongly affects CKD. OAT1/3 inhibitors suppress IS uptake into the kidneys, thereby increasing plasma IS, which produces oxidative stress and induces vascular endothelial dysfunction in CKD patients. The highly selective inhibition of URAT1 by dotinurad may be beneficial for metabolic syndrome, CKD, and CVD.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (S.I.); (H.K.)
| | | | | | | | | |
Collapse
|
25
|
Lee SY, Cho SS, Han KM, Lee MJ, Ahn T, Han B, Bae CS, Park DH. Korean Red Ginseng Ameliorates the Level of Serum Uric Acid via Downregulating URAT1 and Upregulating OAT1 and OAT3. Biol Pharm Bull 2024; 47:1876-1882. [PMID: 39551525 DOI: 10.1248/bpb.b24-00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hyperuricemia is caused by an imbalance of uric acid and is associated with many diseases. Although gout which is one of hyperuricemia-related diseases is curable with anti-hyperuricemic drugs some medications have side effects, such as hypersensitivity in patients with circulatory system disorders, flare reoccurrences, and increased cardiac risk. This study consisted of test tube (xanthine oxidase's inhibition) and animal study. Animal study using with ICR mice was composed of control, potassium oxonate-induced hyperuricemia, allopurinol, and 3 Korean red ginseng water extract (KRGWE) treatment groups (62.5; 125, and 500 mg/kg). We orally administered KRGWE once a day for 7 d to induce hyperuricemia and injected PO 2 h before the final KRGWE administration. We measured serum uric acid, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), blood urea nitrogen, and creatinine and analyzed the genes such as organic anion transport (OAT)-1, OAT-3, and urate transport (URAT)-1. KRGWE dose-dependently controlled xanthine oxidase activity in the serum and completely inhibited serum uric acid. KRGWE affected both uric acid excretion-related and uric acid reabsorption-related gene expression. KRGWE stimulated uric acid excretion-related gene expressions, such as OAT-1 and OAT-3, but inhibited uric acid reabsorption-related gene expression, such as URAT-1. KRGWE improved liver and kidney functioning. KRGWE improved liver/kidney functioning and is promising anti-hyperuricemic agent which can control serum uric acid via downregulating URAT1 and upregulating OAT1 and OAT3.
Collapse
Affiliation(s)
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University
| | | | - Min-Jae Lee
- College of Veterinary Medicine, Kangwon National University
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University
| | | | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University
| | | |
Collapse
|
26
|
Xie H, Hu N, Pan T, Wu JC, Yu M, Wang DC. Effectiveness and safety of different doses of febuxostat compared with allopurinol in the treatment of hyperuricemia: a meta-analysis of randomized controlled trials. BMC Pharmacol Toxicol 2023; 24:79. [PMID: 38098046 PMCID: PMC10722766 DOI: 10.1186/s40360-023-00723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The prevalence of hyperuricemia has increased steadily with the continuous improvement of living standards. Some studies have reported the clinical effectiveness and safety of different doses of febuxostat in comparison with allopurinol in hyperuricemia treatment, but the sample sizes of the studies have been small, and the results have been inconsistent. We designed this meta-analysis to evaluate the effectiveness and safety of different doses of febuxostat compared with allopurinol in the treatment of hyperuricemia. METHODS The Cochrane Library, Embase, PubMed, Web of Science and ClinicalTrials.gov databases were searched to identify randomized controlled trials (RCTs) comparing the use of febuxostat and allopurinol for the treatment of hyperuricemia. The effectiveness and safety of different doses of febuxostat and allopurinol in treating hyperuricemia were assessed using meta-analysis. RESULTS A total of 11 randomized controlled trials were included in the meta-analysis. The results of the meta-analysis showed that the percentage of patients achieving serum uric acid levels of 6.0 mg/dL or less was higher among patients taking febuxostat (80 mg/d) than among patients taking allopurinol (200-300 mg/d) [RR = 1.79, 95% CI (1.55, 2.08), P < 0.00001]. However, there was no statistically significant difference in the percentage of patients achieving serum uric acid levels of 6.0 mg/dL or less between febuxostat (40 mg/d) and allopurinol (200-300 mg/d) [RR = 1.10, 95% CI (0.93, 1.31), P = 0.25]. There was also no statistically significant difference in the incidence of gout between the febuxostat (40 mg/d) and allopurinol (200-300 mg/d) [RR = 0.97, 95% CI (0.64, 1.49), P = 0.91] or between the febuxostat (80 mg/d) and allopurinol (200-300 mg/d) [RR = 1.13, 95% CI (0.81, 1.58), P = 0.48].No significant difference in the incidence of major adverse reactions as observed between the febuxostat (40 mg/d) and allopurinol (200-300 mg/d) [RR = 1.16; 95% CI (0.43, 3.16), P = 0.77] or between the febuxostat (80 mg/d) and allopurinol (200-300 mg/d) [RR = 1.06; 95% CI (0.79, 1.42), P = 0.70]. The incidence of adverse cardiovascular events did not differ significantly between the febuxostat (40 mg/d) and allopurinol (200-300 mg/d) [RR = 1.30; 95% CI (0.57, 2.95), P = 0.53] or between the febuxostat (80 mg/d) and allopurinol (200-300 mg/d) [RR = 1.79; 95% CI (0.74, 4.32), P = 0.20]. CONCLUSIONS Febuxostat (80 mg/d) was associated with a higher percentage of patients achieving serum uric acid levels of 6.0 mg/dL or less than allopurinol (200-300 mg/d), however, febuxostat (80 mg/d) did not exhibit better efficacy in reducing the incidence of gout. More attention should be devoted to the adverse reactions caused by an increase in febuxostat doses.
