1
|
Dong XD, Zhang M, Teng QX, Lei ZN, Cai CY, Wang JQ, Wu ZX, Yang Y, Chen X, Guo H, Chen ZS. Mobocertinib antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing cancer cells: In vitro and in vivo studies. Cancer Lett 2024; 607:217309. [PMID: 39481798 DOI: 10.1016/j.canlet.2024.217309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters, particularly ABCB1 and ABCG2, strongly correlates with multidrug resistance (MDR), rendering cancer chemotherapy ineffective. Exploration and identification of novel inhibitors targeting ABCB1 and ABCG2 are necessary to overcome the related MDR. Mobocertinib is an approved EGFR/HER2 inhibitor for non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion mutations. This study demonstrates that mobocertinib can potentially reverse ABCB1- and ABCG2-mediated MDR. Our findings indicate a strong interaction between mobocertinib and these two proteins, supported by its high binding affinity with ABCB1 and ABCG2 models. Through inhibiting the drug efflux function of ABCB1 and ABCG2, mobocertinib facilitates substrate drugs accumulation, thereby re-sensitizing substrate drugs in drug-resistant cancer cells. Additionally, mobocertinib inhibited the ATPase activity of ABCB1 and ABCG2 without changing the expression levels or subcellular localization. In the tumor-bearing mouse model, mobocertinib boosted the antitumor effect of paclitaxel and topotecan, resulting in tumor regression. In summary, our study uncovers a novel potential for repurposing mobocertinib as a dual inhibitor of ABCB1 and ABCG2, and suggests the combination of mobocertinib with substrate drugs as a strategy to counteract MDR.
Collapse
MESH Headings
- Humans
- Animals
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Drug Resistance, Neoplasm/drug effects
- Mice
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Topotecan/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Mice, Nude
- Mice, Inbred BALB C
- Paclitaxel/pharmacology
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Meng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Baoan, Shenzhen, Guangdong, 510000, China
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xiang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Huiqin Guo
- Department of Thoracic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
2
|
Dong XD, Lu Q, Li YD, Cai CY, Teng QX, Lei ZN, Wei ZH, Yin F, Zeng L, Chen ZS. RN486, a Bruton's Tyrosine Kinase inhibitor, antagonizes multidrug resistance in ABCG2-overexpressing cancer cells. J Transl Int Med 2024; 12:288-298. [PMID: 39081282 PMCID: PMC11284896 DOI: 10.2478/jtim-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Background and Objectives Overcoming ATP-binding cassette subfamily G member 2 (ABCG2)-mediated multidrug resistance (MDR) has attracted the attention of scientists because one of the critical factors resulting in MDR in cancer is the overexpression of ABCG2. RN486, a Bruton's Tyrosine Kinase (BTK) inhibitor, was discovered to potentially reverse ABCB1-mediated MDR. However, there is still uncertainty about whether RN486 has a reversal off-target impact on ABCG2-mediated MDR. Methods MTT assay was used to detect the reversal effect of RN486 on ABCG2-overexpressing cancer cells. The ABCG2 expression level and subcellular localization were examined by Western blotting and immunofluorescence. Drug accumulation and eflux assay and ATPase assay were performed to analyze the ABCG2 transporter function and ATPase activity. Molecular modeling predicted the binding between RN486 and ABCG2 protein. Results Non-toxic concentrations of RN486 remarkably increased the sensitivity of ABCG2-overexpressing cancer cells to conventional anticancer drugs mitoxantrone and topotecan. The reversal mechanistic studies showed that RN486 elevated the drug accumulation because of reducing the eflux of ABCG2 substrate drug in ABCG2-overexpressing cancer cells. In addition, the inhibitory efect of RN486 on ABCG2-associated ATPase activity was also verified. Molecular docking study implied a strong binding afinity between RN486 and ABCG2 transporter. Meanwhile, the ABCG2 subcellular localization was not altered by the treatment of RN486, but the expression level of ABCG2 was down-regulated. Conclusions Our studies propose that RN486 can antagonize ABCG2-mediated MDR in cancer cells via down-regulating the expression level of ABCG2 protein, reducing ATPase activity of ABCG2 transporter, and inhibiting the transporting function. RN486 could be potentially used in conjunction with chemotherapy to alleviate MDR mediated by ABCG2 in cancer.
Collapse
Affiliation(s)
- Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qisi Lu
- Department of Hematology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou515500, Guangdong Province, China
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Biobank, Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen518107, Guangdong Province, China
| | - Zeng-Hui Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Fan Yin
- Department of Statistics, University of California at Irvine, Irvine, CA 92697, USA
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Biobank, Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen518107, Guangdong Province, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
3
|
Wu CP, Hsiao SH, Wu YS. Perspectives on drug repurposing to overcome cancer multidrug resistance mediated by ABCB1 and ABCG2. Drug Resist Updat 2023; 71:101011. [PMID: 37865067 DOI: 10.1016/j.drup.2023.101011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
4
|
Abourehab MAS, Alqahtani AM, Youssif BGM, Gouda AM. Globally Approved EGFR Inhibitors: Insights into Their Syntheses, Target Kinases, Biological Activities, Receptor Interactions, and Metabolism. Molecules 2021; 26:6677. [PMID: 34771085 PMCID: PMC8587155 DOI: 10.3390/molecules26216677] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Targeting the EGFR with small-molecule inhibitors is a confirmed valid strategy in cancer therapy. Since the FDA approval of the first EGFR-TKI, erlotinib, great efforts have been devoted to the discovery of new potent inhibitors. Until now, fourteen EGFR small-molecule inhibitors have been globally approved for the treatment of different types of cancers. Although these drugs showed high efficacy in cancer therapy, EGFR mutations have emerged as a big challenge for these drugs. In this review, we focus on the EGFR small-molecule inhibitors that have been approved for clinical uses in cancer therapy. These drugs are classified based on their chemical structures, target kinases, and pharmacological uses. The synthetic routes of these drugs are also discussed. The crystal structures of these drugs with their target kinases are also summarized and their bonding modes and interactions are visualized. Based on their binding interactions with the EGFR, these drugs are also classified into reversible and irreversible inhibitors. The cytotoxicity of these drugs against different types of cancer cell lines is also summarized. In addition, the proposed metabolic pathways and metabolites of the fourteen drugs are discussed, with a primary focus on the active and reactive metabolites. Taken together, this review highlights the syntheses, target kinases, crystal structures, binding interactions, cytotoxicity, and metabolism of the fourteen globally approved EGFR inhibitors. These data should greatly help in the design of new EGFR inhibitors.
Collapse
Affiliation(s)
- Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Ahmed M. Gouda
- Department of Medicinal Chemistry, Faculty of pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
5
|
Kita DH, Guragossian N, Zattoni IF, Moure VR, Rego FGDM, Lusvarghi S, Moulenat T, Belhani B, Picheth G, Bouacida S, Bouaziz Z, Marminon C, Berredjem M, Jose J, Gonçalves MB, Ambudkar SV, Valdameri G, Le Borgne M. Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles. Sci Rep 2021; 11:1788. [PMID: 33469044 PMCID: PMC7815716 DOI: 10.1038/s41598-020-79892-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The ATP-binding cassette transporter ABCG2 mediates the efflux of several chemotherapeutic drugs, contributing to the development of multidrug resistance (MDR) in many cancers. The most promising strategy to overcome ABCG2-mediated MDR is the use of specific inhibitors. Despite many efforts, the identification of new potent and specific ABCG2 inhibitors remains urgent. In this study, a structural optimization of indeno[1,2-b]indole was performed and a new generation of 18 compounds was synthesized and tested as ABCG2 inhibitors. Most compounds showed ABCG2 inhibition with IC50 values below 0.5 µM. The ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50) was used to identify the best inhibitors. In addition, it was observed that some indeno[1,2-b]indole derivatives produced complete inhibition, while others only partially inhibited the transport function of ABCG2. All indeno[1,2-b]indole derivatives are not transported by ABCG2, and even the partial inhibitors are able to fully chemosensitize cancer cells overexpressing ABCG2. The high affinity of these indeno[1,2-b]indole derivatives was confirmed by the strong stimulatory effect on ABCG2 ATPase activity. These compounds did not affect the binding of conformation-sensitive antibody 5D3 binding, but stabilized the protein structure, as revealed by the thermostabilization assay. Finally, a docking study showed the indeno[1,2-b]indole derivatives share the same binding site as the substrate estrone-3-sulfate.
