1
|
Jaiswal N, Mahata N, Chanda N. Nanogold-albumin conjugates: transformative approaches for next-generation cancer therapy and diagnostics. NANOSCALE 2025; 17:11191-11220. [PMID: 40237258 DOI: 10.1039/d4nr05279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nanogold-albumin conjugates have garnered significant attention as a highly adaptable theranostic platform, capable of delivering a wide range of therapeutics, from small-molecule drugs to larger biomolecules, while offering promising applications for monitoring and managing cancer. The remarkable theranostic capabilities of these conjugates stem from the combined strengths of gold and albumin, which provide low toxicity, a large surface area, customizable surface chemistry, and unique optical properties, all contributing to their potential in cancer therapy. This review delves into the design and development of two primary types of nanogold-albumin conjugate: supramolecular albumin-coated gold nanoparticles (GNP-BSA/HSA) and albumin-templated ultra-small gold nanoclusters (GNC-BSA/HSA). Each strategy offers distinct advantages, enabling the fine-tuning of conjugate properties to optimize therapeutic delivery and facilitate cancer-specific bio-sensing. The integration of gold and albumin further improves biocompatibility, extends circulation time, and enhances tumor targeting, making these conjugates an attractive option for cancer treatment. The review also focuses on the refinement of surface chemistry to achieve precise targeting of cancer cells, as well as the challenges and future prospects for advancing nanogold-albumin systems in clinical applications.
Collapse
Affiliation(s)
- Namita Jaiswal
- Human Centered Robotics and Cybernetics Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India.
- Department of Biotechnology, National Institute of Technology (NIT), Durgapur, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology (NIT), Durgapur, India
| | - Nripen Chanda
- Human Centered Robotics and Cybernetics Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India.
| |
Collapse
|
2
|
Raj A, Chandran C S, Dua K, Kamath V, Alex AT. Targeting overexpressed surface proteins: A new strategy to manage the recalcitrant triple-negative breast cancer. Eur J Pharmacol 2024; 981:176914. [PMID: 39154820 DOI: 10.1016/j.ejphar.2024.176914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous cancer that lacks all three molecular markers, Estrogen, Progesterone, and Human Epidermal Growth Factor Receptor 2 (HER2). This unique characteristic of TNBC makes it more resistant to hormonal therapy; hence, chemotherapy and surgery are preferred. Active targeting with nanoparticles is more effective in managing TNBC than a passive approach. The surface of TNBC cells overexpresses several cell-specific proteins, which can be explored for diagnostic and therapeutic purposes. Immunohistochemical analysis has revealed that TNBC cells overexpress αVβ3 integrin, Intercellular Adhesion Molecule 1 (ICAM-1), Glucose Transporter 5 (GLUT5), Transmembrane Glycoprotein Mucin 1 (MUC-1), and Epidermal Growth Factor Receptor (EGFR). These surface proteins can be targeted using ligands, such as aptamers, antibodies, and sugar molecules. Targeting the surface proteins of TNBC with ligands helps harmonize treatment and improve patient compliance. In this review, we discuss the proteins expressed, which are limited to αVβ3 integrin proteins, ICAM-1, GLUT-5, MUC1, and EGFR, on the surface of TNBC, the challenges associated with the preclinical setup of breast cancer for targeted nanoformulations, internalization techniques and their challenges, suggestions to overcome the limitations of successful translation of nanoparticles, and the possibility of ligand-conjugated nanoparticles targeting these surface receptors for a better therapeutic outcome.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Sarath Chandran C
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India, 670 503; Kerala University of Health Sciences, Thrissur, Kerala, India - 680 596.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007.