Collapse
Affiliation(s)
- Hong Xie
- Department of General Medicine, Zigong Fourth People's Hospital, 643000, Zigong, Sichuan, China
| | - Nan Hu
- Department of General Surgery, Zigong Fourth People's Hospital, 19 Tanmulin Road, 643000, Zigong, Sichuan, China
| | - Ting Pan
- Department of General Medicine, Zigong Fourth People's Hospital, 643000, Zigong, Sichuan, China
| | - Jun-Cai Wu
- Department of General Medicine, Zigong Fourth People's Hospital, 643000, Zigong, Sichuan, China
| | - Miao Yu
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, 643000, Zigong, Sichuan, China
| | - Deng-Chao Wang
- Department of General Surgery, Zigong Fourth People's Hospital, 19 Tanmulin Road, 643000, Zigong, Sichuan, China.
| |
Collapse
|
27
|
Chen Y, Yang J, Rao Q, Wang C, Chen X, Zhang Y, Suo H, Song J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods 2023; 12:4465. [PMID: 38137270 PMCID: PMC10742721 DOI: 10.3390/foods12244465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperuricemia is a medical condition characterized by an elevated level of serum uric acid, closely associated with other metabolic disorders, and its global incidence rate is increasing. Increased synthesis or decreased excretion of uric acid can lead to hyperuricemia. Protein peptides from various food sources have demonstrated potential in treating hyperuricemia, including marine organisms, ovalbumin, milk, nuts, rice, legumes, mushrooms, and protein-rich processing by-products. Through in vitro experiments and the establishment of cell or animal models, it has been proven that these peptides exhibit anti-hyperuricemia biological activities by inhibiting xanthine oxidase activity, downregulating key enzymes in purine metabolism, regulating the expression level of uric acid transporters, and restoring the composition of the intestinal flora. Protein peptides derived from food offer advantages such as a wide range of sources, significant therapeutic benefits, and minimal adverse effects. However, they also face challenges in terms of commercialization. The findings of this review contribute to a better understanding of hyperuricemia and peptides with hyperuricemia-alleviating activity. Furthermore, they provide a theoretical reference for developing new functional foods suitable for individuals with hyperuricemia.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Qinchun Rao
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Zhu C, Niu H, Bian M, Zhang X, Zhang X, Zhou Z. Study on the mechanism of Orthosiphon aristatus (Blume) Miq. in the treatment of hyperuricemia by microbiome combined with metabonomics. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116805. [PMID: 37355082 DOI: 10.1016/j.jep.2023.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Growing evidence indicates that hyperuricemia is closely associated with gut microbiota dysbiosis. Orthosiphon aristatus (Blume) Miq. (O. aristatus), as a traditional Chinese medicine, has been widely used to treat hyperuricemia in China. However, the mechanism by which O. aristatus treats hyperuricemia has not been clarified. AIM OF THE STUDY In this study, we investigated whether the molecular mechanism underlying the anti-hyperuricemia effect of O. aristatus is related to the regulation of gut microbiota by 16S rDNA gene sequencing combined with widely targeted metabolomics. MATERIALS AND METHODS Hyperuricemia was induced in rats by administration of 10% fructose and 20% yeast, and the uricosuric effect was assessed by measuring the uric acid (UA) levels in serum and cecal contents. Intestinal morphology was observed by hematoxylin and eosin (HE) staining. To explore the effects of O. aristatus on the gut microbiota and its metabolites, we utilized 16S rDNA gene sequencing combined with widely targeted metabolomics. Furthermore, metabolic pathway enrichment analysis was performed on the screened differential metabolites. The real time quantitative polymerase chain reaction (RT-PCR) and western blotting (WB) were used to detect the expression of relevant proteins in the key pathway. RESULTS Our results indicated that O. aristatus intervention decreased serum UA levels and increased the UA levels in cecal contents in hyperuricemic rats. Additionally, O. aristatus improved intestinal morphology and altered the composition of the gut microbiota and its metabolites. Specifically, 16S rDNA revealed that O. aristatus treatment significantly reduced the abundance of unidentified-Ruminococcaceae and Lachnospiraceae-NK4A136-group. Meanwhile, widely targeted metabolomics showed that 17 metabolites, including lactose, 4-oxopentanoate and butyrate, were elevated, while 55 metabolites, such as flavin adenine dinucleotide and xanthine, were reduced. Metabolic pathway enrichment analysis found that O. aristatus was mainly involved in purine metabolism. Moreover, RT-PCR and WB suggested that O. aristatus could significantly up-regulate the expression of UA excretion transporter ATP-binding cassette subfamily G member 2 (ABCG2) in the intestine. CONCLUSION O. aristatus exerts UA-lowering effect by regulating the gut microbiota and ABCG2 expression, indicating that this herb holds great promise in the treatment of hyperuricemia.
Collapse
Affiliation(s)
- Chunsheng Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjuan Niu
- School of Pharmacy in Minzu University of China, Beijing, 100081, China
| | - Meng Bian
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaochuan Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Zheng Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
29
|
Qi X, Guan K, Liu C, Chen H, Ma Y, Wang R. Whey protein peptides PEW and LLW synergistically ameliorate hyperuricemia and modulate gut microbiota in potassium oxonate and hypoxanthine-induced hyperuricemic rats. J Dairy Sci 2023; 106:7367-7381. [PMID: 37562644 DOI: 10.3168/jds.2023-23369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/29/2023] [Indexed: 08/12/2023]
Abstract
Pro-Glu-Trp (PEW) and Leu-Leu-Trp (LLW) are peptides derived from whey protein digestive products; both peptides exhibit xanthine oxidase inhibitory activity in vitro. However, it remains unclear whether these peptides can alleviate hyperuricemia (HUA) in vivo. In this study, we investigated the roles of PEW and LLW, both individually and in combination, in alleviating HUA induced by potassium oxonate and hypoxanthine. Together, PEW and LLW exhibited synergistic effects in reducing the serum levels of uric acid (UA), creatinine, and blood urea nitrogen, as well as increasing the fractional excretion of UA. The combined treatment with PEW and LLW inhibited UA synthesis, promoted UA excretion, and restored renal oxidative stress and mitochondrial damage. Moreover, the combined treatment alleviated dysbiosis of the gut microbiota, characterized by increased helpful microbial abundance, decreased harmful bacterial abundance, and increased production of short-chain fatty acids. Taken together, these results indicate that the combination of PEW and LLW mitigate HUA and kidney injury by rebalancing UA synthesis and excretion, modulating gut microbiota composition, and improving oxidative stress.