Collapse
Affiliation(s)
- Diogo Henrique Kita
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.,Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathalie Guragossian
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.,Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | | | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Moulenat
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Billel Belhani
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Box 12, 23000, Annaba, Algeria
| | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | - Sofiane Bouacida
- Département Sciences de la Matière, Faculté des Sciences exactes et Sciences de la nature et de la vie, Université Larbi Ben M'hidi, Oum El Bouaghi, Algeria.,Research Unit for Chemistry of the Environment and Molecular Structural, University of Constantine 1, Constantine, Algeria
| | - Zouhair Bouaziz
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Christelle Marminon
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France.,Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Box 12, 23000, Annaba, Algeria
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Marcos Brown Gonçalves
- Department of Physics, Federal Technological University of Paraná, Curitiba, PR, 80230-901, Brazil
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil. .,Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France. .,Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France.
| |
Collapse
|
6
|
Jing W, Zhou M, Chen R, Ye X, Li W, Su X, Luo J, Wang Z, Peng S. In vitro and ex vivo anti‑tumor effect and mechanism of Tucatinib in leukemia stem cells and ABCG2‑overexpressing leukemia cells. Oncol Rep 2020; 45:1142-1152. [PMID: 33650639 PMCID: PMC7859976 DOI: 10.3892/or.2020.7915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
Leukemia stem cells (LSCs), which evade standard chemotherapy, may lead to chemoresistance and disease relapse. The overexpression of ATP-binding cassette subfamily G member 2 (ABCG2) is an important determinant of drug resistance in LSCs and it can serve as a marker for LSCs. Targeting ABCG2 is a potential strategy to selectively treat and eradicate LSCs, and, hence, improve leukemia therapy. Tucatinib (Irbinitinib) is a novel tyrosine kinase inhibitor, targeting ErbB family member HER2, and was approved by the Food and Drug Administration in April 2020, and in Switzerland in May 2020 for the treatment of HER2-positive breast cancer. In the present study, the results demonstrated that tucatinib significantly improved the efficacy of conventional chemotherapeutic agents in ABCG2-overexpressing leukemia cells and primary leukemia blast cells, derived from patients with leukemia. In addition, tucatinib markedly decreased the proportion of leukemia stem cell-like side population (SP) cells. In SP cells, isolated from leukemia cells, the intracellular accumulation of Hoechst 33342, which is an ABCG2 substrate, was significantly elevated by tucatinib. Furthermore, tucatinib notably inhibited the efflux of [3H]-mitoxantrone and, hence, there was a higher level of [3H]-mitoxantrone in the HL60/ABCG2 cell line. The result from the ATPase assay revealed that tucatinib may interact with the drug substrate-binding site and stimulated ATPase activity of ABCG2. However, the protein expression level and cellular location of ABCG2 were not affected by tucatinib treatment. Taken together, these data suggested that tucatinib could sensitize conventional chemotherapeutic agents, in ABCG2-overexpressing leukemia cells and LSCs, by blocking the pump function of the ABCG2 protein. The present study revealed that combined treatment with tucatinib and conventional cytotoxic agents could be a potential therapeutic strategy in ABCG2-positive leukemia.
Collapse
Affiliation(s)
- Wen Jing
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Mao Zhou
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Ruixia Chen
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Xijiu Ye
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Weixing Li
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Xiangfei Su
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Jianwei Luo
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Shuling Peng
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| |
Collapse
|
7
|
Colclough N, Chen K, Johnström P, Strittmatter N, Yan Y, Wrigley GL, Schou M, Goodwin R, Varnäs K, Adua SJ, Zhao M, Nguyen DX, Maglennon G, Barton P, Atkinson J, Zhang L, Janefeldt A, Wilson J, Smith A, Takano A, Arakawa R, Kondrashov M, Malmquist J, Revunov E, Vazquez-Romero A, Moein MM, Windhorst AD, Karp NA, Finlay MRV, Ward RA, Yates JW, Smith PD, Farde L, Cheng Z, Cross DA. Preclinical Comparison of the Blood–brain barrier Permeability of Osimertinib with Other EGFR TKIs. Clin Cancer Res 2020; 27:189-201. [DOI: 10.1158/1078-0432.ccr-19-1871] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/18/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
|
8
|
The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide. Cancers (Basel) 2020; 12:cancers12071963. [PMID: 32707710 PMCID: PMC7409168 DOI: 10.3390/cancers12071963] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
The overexpression of ATP-binding cassette (ABC) transporters is a common cause of multidrug resistance (MDR) in cancers. The intracellular drug concentration of cancer cells can be decreased relative to their normal cell counterparts due to increased expression of ABC transporters acting as efflux pumps of anticancer drugs. Over the past decades, antimicrobial peptides have been investigated as a new generation of anticancer drugs and some of them were reported to have interactions with ABC transporters. In this article, we investigated several novel antimicrobial peptides to see if they could sensitize ABCB1-overexpressing cells to the anticancer drugs paclitaxel and doxorubicin, which are transported by ABCB1. It was found that peptide XH-14C increased the intracellular accumulation of ABCB1 substrate paclitaxel, which demonstrated that XH-14C could reverse ABCB1-mediated MDR. Furthermore, XH-14C could stimulate the ATPase activity of ABCB1 and the molecular dynamic simulation revealed a stable binding pose of XH-14C-ABCB1 complex. There was no change on the expression level or the location of ABCB1 transporter with the treatment of XH-14C. Our results suggest that XH-14C in combination with conventional anticancer agents could be used as a novel strategy for cancer treatment.
Collapse
|
9
|
Ding X, Gu Y, Jin M, Guo X, Xue S, Tan C, Huang J, Yang W, Xue M, Zhou Q, Wang W, Zhang Y. The deubiquitinating enzyme UCHL1 promotes resistance to pemetrexed in non-small cell lung cancer by upregulating thymidylate synthase. Theranostics 2020; 10:6048-6060. [PMID: 32483437 PMCID: PMC7255002 DOI: 10.7150/thno.42096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Resistance to pemetrexed (PEM)-based chemotherapy is a major cause of progression in non-small cell lung cancer (NSCLC) patients. The deubiquitinating enzyme UCHL1 was recently found to play important roles in chemoresistance and tumor progression. However, the potential roles and mechanisms of UCHL1 in PEM resistance remain unclear. Methods: Bioinformatics analyses and immunohistochemistry were used to evaluate UCHL1 expression in NSCLC specimens. Kaplan-Meier analysis with the log-rank test was used for survival analyses. We established PEM-resistant NSCLC cell lines by exposing them to step-wise increases in PEM concentrations, and in vitro and in vivo assays were used to explore the roles and mechanisms of UCHL1 in PEM resistance using the NSCLC cells. Results: In chemoresistant tumors from NSCLC patients, UCHL1 was highly expressed and elevated UCHL1 expression was strongly associated with poor outcomes. Furthermore, UCHL1 expression was significantly upregulated in PEM-resistant NSCLC cells, while genetic silencing or inhibiting UCHL1 suppressed resistance to PEM and other drugs in NSCLC cells. Mechanistically, UCHL1 promoted PEM resistance in NSCLC by upregulating the expression of thymidylate synthase (TS), based on reduced TS expression after UCHL1 inhibition and re-emergence of PEM resistance upon TS restoration. Furthermore, UCHL1 upregulated TS expression, which mitigated PEM-induced DNA damage and cell cycle arrest in NSCLC cells, and also conferred resistance to PEM and other drugs. Conclusions: It appears that UCHL1 promotes PEM resistance by upregulating TS in NSCLC cells, which mitigated DNA damage and cell cycle arrest. Thus, UCHL1 may be a therapeutic target for overcoming PEM resistance in NSCLC patients.
Collapse
|
10
|
Krchniakova M, Skoda J, Neradil J, Chlapek P, Veselska R. Repurposing Tyrosine Kinase Inhibitors to Overcome Multidrug Resistance in Cancer: A Focus on Transporters and Lysosomal Sequestration. Int J Mol Sci 2020; 21:ijms21093157. [PMID: 32365759 PMCID: PMC7247577 DOI: 10.3390/ijms21093157] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are being increasingly used to treat various malignancies. Although they were designed to target aberrant tyrosine kinases, they are also intimately linked with the mechanisms of multidrug resistance (MDR) in cancer cells. MDR-related solute carrier (SLC) and ATB-binding cassette (ABC) transporters are responsible for TKI uptake and efflux, respectively. However, the role of TKIs appears to be dual because they can act as substrates and/or inhibitors of these transporters. In addition, several TKIs have been identified to be sequestered into lysosomes either due to their physiochemical properties or via ABC transporters expressed on the lysosomal membrane. Since the development of MDR represents a great concern in anticancer treatment, it is important to elucidate the interactions of TKIs with MDR-related transporters as well as to improve the properties that would prevent TKIs from diffusing into lysosomes. These findings not only help to avoid MDR, but also help to define the possible impact of combining TKIs with other anticancer drugs, leading to more efficient therapy and fewer adverse effects in patients.