| | - Venkatesh Kamath
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| |
Collapse
|
3
|
Chang Y, Fu Q, Lu Z, Jin Q, Jin T, Zhang M. Ginsenoside Rg3 combined with near-infrared photothermal reversal of multidrug resistance in breast cancer MCF-7/ADR cells. Food Sci Nutr 2024; 12:5750-5761. [PMID: 39139957 PMCID: PMC11317707 DOI: 10.1002/fsn3.4205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 08/15/2024] Open
Abstract
Adriamycin (ADR) is a frequently employed chemotherapeutic agent for the management of breast cancer. Nevertheless, multidrug resistance (MDR) can impair its therapeutic efficacy in breast cancer. MDR is characterized by increased expression of the P-glycoprotein (P-gp) efflux pump, up-regulation of anti-apoptotic proteins, and downregulation of pro-apoptotic proteins. Consequently, inhibition of ATP-binding cassette (ABC) transporter proteins has been deemed the most efficacious approach to overcome MDR. In this study, we used MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), Western blots, flow cytometry, immunofluorescence, and constructed xenograft tumors to investigate whether ginsenoside Rg3-near-infrared photothermal (Rg3-NIR) combination reversed multidrug resistance in MCF-7/ADR breast cancer. In vivo and in vitro experiments, the results showed that Rg3-NIR co-treatment was effective in inducing the apoptosis of MCF-7/ADR breast cancer cells. This was achieved by reversing the expression of drug resistance-associated proteins, while also inhibiting cell proliferation, migration, and epithelial-mesenchymal transition (EMT) processes via attenuation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway transduction. Ginsenoside Rg3 combined with near-infrared photothermal therapy (NIR) effectively reverses multidrug resistance in breast cancer MCF-7/ADR cells, providing a new therapeutic strategy for breast cancer drug resistance.
Collapse
Affiliation(s)
- Ying Chang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Qiang Fu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Zhongqi Lu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Quanxin Jin
- Department of Immunology and Pathogenic BiologyYanbian University Medical CollegeYanjiChina
| | - Tiefeng Jin
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| | - Meihua Zhang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiChina
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiChina
- Key Laboratory of the Science and Technology, Department of Jilin ProvinceYanjiChina
| |
Collapse
|
4
|
Kumari L, Mishra L, Patel P, Sharma N, Gupta GD, Kurmi BD. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer. J Drug Target 2023; 31:889-907. [PMID: 37539789 DOI: 10.1080/1061186x.2023.2245579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Triple-negative breast cancer (TNBC), a subtype of breast cancer that lacks expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2), has clinical features including a high degree of invasiveness, an elevated risk of metastasis, tendency to relapse, and poor prognosis. It constitutes around 10-15% of all breast cancer, and having heredity of BRCA1 mutated breast cancer could be a reason for the occurrence of TNBC in women. Overexpression of cellular and molecular targets, i.e. CD44 receptor, EGFR receptor, Folate receptor, Transferrin receptor, VEGF receptor, and Androgen receptor, have emerged as promising targets for treating TNBC. Signalling pathways such as Notch signalling and PI3K/AKT/mTOR also play a significant role in carrying out and managing crucial pro-survival and pro-growth cellular processes that can be utilised for targeted therapy against triple-negative breast cancer. This review sheds light on various targeting strategies, including cellular and molecular targets, signalling pathways, poly (ADP-ribose) polymerase inhibitors, antibody-drug conjugates, and immune checkpoint inhibitors PARP, immunotherapy, ADCs have all found a place in the current TNBC therapeutic paradigm. The role of photothermal therapy (PTT) and photodynamic therapy (PDT) has also been explored briefly.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | - Lopamudra Mishra
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, Punjab, India
| | - Nitin Sharma
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| |
Collapse
|
5
|
Meng Y, Zhou J, Liu X, Zeng F, Wen T, Meng J, Liu J, Xu H. CXC Chemokine Receptor Type 4 Antagonistic Gold Nanorods Induce Specific Immune Responses and Long-Term Immune Memory to Combat Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18734-18746. [PMID: 37017641 DOI: 10.1021/acsami.3c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Triple-negative breast cancer (TNBC) is highly challenging in its treatment because of the lack of the targeted markers. TNBC patients are not able to acquire benefits from endocrine therapy and targeted therapy except for chemotherapy. CXCR4 is highly expressed on TNBC cells that mediated the tumor cell metastasis as well as proliferation by the response of its ligand CXCL12, therefore holding promising potential of a candidate target for the treatment. In this work, a novel conjugate of CXCR4 antagonist peptide E5 and gold nanorods was fabricated (AuNRs-E5), which was applied to murine breast cancer tumor cells and an animal model, aiming to induce endoplasmic reticulum stress by endoplasmic reticulum-targeted photothermal immunological effects. Results showed that AuNRs-E5 could induce much more generation of damage-related molecular patterns in 4T1 cells under laser irradiation than AuNRs, which significantly promoted the maturation of dendritic cells and stimulated systematic anti-tumor immune responses by enhancing the infiltration of CD8+T cells into the tumor and tumor-draining lymph node, downregulating the regulatory T lymphocytes, and upregulating M1 macrophages in tumors, reversing the microenvironment from "cold" tumors to "hot" tumors. The administration of AuNRs-E5 with laser irradiation not only inhibited the tumor growth significantly but also exerted specific long immune responses to the triple-negative breast cancer tumor cells, which led to the prolonged survival of the mice and the specific immunological memory.