Collapse
Affiliation(s)
- Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Chunhong Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Haoran Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
30
|
Prahl MC, Müller CBM, Wimmers K, Kuhla B. Mammary gland, kidney and rumen urea and uric acid transporters of dairy cows differing in milk urea concentration. Sci Rep 2023; 13:17231. [PMID: 37821556 PMCID: PMC10567808 DOI: 10.1038/s41598-023-44416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
The milk urea concentration (MUC) serves as indicator of urinary nitrogen emissions, but at comparable crude protein (CP) intake, cows with high (HMU) and low (LMU) MUC excrete equal urea amounts. We hypothesized that urea and uric acid transporters and sizes of the kidney, mammary gland, and rumen account for these phenotypes. Eighteen HMU and 18 LMU Holstein dairy cows fed a low (LP) and normal (NP) CP diet were studied. Milk, plasma and urinary urea concentrations were greater with NP feeding, while plasma and urinary urea concentrations were comparable between phenotypes. Milk and plasma uric acid concentrations were higher with LP feeding but not affected by phenotype. The milk-urine uric acid ratio was greater in HMU cows. The mRNA expressions of the ruminal urea transporter SLC14A1 and AQP10, the mammary gland and rumen AQP3, and the mammary gland uric acid transporter ABCG2 were not affected by group or diet. Renal AQP10, but not AQP3, AQP7, and SLC14A2 expressions, and the kidney weights were lower in HMU cows. These data indicate that renal size and AQP10 limit the urea transfer from blood to urine, and that MUC determines if uric acid is more released with milk or urine.
Collapse
Affiliation(s)
- Marie C Prahl
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Carolin B M Müller
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
31
|
Yu Y, Wan X, Li D, Qi Y, Li N, Luo G, Yin H, Wang L, Qin W, Li Y, Li L, Duan W. Dieting alleviates hyperuricemia and organ injuries in uricase-deficient rats via down-regulating cell cycle pathway. PeerJ 2023; 11:e15999. [PMID: 37701826 PMCID: PMC10494837 DOI: 10.7717/peerj.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
Dieting is a basic treatment for lowering hyperuricemia. Here, we aimed to determine the optimal amount of dietary food that lowers serum uric acid (SUA) without modifying the dietary ingredients in rats. Increased SUA was found in food-deprived 45-day-old uricase-deficient rats (Kunming-DY rats), and the optimal amount of dietary food (75% dietary intake) to lower SUA was established by controlling the amount of food given daily from 25% to 100% for 2 weeks. In addition to lowering SUA by approximately 22.5 ± 20.5%, the optimal amount of dietary food given for 2 weeks inhibited urine uric acid excretion, lowered the uric acid content in multiple organs, improved renal function, lowered serum triglyceride, alleviated organ injuries (e.g., liver, kidney and intestinal tract) at the histological level, and down-regulated the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway of the cell cycle (ko04110). Taken together, these results demonstrate that 75% dietary food effectively lowers the SUA level without modifying dietary ingredients and alleviates the injuries resulting from uricase deficiency or hyperuricemia, the mechanism of which is associated with the down-regulation of the cell cycle pathway.
Collapse
Affiliation(s)
- Yun Yu
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Xulian Wan
- School of Chinese Medicine, Yunnan University of Traditional Chinese Medicne, Kunming, Yunnan, China
| | - Dan Li
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Yalin Qi
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Ning Li
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Guangyun Luo
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Hua Yin
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Lei Wang
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Wan Qin
- School of Chinese Medicine, Yunnan University of Traditional Chinese Medicne, Kunming, Yunnan, China
| | - Yongkun Li
- School of Chinese Medicine, Yunnan University of Traditional Chinese Medicne, Kunming, Yunnan, China
| | - Lvyu Li
- The Third Affiliated Hospital, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Weigang Duan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
32
|
Cheng-yuan W, Jian-gang D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front Nutr 2023; 10:1186161. [PMID: 37377486 PMCID: PMC10291132 DOI: 10.3389/fnut.2023.1186161] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperuricemia is another common metabolic disease, which is considered to be closely related to the development of many chronic diseases, in addition to the "three highs." Currently, although drugs show positive therapeutic effects, they have been shown to produce side effects that can damage the body. There is growing evidence that medicinal and edible plants and their bioactive components have a significant effect on hyperuricemia. In this paper, we review common medicinal and edible plants with uric acid-lowering effects and summarize the uric acid-lowering mechanisms of different bioactive components. Specifically, the bioactive components are divided into five categories: flavonoids, phenolic acids, alkaloids, polysaccharides, and saponins. These active substances exhibit positive uric acid-lowering effects by inhibiting uric acid production, promoting uric acid excretion, and improving inflammation. Overall, this review examines the potential role of medicinal and edible plants and their bioactive components as a means of combating hyperuricemia, with the hope of providing some reference value for the treatment of hyperuricemia.