Collapse
Affiliation(s)
- Maria Krchniakova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Petr Chlapek
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic; (M.K.); (J.S.); (J.N.); (P.C.)
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-49-7905
| |
Collapse
|
11
|
Liu K, Jiang G, Zhang A, Li Z, Jia J. Icotinib is as efficacious as gefitinib for brain metastasis of EGFR mutated non-small-cell lung cancer. BMC Cancer 2020; 20:76. [PMID: 32000711 PMCID: PMC6993327 DOI: 10.1186/s12885-020-6543-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/14/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The prognosis of non-small-cell lung cancer (NSCLC) with brain metastases is very poor. Currently, therapeutic methods for this patient population include whole-brain radiation therapy (WBRT), surgery, radiosurgery and systemic treatment. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) could be effective on cerebral metastases of mutated NSCLC. However, which EGFR-TKIs is more appropriate is still unknown. METHODS We conducted a retrospective analysis of advanced NSCLC patients with brain metastases for EGFR targeted therapy from November 2013 to April 2018 at Dongguan People's Hospital, Southern Medical University, China. A total of 43 patients were recruit in this study. Among them, 21 cases received icotinib (125 mg, thrice a day) and 22 cases received gefitinib (250 mg, once a day) until disease progression or unacceptable toxicity. The primary end point of this study was intracranial PFS (iPFS). The relationships between therapeutic arms and patients characteristics were performed using Pearson's chi-square test or Fisher's exact test. The differences in PFS among the two arms were analyzed using Kaplan-Meier curves and log rank tests. RESULTS There was no significant difference of intracranial ORR (66.6% versus 59.1%, P = 0.62) and DCR (85.7% versus 81.8%, P = 0.73) between the two arms. The median intracranial PFS (iPFS) for icotinib and gefitinib arms were 8.4 months (95% CI, 5.4 to 11.3 months) and 10.6 months (95% CI, 6.3 to 14.8 months), respectively (P = 0.17). Adverse events of the two study arms were generally mild. None of the patients experienced dose reduction of EGFR-TKIs. CONCLUSIONS Our study showed that icotinib and gefitinib had similar efficacy for brain metastasis of EGFR mutated NSCLC. Large randomized studies are suggested to further illuminate the effect of these two EGFR-TKIs on cerebral lesions of NSCLC.
Collapse
Affiliation(s)
- Kejun Liu
- Department of Oncology, Dongguan Institute for Clinical Cancer Research, Dongguan People's Hospital, Southern Medical University, 3 Wandao Road South, Dongguan, 523059, Guangdong, China
| | - Guanming Jiang
- Department of Oncology, Dongguan Institute for Clinical Cancer Research, Dongguan People's Hospital, Southern Medical University, 3 Wandao Road South, Dongguan, 523059, Guangdong, China
| | - Ailing Zhang
- Department of Galactophore, Dongguan Institute for Clinical Cancer Research, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Zhuanghua Li
- Department of Oncology, Dongguan Institute for Clinical Cancer Research, Dongguan People's Hospital, Southern Medical University, 3 Wandao Road South, Dongguan, 523059, Guangdong, China.
| | - Jun Jia
- Department of Oncology, Dongguan Institute for Clinical Cancer Research, Dongguan People's Hospital, Southern Medical University, 3 Wandao Road South, Dongguan, 523059, Guangdong, China.
| |
Collapse
|
12
|
Wang DS, Liu ZX, Lu YX, Bao H, Wu X, Zeng ZL, Liu Z, Zhao Q, He CY, Lu JH, Wang ZQ, Qiu MZ, Wang F, Wang FH, Li YH, Wang XN, Xie D, Jia WH, Shao YW, Xu RH. Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer. Gut 2019; 68:1152-1161. [PMID: 30269082 DOI: 10.1136/gutjnl-2018-316522] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To monitor trastuzumab resistance and determine the underlying mechanisms for the limited response rate and rapid emergence of resistance of HER2+ metastatic gastric cancer (mGC). DESIGN Targeted sequencing of 416 clinically relevant genes was performed in 78 paired plasma and tissue biopsy samples to determine plasma-tissue concordance. Then, we performed longitudinal analyses of 97 serial plasma samples collected from 24 patients who were HER2+ to track the resistance during trastuzumab treatment and validated the identified candidate resistance genes. RESULTS The results from targeted sequencing-based detection of somatic copy number alterations (SCNA) of HER2 gene were highly consistent with fluorescence in situ hybridisation data, and the detected HER2 SCNA was better than plasma carcinoembryonic antigen levels at predicting tumour shrinkage and progression. Furthermore, most patients with innate trastuzumab resistance presented high HER2 SCNA during progression compared with baseline, while HER2 SCNA decreased in patients with acquired resistance. PIK3CA mutations were significantly enriched in patients with innate resistance, and ERBB2/4 genes were the most mutated genes, accounting for trastuzumab resistance in six (35.3%) and five (29.4%) patients in baseline and progression plasma, respectively. Patients with PIK3CA/R1/C3 or ERBB2/4 mutations in the baseline plasma had significantly worse progression-free survival. Additionally, mutations in NF1 contributed to trastuzumab resistance, which was further confirmed through in vitro and in vivo studies, while combined HER2 and MEK/ERK blockade overcame trastuzumab resistance. CONCLUSION Longitudinal circulating tumour DNA sequencing provides novel insights into gene alterations underlying trastuzumab resistance in HER2+mGC.
Collapse
Affiliation(s)
- De-Shen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun-Xin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hua Bao
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, Canada
| | - Xue Wu
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, Canada
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cai-Yun He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Huan Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Qiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Miao-Zhen Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang W Shao
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, Canada.,School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
13
|
Fallacara AL, Zamperini C, Podolski-Renić A, Dinić J, Stanković T, Stepanović M, Mancini A, Rango E, Iovenitti G, Molinari A, Bugli F, Sanguinetti M, Torelli R, Martini M, Maccari L, Valoti M, Dreassi E, Botta M, Pešić M, Schenone S. A New Strategy for Glioblastoma Treatment: In Vitro and In Vivo Preclinical Characterization of Si306, a Pyrazolo[3,4- d]Pyrimidine Dual Src/P-Glycoprotein Inhibitor. Cancers (Basel) 2019; 11:E848. [PMID: 31248184 PMCID: PMC6628362 DOI: 10.3390/cancers11060848] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Overexpression of P-glycoprotein (P-gp) and other ATP-binding cassette (ABC) transporters in multidrug resistant (MDR) cancer cells is responsible for the reduction of intracellular drug accumulation, thus decreasing the efficacy of chemotherapeutics. P-gp is also found at endothelial cells' membrane of the blood-brain barrier, where it limits drug delivery to central nervous system (CNS) tumors. We have previously developed a set of pyrazolo[3,4-d]pyrimidines and their prodrugs as novel Src tyrosine kinase inhibitors (TKIs), showing a significant activity against CNS tumors in in vivo. Here we investigated the interaction of the most promising pair of drug/prodrug with P-gp at the cellular level. The tested compounds were found to increase the intracellular accumulation of Rho 123, and to enhance the efficacy of paclitaxel in P-gp overexpressing cells. Encouraging pharmacokinetics properties and tolerability in vivo were also observed. Our findings revealed a novel role of pyrazolo[3,4-d]pyrimidines which may be useful for developing a new effective therapy in MDR cancer treatment, particularly against glioblastoma.
Collapse
Affiliation(s)
- Anna Lucia Fallacara
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Claudio Zamperini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
- Lead Discovery Siena S.r.l., via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy.
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Marija Stepanović
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Arianna Mancini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Enrico Rango
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Giulia Iovenitti
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Alessio Molinari
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Francesca Bugli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Maurizio Martini
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Laura Maccari
- Lead Discovery Siena S.r.l., via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy.
| | - Massimo Valoti
- Dipartimento Scienze della Vita, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Elena Dreassi
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Maurizio Botta
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
- Lead Discovery Siena S.r.l., via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy.