Collapse
Affiliation(s)
- Yiling Meng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College, Beijing 100005, China
| | - Jiawei Zhou
- Peking Union Medical College Hospital, Beijing 100730, China
| | - Xuanxin Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College, Beijing 100005, China
| | - Fei Zeng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College, Beijing 100005, China
| | - Tao Wen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College, Beijing 100005, China
| | - Jie Meng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College, Beijing 100005, China
| | - Jian Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College, Beijing 100005, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
6
|
Pontico M, Conte M, Petronella F, Frantellizzi V, De Feo MS, Di Luzio D, Pani R, De Vincentis G, De Sio L. 18F-fluorodeoxyglucose ( 18F-FDG) Functionalized Gold Nanoparticles (GNPs) for Plasmonic Photothermal Ablation of Cancer: A Review. Pharmaceutics 2023; 15:319. [PMID: 36839641 PMCID: PMC9967497 DOI: 10.3390/pharmaceutics15020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The meeting and merging between innovative nanotechnological systems, such as nanoparticles, and the persistent need to outperform diagnostic-therapeutic approaches to fighting cancer are revolutionizing the medical research scenario, leading us into the world of nanomedicine. Photothermal therapy (PTT) is a non-invasive thermo-ablative treatment in which cellular hyperthermia is generated through the interaction of near-infrared light with light-to-heat converter entities, such as gold nanoparticles (GNPs). GNPs have great potential to improve recovery time, cure complexity, and time spent on the treatment of specific types of cancer. The development of gold nanostructures for photothermal efficacy and target selectivity ensures effective and deep tissue-penetrating PTT with fewer worries about adverse effects from nonspecific distributions. Regardless of the thriving research recorded in the last decade regarding the multiple biomedical applications of nanoparticles and, in particular, their conjugation with drugs, few works have been completed regarding the possibility of combining GNPs with the cancer-targeted pharmaceutical fluorodeoxyglucose (FDG). This review aims to provide an actual scenario on the application of functionalized GNP-mediated PTT for cancer ablation purposes, regarding the opportunity given by the 18F-fluorodeoxyglucose (18F-FDG) functionalization.
Collapse
Affiliation(s)
- Mariano Pontico
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Francesca Petronella
- Institute of Crystallography CNR-IC, National Research Council of Italy, Monterotondo, 00015 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Dario Di Luzio
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Roberto Pani
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
7
|
Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010246. [PMID: 36678877 PMCID: PMC9866847 DOI: 10.3390/pharmaceutics15010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a life-threatening form of breast cancer which has been found to account for 15% of all the subtypes of breast cancer. Currently available treatments are significantly less effective in TNBC management because of several factors such as poor bioavailability, low specificity, multidrug resistance, poor cellular uptake, and unwanted side effects being the major ones. As a rapidly growing field, nano-therapeutics offers promising alternatives for breast cancer treatment. This platform provides a suitable pathway for crossing biological barriers and allowing sustained systemic circulation time and an improved pharmacokinetic profile of the drug. Apart from this, it also provides an optimized target-specific drug delivery system and improves drug accumulation in tumor cells. This review provides insights into the molecular mechanisms associated with the pathogenesis of TNBC, along with summarizing the conventional therapy and recent advances of different nano-carriers for the management of TNBC.