Collapse
|
33
|
Tian X, Chen S, Wang P, Xu Q, Zhang Y, Zhang X, Wu S, Luo Y, Wang A. Temporal relationship between hyperuricemia and hypertension and its impact on future risk of cardiovascular disease. Eur J Intern Med 2023; 111:82-89. [PMID: 36890009 DOI: 10.1016/j.ejim.2023.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Although hyperuricemia and hypertension are significantly correlated, their temporal relationship and whether this relationship is associated with risk of cardiovascular disease (CVD) are largely unknown. This study aimed to examine temporal relationship between hyperuricemia and hypertension, and its association with future risk of CVD. METHODS This study included 60,285 participants from the Kailuan study. Measurement of serum uric acid (SUA), systolic and diastolic blood pressure (SBP and DBP) were obtained twice at 2006 (baseline) and 2010. Cross-lagged and mediation analysis were used to examine the temporal relationship between hyperuricemia and hypertension, and the association of this temporal relationship with CVD events risk after 2010. RESULTS After adjusting for covariates, the cross-lagged path coefficients (β1) from baseline SUA to follow-up SBP and DBP were significantly greatly than path coefficients (β2) from baseline SBP and DBP to follow-up SUA (β1=0.041 versus β2=0.003; Pdifference<0.0001 for SBP; β1=0.040 versus β2=0.000; Pdifference<0.0001 for DBP). The path coefficients from baseline SUA to follow-up SBP and DBP in group with incident CVD were significantly greatly than that in group without incident CVD (Pdifference of β1 in the two groups was 0.0018 for SBP and 0.0340 for DBP). Furthermore, SBP and DBP partially mediated the effect of SUA on incident CVD, the mediation effect was 57.64% for SBP and 46.27% for DBP. Similar mediated results were observed for stroke and myocardial infarction. CONCLUSION Increased SUA levels probably precede elevated BP, and BP partially mediates the pathway from SUA to incident CVD.
Collapse
Affiliation(s)
- Xue Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan Hospital, North China University of Science and Technology, Tangshan, China
| | - Penglian Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qin Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yijun Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shouling Wu
- Department of Cardiology, Kailuan Hospital, North China University of Science and Technology, Tangshan, China.
| | - Yanxia Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
34
|
Zhao Z, Luo J, Liao H, Zheng F, Chen X, Luo J, Chen Y, Zhao K, Zhang S, Tian J, Wu T, Li Y, Li L, Yang Y, Lin C, Zhang Q, Tian Y, Pang J. Pharmacological evaluation of a novel skeleton compound isobavachin (4',7-dihydroxy-8-prenylflavanone) as a hypouricemic agent: Dual actions of URAT1/GLUT9 and xanthine oxidase inhibitory activity. Bioorg Chem 2023; 133:106405. [PMID: 36753966 DOI: 10.1016/j.bioorg.2023.106405] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Previously we discovered a novel natural scaffold compound, isobavachin (4', 7-dihydroxy-8-prenylflavanone), as a potent URAT1 inhibitor by shape and structure based on a virtue screening approach. In this study, further urate-lowering mechanism, pharmacokinetics and toxicities of isobavachin were conducted. Isobavachin inhibited URAT1 with an IC50 value of 0.24 ± 0.06 μM, and residues S35, F365, I481 and R477 of URAT1 contributed to high affinity for isobavachin. Isobavachin also inhibited glucose transporter 9 (GLUT9), another pivotal urate reabsorption transporter, with an IC50 value of 1.12 ± 0.26 μM. Molecular docking and MMGBSA results indicated that isobavachin might compete residues R171, L75 and N333 with uric acid, which leads to inhibition of uric acid transport of GLUT9. Isobavachin weakly inhibited urate secretion transporters OAT1 with an IC50 value of 4.38 ± 1.27 μM, OAT3 with an IC50 of 3.64 ± 0.62 μM, and ABCG2 with an IC50 of 10.45 ± 2.17 μM. Isobavachin also inhibited xanthine oxidase (XOD) activity in vitro with an IC50 value of 14.43 ± 3.56 μM, and inhibited the hepatic XOD activities at 5-20 mg/kg in vivo. Docking and MMGBSA analysis indicated that isobavachin might bind to the Mo-Pt catalyze center of XOD, which leads to inhibition of uric acid production. In vivo, isobavachin exhibited powerful urate-lowering and uricosuric effects at 5-20 mg/kg compared with the positive drugs morin (20 mg/kg) and RDEA3170 (10 mg/kg). Safety assessments revealed that isobavachin was safe and had no obvious toxicities. Isobavachin has little cell toxicity in HK2 cells as indicated by the MTT assay. In vivo, after treatment with 50 mg/kg isobavachin for 14 days, isobavachin had little renal toxicity, as revealed by serum CR/BUN levels, and no hepatotoxicity as revealed by ALT/AST levels. Further HE examination also suggests that isobavachin has no obvious kidney/liver damage. A pharmacokinetic study in SD rats indicated isobavachin had lower bioavailability (12.84 ± 5.13 %) but long half-time (7.04 ± 2.68 h) to maintain a continuous plasma concentration. Collectively, these results indicate that isobavachin deserves further investigation as a candidate anti-hyperuricemic drug with a novel mechanism of action: selective urate reabsorption inhibitor (URAT1/GLUT9) with a moderate inhibitory effect on XOD.
Collapse
Affiliation(s)
- Zean Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jian Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Hui Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fengxin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xinhua Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jiajun Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yongjun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Kunlu Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shuqin Zhang
- Good clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jinhong Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yongmei Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Lu Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Yang Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Cuiting Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qun Zhang
- Good clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Yuanxin Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Jianxin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
35
|
Łapczuk-Romańska J, Droździk M, Oswald S, Droździk M. Kidney Drug Transporters in Pharmacotherapy. Int J Mol Sci 2023; 24:ijms24032856. [PMID: 36769175 PMCID: PMC9917665 DOI: 10.3390/ijms24032856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The kidney functions not only as a metabolite elimination organ but also plays an important role in pharmacotherapy. The kidney tubule epithelia cells express membrane carriers and transporters, which play an important role in drug elimination, and can determine drug nephrotoxicity and drug-drug interactions, as well as constituting direct drug targets. The above aspects of kidney transport proteins are discussed in the review.
