1
|
Chipón C, Riffo P, Ojeda L, Salas M, Burgos RA, Ehrenfeld P, López-Muñoz R, Zambrano A. Impact of Nordihydroguaiaretic Acid on Proliferation, Energy Metabolism, and Chemosensitization in Non-Small-Cell Lung Cancer (NSCLC) Cell Lines. Int J Mol Sci 2024; 25:11601. [PMID: 39519155 PMCID: PMC11546251 DOI: 10.3390/ijms252111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. LC can be classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), with the last subtype accounting for approximately 85% of all diagnosed lung cancer cases. Despite the existence of different types of treatment for this disease, the development of resistance to therapies and tumor recurrence in patients have maintained the need to find new therapeutic options to combat this pathology, where natural products stand out as an attractive source for this search. Nordihydroguaiaretic acid (NDGA) is the main metabolite extracted from the Larrea tridentata plant and has been shown to have different biological activities, including anticancer activity. In this study, H1975, H1299, and A549 cell lines were treated with NDGA, and its effect on cell viability, proliferation, and metabolism was evaluated using a resazurin reduction assay, incorporation of BrdU, and ki-67 gene expression and glucose uptake measurement, respectively. In addition, the combination of NDGA with clinical chemotherapeutics was investigated using an MTT assay and Combenefit software (version 2.02). The results showed that NDGA decreases the viability and proliferation of NSCLC cells and differentially modulates the expression of genes associated with different metabolic pathways. For example, the LDH gene expression decreased in all cell lines analyzed. However, GLUT3 gene expression increased after 24 h of treatment. The expression of the HIF-1 gene decreased early in the H1299 and A549 cell lines. In addition, the combination of NDGA with three chemotherapeutics (carboplatin, gemcitabine, and taxol) shows a synergic pattern in the decrease of cell viability on the H1299 cell line. In summary, this research provides new evidence about the role of NDGA in lung cancer. Interestingly, using NDGA to enhance the anticancer activity of antitumoral drugs could be an improved therapeutic resource against lung cancer.
Collapse
Affiliation(s)
- Carina Chipón
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Paula Riffo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
| | - Loreto Ojeda
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
| | - Mónica Salas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
| | - Rafael A. Burgos
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Rodrigo López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Angara Zambrano
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
| |
Collapse
|
2
|
Wang Y, Gao L, Wang F, Yu C, Chen C, Xia C. GPRC5A promotes paclitaxel resistance and glucose content in NSCLC. Anticancer Drugs 2024; 35:606-614. [PMID: 38602327 DOI: 10.1097/cad.0000000000001610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lung cancer is one of the most common and malignant cancers worldwide. Chemotherapy has been widely used in the clinical setting, and paclitaxel is the first-line therapy for lung cancer patients but paclitaxel resistance is the main problem. First, we successfully established paclitaxel-resistant lung cancer cells treated with elevated doses of paclitaxel for 3 months, as confirmed by the CCK-8 assay. Paclitaxel-resistant cancer cells increased glucose content. Second, Gtex, Oncomine, and gene expression omnibus database data mining identified GPRC5A, G protein-coupled receptor, as the most prominent differentially expressed gene in drug-resistant datasets including gemcitabine, paclitaxel, and gefitinib overlapped with the microarray data from cancer cell metabolism. Third, qPCR analysis and western blot technique showed that GPRC5A mRNA and protein levels were significantly enhanced in paclitaxel-resistant lung cancer cells. Fourth, functional analysis was conducted by siRNA-mediated transient knockdown of GPRC5A. Silencing GPRC5A significantly decreased paclitaxel resistance and glucose content. In the end, retinoic acid substantially upregulated GPRC5A proteins and promoted glucose content in two lung cancer cells. Kaplan-Meier plot also confirmed that lung cancer patients with high expression of GPRC5A had a relatively lower survival rate. Our study provided a potential drug target GPRC5A, which may benefit lung cancer patients with acquired paclitaxel resistance in the future and a theoretical basis for future preclinical trials.
Collapse
MESH Headings
- Humans
- Paclitaxel/pharmacology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Drug Resistance, Neoplasm
- Glucose/metabolism
- Cell Line, Tumor
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Yan Wang
- Intensive Care Unit, Department of Respiratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing
| | - Liang Gao
- Life Science and Health Engineering Department, Jiangnan University, Wuxi
| | - Feiyu Wang
- Life Science and Health Engineering Department, Jiangnan University, Wuxi
| | - Cunjun Yu
- Department of Respiratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Chen
- Life Science and Health Engineering Department, Jiangnan University, Wuxi
| | - Chunwei Xia
- Department of Respiratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Conza D, Mirra P, Fiory F, Insabato L, Nicolò A, Beguinot F, Ulianich L. Metformin: A New Inhibitor of the Wnt Signaling Pathway in Cancer. Cells 2023; 12:2182. [PMID: 37681914 PMCID: PMC10486775 DOI: 10.3390/cells12172182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The biguanide drug metformin is widely used in type 2 diabetes mellitus therapy, due to its ability to decrease serum glucose levels, mainly by reducing hepatic gluconeogenesis and glycogenolysis. A considerable number of studies have shown that metformin, besides its antidiabetic action, can improve other disease states, such as polycystic ovary disease, acute kidney injury, neurological disorders, cognitive impairment and renal damage. In addition, metformin is well known to suppress the growth and progression of different types of cancer cells both in vitro and in vivo. Accordingly, several epidemiological studies suggest that metformin is capable of lowering cancer risk and reducing the rate of cancer deaths among diabetic patients. The antitumoral effects of metformin have been proposed to be mainly mediated by the activation of the AMP-activated protein kinase (AMPK). However, a number of signaling pathways, both dependent and independent of AMPK activation, have been reported to be involved in metformin antitumoral action. Among these, the Wingless and Int signaling pathway have recently been included. Here, we will focus our attention on the main molecular mechanisms involved.
Collapse
Affiliation(s)
- Domenico Conza
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| | - Paola Mirra
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| | - Francesca Fiory
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Antonella Nicolò
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| | - Francesco Beguinot
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| | - Luca Ulianich
- URT Genomics of Diabetes, Institute of Endocrinology and Experimental Oncology, National Research Council & Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (A.N.); (F.B.)
| |
Collapse
|
4
|
Nunes M, Duarte D, Vale N, Ricardo S. The Antineoplastic Effect of Carboplatin Is Potentiated by Combination with Pitavastatin or Metformin in a Chemoresistant High-Grade Serous Carcinoma Cell Line. Int J Mol Sci 2022; 24:ijms24010097. [PMID: 36613537 PMCID: PMC9820586 DOI: 10.3390/ijms24010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The combination of Carboplatin with Paclitaxel is the mainstay treatment for high-grade serous carcinoma; however, many patients with advanced disease undergo relapse due to chemoresistance. Drug repurposing coupled with a combination of two or more compounds with independent mechanisms of action has the potential to increase the success rate of the antineoplastic treatment. The purpose of this study was to explore whether the combination of Carboplatin with repurposed drugs led to a therapeutic benefit. Hence, we assessed the cytotoxic effects of Carboplatin alone and in combination with several repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) in two tumoral models, i.e., Carboplatin (OVCAR8) and Carboplatin-Paclitaxel (OVCAR8 PTX R P) chemoresistant cell lines and in a non-tumoral (HOSE6.3) cell line. Cellular viability was measured using the Presto Blue assay, and the synergistic interactions were evaluated using the Chou-Talalay, Bliss Independence and Highest Single Agent reference models. Combining Carboplatin with Pitavastatin or Metformin displayed the highest cytotoxic effect and the strongest synergism among all combinations for OVCAR8 PTX R P cells, resulting in a chemotherapeutic effect superior to Carboplatin as a single agent. Concerning HOSE6.3 cells, combining Carboplatin with almost all the repurposed drugs demonstrated a safe pharmacological profile. Overall, we propose that Pitavastatin or Metformin could act synergistically in combination with Carboplatin for the management of high-grade serous carcinoma patients with a Carboplatin plus Paclitaxel resistance profile.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
- Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal
- Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
5
|
Li H, Yang D, Xu Z, Yang L, Lin J, Cai J, Yang L. Metformin Sensitizes Cisplatin-induced Apoptosis Through Regulating
Nucleotide Excision Repair Pathway In Cisplatin-resistant Human Lung
Cancer Cells. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220330121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Lung cancer is a leading cause of cancer death globally. Platinum-based chemotherapeutic
medications are essential for treating advanced NSCLC, despite that drug resistance severely
limits its effectiveness.
Objective:
In this study, we investigated the cytotoxic effect of metformin on cisplatin-resistant NSCLC
cells (A549/DDP) and its potential mechanisms.