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Silvia Schenone
- Department of Pharmacy, Università degli Studi di Genova, 16132 Genova, Italy.
| |
Collapse
|
14
|
Xu YL, Jiang XM, Zhang LL, Chen X, Huang ZJ, Lu JJ. Establishment and Characterization of Pemetrexed-resistant NCI-H460/PMT Cells. Anticancer Agents Med Chem 2019; 19:731-739. [PMID: 30848214 DOI: 10.2174/1871520619666190307120441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Pemetrexed (PMT) is a multitargeted antifolate agent that is used for treating patients with Non-Small Cell Lung Cancer (NSCLC). However, patients have presented clinical responses of drug resistance to PMT. OBJECTIVE This study aimed to explore the underlying mechanisms of PMT resistance in NSCLC cells. METHODS PMT-resistant NCI-H460/PMT cells were established by treating with PMT in a concentrationescalation manner. MTT assay and colony formation were performed to detect cell proliferation. Immunofluorescence was used to detect the expression of Ki-67. Transwell assay was performed to measure cell migration ability. qPCR and Western blot were used to detect the mRNA and protein expression levels of indicated genes. Small interfering RNAs (siRNA) were used to knockdown ATP binding cassette subfamily B member 1 (ABCB1) and Thymidylate Synthase (TYMS). RESULTS This study showed that compared with the parental cells, the NCI-H460/PMT cells displayed weakened proliferation and enhanced cell mobility. In addition, the NCI-H460/PMT cells demonstrated cellular senescence, which might result in PMT resistance. The NCI-H460/PMT cells exhibited cross-resistance to other chemotherapeutics, including fluorouracil, paclitaxel, doxorubicin, etoposide and gemcitabine, possibly because of the upregulated expression of ABCB1. However, the ABCB1 knockdown by siRNA failed to eradicate PMT resistance. Moreover, TYMS, a target of PMT, was obviously upregulated in the resistant cells. The genetic silence of TYMS partially abrogated PMT resistance, suggesting that the overexpression of TYMS was a key resistant mechanism of PMT. CONCLUSION The overexpression of TYMS was an important resistance mechanism of PMT for KRAS-mutated NCI-H460 cells. Cross-resistance to other chemotherapeutics should be considered in addressing PMT resistance.
Collapse
Affiliation(s)
- Yu-Lian Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiao-Ming Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
15
|
Shankaraiah N, Nekkanti S, Ommi O, P.S. LS. Diverse Targeted Approaches to Battle Multidrug Resistance in Cancer. Curr Med Chem 2019; 26:7059-7080. [DOI: 10.2174/0929867325666180410110729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/01/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
:
The efficacy of successful cancer therapies is frequently hindered by the development of drug
resistance in the tumor. The term ‘drug resistance’ is used to illustrate the decreased effectiveness of a
drug in curing a disease or alleviating the symptoms of the patient. This phenomenon helps tumors to survive
the damage caused by a specific drug or group of drugs. In this context, studying the mechanisms of
drug resistance and applying this information to design customized treatment regimens can improve therapeutic
efficacy as well as the curative outcome. Over the years, numerous Multidrug Resistance (MDR)
mechanisms have been recognized and tremendous effort has been put into developing agents to address
them. The integration of data emerging from the elucidation of molecular and biochemical pathways and
specific tumor-associated factors has shown tremendous promise within the oncology community for improving
patient outcomes. In this review, we provide an overview of the utility of these molecular and biochemical
signaling processes as well as tumor-associated factors associated with MDR, for the rational
selection of cancer treatment strategies.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Shalini Nekkanti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Ojaswitha Ommi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Lakshmi Soukya P.S.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| |
Collapse
|
16
|
Huang R, Rofstad EK. Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 2018; 8:35351-35367. [PMID: 27343550 PMCID: PMC5471060 DOI: 10.18632/oncotarget.10169] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/12/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has shown that cancer stem cells (CSCs) have a tumour-initiating capacity and play crucial roles in tumour metastasis, relapse and chemo/radio-resistance. As tumour propagation initiators, CSCs are considered to be promising targets for obtaining a better therapeutic outcome. Cervical carcinoma is the most common gynaecological malignancy and has a high cancer mortality rate among females. As a result, the investigation of cervical cancer stem cells (CCSCs) is of great value. However, the numbers of cancer cells and corresponding CSCs in malignancy are dynamically balanced, and CSCs may reside in the CSC niche, about which little is known to date. Therefore, due to their complicated molecular phenotypes and biological behaviours, it remains challenging to obtain “purified” CSCs and continuously culture CSCs for further in vitro studies without the cells losing their stem properties. At present, CSC-related markers and functional assays are used to purify, identify and therapeutically target CSCs both in vitro and in vivo. Nevertheless, CSC-related markers are not universal to all tumour types, although some markers may be valid in multiple tumour types. Additionally, functional identifications based on CSC-specific properties are usually limited in in vivo studies. Furthermore, an optimal method for identifying potential CCSCs in CCSC studies has not been previously published, and these techniques are currently of great importance. This article updates our knowledge on CSCs and CCSCs, reviews potential stem cell markers and functional assays for identifying CCSCs, and describes the potential of targeting CCSCs in the treatment of cervical carcinoma.
Collapse
Affiliation(s)
- Ruixia Huang
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Zhang GN, Zhang YK, Wang YJ, Gupta P, Ashby CR, Alqahtani S, Deng T, Bates SE, Kaddoumi A, Wurpel JND, Lei YX, Chen ZS. Epidermal growth factor receptor (EGFR) inhibitor PD153035 reverses ABCG2-mediated multidrug resistance in non-small cell lung cancer: In vitro and in vivo. Cancer Lett 2018. [PMID: 29518481 DOI: 10.1016/j.canlet.2018.02.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
One of the major mediators of multidrug resistance (MDR) in non-small cell lung cancer (NSCLC) is the overexpression of ATP-binding cassette subfamily G member 2 (ABCG2). In this study, we conducted in vitro and in vivo experiments to determine whether PD153035, an inhibitor of EGFR, could reverse ABCG2-mediated MDR in human NSCLC and transfected cells overexpressing ABCG2. The efficacy of SN-38, topotecan, and mitoxantrone (MX) were significantly increased by PD153035, PD153035 significantly reversed ABCG2-mediated MDR by attenuating the efflux activity of this transporter. In addition, PD153035 significantly down-regulated the expression of the ABCG2 transporter protein. Furthermore, a combination of PD153035 and topotecan, exhibited significant synergistic anticancer activity against mice xenografted with human H460/MX20 cells. These results, provided that they can be extrapolated to humans, suggest that the combination of topotecan and PD153035 could be a promising therapeutic strategy to attenuate the resistance to topotecan, as well as other anticancer drugs, mediated by the overexpression of ABCG2.
Collapse
Affiliation(s)
- Guan-Nan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Saeed Alqahtani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Tongjin Deng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Susan E Bates
- Columbia University Medical Center, Division of Hematology/Oncology, New York, NY 10032, USA
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - John N D Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yi-Xiong Lei
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, Guangdong Province, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
18
|
Wu S, Fu L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer 2018; 17:25. [PMID: 29455646 PMCID: PMC5817862 DOI: 10.1186/s12943-018-0775-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance (MDR) triggered by ATP binding cassette (ABC) transporter such as ABCB1, ABCC1, ABCG2 limited successful cancer chemotherapy. Unfortunately, no commercial available MDR modulator approved by FDA was used in clinic. Tyrosine kinase inhibitors (TKIs) have been administrated to fight against cancer for decades. Almost TKI was used alone in clinic. However, drug combinations acting synergistically to kill cancer cells have become increasingly important in cancer chemotherapy as an approach for the recurrent resistant disease. Here, we summarize the effect of TKIs on enhancing the efficacy of conventional chemotherapeutic drug in ABC transporter-mediated MDR cancer cells, which encourage to further discuss and study in clinic.