Collapse
Affiliation(s)
- Joanna Łapczuk-Romańska
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland
| | - Maria Droździk
- Medical Faculty, Medical University of Lodz, Tadeusza Kościuszki 4, 90-419 Lodz, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18051 Rostock, Germany
| | - Marek Droździk
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
36
|
Qi X, Ma Y, Guan K, Liu C, Wang R, Ma Y, Niu T. Whey protein peptide PEW attenuates hyperuricemia and associated renal inflammation in potassium oxonate and hypoxanthine-induced rat. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Kawakami Y, Mazuka M, Yasuda A, Sato M, Hosaka T, Arai H. Acute effect of fructose, sucrose, and isomaltulose on uric acid metabolism in healthy participants. J Clin Biochem Nutr 2023; 72:61-67. [PMID: 36777082 PMCID: PMC9899922 DOI: 10.3164/jcbn.22-41] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 01/01/2023] Open
Abstract
Fructose is associated with hyperuricemia and gout development. Focusing on fructose and fructose-containing disaccharides, we investigated the effects of three different types of carbohydrates (fructose, sucrose, and isomaltulose) on uric acid metabolism and gene expression profiling in peripheral white blood cells. In a randomized crossover study, ten healthy participants ingested test drinks of fructose, sucrose, and isomaltulose, each containing 25 g of fructose. Plasma glucose, serum and urine uric acid, and xanthine/hypoxanthine concentrations were measured. Microarray analysis in peripheral white blood cells and real-time reverse transcription polymerase chain reaction were examined at 0 and 120 in after the intake of test drinks. Serum uric acid concentrations for group fructose were significantly higher than group sucrose at 30-120 min and were significantly higher than those for group isomaltulose at 30-240 min. Several genes involved in the "nuclear factor-kappa B signaling pathway" were markedly changed in group fructose. No significant differences in the mRNA expression levels of tumor necrosis factor, nuclear factor-kappa B, interleukin-1β, and interleukin-18 were noted. This study indicated that fructose intake (monosaccharide) elevated serum uric acid concentrations compared with disaccharide intake. Differences in the quality of carbohydrates might reduce the rapid increase of postprandial serum uric acid concentrations.
Collapse
Affiliation(s)
- Yuka Kawakami
- Laboratory of Clinical Nutrition and Management, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Megumi Mazuka
- Laboratory of Clinical Nutrition and Management, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Arisa Yasuda
- Laboratory of Clinical Nutrition and Management, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Megumi Sato
- Laboratory of Clinical Nutrition and Management, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshio Hosaka
- Laboratory of Clinical Nutrition, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hidekazu Arai
- Laboratory of Clinical Nutrition and Management, Graduate Division of Nutritional and Environmental Sciences, and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Dong M, Chen H, Wen S, Yuan Y, Yang L, Xu D, Zhou L. The Mechanism of Sodium-Glucose Cotransporter-2 Inhibitors in Reducing Uric Acid in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:437-445. [PMID: 36820272 PMCID: PMC9938669 DOI: 10.2147/dmso.s399343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Hyperuricemia is a common comorbidity in patients with type 2 diabetes mellitus (T2DM), as insulin resistance (IR) or hyperinsulinemia is associated with higher serum uric acid (SUA) levels due to decreased uric acid (UA) secretion, and SUA vice versa is an important risk factor that promotes the occurrence and progression of T2DM and its complications. Growing evidence suggests that sodium-glucose cotransporter 2 inhibitors (SGLT-2i), a novel anti-diabetic drug initially developed to treat T2DM, may exert favorable effects in reducing SUA. Currently, one of the possible mechanisms is that SGLT2i increases urinary glucose excretion, probably inhibiting glucose transport 9 (GLUT9)-mediated uric acid reabsorption in the collecting duct, resulting in increased uric acid excretion in exchange for glucose reabsorption. Regardless of this possible mechanism, the underlying comprehensive mechanisms remain poorly elucidated. Therefore, in the present review, a variety of other potential mechanisms will be covered to identify the therapeutic role of SGLT-2i in hyperuricemia.
Collapse
Affiliation(s)
- Meiyuan Dong
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Liling Yang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Dongxiang Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ligang Zhou
- Graduate School of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou, Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China, Tel +8613611927616, Email
| |
Collapse
|
39
|
An MF, Shen C, Zhang SS, Wang MY, Sun ZR, Fan MS, Zhang LJ, Zhao YL, Sheng J, Wang XJ. Anti-hyperuricemia effect of hesperetin is mediated by inhibiting the activity of xanthine oxidase and promoting excretion of uric acid. Front Pharmacol 2023; 14:1128699. [PMID: 37124197 PMCID: PMC10131109 DOI: 10.3389/fphar.2023.1128699] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Hesperetin is a natural flavonoid with many biological activities. In view of hyperuricemia treatment, the effects of hesperetin in vivo and in vitro, and the underlying mechanisms, were explored. Hyperuricemia models induced by yeast extract (YE) or potassium oxonate (PO) in mice were created, as were models based on hypoxanthine and xanthine oxidase (XOD) in L-O2 cells and sodium urate in HEK293T cells. Serum level of uric acid (UA), creatinine (CRE), and urea nitrogen (BUN) were reduced significantly after hesperetin treatment in vivo. Hesperetin provided hepatoprotective effects and inhibited xanthine oxidase activity markedly, altered the level of malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and catalase (CAT), downregulated the XOD protein expression, toll-like receptor (TLR)4, nucleotide binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, interleukin-18 (IL-18), upregulated forkhead box O3a (FOXO3a), manganese superoxide dismutase (MnSOD) in a uric acid-synthesis model in mice. Protein expression of organic anion transporter 1 (OAT1), OAT3, organic cationic transporter 1 (OCT1), and OCT2 was upregulated by hesperetin intervention in a uric acid excretion model in mice. Our results proposal that hesperetin exerts a uric acid-lowering effect through inhibiting xanthine oxidase activity and protein expression, intervening in the TLR4-NLRP3 inflammasome signaling pathway, and up-regulating expression of FOXO3a, MnSOD, OAT1, OAT3, OCT1, and OCT2 proteins. Thus, hesperetin could be a promising therapeutic agent against hyperuricemia.