Methods:
Anti-lung cancer efficacy of metformin, cisplatin, and metformin combined with cisplatin was
examined in A549 and A549/DDP cells. The cell counting kit-8 (CCK-8) assay was applied for measuring
cell proliferation. CalcuSyn software was used to calculate the combination index and estimate the
synergistic effect of metformin and cisplatin on cell proliferation. The cell apoptosis was analyzed by
flow cytometry and the expression of apoptosis-related proteins, Bcl-2, Bax and caspase-3 were analyzed
using Western blot. Futhermore, the expression of key nucleotide excision repair (NER) proteins,
ERCC1, XPF, and XPA, was also analyzed using Western blot.
Results:
We found that metformin had dose-dependent antiproliferative effects on A549/DDP and A549
cells. The combination of metformin and cisplatin had higher effectiveness in inhibiting A549/DDP and
A549 cell growth than either of the two drugs alone. Flow cytometry analysis indicated that the combined
treatment could cause more cell apoptosis than the single-drug treatment. Consistently, the combined
treatment decreased the expression of Bcl-2 protein and elevated the expression of Bax, and cleaved
caspase-3 proteins. The expression level of ERCC1, XPF, and XPA proteins were lower in the combined
treatment than in either of metformin and cisplatin treatment alone.
Conclusions:
Our study suggested that metformin and cisplatin had synergistic antitumorigenic effects in
A549/DDP cells. The combination of cisplatin and metformin could be promising drug candidates to
sensitize cisplatin-induced apoptosis through regulating nucleotide excision repair pathways in lung cancer.
Collapse
Affiliation(s)
- Haiwen Li
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Donghong Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Zumin Xu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Liu Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jiong Lin
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jingyi Cai
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Li Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
6
|
Moss DY, McCann C, Kerr EM. Rerouting the drug response: Overcoming metabolic adaptation in KRAS-mutant cancers. Sci Signal 2022; 15:eabj3490. [PMID: 36256706 DOI: 10.1126/scisignal.abj3490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations in guanosine triphosphatase KRAS are common in lung, colorectal, and pancreatic cancers. The constitutive activity of mutant KRAS and its downstream signaling pathways induces metabolic rewiring in tumor cells that can promote resistance to existing therapeutics. In this review, we discuss the metabolic pathways that are altered in response to treatment and those that can, in turn, alter treatment efficacy, as well as the role of metabolism in the tumor microenvironment (TME) in dictating the therapeutic response in KRAS-driven cancers. We highlight metabolic targets that may provide clinical opportunities to overcome therapeutic resistance and improve survival in patients with these aggressive cancers.
Collapse
Affiliation(s)
- Deborah Y Moss
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Christopher McCann
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| |
Collapse
|
7
|
Li Z, Li X, Ai S, Liu S, Guan W. Glucose Metabolism Intervention-Facilitated Nanomedicine Therapy. Int J Nanomedicine 2022; 17:2707-2731. [PMID: 35747168 PMCID: PMC9213040 DOI: 10.2147/ijn.s364840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Ordinarily, cancer cells possess features of abnormally increased nutrient intake and metabolic pathways. The disorder of glucose metabolism is the most important among them. Therefore, starvation therapy targeting glucose metabolism specifically, which results in metabolic disorders, restricted synthesis, and inhibition of tumor growth, has been developed for cancer therapy. However, issues such as inadequate targeting effectiveness and drug tolerance impede their clinical transformation. In recent years, nanomaterial-assisted starvation treatment has made significant progress in addressing these challenges, whether as a monotherapy or in combination with other medications. Herein, representative researches on the construction of nanosystems conducting starvation therapy are introduced. Elaborate designs and interactions between different treatment mechanisms are meticulously mentioned. Not only are traditional treatments based on glucose oxidase involved, but also newly sprung small molecule agents targeting glucose metabolism. The obstacles and potential for advancing these anticancer therapies were also highlighted in this review.
Collapse
Affiliation(s)
- Zhiyan Li
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Xianghui Li
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Shichao Ai
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Song Liu
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| |
Collapse
|
8
|
Hasanvand A. The role of AMPK-dependent pathways in cellular and molecular mechanisms of metformin: a new perspective for treatment and prevention of diseases. Inflammopharmacology 2022; 30:775-788. [PMID: 35419709 PMCID: PMC9007580 DOI: 10.1007/s10787-022-00980-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
Metformin can suppress gluconeogenesis and reduce blood sugar by activating adenosine monophosphate-activated protein kinase (AMPK) and inducing small heterodimer partner (SHP) expression in the liver cells. The main mechanism of metformin's action is related to its activation of the AMPK enzyme and regulation of the energy balance. AMPK is a heterothermic serine/threonine kinase made of a catalytic alpha subunit and two subunits of beta and a gamma regulator. This enzyme can measure the intracellular ratio of AMP/ATP. If this ratio is high, the amino acid threonine 172 available in its alpha chain would be activated by the phosphorylated liver kinase B1 (LKB1), leading to AMPK activation. Several studies have indicated that apart from its significant role in the reduction of blood glucose level, metformin activates the AMPK enzyme that in turn has various efficient impacts on the regulation of various processes, including controlling inflammatory conditions, altering the differentiation pathway of immune and non-immune cell pathways, and the amelioration of various cancers, liver diseases, inflammatory bowel disease (IBD), kidney diseases, neurological disorders, etc. Metformin's activation of AMPK enables it to control inflammatory conditions, improve oxidative status, regulate the differentiation pathways of various cells, change the pathological process in various diseases, and finally have positive therapeutic effects on them. Due to the activation of AMPK and its role in regulating several subcellular signalling pathways, metformin can be effective in altering the cells' proliferation and differentiation pathways and eventually in the prevention and treatment of certain diseases.
Collapse
Affiliation(s)
- Amin Hasanvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
9
|
Barrios-Bernal P, Hernandez-Pedro N, Orozco-Morales M, Viedma-Rodríguez R, Lucio-Lozada J, Avila-Moreno F, Cardona AF, Rosell R, Arrieta O. Metformin Enhances TKI-Afatinib Cytotoxic Effect, Causing Downregulation of Glycolysis, Epithelial-Mesenchymal Transition, and EGFR-Signaling Pathway Activation in Lung Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15030381. [PMID: 35337178 PMCID: PMC8955777 DOI: 10.3390/ph15030381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
The combination of metformin and TKIs for non-small cell lung cancer has been proposed as a strategy to overcome resistance of neoplastic cells induced by several molecular mechanisms. This study sought to investigate the effects of a second generation TKI afatinib, metformin, or their combination on three adenocarcinoma lung cancer cell lines with different EGFRmutation status. A549, H1975, and HCC827 cell lines were treated with afatinib, metformin, and their combination for 72 h. Afterwards, several parameters were assessed including cytotoxicity, interactions, apoptosis, and EGFR protein levels at the cell membrane and several glycolytic, oxidative phosphorylation (OXPHOS), and EMT expression markers. All cell lines showed additive to synergic interactions for the induction of cytotoxicity caused by the tested combination, as well as an improved pro-apoptotic effect. This effect was accompanied by downregulation of glycolytic, EMT markers, a significant decrease in glucose uptake, extracellular lactate, and a tendency towards increased OXPHOS subunits expression. Interestingly, we observed a better response to the combined therapy in lung cancer cell lines A549 and H1975, which normally have low affinity for TKI treatment. Findings from this study suggest a sensitization to afatinib therapy by metformin in TKI-resistant lung cancer cells, as well as a reduction in cellular glycolytic phenotype.
Collapse
Affiliation(s)
- Pedro Barrios-Bernal
- Laboratorio de Medicina Personalizada, Thoracic Oncology Unit Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (P.B.-B.); (N.H.-P.); (M.O.-M.); (J.L.-L.)
| | - Norma Hernandez-Pedro
- Laboratorio de Medicina Personalizada, Thoracic Oncology Unit Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (P.B.-B.); (N.H.-P.); (M.O.-M.); (J.L.-L.)
| | - Mario Orozco-Morales
- Laboratorio de Medicina Personalizada, Thoracic Oncology Unit Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (P.B.-B.); (N.H.-P.); (M.O.-M.); (J.L.-L.)
| | - Rubí Viedma-Rodríguez
- Unidad de Morfología y Función, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico City 54090, Mexico;
| | - José Lucio-Lozada
- Laboratorio de Medicina Personalizada, Thoracic Oncology Unit Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (P.B.-B.); (N.H.-P.); (M.O.-M.); (J.L.-L.)
| | - Federico Avila-Moreno
- Lung Diseases and Cancer Epigenomics Laboratory, Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico City 54090, Mexico;
| | - Andrés F. Cardona
- Foundation for Clinical and Applied Cancer Research—FICMAC/Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá 11001, Colombia;
| | - Rafael Rosell
- Catalan Institute of Oncology, Germans Trias I Pujol Research Institute and Hospital Campus Can Ruti, 8908 Badalona, Spain;
| | - Oscar Arrieta
- Laboratorio de Medicina Personalizada, Thoracic Oncology Unit Instituto Nacional de Cancerología, S.S.A., San Fernando 22 Sección XVI, Tlalpan, Mexico City 14080, Mexico; (P.B.-B.); (N.H.-P.); (M.O.-M.); (J.L.-L.)