Collapse
Affiliation(s)
- Shaocong Wu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
19
|
Fan YF, Zhang W, Zeng L, Lei ZN, Cai CY, Gupta P, Yang DH, Cui Q, Qin ZD, Chen ZS, Trombetta LD. Dacomitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters. Cancer Lett 2018; 421:186-198. [PMID: 29331420 DOI: 10.1016/j.canlet.2018.01.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Abstract
The development of multidrug resistance (MDR) to chemotherapy remains a major challenge in the treatment of cancer. Numerous mechanisms have been recognized that cause MDR, but one of the most important mechanisms is overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, through which the efflux of various anticancer drugs against their concentration gradients is powered by ATP. In recent years, small molecular tyrosine kinase inhibitors (TKIs) have been developed for treatment in various human cancers overexpressing epidermal growth factor receptor (EGFR). At the same time, some TKIs have been shown to be capable of inhibiting ABC transporter-mediated MDR. Dacomitinib (PF-00299804) is a second generation, irreversible TKI, which has shown positive anticancer activities in some preclinical and clinical trials. As many TKIs are substrates or inhibitors of ABC transporters, this study investigates whether dacomitinib could interact with ABC subfamily members that mediate MDR, including ABCB1 (P-gp), ABCG2 (BCRP) and ABCC1 (MRP1). The results showed that dacomitinib at 1.0 μM significantly reversed drug resistance mediated by ABCB1 and ABCG2, but not ABCC1, doing so by antagonizing the drug efflux function in ABCB1- and ABCG2-overexpressing cell lines. The reversal effect on ABCB1-overexpressing cells is more potent than that on ABCG2-overexpressing cells. In addition, dacomitinib at reversal concentration affected neither the protein expression level nor the localization of ABCB1 and ABCG2. Therefore, the mechanisms of this modulating effect are likely to be the following: first, as an inhibitor of ABCB1 or ABCG2 transporters, dacomitinib binds to drug-substrate site in transmembrane domains (TMD) stably in a noncompetitive manner; or second, dacomitinib inhibits ATPase activity and maintains the stability of TMD conformation in a concentration-dependent manner thereby inhibiting the drug efflux function of ABCB1 or ABCG2 transporter. This study provides a useful combinational therapeutic strategy with dacomitinib and substrates of ABCB1 and/or ABCG2 transporters in ABCB1- or ABCG2-overexpressing cancers.
Collapse
Affiliation(s)
- Ying-Fang Fan
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Wei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261041, China
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, 510275, China
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zuo-Dong Qin
- College of Chemical and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan, 425199, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Louis D Trombetta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
20
|
Wu KJ, Huang JM, Zhong HJ, Dong ZZ, Vellaisamy K, Lu JJ, Chen XP, Chiu P, Kwong DWJ, Han QB, Ma DL, Leung CH. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells. PLoS One 2017; 12:e0177123. [PMID: 28570563 PMCID: PMC5453690 DOI: 10.1371/journal.pone.0177123] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/21/2017] [Indexed: 12/18/2022] Open
Abstract
The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent.
Collapse
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jie-Min Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kasipandi Vellaisamy
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiu-Ping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Pauline Chiu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Daniel W. J. Kwong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- * E-mail: (CHL); (DLM)
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- * E-mail: (CHL); (DLM)
| |
Collapse
|
21
|
Gupta P, Xie M, Narayanan S, Wang YJ, Wang XQ, Yuan T, Wang Z, Yang DH, Chen ZS. GSK1904529A, a Potent IGF-IR Inhibitor, Reverses MRP1-Mediated Multidrug Resistance. J Cell Biochem 2017; 118:3260-3267. [PMID: 28266043 DOI: 10.1002/jcb.25975] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/03/2017] [Indexed: 12/20/2022]
Abstract
Overexpression of multidrug-resistant efflux transporters is one of the major causes of chemotherapy failure. MRP1, a 190 kDa efflux transporter, confers resistance to a wide of range of chemotherapeutic drugs. Here we study the cellular effects of GSK1904529A in reversing MRP1-mediated drug resistance. Cytotoxicity of GSK1904529A was determined by MTT assay. Reversal effects of GSK1904529A in combination with MRP1 substrates were determined. The intracellular accumulation and efflux of MRP1 substrate was measured by scintillation counter and protein expression was determined by Western blotting analysis. Cell cycle effects of GSK1904529A in combination with MRP1 substrates were determined by flow cytometric analysis. GSK1904529A, at non-toxic concentrations, enhanced the cytotoxicity of MRP1 substrates in HEK293/MRP1 cells. Furthermore, GSK1904529A increased the intracellular accumulation of [3 H]-vinblastine by inhibiting the efflux function of MRP1. GSK1904529A did not alter the expression level of MRP1, induced a G0/G1 phase cell cycle arrest. Our results indicated that GSK1904529A significantly increased the sensitivity of MRP1 overexpressing cells to chemotherapeutic agents. Furthermore, GSK1904529A enhanced the efficacy of chemotherapeutic drugs that are substrates of MRP1. J. Cell. Biochem. 118: 3260-3267, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Meina Xie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439.,Medicine Experiment Center, Weifang Medical University, Weifang Shandong Province, 261053, People's Republic of China
| | - Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Timothy Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Ziyue Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439
| |
Collapse
|
22
|
Wang YJ, Zhang YK, Zhang GN, Al Rihani SB, Wei MN, Gupta P, Zhang XY, Shukla S, Ambudkar SV, Kaddoumi A, Shi Z, Chen ZS. Regorafenib overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter in colorectal cancer: In vitro and in vivo study. Cancer Lett 2017; 396:145-154. [PMID: 28302530 DOI: 10.1016/j.canlet.2017.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 01/14/2023]
Abstract
Chemotherapeutic multidrug resistance (MDR) is a significant challenge to overcome in clinic practice. Several mechanisms contribute to MDR, one of which is the augmented drug efflux induced by the upregulation of ABCB1 in cancer cells. Regorafenib, a multikinase inhibitor targeting the RAS/RAF/MEK/ERK pathway, was approved by the FDA to treat metastatic colorectal cancer and gastrointestinal stromal tumors. We investigated whether and how regorafenib overcame MDR mediated by ABCB1. The results showed that regorafenib reversed the ABCB1-mediated MDR and increased the accumulation of [3H]-paclitaxel in ABCB1-overexpressing cells by suppressing efflux activity of ABCB1, but not altering expression level and localization of ABCB1. Regorafenib inhibited ATPase activity of ABCB1. In mice bearing resistant colorectal tumors, regorafenib raised the intratumoral concentration of paclitaxel and suppressed the growth of resistant colorectal tumors. But regorafenib did not induce cardiotoxicity/myelosuppression of paclitaxel in mice. Strategy to reposition one FDA-approved anticancer drug regorafenib to overcome the resistance of another FDA-approved, widely used chemotherapeutic paclitaxel, may be a promising direction for the field of adjuvant chemotherapy. This study provides clinical rationale for combination of conventional chemotherapy and targeted anticancer agents.
Collapse
Affiliation(s)
- Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Guan-Nan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Sweilem B Al Rihani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Meng-Ning Wei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Xiao-Yu Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
23
|
Thiazole-valine peptidomimetic (TTT-28) antagonizes multidrug resistance in vitro and in vivo by selectively inhibiting the efflux activity of ABCB1. Sci Rep 2017; 7:42106. [PMID: 28181548 PMCID: PMC5299601 DOI: 10.1038/srep42106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/06/2017] [Indexed: 12/20/2022] Open
Abstract
Multidrug resistance (MDR) attenuates the chemotherapy efficacy and increases the probability of cancer recurrence. The accelerated drug efflux mediated by ATP-binding cassette (ABC) transporters is one of the major MDR mechanisms. This study investigated if TTT-28, a newly synthesized thiazole-valine peptidomimetic, could reverse ABCB1-mediated MDR in vitro and in vivo. TTT-28 reversed the ABCB1-mediated MDR and increased the accumulation of [3H]-paclitaxel in ABCB1 overexpressing cells by selectively blocking the efflux function of ABCB1, but not interfering with the expression level and localization of ABCB1. Animal study revealed that TTT-28 enhanced the intratumoral concentration of paclitaxel and promoted apoptosis, thereby potently inhibiting the growth of ABCB1 overexpressing tumors. But TTT-28 did not induce the toxicity (cardiotoxicity/myelosuppression) of paclitaxel in mice. In this study, we synthesized and evaluated a novel selective inhibitor of ABCB1 (TTT-28) with high efficacy and low toxicity. The identification and characterization of this new thiazole-valine peptidomimetic will facilitate design and synthesis of a new generation of ABCB1 inhibitors, leading to further research on multidrug resistance and combination chemotherapy. Furthermore, the strategy that co-administer MDR-ABCB1 inhibitor to overcome the resistance of one FDA approved, widely used chemotherapeutic paclitaxel, may be promising direction for the field of adjuvant chemotherapy.