Collapse
Affiliation(s)
- Meng-Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Chang Shen
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shao-Shi Zhang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ming-Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ze-Rui Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mao-Si Fan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li-Juan Zhang
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yun-Li Zhao
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, China
- *Correspondence: Yun-Li Zhao, ; Jun Sheng, ; Xuan-Jun Wang,
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
- *Correspondence: Yun-Li Zhao, ; Jun Sheng, ; Xuan-Jun Wang,
| | - Xuan-Jun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
- *Correspondence: Yun-Li Zhao, ; Jun Sheng, ; Xuan-Jun Wang,
| |
Collapse
|
40
|
Shi X, Zhao T, da Silva-Júnior EF, Zhang J, Xu S, Gao S, Liu X, Zhan P. Novel urate transporter 1 (URAT1) inhibitors: a review of recent patent literature (2020-present). Expert Opin Ther Pat 2022; 32:1175-1184. [PMID: 36625031 DOI: 10.1080/13543776.2022.2165911] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The urate transporter 1 (URAT1) is a membrane transporter located in the apical membrane of human renal proximal tubule epithelial cells, which mediates most of the reabsorption of urate. Hyperuricemia (HUA) is a common disease caused by metabolic disorders, which has been considered as the key factor of gout. Approximately 90% of patients suffer from hyperuricemia due to insufficient or poor uric acid excretion. Therefore, the drug design of URAT1 inhibitors targeting improve the renal urate excretion by reducing the reabsorption of urate anions represent a hot topic in searching for anti-gout drugs currently. AREAS COVERED In this review, we summarize URAT1 inhibitors patents reported since 2020 to present through the public database at https://worldwide.espacenet.com and some medicinal chemistry strategies employed to develop novel drug candidates. EXPERT OPINION Ligand-based drug design (LBDD) strategies have been frequently used developing new URAT1 inhibitors. Meanwhile, the discovery of dual drugs targeting both inhibition of xanthine oxidase (XOD) and URAT1 may be an emerging horizon for designing novel uric acid-lowering candidates in future. Furthermore, advanced techniques in the field of molecular biology and computer science can increase the chances to discover and/or optimize URAT1 inhibitors, contributing to the development of novel drug candidates.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | | | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Shandong, PR China
| |
Collapse
|
41
|
Jeong J, Lim MK, Han EH, Lee SH, Kang S, Lee S. Extract of Aster glehni ameliorates potassium oxonate-induced hyperuricemia by modulating renal urate transporters and renal inflammation by suppressing TLR4/MyD88 signaling. Food Sci Biotechnol 2022; 31:1729-1739. [PMID: 36312990 PMCID: PMC9596640 DOI: 10.1007/s10068-022-01153-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies suggest that Aster glehni extract (AGE) reduces hyperuricemia by preventing xanthine oxidase activity. However, its effect on renal urate transporters responsible for modulating urate excretion has not been examined. This study investigated whether AGE affects gene expressions of urate transporters using potassium oxonate (PO)-induced hyperuricemia rats. Furthermore, the underlying mechanisms of AGE were explored to ameliorate renal inflammation and injury by PO. AGE effectively restored PO-induced dysregulation of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), ATP-binding cassette transporter subfamily G member 2 (ABCG2), organic anion transporter 1 (OAT1), and organic cation transporter 1 (OCT1), resulting in increasing urate excretion. Additionally, AGE suppressed toll-like receptor 4/myeloid differentiation factor 88 (TLR4/MyD88) signaling, phosphorylation of nuclear factor kappa B (NF-κB), and renal production of IFN-γ, IL-1β, TNF-α, and IL-6. These results suggest that AGE may ameliorate PO-induced hyperuricemia by modulating renal transporters, and further renal inflammation via inhibiting the TLR4/MyD88/NF-κB signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01153-5.
Collapse
Affiliation(s)
- Jeongho Jeong
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Mi Kyung Lim
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Eun Hye Han
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Sang-Ho Lee
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Soyeon Lee
- R&D Center, Korea Eundan Healthcare Co., Ltd, Ansan-si, Gyeonggi-do 15405 Republic of Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
42
|
The Prevalence of Asymptomatic Hyperuricemia in Patients with or Without Psoriatic Arthritis is Associated with a Similar Cardiovascular Risk. ACTA MEDICA BULGARICA 2022. [DOI: 10.2478/amb-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Aim: To investigate the association between cardiovascular burden and monosodium urate (MSU) deposits in the joints of patients with asymptomatic hyperuricemia and no evidence of arthritis and subjects with psoriatic arthritis and hyperuricemia.
Patients and methods: A single-center, cross-sectional study including 52 individuals: 39 with asymptomatic hyperuricemia and 13 with psoriatic arthritis and hyperuricemia. All patients underwent ultrasound of the joints by which the presence or absence of MSU crystal deposits was assessed. Subjects underwent transthoracic echocardiography by which left ventricular mass index (LVMI) was estimated. Intima-media thickness (IMT) of the common carotid arteries was measured and the presence of atherosclerotic plaques was registered.
Results: We found no difference in the distribution of cardiovascular risk factors between the two groups. Further, no difference in their distribution was found between those who were not treated and those who were treated with urate-lowering medications. The frequency of articular MSU deposits was similar between non-allopurinol-treated and allopurinol-treated individuals (p = 0.554). There was no difference in the frequency of articular deposits between benzbromarone recipients and non-recipients (p = 0.396). We observed no connection between articular MSU deposits and LVMI (p = 0.625), IMT (p = 0.117) and atherosclerotic plaques (p = 0.102). Among untreated and treated with urate-lowering drugs there was no difference in LVMI (p = 0.063), IMT (p = 0.975) and plaque distribution (p = 1.000).
Conclusion: We can assume that in patients with asymptomatic hyperuricemia and no evidence of arthritis and in subjects with psoriatic arthritis and asymptomatic hyperuricemia, only the prescription of urate-lowering medications for reduction of urate load and cardiovascular risk is not sufficient.