- Correspondence:
| |
Collapse
|
10
|
Metformin sensitizes AML cells to chemotherapy through blocking mitochondrial transfer from stromal cells to AML cells. Cancer Lett 2022; 532:215582. [PMID: 35122876 DOI: 10.1016/j.canlet.2022.215582] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Interaction between stromal cells and acute myeloid leukemia (AML) cells in bone marrow (BM) is known to contribute importantly to chemoresistance and disease recurrence. Therefore, disruption of a crosstalk between AML cells and BM microenvironment may offer a promising therapeutic strategy for AML treatment. Here, we demonstrate that in a niche-like co-culture system, AML cells took up functional mitochondria from bone marrow stromal cells (BMSCs) and inhibition of such mitochondrial transfer by metformin, the most commonly prescribed drug for type 2 diabetes mellitus, significantly enhanced the chemosensitivity of AML cells co-cultured with BMSCs. The chemo-sensitizing effect of metformin was acted through reducing the mitochondrial transfer and mitochondrial oxidative phosphorylation (OXPHOS) in the recipient AML cells. In addition, metformin potentiated the antitumor efficacy of cytarabine (Ara-C) in vivo in an NCG immunodeficient mouse xenograft model by inhibiting the mitochondrial transfer and OXPHOS activity in the engrafted human AML cells. Altogether, this study identifies a potential application of metformin in sensitizing AML cells to chemotherapy and unveils a novel mechanism by which metformin executes such effect via blocking the mitochondrial transfer from stromal cells to AML cells.
Collapse
|
11
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Liu S, Washio J, Sato S, Abiko Y, Shinohara Y, Kobayashi Y, Otani H, Sasaki S, Wang X, Takahashi N. Rewired Cellular Metabolic Profiles in Response to Metformin under Different Oxygen and Nutrient Conditions. Int J Mol Sci 2022; 23:ijms23020989. [PMID: 35055173 PMCID: PMC8781974 DOI: 10.3390/ijms23020989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a metabolic disruptor, and its efficacy and effects on metabolic profiles under different oxygen and nutrient conditions remain unclear. Therefore, the present study examined the effects of metformin on cell growth, the metabolic activities and consumption of glucose, glutamine, and pyruvate, and the intracellular ratio of nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADH) under normoxic (21% O2) and hypoxic (1% O2) conditions. The efficacy of metformin with nutrient removal from culture media was also investigated. The results obtained show that the efficacy of metformin was closely associated with cell types and environmental factors. Acute exposure to metformin had no effect on lactate production from glucose, glutamine, or pyruvate, whereas long-term exposure to metformin increased the consumption of glucose and pyruvate and the production of lactate in the culture media of HeLa and HaCaT cells as well as the metabolic activity of glucose. The NAD+/NADH ratio decreased during growth with metformin regardless of its efficacy. Furthermore, the inhibitory effects of metformin were enhanced in all cell lines following the removal of glucose or pyruvate from culture media. Collectively, the present results reveal that metformin efficacy may be regulated by oxygen conditions and nutrient availability, and indicate the potential of the metabolic switch induced by metformin as combinational therapy.
Collapse
Affiliation(s)
- Shan Liu
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Correspondence: ; Tel.: +81-22-717-8295
| | - Satoko Sato
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuta Shinohara
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuri Kobayashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Haruki Otani
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Shiori Sasaki
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Xiaoyi Wang
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| |
Collapse
|
13
|
Cargill KR, Hasken WL, Gay CM, Byers LA. Alternative Energy: Breaking Down the Diverse Metabolic Features of Lung Cancers. Front Oncol 2021; 11:757323. [PMID: 34745994 PMCID: PMC8566922 DOI: 10.3389/fonc.2021.757323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer initiation, progression, and relapse. From the initial observation that cancer cells preferentially ferment glucose to lactate, termed the Warburg effect, to emerging evidence indicating that metabolic heterogeneity and mitochondrial metabolism are also important for tumor growth, the complex mechanisms driving cancer metabolism remain vastly unknown. These unique shifts in metabolism must be further investigated in order to identify unique therapeutic targets for individuals afflicted by this aggressive disease. Although novel therapies have been developed to target metabolic vulnerabilities in a variety of cancer models, only limited efficacy has been achieved. In particular, lung cancer metabolism has remained relatively understudied and underutilized for the advancement of therapeutic strategies, however recent evidence suggests that lung cancers have unique metabolic preferences of their own. This review aims to provide an overview of essential metabolic mechanisms and potential therapeutic agents in order to increase evidence of targeted metabolic inhibition for the treatment of lung cancer, where novel therapeutics are desperately needed.
Collapse
Affiliation(s)
| | | | | | - Lauren A. Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Cargill KR, Stewart CA, Park EM, Ramkumar K, Gay CM, Cardnell RJ, Wang Q, Diao L, Shen L, Fan YH, Chan WK, Lorenzi PL, Oliver TG, Wang J, Byers LA. Targeting MYC-enhanced glycolysis for the treatment of small cell lung cancer. Cancer Metab 2021; 9:33. [PMID: 34556188 PMCID: PMC8461854 DOI: 10.1186/s40170-021-00270-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION The transcription factor MYC is overexpressed in 30% of small cell lung cancer (SCLC) tumors and is known to modulate the balance between two major pathways of metabolism: glycolysis and mitochondrial respiration. This duality of MYC underscores the importance of further investigation into its role in SCLC metabolism and could lead to insights into metabolic targeting approaches. METHODS We investigated differences in metabolic pathways in transcriptional and metabolomics datasets based on cMYC expression in patient and cell line samples. Metabolic pathway utilization was evaluated by flow cytometry and Seahorse extracellular flux methodology. Glycolysis inhibition was evaluated in vitro and in vivo using PFK158, a small molecular inhibitor of PFKFB3. RESULTS MYC-overexpressing SCLC patient samples and cell lines exhibited increased glycolysis gene expression directly mediated by MYC. Further, MYC-overexpressing cell lines displayed enhanced glycolysis consistent with the Warburg effect, while cell lines with low MYC expression appeared more reliant on oxidative metabolism. Inhibition of glycolysis with PFK158 preferentially attenuated glucose uptake, ATP production, and lactate in MYC-overexpressing cell lines. Treatment with PFK158 in xenografts delayed tumor growth and decreased glycolysis gene expression. CONCLUSIONS Our study highlights an in-depth characterization of SCLC metabolic programming and presents glycolysis as a targetable mechanism downstream of MYC that could offer therapeutic benefit in a subset of SCLC patients.
Collapse
Affiliation(s)
- Kasey R Cargill
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Allison Stewart
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Park
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kavya Ramkumar
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert J Cardnell
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - You-Hong Fan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wai Kin Chan
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Chhipa AS, Patel S. Targeting pyruvate kinase muscle isoform 2 (PKM2) in cancer: What do we know so far? Life Sci 2021; 280:119694. [PMID: 34102192 DOI: 10.1016/j.lfs.2021.119694] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/29/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Cancer is a leading cause of death globally. Cancer cell transformation is the result of intricate crosstalk between intracellular components and proteins. A characteristic feature of cancer cells is the ability to reprogram their metabolic pathways to ensure their infinite proliferative potential. Pyruvate kinase muscle isoform 2 (PKM2) is a glycolytic enzyme that plays crucial roles in cancer, apart from carrying out its metabolic roles. PKM2 is involved in all the major events associated with cancer growth. Modulation of PKM2 activity (dimer inhibition or tetramer activation) has been successful in controlling cancer. However, recent studies provide contrary evidences regarding the oncogenic functions of PKM2. Moreover, several studies have highlighted the cancerous roles of PKM1 isoform in certain contexts. The present review aims at providing the current updates regarding PKM2 targeting in cancer. Further, the review discusses the contradictory results that suggest that both the isoforms of PKM can lead to cancer growth. In conclusion, the review emphasizes revisiting the approaches to target cancer metabolism through PKM to find novel and effective targets for anticancer therapy.