Collapse
|
24
|
Zhang GN, Zhang YK, Wang YJ, Barbuti AM, Zhu XJ, Yu XY, Wen AW, Wurpel JND, Chen ZS. Modulating the function of ATP-binding cassette subfamily G member 2 (ABCG2) with inhibitor cabozantinib. Pharmacol Res 2017; 119:89-98. [PMID: 28131876 DOI: 10.1016/j.phrs.2017.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Cabozantinib (XL184) is a small molecule tyrosine kinase receptor inhibitor, which targets c-Met and VEGFR2. Cabozantinib has been approved by the Food and Drug Administration to treat advanced medullary thyroid cancer and renal cell carcinoma. In the present study, we evaluated the ability of cabozantinib to modulate the function of the ATP-binding cassette subfamily G member 2 (ABCG2) by sensitizing cells that are resistant to ABCG2 substrate antineoplastic drugs. We used a drug-selected resistant cell line H460/MX20 and three ABCG2 stable transfected cell lines ABCG2-482-R2, ABCG2-482-G2, and ABCG2-482-T7, which overexpress ABCG2. Cabozantinib, at non-toxic concentrations (3 or 5μM), sensitized the ABCG2-overexpressing cells to mitoxantrone, SN-38, and topotecan. Our results indicate that cabozantinib reverses ABCG2-mediated multidrug resistance by antagonizing the drug efflux function of the ABCG2 transporter instead of downregulating its expression. The molecular docking analysis indicates that cabozantinib binds to the drug-binding site of the ABCG2 transporter. Overall, our findings demonstrate that cabozantinib inhibits the ABCG2 transporter function and consequently enhances the effect of the antineoplastic agents that are substrates of ABCG2. Cabozantinib may be a useful agent in anticancer treatment regimens for patients who are resistant to ABCG2 substrate drugs.
Collapse
Affiliation(s)
- Guan-Nan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA
| | - Anna Maria Barbuti
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA
| | - Xi-Jun Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA; The Affiliated High School of South China Normal University, Guangzhou, Guangdong, 510630, China
| | - Xin-Yue Yu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA; Zhixin High School, Guangzhou, Guangdong, 510000, China
| | - Ai-Wen Wen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA; Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510515, China
| | - John N D Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA.
| |
Collapse
|
25
|
An X, Sarmiento C, Tan T, Zhu H. Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 2017; 7:38-51. [PMID: 28119807 PMCID: PMC5237711 DOI: 10.1016/j.apsb.2016.09.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/30/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance (MDR) remains a major clinical obstacle to successful cancer treatment. Although diverse mechanisms of MDR have been well elucidated, such as dysregulation of drugs transporters, defects of apoptosis and autophagy machinery, alterations of drug metabolism and drug targets, disrupti on of redox homeostasis, the exact mechanisms of MDR in a specific cancer patient and the cross-talk among these different mechanisms and how they are regulated are poorly understood. MicroRNAs (miRNAs) are a new class of small noncoding RNAs that could control the global activity of the cell by post-transcriptionally regulating a large variety of target genes and proteins expression. Accumulating evidence shows that miRNAs play a key regulatory role in MDR through modulating various drug resistant mechanisms mentioned above, thereby holding much promise for developing novel and more effective individualized therapies for cancer treatment. This review summarizes the various MDR mechanisms and mainly focuses on the role of miRNAs in regulating MDR in cancer treatment.
Collapse
Affiliation(s)
- Xin An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Cesar Sarmiento
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding authors..
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding authors..
| |
Collapse
|
26
|
Anreddy N, Patel A, Zhang YK, Wang YJ, Shukla S, Kathawala RJ, Kumar P, Gupta P, Ambudkar SV, Wurpel JND, Chen ZS, Guo H. A-803467, a tetrodotoxin-resistant sodium channel blocker, modulates ABCG2-mediated MDR in vitro and in vivo. Oncotarget 2016; 6:39276-91. [PMID: 26515463 PMCID: PMC4770772 DOI: 10.18632/oncotarget.5747] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/09/2015] [Indexed: 11/25/2022] Open
Abstract
ATP-binding cassette subfamily G member 2 (ABCG2) is a member of the ABC transporter superfamily proteins, which has been implicated in the development of multidrug resistance (MDR) in cancer, apart from its physiological role to remove toxic substances out of the cells. The diverse range of substrates of ABCG2 includes many antineoplastic agents such as topotecan, doxorubicin and mitoxantrone. ABCG2 expression has been reported to be significantly increased in some solid tumors and hematologic malignancies, correlated to poor clinical outcomes. In addition, ABCG2 expression is a distinguishing feature of cancer stem cells, whereby this membrane transporter facilitates resistance to the chemotherapeutic drugs. To enhance the chemosensitivity of cancer cells, attention has been focused on MDR modulators. In this study, we investigated the effect of a tetrodotoxin-resistant sodium channel blocker, A-803467 on ABCG2-overexpressing drug selected and transfected cell lines. We found that at non-toxic concentrations, A-803467 could significantly increase the cellular sensitivity to ABCG2 substrates in drug-resistant cells overexpressing either wild-type or mutant ABCG2. Mechanistic studies demonstrated that A-803467 (7.5 μM) significantly increased the intracellular accumulation of [3H]-mitoxantrone by inhibiting the transport activity of ABCG2, without altering its expression levels. In addition, A-803467 stimulated the ATPase activity in membranes overexpressed with ABCG2. In a murine model system, combination treatment of A-803467 (35 mg/kg) and topotecan (3 mg/kg) significantly inhibited the tumor growth in mice xenografted with ABCG2-overexpressing cancer cells. Our findings indicate that a combination of A-803467 and ABCG2 substrates may potentially be a novel therapeutic treatment in ABCG2-positive drug resistant cancers.
Collapse
Affiliation(s)
- Nagaraju Anreddy
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Atish Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Priyank Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John N D Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Huiqin Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
27
|
Li XF, Huang QY, Yang WZ, Wang HJ, Li CW. Alterations in ACE and ABCG2 expression levels in the testes of rats subjected to atropine-induced toxicity. Mol Med Rep 2016; 14:5211-5216. [PMID: 27779686 DOI: 10.3892/mmr.2016.5857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/20/2016] [Indexed: 11/06/2022] Open
Abstract
Atropine-induced damage is associated with enzyme and protein alterations. The aim of the present study was to investigate atropine‑induced alterations in testicular expression levels of angiotensin‑converting enzyme (ACE) and adenosine 5'-triphosphate binding cassette sub‑family G member 2 (ABCG2) following atropine treatment. Male Wistar rats received 15 mg/kg/day atropine for 7 days; control rats received an identical volume of saline, Following treatment, the testes were harvested for immunohistochemistry and in situ hybridization to examine the protein and gene expression levels of ACE and ABCG2 by digital image analysis. ACE gene and protein expression levels were significantly reduced in the testes of atropine‑treated rats, compared with control rats (P=0.0001 and P<0.001, respectively). In addition, ABCG2 gene and protein expression levels were significantly increased in the testes of atropine‑treated rats, compared with control rats (P=0.0017 and P<0.001, respectively). Thus, the results of the present study demonstrate that testicular protein and gene expression levels of ACE and ABCG2 were altered as a result of atropine‑induced toxicity in the rats. These alterations may result in abnormal testicular function, and the proteins and genes identified in the present study may be useful to elucidate the mechanisms underlying atropine‑induced toxicity and provide a direction for further studies.
Collapse
Affiliation(s)
- Xue-Fang Li
- Library of Dali University, Dali, Yunnan 671003, P.R. China
| | - Quan-Yong Huang
- Department of Pathology, School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, P.R. China
| | - Wen-Zhong Yang
- Department of Pathology, School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, P.R. China
| | - Hui-Jie Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, P.R. China
| | - Can-Wei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Dali University, Dali, Yunnan 671000, P.R. China
| |
Collapse
|
28
|
Bu LL, Zhao ZL, Liu JF, Ma SR, Huang CF, Liu B, Zhang WF, Sun ZJ. STAT3 blockade enhances the efficacy of conventional chemotherapeutic agents by eradicating head neck stemloid cancer cell. Oncotarget 2016; 6:41944-58. [PMID: 26556875 PMCID: PMC4747200 DOI: 10.18632/oncotarget.5986] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022] Open
Abstract
Signaling transducer and activator 3 (STAT3) and cancer stem cells (CSCs) have garnered huge attention as a therapeutic focus, based on evidence that they may represent an etiologic root of tumor initiation and radio-chemoresistance. Here, we investigated the high phosphorylation status of STAT3 (p-STAT3) and its correlation with self-renewal markers in head neck squamous cell carcinoma (HNSCC). Over-expression of p-STAT3 was found to have increased in post chemotherapy HNSCC tissue. We showed that blockade of p-STAT3 eliminated both bulk tumor and side population (SP) cells with characteristics of CSCs in vitro. Inhibition of p-STAT3 using small molecule S3I-201 significantly delayed tumorigenesis of spontaneous HNSCC in mice. Combining blockade of p-STAT3 with cytotoxic drugs cisplatin, docetaxel, 5-fluorouracil (TPF) enhanced the antitumor effect in vitro and in vivo with decreased tumor sphere formation and SP cells. Taken together, our results advocate blockade of p-STAT3 in combination with conventional chemotherapeutic drugs enhance efficacy by improving CSCs eradication in HNSCC.