Collapse
Affiliation(s)
- Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Anuradha Dey
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute—Frederick, Frederick, MD 21702, USA
| | - Sanskruti Kharavtekar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| |
Collapse
|
8
|
Sun J, Zhao H, Xu W, Jiang GQ. Recent advances in photothermal therapy-based multifunctional nanoplatforms for breast cancer. Front Chem 2022; 10:1024177. [PMID: 36199665 PMCID: PMC9528973 DOI: 10.3389/fchem.2022.1024177] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers in women worldwide; however, the successful treatment of BC, especially triple-negative breast cancer (TNBC), remains a significant clinical challenge. Recently, photothermal therapy (PTT), which involves the generation of heat under irradiation to achieve photothermal ablation of BC with minimal invasiveness and outstanding spatial–temporal selectivity, has been demonstrated as a novel therapy that can overcome the drawbacks of chemotherapy or surgery. Significantly, when combining PTT with chemotherapy and/or photodynamic therapy, an enhanced synergistic therapeutic effect can be achieved in both primary and metastatic BC tumors. Thus, this review discusses the recent developments in nanotechnology-based photothermal therapy for the treatment of BC and its metastasis to provide potential strategies for future BC treatment.
Collapse
Affiliation(s)
- Jingjun Sun
- Department of Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Breast Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
- *Correspondence: Jingjun Sun, ; Guo-Qin Jiang,
| | - Haiyan Zhao
- Department of Breast Surgery, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Weixuan Xu
- Department of Breast Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Guo-Qin Jiang
- Department of Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Jingjun Sun, ; Guo-Qin Jiang,
| |
Collapse
|
9
|
Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common cancers among women that is associated with high mortality. Conventional treatments including surgery, radiotherapy, and chemotherapy, which are not effective enough and have disadvantages such as toxicity and damage to healthy cells. Photothermal therapy (PTT) of cancer cells has been took great attention by researchers in recent years due to the use of light radiation and heat generation at the tumor site, which thermal ablation is considered a minimally invasive method for the treatment of breast cancer. Nanotechnology has opened up a new perspective in the treatment of breast cancer using PTT method. Through NIR light absorption, researchers applied various nanostructures because of their specific nature of penetrating and targeting tumor tissue, increasing the effectiveness of PTT, and combining it with other treatments. If PTT is used with common cancer treatments, it can dramatically increase the effectiveness of treatment and reduce the side effects of other methods. PTT performance can also be improved by hybridizing at least two different nanomaterials. Nanoparticles that intensely absorb light and increase the efficiency of converting light into heat can specifically kill tumors through hyperthermia of cancer cells. One of the main reasons that have increased the efficiency of nanoparticles in PTT is their permeability and durability effect and they can accumulate in tumor tissue. Targeted PTT can be provided by incorporating specific ligands to target receptors expressed on the surface of cancer cells on nanoparticles. These nanoparticles can specifically target cancer cells by maintaining the surface area and increasing penetration. In this study, we briefly introduce the performance of light therapy, application of metal nanoparticles, polymer nanoparticles, carbon nanoparticles, and hybrid nanoparticles for use in PTT of breast cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
10
|