Collapse
Affiliation(s)
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmedabad, Gujarat, India.
| |
Collapse
|
16
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Skinner H, Hu C, Tsakiridis T, Santana-Davila R, Lu B, Erasmus JJ, Doemer AJ, Videtic GMM, Coster J, Yang AX, Lee RY, Werner-Wasik M, Schaner PE, McCormack SE, Esparaz BT, McGarry RC, Bazan J, Struve T, Paulus R, Bradley JD. Addition of Metformin to Concurrent Chemoradiation in Patients With Locally Advanced Non-Small Cell Lung Cancer: The NRG-LU001 Phase 2 Randomized Clinical Trial. JAMA Oncol 2021; 7:1324-1332. [PMID: 34323922 DOI: 10.1001/jamaoncol.2021.2318] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Non-small cell lung cancer (NSCLC) has relatively poor outcomes. Metformin has significant data supporting its use as an antineoplastic agent. Objective To compare chemoradiation alone vs chemoradiation and metformin in stage III NSCLC. Design, Setting, and Participants The NRG-LU001 randomized clinical trial was an open-label, phase 2 study conducted from August 24, 2014, to December 15, 2016. Patients without diabetes who were diagnosed with unresectable stage III NSCLC were stratified by performance status, histology, and stage. The setting was international and multi-institutional. This study examined prespecified endpoints, and data were analyzed on an intent-to-treat basis. Data were analyzed from February 25, 2019, to March 6, 2020. Interventions Chemoradiation and consolidation chemotherapy with or without metformin. Main Outcomes and Measures The primary outcome was 1-year progression-free survival (PFS), designed to detect 15% improvement in 1-year PFS from 50% to 65% (hazard ratio [HR], 0.622). Secondary end points included overall survival, time to local-regional recurrence, time to distant metastasis, and toxicity per Common Terminology Criteria for Adverse Events, version 4.03. Results A total of 170 patients were enrolled, with 167 eligible patients analyzed after exclusions (median age, 64 years [interquartile range, 58-72 years]; 97 men [58.1%]; 137 White patients [82.0%]), with 81 in the control group and 86 in the metformin group. Median follow-up was 27.7 months (range, 0.03-47.21 months) among living patients. One-year PFS rates were 60.4% (95% CI, 48.5%-70.4%) in the control group and 51.3% (95% CI, 39.8%-61.7%) in the metformin group (HR, 1.15; 95% CI, 0.77-1.73; P = .24). Clinical stage was the only factor significantly associated with PFS on multivariable analysis (HR, 1.79; 95% CI, 1.19-2.69; P = .005). One-year overall survival was 80.2% (95% CI, 69.3%-87.6%) in the control group and 80.8% (95% CI, 70.2%-87.9%) in the metformin group. There were no significant differences in local-regional recurrence or distant metastasis at 1 or 2 years. No significant difference in adverse events was observed between treatment groups. Conclusions and Relevance In this randomized clinical trial, the addition of metformin to concurrent chemoradiation was well tolerated but did not improve survival among patients with unresectable stage III NSCLC. Trial Registration ClinicalTrials.gov Identifier: NCT02186847.
Collapse
Affiliation(s)
- Heath Skinner
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Chen Hu
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | - Bo Lu
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | - Steven E McCormack
- Metro-Minnesota Community Oncology Research Consortium, St Louis Park, Minnesota
| | | | | | - Jose Bazan
- Ohio State University Comprehensive Cancer Center, Columbus
| | - Timothy Struve
- University of Cincinnati/Barrett Cancer Center, Cincinnati, Ohio
| | - Rebecca Paulus
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | | |
Collapse
|
18
|
Wang XL, Lu SC, Sun C, Jin WG, Fan YW, Shu YS, Shi HC, Min LF. Tripartite motif protein 11 (TRIM11), an oncogene for human lung cancer via the DUSP6-mediated ERK1/2 signaling pathway. Cancer Biol Ther 2021; 22:324-332. [PMID: 33970779 DOI: 10.1080/15384047.2021.1902912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Evidence suggests that Tripartite Motif Containing 11 (TRIM11) has pro-tumor activity in human non-small cell lung cancer (NSCLC). However, the roles and underlying mechanisms of TRIM11 in NSCLC have not yet been fully elucidated. In this work, human lung cancer cell lines (A549, H446, and H1975) were transfected with siRNA or lentiviruses to knockdown or overexpress TRIM11 and dual-specificity phosphatase 6 (DUSP6). The cell tumor response was assessed by determining the rate of proliferation, apoptosis, the uptake of 2-[N-(7-nitrobenz-2-oxa-1, 3-diaxol-4-yl) amino]-2-deoxyglucose (2-NBDG), and the secretion of lactic acid (LD). Dominant-negative (dn)-MEK1 was used to block the ERK1/2 pathway. The mechanism was investigated by assessing the protein levels of pyruvate kinase isozymes M2 (PKM2) and DUSP6, as well as the activation of ERK1/2 pathway. Our data confirmed the anti-cancer effect of siTRIM11 in human lung cancer by demonstrating inhibition of cancer cell proliferation, induction of apoptosis, prevention of 2-NBDG uptake, suppression of LD production, and prevention of lung cancer cell (A549) tumorigenicity in nude mice. The underlying mechanism involved the up-regulation of DUSP6 and the inhibition of ERK1/2 activity. Overexpression of TRIM11 induced tumorigenesis of NSCLC in vitro, and the activation of ERK1/2 was significantly reversed by DUSP6 overexpression or additional dn-MEK1 treatment. Interestingly, we confirmed TRIM11 as a deubiquitinase that regulated DUSP6 accumulation, indicating that lung cancer progression is regulated via the DUSP6-ERK1/2 pathway. In conclusion, TRIM11 is an oncogene in NSCLC, likely through the DUSP6-mediated ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, P. R. China
| | - Shi-Chun Lu
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, P. R. China
| | - Chao Sun
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, P. R. China
| | - Wei-Guo Jin
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, P. R. China
| | - Yi-Wei Fan
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, P. R. China
| | - Yu-Sheng Shu
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, P. R. China
| | - Hong-Can Shi
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, P. R. China
| | - Ling-Feng Min
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
19
|
Tang Z, Tang N, Jiang S, Bai Y, Guan C, Zhang W, Fan S, Huang Y, Lin H, Ying Y. The Chemosensitizing Role of Metformin in Anti-Cancer Therapy. Anticancer Agents Med Chem 2021; 21:949-962. [PMID: 32951587 DOI: 10.2174/1871520620666200918102642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
Chemoresistance, which leads to the failure of chemotherapy and further tumor recurrence, presents the largest hurdle for the success of anti-cancer therapy. In recent years, metformin, a widely used first-line antidiabetic drug, has attracted increasing attention for its anti-cancer effects. A growing body of evidence indicates that metformin can sensitize tumor responses to different chemotherapeutic drugs, such as hormone modulating drugs, anti-metabolite drugs, antibiotics, and DNA-damaging drugs via selective targeting of Cancer Stem Cells (CSCs), improving the hypoxic microenvironment, and by suppressing tumor metastasis and inflammation. In addition, metformin may regulate metabolic programming, induce apoptosis, reverse Epithelial to Mesenchymal Transition (EMT), and Multidrug Resistance (MDR). In this review, we summarize the chemosensitization effects of metformin and focus primarily on its molecular mechanisms in enhancing the sensitivity of multiple chemotherapeutic drugs, through targeting of mTOR, ERK/P70S6K, NF-κB/HIF-1 α, and Mitogen- Activated Protein Kinase (MAPK) signaling pathways, as well as by down-regulating the expression of CSC genes and Pyruvate Kinase isoenzyme M2 (PKM2). Through a comprehensive understanding of the molecular mechanisms of chemosensitization provided in this review, the rationale for the use of metformin in clinical combination medications can be more systematically and thoroughly explored for wider adoption against numerous cancer types.>.
Collapse
Affiliation(s)
- Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Nan Tang
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shanxi Provincial People's Hospital, Xian 710000, China
| | - Yangjinming Bai
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Chenxi Guan
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Wansi Zhang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Shipan Fan
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Yonghong Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
20
|
Molecular mechanisms underlining the role of metformin as a therapeutic agent in lung cancer. Cell Oncol (Dordr) 2020; 44:1-18. [PMID: 33125630 DOI: 10.1007/s13402-020-00570-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Metformin, a first-line therapeutic for type 2 diabetes, has been studied for its potential use in cancer treatment following a number of epidemiological studies that have demonstrated reduced cancer incidence and mortality rates among patients treated with the drug. As yet, however, there remains significant uncertainty about the molecular mechanisms by which metformin exerts its anti-cancer effects. Herein, we summarize the evidence surrounding the anti-lung cancer effects of metformin. CONCLUSIONS Specifically, we explore protein targets of metformin, including AMPK, PP2A, IRF-1/YAP and HGF and we outline the proposed mechanisms of action for metformin in lung cancer, with particular attention given to apoptosis and autophagy. We also closely examine the synergistic activity of metformin with existing cancer treatment regimens, such as TKI's, platinum-based agents and immune therapeutics. In addition to considering preclinical and clinical studies, we also dissect and contextualize the limitations and inconsistencies of the current literature, especially those of epidemiological studies. Finally, we offer a potential trajectory for future research in this rapidly evolving area of basic and clinical oncology.