Collapse
Affiliation(s)
- Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Li Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Zhang XY, Zhang YK, Wang YJ, Gupta P, Zeng L, Xu M, Wang XQ, Yang DH, Chen ZS. Osimertinib (AZD9291), a Mutant-Selective EGFR Inhibitor, Reverses ABCB1-Mediated Drug Resistance in Cancer Cells. Molecules 2016; 21:molecules21091236. [PMID: 27649127 PMCID: PMC6273565 DOI: 10.3390/molecules21091236] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/07/2016] [Accepted: 09/10/2016] [Indexed: 01/08/2023] Open
Abstract
In recent years, tyrosine kinase inhibitors (TKIs) have been shown capable of inhibiting the ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR). In this study, we determine whether osimertinib, a novel selective, irreversible EGFR (epidermal growth factor receptor) TKI, could reverse ABC transporter-mediated MDR. The results showed that, at non-toxic concentrations, osimertinib significantly sensitized both ABCB1-transfected and drug-selected cell lines to substrate anticancer drugs colchicine, paclitaxel, and vincristine. Osimertinib significantly increased the accumulation of [3H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant alteration in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 0.3 µM osimertinib for 72 h. In addition, ATPase assay showed osimertinib stimulated ABCB1 ATPase activity. Molecular docking and molecular dynamic simulations showed osimertinib has strong and stable interactions at the transmembrane domain of human homology ABCB1. Taken together, our findings suggest that osimertinib, a clinically-approved third-generation EGFR TKI, can reverse ABCB1-mediated MDR, which supports the combination therapy with osimertinib and ABCB1 substrates may potentially be a novel therapeutic stategy in ABCB1-positive drug resistant cancers.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Megan Xu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
30
|
Bafetinib (INNO-406) reverses multidrug resistance by inhibiting the efflux function of ABCB1 and ABCG2 transporters. Sci Rep 2016; 6:25694. [PMID: 27157787 PMCID: PMC4860574 DOI: 10.1038/srep25694] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/07/2016] [Indexed: 11/29/2022] Open
Abstract
ATP-Binding Cassette transporters are involved in the efflux of xenobiotic compounds and are responsible for decreasing drug accumulation in multidrug resistant (MDR) cells. Discovered by structure-based virtual screening algorithms, bafetinib, a Bcr-Abl/Lyn tyrosine kinase inhibitor, was found to have inhibitory effects on both ABCB1- and ABCG2-mediated MDR in this in-vitro investigation. Bafetinib significantly sensitized ABCB1 and ABCG2 overexpressing MDR cells to their anticancer substrates and increased the intracellular accumulation of anticancer drugs, particularly doxorubicin and [3H]-paclitaxel in ABCB1 overexpressing cells; mitoxantrone and [3H]-mitoxantrone in ABCG2 overexpressing cells, respectively. Bafetinib stimulated ABCB1 ATPase activities while inhibited ABCG2 ATPase activities. There were no significant changes in the expression level or the subcellular distribution of ABCB1 and ABCG2 in the cells exposed to 3 μM of bafetinib. Overall, our study indicated that bafetinib reversed ABCB1- and ABCG2-mediated MDR by blocking the drug efflux function of these transporters. These findings might be useful in developing combination therapy for MDR cancer treatment.
Collapse
|
31
|
Trametinib modulates cancer multidrug resistance by targeting ABCB1 transporter. Oncotarget 2016; 6:15494-509. [PMID: 25915534 PMCID: PMC4558166 DOI: 10.18632/oncotarget.3820] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 01/01/2023] Open
Abstract
Overexpression of adenine triphosphate (ATP)-binding cassette (ABC) transporters is one of the main reasons of multidrug resistance (MDR) in cancer cells. Trametinib, a novel specific small-molecule mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor, is currently used for the treatment of melanoma in clinic. In this study, we investigated the effect of trametinib on MDR mediated by ABC transporters. Trametinib significantly potentiated the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in cancer cells overexpressed ABCB1, but not ABCC1 and ABCG2. Furthermore, trametinib did not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, trametinib potently blocked the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. Importantly, trametinib remarkably enhanced the effect of vincristine against the xenografts of ABCB1-overexpressing cancer cells in nude mice. The predicted binding mode showed the hydrophobic interactions of trametinib within the large drug binding cavity of ABCB1. Consequently, our findings may have important implications for use of trametinib in combination therapy for cancer treatment.
Collapse
|
32
|
Impact of whole brain radiation therapy on CSF penetration ability of Icotinib in EGFR-mutated non-small cell lung cancer patients with brain metastases: Results of phase I dose-escalation study. Lung Cancer 2016; 96:93-100. [PMID: 27133757 DOI: 10.1016/j.lungcan.2016.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/19/2016] [Accepted: 04/05/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Whole-brain radiation therapy (WBRT) and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are both treatment options for EGFR-mutated non-small cell lung cancer (NSCLC) patients with brain metastases. However, the dose-escalation toxicity and efficacy of combination therapy, and the effect of WBRT on cerebrospinal fluid (CSF) penetration of EGFR-TKIs are still unclear. MATERIALS AND METHODS EGFR-mutated NSCLC patients with brain metastases were enrolled in this study, and the cohorts were constructed with a 3+3 design. The patients received icotinib with escalating doses (125-625mg, tid), and the concurrent WBRT (37.5Gy/15f/3weeks) started a week later. The CSF penetration rates of icotinib were tested before, immediately after, and 4 weeks after WBRT, respectively. Potential toxicities and benefits from dose-escalation treatment were analyzed. RESULTS Fifteen patients were included in this study, 3 at each dose level from 125mg-375mg and 6 at 500mg with 3 occurred dose-limiting toxicities. The maximal tolerated dose of icotinib was 375mg tid in this combination therapy. There was a significant correlation between icotinib concentration in the CSF and plasma (R(2)=0.599, P<0.001). The CSF penetration rate of icotinib, from 1.2% to 9.7%, reached a maximum at 375mg (median, 6.1%). There was no significant difference for CSF penetration rates among the three test points (median, 4.1% vs. 2.8% vs. 2.8%, P=0.16). The intracranial objective response rate and median intracranial progression free survival are 80% and 18.9 months. CONCLUSIONS WBRT plus concurrent icotinib is well tolerated in EGFR-mutated NSCLC patients with brain metastases, up to an icotinib dose of 375mg tid. The icotinib CSF concentration seemed to have a potential ceiling effect with the dose escalation, and WBRT seemed to have no significant impact on CSF penetration of icotinib till 4 weeks after the treatment.