Collapse
|
43
|
van Groen BD, Allegaert K, Tibboel D, de Wildt SN. Innovative approaches and recent advances in the study of ontogeny of drug metabolism and transport. Br J Clin Pharmacol 2022; 88:4285-4296. [PMID: 32851677 PMCID: PMC9545189 DOI: 10.1111/bcp.14534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/30/2022] Open
Abstract
The disposition of a drug is driven by various processes, such as drug metabolism, drug transport, glomerular filtration and body composition. These processes are subject to developmental changes reflecting growth and maturation along the paediatric continuum. However, knowledge gaps exist on these changes and their clinical impact. Filling these gaps may aid better prediction of drug disposition and creation of age-appropriate dosing guidelines. We present innovative approaches to study these developmental changes in relation to drug metabolism and transport. First, analytical methods such as including liquid chromatography-mass spectrometry for proteomic analyses allow quantitation of the expressions of a wide variety of proteins, e.g. membrane transporters, in a small piece of organ tissue. The latter is specifically important for paediatric research, where tissues are scarcely available. Second, innovative study designs using radioactive labelled microtracers allowed study-without risk for the child-of the oral bioavailability of compounds used as markers for certain drug metabolism pathways. Third, the use of modelling and simulation to support dosing recommendations for children is supported by both the European Medicines Agency and the US Food and Drug Administration. This may even do away with the need for a paediatric trial. Physiologically based pharmacokinetics models, which include age-specific physiological information are, therefore, increasingly being used, not only to aid paediatric drug development but also to improve existing drug therapies.
Collapse
Affiliation(s)
- Bianca D. van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, KU LeuvenLeuvenBelgium
- Department of Pharmacy and Pharmaceutical Sciences, KU LeuvenLeuvenBelgium
- Department of Clinical Pharmacy, Erasmus MCRotterdamthe Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
| | - Saskia N. de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
- Department of Pharmacology and ToxicologyRadboud Institute of Health Sciences, Radboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
44
|
Recent advances in gout drugs. Eur J Med Chem 2022; 245:114890. [DOI: 10.1016/j.ejmech.2022.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
|
45
|
Wang S, Zhang L, Hao D, Wang L, Liu J, Niu Q, Mi L, Peng X, Gao J. Research progress of risk factors and early diagnostic biomarkers of gout-induced renal injury. Front Immunol 2022; 13:908517. [PMID: 36203589 PMCID: PMC9530830 DOI: 10.3389/fimmu.2022.908517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Gout renal injury has an insidious onset, no obvious symptoms, and laboratory abnormalities in the early stages of the disease. The injury is not easily detected, and in many cases, the patients have entered the renal failure stage at the time of diagnosis. Therefore, the detection of gout renal injury–related risk factors and early diagnostic biomarkers of gout renal injury is essential for the prevention and early diagnosis of the disease. This article reviews the research progress in risk factors and early diagnostic biomarkers of gout renal injury.
Collapse
Affiliation(s)
- Sheng Wang
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongsheng Hao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Lei Wang
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Qing Niu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Liangyu Mi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xinyue Peng
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
- *Correspondence: Jinfang Gao,
| |
Collapse
|
46
|
AMP-activated protein kinase α2 contributes to acute and chronic hyperuricemic nephropathy via renal urate deposition in a mouse model. Eur J Med Res 2022; 27:176. [PMID: 36088368 PMCID: PMC9464416 DOI: 10.1186/s40001-022-00800-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
Hyperuricemia can induce acute and chronic kidney damage, but the pathological mechanism remains unclear. The potential role of AMP-activated protein kinase (AMPK) α2 in hyperuricemia-induced renal injury was investigated in this study. Acute and chronic hyperuricemic nephropathy was induced by administering intraperitoneal injections of uric acid and oxonic acid to AMPK α2 knockout and wild-type mice. Changes in renal function, histopathology, inflammatory cell infiltration, renal interstitial fibrosis, and urate deposition were analyzed. In both acute and chronic hyperuricemic nephropathy mouse models, knockout of AMPK α2 significantly reduced serum creatinine levels and renal pathological changes. The tubular expression of kidney injury molecule-1 was also reduced in hyperuricemic nephropathy mice deficient in AMPK α2. In addition, knockout of AMPK α2 significantly suppressed the infiltration of renal macrophages and progression of renal interstitial fibrosis in mice with chronic hyperuricemic nephropathy. Knockout of AMPK α2 reduced renal urate crystal deposition, probably through increasing the expression of the uric acid transporter, multidrug resistance protein 4. In summary, AMPK α2 is involved in acute and chronic hyperuricemia-induced kidney injury and may be associated with increased urate crystal deposition in the kidney.
Collapse
|
47
|
Lin Z, Jayachandran M, Haskic Z, Kumar S, Lieske JC. Differences of Uric Acid Transporters Carrying Extracellular Vesicles in the Urine from Uric Acid and Calcium Stone Formers and Non-Stone Formers. Int J Mol Sci 2022; 23:ijms231710010. [PMID: 36077407 PMCID: PMC9456222 DOI: 10.3390/ijms231710010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Low urine pH and volume are established risk factors for uric acid (UA) stone disease (UASD). Renal tubular epithelial cells exposed to an acidic pH and/or UA crystals can shed extracellular vesicles (EVs) into the tubular fluid, and these EVs may be a pathogenic biomarker of UASD. Methods: Urinary EVs bearing UA transporters (SLC2A9, SLC17A3, SLC22A12, SLC5A8, ABCG2, and ZNF365) were quantified in urine from UA stone formers (UASFs), calcium stone formers (CSFs), and age-/sex-matched non-stone formers (NSFs) using a standardized and published method of digital flow cytometry. Results: Urinary pH was lower (p < 0.05) and serum and urinary UA were greater (p < 0.05) in UASFs compared with NSFs. Urinary EVs carrying SLC17A3 and SLC5A8 were lower (p < 0.05) in UASFs compared with NSFs. Urinary EVs bearing SLC2A9, SLC22A12, SLC5A8, ABCG2, and ZNF365 were lower (p < 0.05) in CSFs than UASFs, while excretion of SLC17A3-bearing EVs did not differ between groups. Conclusion: EVs bearing specific UA transporters might contribute to the pathogenesis of UASD and represent non-invasive pathogenic biomarkers for calcium and UA stone risk.