Collapse
|
21
|
Li J, Eu JQ, Kong LR, Wang L, Lim YC, Goh BC, Wong ALA. Targeting Metabolism in Cancer Cells and the Tumour Microenvironment for Cancer Therapy. Molecules 2020; 25:molecules25204831. [PMID: 33092283 PMCID: PMC7588013 DOI: 10.3390/molecules25204831] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting altered tumour metabolism is an emerging therapeutic strategy for cancer treatment. The metabolic reprogramming that accompanies the development of malignancy creates targetable differences between cancer cells and normal cells, which may be exploited for therapy. There is also emerging evidence regarding the role of stromal components, creating an intricate metabolic network consisting of cancer cells, cancer-associated fibroblasts, endothelial cells, immune cells, and cancer stem cells. This metabolic rewiring and crosstalk with the tumour microenvironment play a key role in cell proliferation, metastasis, and the development of treatment resistance. In this review, we will discuss therapeutic opportunities, which arise from dysregulated metabolism and metabolic crosstalk, highlighting strategies that may aid in the precision targeting of altered tumour metabolism with a focus on combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK;
| | - Jie Qing Eu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
| | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yaw Chyn Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pathology, National University Health System, Singapore 119074, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore
| | - Andrea L. A. Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
22
|
Aminuddin A, Ng PY, Leong CO, Chua EW. Mitochondrial DNA alterations may influence the cisplatin responsiveness of oral squamous cell carcinoma. Sci Rep 2020; 10:7885. [PMID: 32398775 PMCID: PMC7217862 DOI: 10.1038/s41598-020-64664-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is the first-line chemotherapeutic agent for the treatment of oral squamous cell carcinoma (OSCC). However, the intrinsic or acquired resistance against cisplatin remains a major obstacle to treatment efficacy in OSCC. Recently, mitochondrial DNA (mtDNA) alterations have been reported in a variety of cancers. However, the role of mtDNA alterations in OSCC has not been comprehensively studied. In this study, we evaluated the correlation between mtDNA alterations (mtDNA content, point mutations, large-scale deletions, and methylation status) and cisplatin sensitivity using two OSCC cell lines, namely SAS and H103, and stem cell-like tumour spheres derived from SAS. By microarray analysis, we found that the tumour spheres profited from aberrant lipid and glucose metabolism and became resistant to cisplatin. By qPCR analysis, we found that the cells with less mtDNA were less responsive to cisplatin (H103 and the tumour spheres). Based on the findings, we theorised that the metabolic changes in the tumour spheres probably resulted in mtDNA depletion, as the cells suppressed mitochondrial respiration and switched to an alternative mode of energy production, i.e. glycolysis. Then, to ascertain the origin of the variation in mtDNA content, we used MinION, a nanopore sequencer, to sequence the mitochondrial genomes of H103, SAS, and the tumour spheres. We found that the lower cisplatin sensitivity of H103 could have been caused by a constellation of genetic and epigenetic changes in its mitochondrial genome. Future work may look into how changes in mtDNA translate into an impact on cell function and therefore cisplatin response.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Survival/drug effects
- Cell Survival/genetics
- Cisplatin/pharmacology
- DNA, Mitochondrial/drug effects
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Amnani Aminuddin
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
23
|
Bhardwaj V, He J. Reactive Oxygen Species, Metabolic Plasticity, and Drug Resistance in Cancer. Int J Mol Sci 2020; 21:ijms21103412. [PMID: 32408513 PMCID: PMC7279373 DOI: 10.3390/ijms21103412] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023] Open
Abstract
The metabolic abnormality observed in tumors is characterized by the dependence of cancer cells on glycolysis for their energy requirements. Cancer cells also exhibit a high level of reactive oxygen species (ROS), largely due to the alteration of cellular bioenergetics. A highly coordinated interplay between tumor energetics and ROS generates a powerful phenotype that provides the tumor cells with proliferative, antiapoptotic, and overall aggressive characteristics. In this review article, we summarize the literature on how ROS impacts energy metabolism by regulating key metabolic enzymes and how metabolic pathways e.g., glycolysis, PPP, and the TCA cycle reciprocally affect the generation and maintenance of ROS homeostasis. Lastly, we discuss how metabolic adaptation in cancer influences the tumor’s response to chemotherapeutic drugs. Though attempts of targeting tumor energetics have shown promising preclinical outcomes, the clinical benefits are yet to be fully achieved. A better understanding of the interaction between metabolic abnormalities and involvement of ROS under the chemo-induced stress will help develop new strategies and personalized approaches to improve the therapeutic efficiency in cancer patients.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
24
|
Gonzalez-Rajal A, Hastings JF, Watkins DN, Croucher DR, Burgess A. Breathing New Life into the Mechanisms of Platinum Resistance in Lung Adenocarcinoma. Front Cell Dev Biol 2020; 8:305. [PMID: 32457904 PMCID: PMC7225257 DOI: 10.3389/fcell.2020.00305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/07/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Jordan F. Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - D. Neil Watkins
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - David R. Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Andrew Burgess
- ANZAC Research Institute, Concord, NSW, Australia
- The University of Sydney Concord Clinical School, Faculty of Medicine and Health, Sydney, NSW, Australia
| |
Collapse
|
25
|
Zhao B, Luo J, Yu T, Zhou L, Lv H, Shang P. Anticancer mechanisms of metformin: A review of the current evidence. Life Sci 2020; 254:117717. [PMID: 32339541 DOI: 10.1016/j.lfs.2020.117717] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
Metformin, a US Food and Drug Administration-approved "star" drug used for diabetes mellitus type 2, has become a topic of increasing interest to researchers due to its anti-neoplastic effects. Growing evidence has demonstrated that metformin may be a promising chemotherapeutic agent, and several clinical trials of metformin use in cancer treatment are ongoing. However, the anti-neoplastic effects of metformin and its underlying mechanisms have not been fully elucidated. In this review, we present the newest findings on the anticancer activities of metformin, and highlight its diverse anticancer mechanisms. Several clinical trials, as well as the limitations of the current evidence are also demonstrated. This review explores the crucial roles of metformin and provides supporting evidence for the repurposing of metformin as a treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jie Luo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tongyao Yu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Liangfu Zhou
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Huanhuan Lv
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
26
|
Siska PJ, Singer K, Evert K, Renner K, Kreutz M. The immunological Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunol Rev 2020; 295:187-202. [PMID: 32157706 DOI: 10.1111/imr.12846] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The "glycolytic switch" also known as the "Warburg effect" is a key feature of tumor cells and leads to the accumulation of lactate and protons in the tumor environment. Intriguingly, non-malignant lymphocytes or stromal cells such as tumor-associated macrophages and cancer-associated fibroblasts contribute to the lactate accumulation in the tumor environment, a phenomenon described as the "Reverse Warburg effect." Localized lactic acidosis has a strong immunosuppressive effect and mediates an immune escape of tumors. However, some tumors do not display the Warburg phenotype and either rely on respiration or appear as a mosaic of cells with different metabolic properties. Based on these findings and on the knowledge that T cell infiltration is predictive for patient outcome, we suggest a metabolic-tumor-stroma score to determine the likelihood of a successful anti-tumor immune response: (a) a respiring tumor with high T cell infiltration ("hot"); (b) a reverse Warburg type with respiring tumor cells but glycolytic stromal cells; (c) a mixed type with glycolytic and respiring compartments; and (d) a glycolytic (Warburg) tumor with low T cell infiltration ("cold"). Here, we provide evidence that these types can be independent of the organ of origin, prognostically relevant and might help select the appropriate immunotherapy approach.