Collapse
|
33
|
Sui H, Zhou L, Zhang Y, Huang J, Liu X, Ji Q, Fu X, Wen H, Chen Z, Deng W, Zhu H, Li Q. Evodiamine Suppresses ABCG2 Mediated Drug Resistance by Inhibiting p50/p65 NF‐κB Pathway in Colorectal Cancer. J Cell Biochem 2016; 117:1471-81. [DOI: 10.1002/jcb.25451] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/19/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Hua Sui
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Li‐Hong Zhou
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Ya‐Li Zhang
- Department of NursingShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Jian‐Ping Huang
- Department of General SurgeryShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Xuan Liu
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Qing Ji
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Xiao‐Ling Fu
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Hao‐Tian Wen
- Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew York11439
| | - Wan‐Li Deng
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Hui‐Rong Zhu
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Qi Li
- Department of Medical OncologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
34
|
Gupta P, Jani KA, Yang DH, Sadoqi M, Squillante E, Chen ZS. Revisiting the role of nanoparticles as modulators of drug resistance and metabolism in cancer. Expert Opin Drug Metab Toxicol 2016; 12:281-9. [DOI: 10.1517/17425255.2016.1145655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Khushboo A. Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Mostafa Sadoqi
- Department of Physics, St. John’s College of Liberal Arts and Sciences, St. John’s University, Queens, New York, USA
| | - Emilio Squillante
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, USA
| |
Collapse
|
35
|
Kathawala RJ, Wei L, Anreddy N, Chen K, Patel A, Alqahtani S, Zhang YK, Wang YJ, Sodani K, Kaddoumi A, Ashby CR, Chen ZS. The small molecule tyrosine kinase inhibitor NVP-BHG712 antagonizes ABCC10-mediated paclitaxel resistance: a preclinical and pharmacokinetic study. Oncotarget 2016; 6:510-21. [PMID: 25402202 PMCID: PMC4381611 DOI: 10.18632/oncotarget.2638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/28/2014] [Indexed: 02/02/2023] Open
Abstract
Paclitaxel exhibits clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. Here, we determine the effect of NVP-BHG712, a specific EphB4 receptor inhibitor, on 1) paclitaxel resistance in HEK293 cells transfected with ABCC10, 2) the growth of tumors in athymic nude mice that received NVP-BHG712 and paclitaxel systemically and 3) the pharmacokinetics of paclitaxel in presence or absence of NVP-BHG712. NVP-BHG712 (0.5 μM), in HEK293/ABCC10 cells, significantly enhanced the intracellular accumulation of paclitaxel by inhibiting the efflux activity of ABCC10 without altering the expression level of the ABCC10 protein. Furthermore, NVP-BHG712 (25 mg/kg, p.o., q3d x 6), in combination with paclitaxel (15 mg/kg, i.p., q3d x 6), significantly inhibited the growth of ABCC10-expressing tumors in athymic nude mice. NVP-BHG712 administration significantly increased the levels of paclitaxel in the tumors but not in plasma compared to paclitaxel alone. The combination of NVP-BHG712 and paclitaxel could serve as a novel and useful therapeutic strategy to attenuate paclitaxel resistance mediated by the expression of the ABCC10 transporter.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA. Current address: Division of Oncology, Stanford University, Stanford, CA, USA
| | - Liuya Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA. School of Pharmacy and Biological Sciences, Weifang Medical University, Weifang, People's Republic of China
| | - Nagaraju Anreddy
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA. Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA. Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Atish Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Saeed Alqahtani
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana, Monroe, LA, USA
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Kamlesh Sodani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana, Monroe, LA, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| |
Collapse
|
36
|
Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett 2015; 370:153-64. [PMID: 26499806 DOI: 10.1016/j.canlet.2015.10.010] [Citation(s) in RCA: 555] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022]
Abstract
Multidrug resistance (MDR) is a serious phenomenon employed by cancer cells which hampers the success of cancer pharmacotherapy. One of the common mechanisms of MDR is the overexpression of ATP-binding cassette (ABC) efflux transporters in cancer cells such as P-glycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2) that limits the prolonged and effective use of chemotherapeutic drugs. Researchers have found that developing inhibitors of ABC efflux transporters as chemosensitizers could overcome MDR. But the clinical trials have shown that most of these chemosensitizers are merely toxic and only show limited or no benefits to cancer patients, thus new inhibitors are being explored. Recent findings also suggest that efflux pumps of the ABC transporter family are subject to epigenetic gene regulation. In this review, we summarize recent findings of the role of ABC efflux transporters in MDR.
Collapse
|
37
|
Afatinib circumvents multidrug resistance via dually inhibiting ATP binding cassette subfamily G member 2 in vitro and in vivo. Oncotarget 2015; 5:11971-85. [PMID: 25436978 PMCID: PMC4322967 DOI: 10.18632/oncotarget.2647] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/27/2014] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) to chemotherapeutic drugs is a formidable barrier to the success of cancer chemotherapy. Expressions of ATP-binding cassette (ABC) transporters contribute to clinical MDR phenotype. In this study, we found that afatinib, a small molecule tyrosine kinase inhibitor (TKI) targeting EGFR, HER-2 and HER-4, reversed the chemoresistance mediated by ABCG2 in vitro, but had no effect on that mediated by multidrug resistance protein ABCB1 and ABCC1. In addition, afatinib, in combination with topotecan, significantly inhibited the growth of ABCG2-overexpressing cell xenograft tumors in vivo. Mechanistic investigations exhibited that afatinib significantly inhibited ATPase activity of ABCG2 and downregulated expression level of ABCG2, which resulted in the suppression of efflux activity of ABCG2 in parallel to the increase of intracellular accumulation of ABCG2 substrate anticancer agents. Taken together, our findings may provide a new and useful combinational therapeutic strategy of afatinib with chemotherapeutical drug for the patients with ABCG2 overexpressing cancer cells.
Collapse
|
38
|
Hasinoff BB, Wu X, Yadav AA, Patel D, Zhang H, Wang DS, Chen ZS, Yalowich JC. Cellular mechanisms of the cytotoxicity of the anticancer drug elesclomol and its complex with Cu(II). Biochem Pharmacol 2014; 93:266-76. [PMID: 25550273 DOI: 10.1016/j.bcp.2014.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
The potent anticancer drug elesclomol, which forms an extremely strong complex with copper, is currently undergoing clinical trials. However, its mechanism of action is not well understood. Treatment of human erythroleukemic K562 cells with either elesclomol or Cu(II)-elesclomol caused an immediate halt in cell growth which was followed by a loss of cell viability after several hours. Treatment of K562 cells also resulted in induction of apoptosis as measured by annexin V binding. Elesclomol or Cu(II)-elesclomol treatment caused a G1 cell cycle block in synchronized Chinese hamster ovary cells. Elesclomol and Cu(II)-elesclomol induced DNA double strand breaks in K562 cells, suggesting that they may also have exerted their cytotoxicity by damaging DNA. Cu(II)-elesclomol also weakly inhibited DNA topoisomerase I (5.99.1.2) but was not active against DNA topoisomerase IIα (5.99.1.3). Elesclomol or Cu(II)-elesclomol treatment had little effect on the mitochondrial membrane potential of viable K562 cells. NCI COMPARE analysis showed that Cu(II)-elesclomol exerted its cytotoxicity by mechanisms similar to other cytotoxic copper chelating compounds. Experiments with cross-resistant cell lines overexpressing several ATP-binding cassette (ABC) type efflux transporters showed that neither elesclomol nor Cu(II)-elesclomol were cross-resistant to cells overexpressing either ABCB1 (Pgp) or ABCG2 (BCRP), but that cells overexpressing ABCC1 (MRP1) were slightly cross-resistant. In conclusion, these results showed that elesclomol caused a rapid halt in cell growth, induced apoptosis, and may also have inhibited cell growth, in part, through its ability to damage DNA.
Collapse
Affiliation(s)
- Brian B Hasinoff
- Faculty of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada R3E 0T5.
| | - Xing Wu
- Faculty of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada R3E 0T5
| | - Arun A Yadav
- Faculty of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada R3E 0T5
| | - Daywin Patel
- Faculty of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada R3E 0T5
| | - Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, USA; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - De-Shen Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, USA; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, USA
| | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Kathawala RJ, Gupta P, Ashby CR, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 2014; 18:1-17. [PMID: 25554624 DOI: 10.1016/j.drup.2014.11.002] [Citation(s) in RCA: 554] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters represent one of the largest and oldest families of membrane proteins in all extant phyla from prokaryotes to humans, which couple the energy derived from ATP hydrolysis essentially to translocate, among various substrates, toxic compounds across the membrane. The fundamental functions of these multiple transporter proteins include: (1) conserved mechanisms related to nutrition and pathogenesis in bacteria, (2) spore formation in fungi, and (3) signal transduction, protein secretion and antigen presentation in eukaryotes. Moreover, one of the major causes of multidrug resistance (MDR) and chemotherapeutic failure in cancer therapy is believed to be the ABC transporter-mediated active efflux of a multitude of structurally and mechanistically distinct cytotoxic compounds across membranes. It has been postulated that ABC transporter inhibitors known as chemosensitizers may be used in combination with standard chemotherapeutic agents to enhance their therapeutic efficacy. The current paper reviews the advance in the past decade in this important domain of cancer chemoresistance and summarizes the development of new compounds and the re-evaluation of compounds originally designed for other targets as transport inhibitors of ATP-dependent drug efflux pumps.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
40
|
Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 2014; 19:13848-77. [PMID: 25191874 PMCID: PMC6271846 DOI: 10.3390/molecules190913848] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/27/2023] Open
Abstract
Tyrosine kinases (TKs) play an important role in pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Aberrant activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to interfere with the activity of deregulated kinases. These TKIs are remarkably effective in the treatment of various human cancers including head and neck, gastric, prostate and breast cancer and several types of leukemia. However, these TKIs are transported out of the cell by ATP-binding cassette (ABC) transporters, resulting in development of a characteristic drug resistance phenotype in cancer patients. Interestingly, some of these TKIs also inhibit the ABC transporter mediated multi drug resistance (MDR) thereby; enhancing the efficacy of conventional chemotherapeutic drugs. This review discusses the clinically relevant TKIs and their interaction with ABC drug transporters in modulating MDR.
Collapse
|