Jaiswal N, Halder S, Mahata N, Chanda N. Bi-Functional Gold Nanorod-Protein Conjugates with Biomimetic BSA@Folic Acid Corona for Improved Tumor Targeting and Intracellular Delivery of Therapeutic Proteins in Colon Cancer 3D Spheroids. ACS APPLIED BIO MATERIALS 2022; 5:1476-1488. [PMID: 35285613 DOI: 10.1021/acsabm.1c01216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gold nanorods (AuNRs) remain well-developed inorganic nanocarriers of small molecules for a plethora of biomedical and therapeutic applications. However, the delivery of therapeutic proteins using AuNRs with high protein loading capacity (LC), serum stability, excellent target specificity, and minimal off-target protein release is not known. Herein, we report two bi-functional AuNR-protein nanoconjugates, AuNR@EGFP-BSAFA and AuNR@RNaseA-BSAFA, supramolecularly coated with folic acid-modified BSA (BSAFA) acting as biomimetic protein corona to demonstrate targeted cytosolic delivery of enhanced green fluorescent protein (EGFP) and therapeutic ribonuclease A enzyme (RNase A) in their functional forms. AuNR@EGFP-BSAFA and AuNR@RNaseA-BSAFA exhibit high LCs of ∼42 and ∼54%, respectively, increased colloidal stability, and rapid protein release in the presence of biological thiols. As a nanocarrier, AuNR@EGFP-BSAFA and AuNR@RNaseA-BSAFA show resistance to corona formation in high-serum media even after 24 h, guaranteeing a greater circulation lifetime. Folate receptor-targeting BSAFA on the AuNR surface facilitates the receptor-mediated internalization, followed by the release of EGFP and RNase A in HT29 cells. The green fluorescence dispersed throughout the cell's cytoplasm indicates successful cytosolic delivery of EGFP by AuNR@EGFP-BSAFA. AuNR@RNaseA-BSAFA-mediated therapeutic RNase A delivery in multicellular 3D spheroids of HT29 cells exhibits a radical reduction in the cellular RNA fluorescence intensity to 38%, signifying RNA degradation and subsequent cell death. The versatile nanoformulation strategy in terms of the anisotropic particle morphology, protein type, and ability for targeted delivery in the functional form makes the present AuNR-protein nanoconjugates a promising platform for potential application in cancer management.
Collapse
Affiliation(s)
- Namita Jaiswal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India.,Material Processing and Microsystem Laboratory, CSIR─Central Mechanical Engineering Research Institute, Durgapur 713209, India
| | - Sudeshna Halder
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Nripen Chanda
- Material Processing and Microsystem Laboratory, CSIR─Central Mechanical Engineering Research Institute, Durgapur 713209, India
| |
Collapse
|
11
|
Emami F, Banstola A, Jeong JH, Yook S. Cetuximab-anchored gold nanorod mediated photothermal ablation of breast cancer cell in spheroid model embedded with tumor associated macrophage. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Evaluation of the Targeting and Therapeutic Efficiency of Anti-EGFR Functionalised Nanoparticles in Head and Neck Cancer Cells for Use in NIR-II Optical Window. Pharmaceutics 2021; 13:pharmaceutics13101651. [PMID: 34683944 PMCID: PMC8537270 DOI: 10.3390/pharmaceutics13101651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Gold nanoparticles have been indicated for use in a diagnostic and/or therapeutic role in several cancer types. The use of gold nanorods (AuNRs) with a surface plasmon resonance (SPR) in the second near-infrared II (NIR-II) optical window promises deeper anatomical penetration through increased maximum permissible exposure and lower optical attenuation. In this study, the targeting and therapeutic efficiency of anti-epidermal growth factor receptor (EGFR)-antibody-functionalised AuNRs with an SPR at 1064 nm was evaluated in vitro. Four cell lines, KYSE-30, CAL-27, Hep-G2 and MCF-7, which either over- or under-expressed EGFR, were used once confirmed by flow cytometry and immunofluorescence. Optical microscopy demonstrated a significant difference (p < 0.0001) between targeted AuNRs (tAuNRs) and untargeted AuNRs (uAuNRs) in all four cancer cell lines. This study demonstrated that anti-EGFR functionalisation significantly increased the association of tAuNRs with each EGFR-positive cancer cell. Considering this, the MTT assay showed that photothermal therapy (PTT) significantly increased cancer cell death (>97%) in head and neck cancer cell line CAL-27 using tAuNRs but not uAuNRs, apoptosis being the major mechanism of cell death. This successful targeting and therapeutic outcome highlight the future use of tAuNRs for molecular photoacoustic imaging or tumour treatment through plasmonic photothermal therapy.