Collapse
Affiliation(s)
- Peter J Siska
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| | - Marina Kreutz
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
27
|
Gao Y, Dorn P, Liu S, Deng H, Hall SRR, Peng RW, Schmid RA, Marti TM. Cisplatin-resistant A549 non-small cell lung cancer cells can be identified by increased mitochondrial mass and are sensitive to pemetrexed treatment. Cancer Cell Int 2019; 19:317. [PMID: 31798346 PMCID: PMC6883680 DOI: 10.1186/s12935-019-1037-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/15/2019] [Indexed: 01/13/2023] Open
Abstract
Background Cisplatin plus pemetrexed combination therapy is considered the standard treatment for patients with advanced, non-squamous, non-small-cell lung cancer (NSCLC). However, advanced NSCLC has a 5-year survival rate of below 10%, which is mainly due to therapy resistance. We previously showed that the NSCLC cell line A549 harbors different subpopulations including a mesenchymal-like subpopulation characterized by increased chemo- and radiotherapy resistance. Recently, therapy resistance in hematological and solid tumors has been associated with increased mitochondrial activity. Thus, the aim of this study was to investigate the role of the mitochondrial activity in NSCLC chemotherapy resistance. Methods Based on MitoTracker staining, subpopulations characterized by the highest 10% (Mito-High) or lowest 10% (Mito-Low) mitochondrial mass content were sorted by FACS (Fluorescence-Activated Cell Sorting) from paraclonal cultures of the NSCLC A549 cell line . Mitochondrial DNA copy numbers were quantified by real-time PCR whereas basal cellular respiration was measured by high-resolution respirometry. Cisplatin and pemetrexed response were quantified by proliferation and colony formation assay. Results Pemetrexed treatment of parental A549 cells increased mitochondrial mass over time. FACS-sorted paraclonal Mito-High cells featured increased mitochondrial mass and mitochondrial DNA copy number compared to the Mito-Low cells. Paraclonal Mito-High cells featured an increased proliferation rate and were significantly more resistant to cisplatin treatment than Mito-Low cells. Interestingly, cisplatin-resistant, paraclonal Mito-High cells were significantly more sensitive to pemetrexed treatment than Mito-Low cells. We provide a working model explaining the molecular mechanism underlying the increased cisplatin- and decreased pemetrexed resistance of a distinct subpopulation characterized by high mitochondrial mass. Conclusions This study revealed that cisplatin resistant A549 lung cancer cells can be identified by their increased levels of mitochondrial mass. However, Mito-High cells feature an increased sensitivity to pemetrexed treatment. Thus, pemetrexed and cisplatin target reciprocal lung cancer subpopulations, which could explain the increased efficacy of the combination therapy in the clinical setting.
Collapse
Affiliation(s)
- Yanyun Gao
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Shengchen Liu
- 2Department of BioMedical Research, University of Bern, Bern, Switzerland.,3Department of Intensive Care Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Haibin Deng
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Sean R R Hall
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- 1Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008 Bern, Switzerland.,2Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Metabolic Remodelling: An Accomplice for New Therapeutic Strategies to Fight Lung Cancer. Antioxidants (Basel) 2019; 8:antiox8120603. [PMID: 31795465 PMCID: PMC6943435 DOI: 10.3390/antiox8120603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling is a hallmark of cancer, however little has been unravelled in its role in chemoresistance, which is a major hurdle to cancer control. Lung cancer is a leading cause of death by cancer, mainly due to the diagnosis at an advanced stage and to the development of resistance to therapy. Targeted therapeutic agents combined with comprehensive drugs are commonly used to treat lung cancer. However, resistance mechanisms are difficult to avoid. In this review, we will address some of those therapeutic regimens, resistance mechanisms that are eventually developed by lung cancer cells, metabolic alterations that have already been described in lung cancer and putative new therapeutic strategies, and the integration of conventional drugs and genetic and metabolic-targeted therapies. The oxidative stress is pivotal in this whole network. A better understanding of cancer cell metabolism and molecular adaptations underlying resistance mechanisms will provide clues to design new therapeutic strategies, including the combination of chemotherapeutic and targeted agents, considering metabolic intervenients. As cancer cells undergo a constant metabolic adaptive drift, therapeutic regimens must constantly adapt.
Collapse
|
29
|
Su Q, Luo S, Tan Q, Deng J, Zhou S, Peng M, Tao T, Yang X. The role of pyruvate kinase M2 in anticancer therapeutic treatments. Oncol Lett 2019; 18:5663-5672. [PMID: 31788038 PMCID: PMC6865080 DOI: 10.3892/ol.2019.10948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer cells are characterized by a high glycolytic rate, which leads to energy regeneration and anabolic metabolism; a consequence of this is the abnormal expression of pyruvate kinase isoenzyme M2 (PKM2). Multiple studies have demonstrated that the expression levels of PKM2 are upregulated in numerous cancer types. Consequently, the mechanism of action of certain anticancer drugs is to downregulate PKM2 expression, indicating the significance of PKM2 in a chemotherapeutic setting. Furthermore, it has previously been highlighted that the downregulation of PKM2 expression, using either inhibitors or short interfering RNA, enhances the anticancer effect exerted by THP treatment on bladder cancer cells, both in vitro and in vivo. The present review summarizes the detailed mechanisms and therapeutic relevance of anticancer drugs that inhibit PKM2 expression. In addition, the relationship between PKM2 expression levels and drug resistance were explored. Finally, future directions, such as the targeting of PKM2 as a strategy to explore novel anticancer agents, were suggested. The current review explored and highlighted the important role of PKM2 in anticancer treatments.
Collapse
Affiliation(s)
- Qiongli Su
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Shengping Luo
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Qiuhong Tan
- Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Tao
- Department of Pharmacy, Yueyang Maternal-Child Medicine Health Hospital, Yueyang, Hunan 414000, P.R. China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
30
|
Shi J, Wang H, Feng W, Huang S, An J, Qiu Y, Wu K. Long non-coding RNA HOTTIP promotes hypoxia-induced glycolysis through targeting miR-615-3p/HMGB3 axis in non-small cell lung cancer cells. Eur J Pharmacol 2019; 862:172615. [PMID: 31422060 DOI: 10.1016/j.ejphar.2019.172615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Increased glycolysis under hypoxic stress is a fundamentally important feature of non-small cell lung cancer (NSCLC) cells, but molecular mechanisms of hypoxia on glycolysis remain elusive. Herein, we aimed to explore whether lncRNAs and miRNAs are involved in the glycolytic reprogramming under hypoxic conditions. The levels of HOXA transcript at the distal tip (HOTTIP), miR-615-3p and high mobility group box 3 (HMGB3) mRNA were assessed by qRT-PCR. Western blot was performed to determine the protein expression of hexokinase 2 (HK-2) and HMGB3. Glucose consumption and lactate production were analyzed using a respective assay kit. The targeted correlation between miR-615-3p and HOTTIP or HMGB3 was verified using dual-luciferase reporter and RNA immunoprecipition assays. Our data revealed that HOTTIP was upregulated and miR-615-3p was downregulated in NSCLC tissues and cells. Hypoxia induced glycolysis, increased HOTTIP and HMGB3 mRNA levels and repressed miR-615-3p expression in NSCLC cells. HOTTIP deficiency or miR-615-3p expression restoration repressed hypoxia-induced glycolysis. Moreover, HOTTIP acted as a molecular sponge for miR-615-3p and HMGB3 was a direct target of miR-615-3p. The inhibitory effect of HOTTIP deficiency on glycolysis under hypoxic exposure was reversed by miR-615-3p restoration. Additionally, HOTTIP regulated HMGB3 expression by acting as a molecular sponge of miR-615-3p in NSCLC cells. In conclusion, our study suggested that HOTTIP might promote glycolysis under hypoxic conditions at least partly through regulating miR-615-3p/HMGB3 axis in NSCLC cells. Targeting HOTTIP might be a promising therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Jiang Shi
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Huan Wang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Wanlu Feng
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Siyuan Huang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Jinlu An
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Yajuan Qiu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
31
|
Luo Z, Chen W, Wu W, Luo W, Zhu T, Guo G, Zhang L, Wang C, Li M, Shi S. Metformin promotes survivin degradation through AMPK/PKA/GSK-3β-axis in non-small cell lung cancer. J Cell Biochem 2019; 120:11890-11899. [PMID: 30793366 DOI: 10.1002/jcb.28470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/28/2018] [Accepted: 01/09/2019] [Indexed: 01/24/2023]
Abstract
Metformin, a first-line antidiabetic drug, has been reported with anticancer activities in many types of cancer. However, its molecular mechanisms remain largely unknown. As a member of inhibitor of apoptosis proteins, survivin plays an important role in the regulation of cell death. In the present study, we investigated the role of survivin in metformin-induced anticancer activity in non-small cell lung cancer in vitro. Metformin mainly induced apoptotic cell death in A549 and H460 cell lines. It remarkably suppressed the expression of survivin, decreased the stability of this protein, then promoted its proteasomal degradation. Moreover, metformin greatly suppressed protein kinase A (PKA) activity and induced its downstream glycogen synthase kinase 3β (GSK-3β) activation. PKA activators, both 8-Br-cAMP and forskolin, significantly increased the expression of survivin. Consistently both GSK-3β inhibitor LiCl and siRNA restored the expression of survivin in lung cancer cells. Furthermore, metformin induced adenosine 5'-monophosphate-activated protein kinase (AMPK) activation. Suppression of the activity of AMPK with Compound C reversed the degradation of survivin induced by metformin, and meanwhile, restored the activity of PKA and GSK-3β. These results suggest that metformin kills lung cancer cells through AMPK/PKA/GSK-3β-axis-mediated survivin degradation, providing novel insights into the anticancer effects of metformin.