Collapse
Affiliation(s)
- Zhijian Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, 200 1st Street SW, Rochester, MN 55905, USA
| | - Muthuvel Jayachandran
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, 200 1st Street SW, Rochester, MN 55905, USA
- Division of Hematology Research, Mayo Clinic College of Medicine, 200 1st Street SW, Rochester, MN 55905, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, 200 1st Street SW, Rochester, MN 55905, USA
| | - Zejfa Haskic
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, 200 1st Street SW, Rochester, MN 55905, USA
| | - Sanjay Kumar
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, 200 1st Street SW, Rochester, MN 55905, USA
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - John C. Lieske
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, 200 1st Street SW, Rochester, MN 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +(507)-266-7960; Fax: +(507)-266-9315
| |
Collapse
|
48
|
Yang L, Wang B, Ma L, Fu P. Traditional Chinese herbs and natural products in hyperuricemia-induced chronic kidney disease. Front Pharmacol 2022; 13:971032. [PMID: 36016570 PMCID: PMC9395578 DOI: 10.3389/fphar.2022.971032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Hyperuricemia is a common biochemical disorder, which resulted from both excessive uric acid (UA) production and/or absolute or relative impairment of urinary UA excretion. Growing evidence has indicated that hyperuricemia is an independent risk factor for the development and progression of chronic kidney disease (CKD), causing hyperuricemia-induced CKD (hyperuricemic nephropathy, HN). The therapeutic strategy of HN is managing hyperuricemia and protecting kidney function. Adverse effects of commercial drugs make persistent treatment of HN challenging. Traditional Chinese medicine (TCM) has exact efficacy in lowering serum UA without serious adverse effects. In addition, TCM is widely applied for the treatment of CKD. This review aimed to provide an overview of efficacy and mechanisms of traditional Chinese herbs and natural products in hyperuricemia-induced CKD.
Collapse
Affiliation(s)
| | | | - Liang Ma
- *Correspondence: Liang Ma, ; Ping Fu,
| | - Ping Fu
- *Correspondence: Liang Ma, ; Ping Fu,
| |
Collapse
|
49
|
Miyamoto D, Sato N, Nagata K, Sakai Y, Sugihara H, Ohashi Y, Stiburkova B, Sebesta I, Ichida K, Okamoto K. Analysis of Purine Metabolism to Elucidate the Pathogenesis of Acute Kidney Injury in Renal Hypouricemia. Biomedicines 2022; 10:biomedicines10071584. [PMID: 35884889 PMCID: PMC9312704 DOI: 10.3390/biomedicines10071584] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Renal hypouricemia is a disease caused by the dysfunction of renal urate transporters. This disease is known to cause exercise-induced acute kidney injury, but its mechanism has not yet been established. To analyze the mechanism by which hypouricemia causes renal failure, we conducted a semi-ischemic forearm exercise stress test to mimic exercise conditions in five healthy subjects, six patients with renal hypouricemia, and one patient with xanthinuria and analyzed the changes in purine metabolites. The results showed that the subjects with renal hypouricemia had significantly lower blood hypoxanthine levels and increased urinary hypoxanthine excretion after exercise than healthy subjects. Oxidative stress markers did not differ between healthy subjects and hypouricemic subjects before and after exercise, and no effect of uric acid as a radical scavenger was observed. As hypoxanthine is a precursor for adenosine triphosphate (ATP) production via the salvage pathway, loss of hypoxanthine after exercise in patients with renal hypouricemia may cause ATP loss in the renal tubules and consequent tissue damage.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (D.M.); (Y.S.)
| | - Nana Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (N.S.); (K.N.)
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (N.S.); (K.N.)
| | - Yukinao Sakai
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (D.M.); (Y.S.)
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes, and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan;
| | - Yuki Ohashi
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (Y.O.); (K.I.)
| | - Blanka Stiburkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 11000 Prague, Czech Republic;
| | - Ivan Sebesta
- Institute of Rheumatology, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, 11000 Prague, Czech Republic;
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (Y.O.); (K.I.)
- Division of Kidney and Hypertension, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (N.S.); (K.N.)
- Correspondence: ; Tel.: +81-3-5841-5035
| |
Collapse
|
50
|
Uda J, Ashizawa N, Iwanaga T. An evaluation method for uric acid uptake inhibition using primary human proximal tubule epithelial cells treated with insulin. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:724-735. [PMID: 35770496 DOI: 10.1080/15257770.2022.2070204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The effects of uricosuric agents have been evaluated in vitro with indices of uric acid uptake into human urate transporter 1 (URAT1)-overexpressed oocytes or cells. In the present study, we evaluated a method using primary human renal proximal tubule epithelial cells (RPTECs). Pretreatment of RPTECs with insulin significantly increased the uptake of uric acid into these cells. The uric acid uptake was inhibited in a concentration-dependent manner by the URAT1 inhibitors benzbromarone and dotinurad. Therefore, effects of uricosuric agents can be evaluated by the novel method, which is closer to the physiological system compared with previous methods.
Collapse
Affiliation(s)
- Junichiro Uda
- Medicinal Chemistry Research Department, Research Institute, FUJIYAKUHIN CO., Ltd, Saitama, Japan
| | - Naoki Ashizawa
- Biological Research Department, Research Institute, FUJIYAKUHIN CO., Ltd, Saitama, Japan
| | - Takashi Iwanaga
- Biological Research Department, Research Institute, FUJIYAKUHIN CO., Ltd, Saitama, Japan
| |
Collapse
|