Collapse
Affiliation(s)
- Zhuang Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Wei Chen
- Department of Pathophysiology in School of Basic Medical Science, North Sichuan Medical College, Nanchong, P.R. China
| | - Wenjuan Wu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Wei Luo
- Department of Pulmonary and Critical Care Medicine, The People's Hospital of Leshan, Leshan, P.R. China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Gang Guo
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Liyan Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Chu Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Shaoqing Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| |
Collapse
|
32
|
Wandee J, Prawan A, Senggunprai L, Kongpetch S, Kukongviriyapan V. Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway. Life Sci 2019; 217:155-163. [PMID: 30528773 DOI: 10.1016/j.lfs.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 01/17/2023]
Abstract
AIMS Metformin (Met), an essential antidiabetic agent, shows antitumor activity in some cancers. A previous study showed that Met enhanced cytotoxic activity of cisplatin (Cis) in cholangiocarcinoma (CCA) in association with the activation of AMP-activated protein kinase and suppression of Akt-mTOR. However, these effects do not entirely explain the observed chemosensitizing effect. The present study investigated the interaction of Met and Cis over the enhanced antitumor effect. MAIN METHODS KKU-100 and KKU-M156 cells were used in the study. Cytotoxicity was assessed by acridine orange-ethidium bromide staining. Reactive oxygen species (ROS) and mitochondrial transmembrane potential (Δψm) were measured by dihydroethidium and JC-1 fluorescent methods. Cellular glutathione (GSH) and redox ratio were analyzed by enzymatic coupling assay. Proteins associated with antioxidant system and cell death were evaluated by western immunoblot. KEY FINDINGS Cytotoxicity of Cis was enhanced by Met in association with ROS formation and GSH redox stress. The antioxidants, N-acetylcysteine and TEMPOL, and MPTP inhibitor, cyclosporine, attenuated cytotoxicity in association with suppression of ROS formation and the losses of Δψm. Met in combination with Cis suppressed expression of Nrf2 and altered the expression of Bcl2 family proteins. SIGNIFICANCE The chemosensitizing effect of Met in combination with Cis is causally associated with increased oxidative stress-mediated mitochondrial cell death pathway. Met may improve the efficacy of Cis in the treatment of cancer.
Collapse
Affiliation(s)
- Jaroon Wandee
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand.
| |
Collapse
|
33
|
Luo Z, Zhu T, Luo W, Lv Y, Zhang L, Wang C, Li M, Wu W, Shi S. Metformin induces apoptotic cytotoxicity depending on AMPK/PKA/GSK-3β-mediated c-FLIP L degradation in non-small cell lung cancer. Cancer Manag Res 2019; 11:681-689. [PMID: 30666163 PMCID: PMC6331071 DOI: 10.2147/cmar.s178688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Metformin, a first-line antidiabetic drug, has recently been reported with anticancer activities in various cancers; however, the underlying mechanisms remain elusive. The aim of the present study was to investigate the role of cellular FADD-like IL-1β-converting enzyme (FLICE)-inhibitory protein large (c-FLIPL) in metformin-induced anticancer activity in non-small cell lung cancer (NSCLC) in vitro. Materials and methods Cell viability was measured by MTT assay. Quantitative real-time PCR was carried out to detect the level of mRNA of related genes. The expression of related proteins was detected by Western blot. siRNA was used to silence the expression of targeted proteins. Results Metformin significantly suppressed proliferation of both A549 and H460 cells in a dose-dependent manner. Mechanistic studies suggested that metformin killed NSCLC cells by inducing apoptotic cell death. Moreover, metformin greatly inhibited c-FLIPL expression and then promoted its degradation. Furthermore, metformin significantly activated Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and its downstream glycogen synthase kinase 3beta (GSK-3β), block the expression of AMPK, and GSK-3β with siRNA partially reversed metformin-induced cytotoxicity and restored the expression of c-FLIPL in lung cancer cells. Metformin also suppressed the activity of AMPK downstream protein kinase A (PKA), PKA activators, both 8-Br-cAMP and forskolin, greatly increased c-FLIPL expression in NSCLC cells. Conclusion This study provided evidence that metformin killed NSCLC cells through AMPK/PKA/GSK-3β axis-mediated c-FLIPL degradation.
Collapse
Affiliation(s)
- Zhuang Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Wei Luo
- Department of Respiratory Medicine, The People's Hospital of Leshan, Leshan, Sichuan 640000, People's Republic of China
| | - Yuanyuan Lv
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Liyan Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Chu Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| | - Wenjuan Wu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Shaoqing Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China,
| |
Collapse
|
34
|
Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep 2018; 19:1203-1209. [PMID: 30569135 PMCID: PMC6323214 DOI: 10.3892/mmr.2018.9765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to examine the roles and mechanisms of metformin in the stemness and epithelial-mesenchymal transition (EMT) of colorectal cancer cells. The formation of spheroid cells, and the results of reverse transcription-quantitative polymerase chain reaction and western blot analyses showed that metformin suppressed the ability to form spheroid cells and the expression of stemness markers in HCT116 colorectal cancer cells. Additionally, metformin attenuated the EMT process, characterized by a decrease of mesenchymal marker Vimentin and an increase in the expression of an epithelial marker. Mechanistically, metformin inactivated the Wnt3a/β-catenin signaling pathway, and reactivation of Wnt3a/β-catenin signaling attenuated the inhibition of metformin on the stemness of HCT116 colorectal cancer cells and EMT. Finally, it was revealed that metformin re-sensitized HCT116 sphere cells to 5-fluorouracil resistance. These results suggest that metformin can attenuate stemness and EMT in colorectal cancer cells.
Collapse
Affiliation(s)
- Chu Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Yuchen Wang
- Department of Orthopedics, Wujin Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu 213161, P.R. China
| |
Collapse
|
35
|
Antunes F, Erustes AG, Costa AJ, Nascimento AC, Bincoletto C, Ureshino RP, Pereira GJS, Smaili SS. Autophagy and intermittent fasting: the connection for cancer therapy? Clinics (Sao Paulo) 2018; 73:e814s. [PMID: 30540126 PMCID: PMC6257056 DOI: 10.6061/clinics/2018/e814s] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and its incidence is continually increasing. Although anticancer therapy has improved significantly, it still has limited efficacy for tumor eradication and is highly toxic to healthy cells. Thus, novel therapeutic strategies to improve chemotherapy, radiotherapy and targeted therapy are an important goal in cancer research. Macroautophagy (herein referred to as autophagy) is a conserved lysosomal degradation pathway for the intracellular recycling of macromolecules and clearance of damaged organelles and misfolded proteins to ensure cellular homeostasis. Dysfunctional autophagy contributes to many diseases, including cancer. Autophagy can suppress or promote tumors depending on the developmental stage and tumor type, and modulating autophagy for cancer treatment is an interesting therapeutic approach currently under intense investigation. Nutritional restriction is a promising protocol to modulate autophagy and enhance the efficacy of anticancer therapies while protecting normal cells. Here, the description and role of autophagy in tumorigenesis will be summarized. Moreover, the possibility of using fasting as an adjuvant therapy for cancer treatment, as well as the molecular mechanisms underlying this approach, will be presented.
Collapse
Affiliation(s)
- Fernanda Antunes
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Adolfo Garcia Erustes
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Angélica Jardim Costa
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Ana Carolina Nascimento
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Claudia Bincoletto
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | | | - Gustavo José Silva Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
| | - Soraya Soubhi Smaili
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
36
|
Wen-Xiu X, Xiao-Wei Z, Hai-Ying D, Ying-Hui T, Si-Si K, Xiao-Fang Z, Huang P. Impact of metformin use on survival outcomes in non-small cell lung cancer treated with platinum. Medicine (Baltimore) 2018; 97:e13652. [PMID: 30572481 PMCID: PMC6320173 DOI: 10.1097/md.0000000000013652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Preclinical evidence suggests that metformin, a widely used antidiabetic drug, may have a sensitizing effect on platinum. The purpose of this study was to evaluate the survival outcomes for non-small cell lung cancer (NSCLC) patients with type 2 diabetes mellitus (T2DM) using metformin during platinum-based chemotherapy.The clinicopathological parameters and survival data of 75 NSCLC patients with T2DM from January 2008 to December 2011 were collected and analyzed retrospectively. Patients were divided into 2 groups: metformin exposure group (n = 27) and non-metformin group (patients using other hypoglycemic agents or no drug for controlling n = 48). Univariate and multivariate analyses were performed to assess the association of metformin usage with overall survival (OS).Mean follow-up time was 58.7 months. The mean survival time was 36.74 months in the metformin group and 40.21 months in the non-metformin group. There was no significant difference in survival time between the 2 groups (P = .661). After adjusting gender, age, smoking status, tumor stage, tumor histology, and differentiation, multivariate analysis showed that metformin was not associated with the OS in NSCLC patients treated with concurrent platinum-based chemotherapy (hazard ratio: 1.071, 95% confidence interval: 0.577-1.986, P = .828).Our results indicated that metformin exposure had no significant effect on OS in NSCLC patients treated with platinum-based chemotherapy. Further studies are warranted to evaluate whether metformin could affect the survival of NSCLC patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Xin Wen-Xiu
- Laboratory of Clinical Pharmacy
- Key Laboratory of Head and Neck Translational Research of Zhejiang Province Zhejiang Cancer Hospital, Hangzhou, P.R. China
| | | | | | | | | | | | - Ping Huang
- Laboratory of Clinical Pharmacy
- Key Laboratory of Head and Neck Translational Research of Zhejiang Province Zhejiang Cancer Hospital, Hangzhou, P.R. China
| |
Collapse
|
37
|
Zaal EA, Berkers CR. The Influence of Metabolism on Drug Response in Cancer. Front Oncol 2018; 8:500. [PMID: 30456204 PMCID: PMC6230982 DOI: 10.3389/fonc.2018.00500] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
Resistance to therapeutic agents, either intrinsic or acquired, is currently a major problem in the treatment of cancers and occurs in virtually every type of anti-cancer therapy. Therefore, understanding how resistance can be prevented, targeted and predicted becomes increasingly important to improve cancer therapy. In the last decade, it has become apparent that alterations in cellular metabolism are a hallmark of cancer cells and that a rewired metabolism is essential for rapid tumor growth and proliferation. Recently, metabolic alterations have been shown to play a role in the sensitivity of cancer cells to widely-used first-line chemotherapeutics. This suggests that metabolic pathways are important mediators of resistance toward anticancer agents. In this review, we highlight the metabolic alterations associated with resistance toward different anticancer agents and discuss how metabolism may be exploited to overcome drug resistance to classical chemotherapy.
Collapse
Affiliation(s)
- Esther A. Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Celia R. Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
38
|
The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochem J 2018; 475:2305-2328. [PMID: 30064989 DOI: 10.1042/bcj20170712] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/11/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
Abstract
Intercellular communications play a major role in tissue homeostasis. In pathologies such as cancer, cellular interactions within the tumor microenvironment (TME) contribute to tumor progression and resistance to therapy. Tunneling nanotubes (TNTs) are newly discovered long-range intercellular connections that allow the exchange between cells of various cargos, ranging from ions to whole organelles such as mitochondria. TNT-transferred mitochondria were shown to change the metabolism and functional properties of recipient cells as reported for both normal and cancer cells. Metabolic plasticity is now considered a hallmark of cancer as it notably plays a pivotal role in drug resistance. The acquisition of cancer drug resistance was also associated to TNT-mediated mitochondria transfer, a finding that relates to the role of mitochondria as a hub for many metabolic pathways. In this review, we first give a brief overview of the various mechanisms of drug resistance and of the cellular communication means at play in the TME, with a special focus on the recently discovered TNTs. We further describe recent studies highlighting the role of the TNT-transferred mitochondria in acquired cancer cell drug resistance. We also present how changes in metabolic pathways, including glycolysis, pentose phosphate and lipid metabolism, are linked to cancer cell resistance to therapy. Finally, we provide examples of novel therapeutic strategies targeting mitochondria and cell metabolism as a way to circumvent cancer cell drug resistance.
Collapse
|
39
|
Bai M, Yang L, Liao H, Liang X, Xie B, Xiong J, Tao X, Chen X, Cheng Y, Chen X, Feng Y, Zhang Z, Zheng W. Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism. Oncogene 2018; 37:5666-5681. [PMID: 29921847 DOI: 10.1038/s41388-018-0360-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
Chemoresistance is the major obstacle to cure endometrial cancer, whereas metformin has demonstrated sensitization to chemotherapy in endometrial cancer. A novel finding states that isocitrate dehydrogenase 1 (IDH1) involves in cancer chemoresistance. Recent studies have revealed that epigenetic modifications facilitate chemoresistance. However, whether IDH1 play a role in metformin-induced endometrial cancer chemosensitivity through epigenetic modification is incompletely understood. Immunohistochemistry and Elisa assays were used to evaluate the expression pattern of IDH1 in endometrial tissue and serum, respectively. Western blot was performed to determine changes in expression of key molecules in the IDH1-ɑ-KG-TET1-Nrf2 signaling pathway after various treatments. Dot blot assays were used to assess global hydroxymethylation levels after metformin administration or plasmid transfection. Antioxidant response element (ARE) activity in the IDH1 promoter region was monitored by luciferase assay. Cancer cell sensitivity to chemotherapy was detected by SRB assay. We found that activation of the IDH1 signaling pathway in endometrial cancer tissue resulting from aberrant expression of IDH1 and its downstream mediators conferred chemoresistance. We found that this effect was abated by metformin treatment. Dot blot and HMeDIP assays revealed that metformin blocked IDH1-ɑ-KG-TET1-mediated enhancement of Nrf2 hydroxymethylation levels, eliminating chemoresistance. Moreover, we observed that chemoresistance was enhanced via a regulatory loop in which Nrf2 activated IDH1-ɑ-KG-TET1-Nrf2 signaling via binding to the ARE sites in the IDH1 promoter region. Our findings highlight a critical role of IDH1-ɑ-KG-TET1-Nrf2 signaling in chemoresistance and suggest that rational combination therapy with metformin and chemotherapeutics has the potential to suppress chemoresistance.
Collapse
Affiliation(s)
- Mingzhu Bai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Linlin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China.,Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Hong Liao
- Department of Cervical Diseases, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Xiaoyan Liang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Bingying Xie
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Ji Xiong
- Department of Pathology, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiong Chen
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Yali Cheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Youji Feng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China. .,Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China.
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
40
|
Li J, Chen L, Liu Q, Tang M, Wang Y, Yu J. Buformin suppresses proliferation and invasion via AMPK/S6 pathway in cervical cancer and synergizes with paclitaxel. Cancer Biol Ther 2018; 19:507-517. [PMID: 29400636 DOI: 10.1080/15384047.2018.1433504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Buformin is an old anti-diabetic agent and manifests potent anti-tumor activities in several malignancies. In the present study, we aimed to explore the functions of buformin in human cervical cancer. As our data shown, buformin exhibited significant anti-proliferative effects in a dose-dependent manner in 4 cervical cancer cell lines. Compared to the control, buformin notably suppressed colony formation and increased ROS production in C33A, Hcc94 and SiHa cells. Flow cytometric analysis showed that buformin induced marked cell cycle arrest but only resulted in mild apoptosis. The invasion of C33A and SiHa cells sharply declined with buformin treatment. Consistently, western blotting showed that buformin activated AMPK and suppressed S6, cyclin D1, CDK4, and MMP9. Moreover, we found that buformin enhanced glucose uptake and LDH activity, increased lactate level, while decreased ATP production in cervical cancer cells. In addition, low doses of buformin synergized with routine chemotherapeutic drugs (such as paclitaxel, cisplatin, and 5-FU) to achieve more significant anti-tumor effects. In vivo, a single use of buformin exerted moderate anti-tumor effects, and the combination with buformin and paclitaxel exhibited even greater suppressive effects. Buformin also consistently showed synergistic effects with paclitaxel in treating primary cultures of cervical cancer cells. Take together, we are the first to demonstrate that buformin suppresses cellular proliferation and invasion through the AMPK/S6 signaling pathway, which arrests cell cycle and inhibits cellular invasion. Buformin also could synergize with routine chemotherapies, producing much more powerful anti-tumor effects. With these findings, we strongly support buformin as a potent choice for treating cervical cancer, especially in combination with routine chemotherapy.
Collapse
Affiliation(s)
- Jing Li
- a Department of Oncology , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Ling Chen
- b Department of Obstetrics and Gynecology , the Affiliated Hospital of Jiangnan University , Wuxi , China
| | - Qiuli Liu
- b Department of Obstetrics and Gynecology , the Affiliated Hospital of Jiangnan University , Wuxi , China
| | - Mei Tang
- b Department of Obstetrics and Gynecology , the Affiliated Hospital of Jiangnan University , Wuxi , China
| | - Yuan Wang
- b Department of Obstetrics and Gynecology , the Affiliated Hospital of Jiangnan University , Wuxi , China
| | - Jinjin Yu
- b Department of Obstetrics and Gynecology , the Affiliated Hospital of Jiangnan University , Wuxi , China
| |
Collapse
|