Collapse
|
13
|
Granja A, Pinheiro M, Sousa CT, Reis S. Gold nanostructures as mediators of hyperthermia therapies in breast cancer. Biochem Pharmacol 2021; 190:114639. [PMID: 34077740 DOI: 10.1016/j.bcp.2021.114639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is the leading cause of cancer-related deaths among women. Due to the limitations of the current therapeutics, new treatment options are needed. Hyperthermia is a promising approach to improve breast cancer therapy, particularly when combined with chemo and radiotherapy. This area has gained more attention following association with nanotechnology, with the emergence of modalities, such as photothermal therapy (PTT). PTT is a simple, minimally invasive technique that requires a near infrared (NIR) light source and a PTT agent. Gold nanostructures are excellent PTT agents as they offer biocompatibility, versatility, high photothermal conversion efficiency, imaging contrast and an easily-modified surface. In this review, we describe the molecular basis and the current clinical aspects of hyperthermia-based therapies. The emergent area of nanoparticle-induced hyperthermia will be explored, in particular gold nanostructure-mediated PTT, focusing on recent preclinical studies for breast cancer management.
Collapse
Affiliation(s)
- Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Célia T Sousa
- IFIMUP and Dep. Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169 - 007 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
14
|
Ribera J, Vilches C, Sanz V, de Miguel I, Portolés I, Córdoba-Jover B, Prat E, Nunes V, Jiménez W, Quidant R, Morales-Ruiz M. Treatment of Hepatic Fibrosis in Mice Based on Targeted Plasmonic Hyperthermia. ACS NANO 2021; 15:7547-7562. [PMID: 33720693 DOI: 10.1021/acsnano.1c00988] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Liver fibrosis is a major health problem with multiple associated complications, which, to date, has no effective treatment. Hepatic stellate cells are the main responsible cells for fibrosis formation; upon their activation, excess accumulation of extracellular matrix and collagen deposits occurs. The mitogen platelet-derived growth factor (PDGF) and its receptor β (PDGFRβ) play a major role in hepatic stellate cells activation and are, therefore, promising targets for antifibrotic therapies. Gold nanorods hold great potential for diseased liver treatments, since their passive hepatic accumulation enhances active targeting strategies, hence increasing therapeutic efficiency. In addition, gold nanorods have photothermal properties that, combined with specific cell delivery, can be exploited to induce localized near-infrared light-mediated thermal ablation. Here, we demonstrate that gold nanorods coated with anti-PDGFRβ specifically target activated hepatic stellate cells in vivo. Additionally, gold nanorods-PDGFRβ-mediated photothermal therapy decreases fibrosis, hepatic inflammation, and hepatocyte injury in the experimental model of CCl4-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
| | - Clara Vilches
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Vanesa Sanz
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Ignacio de Miguel
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
| | - Bernat Córdoba-Jover
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
| | - Esther Prat
- Molecular Genetics Laboratory, Genes, Disease and Therapy Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Physiology, Health Science and Medicine Faculty, University of Barcelona (UB), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Virginia Nunes
- Molecular Genetics Laboratory, Genes, Disease and Therapy Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Physiology, Health Science and Medicine Faculty, University of Barcelona (UB), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine, University of Barcelona (UB), 08008 Barcelona, Spain
| | - Romain Quidant
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine, University of Barcelona (UB), 08008 Barcelona, Spain
| |
Collapse
|
15
|
Regulated Necrotic Cell Death in Alternative Tumor Therapeutic Strategies. Cells 2020; 9:cells9122709. [PMID: 33348858 PMCID: PMC7767016 DOI: 10.3390/cells9122709] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
The treatment of tumors requires the induction of cell death. Radiotherapy, chemotherapy, and immunotherapy are administered to kill cancer cells; however, some cancer cells are resistant to these therapies. Therefore, effective treatments require various strategies for the induction of cell death. Regulated cell death (RCD) is systematically controlled by intracellular signaling proteins. Apoptosis and autophagy are types of RCD that are morphologically different from necrosis, while necroptosis, pyroptosis, and ferroptosis are morphologically similar to necrosis. Unlike necrosis, regulated necrotic cell death (RNCD) is caused by disruption of the plasma membrane under the control of specific proteins and induces tissue inflammation. Various types of RNCD, such as necroptosis, pyroptosis, and ferroptosis, have been used as therapeutic strategies against various tumor types. In this review, the mechanisms of necroptosis, pyroptosis, and ferroptosis are described in detail, and a potential effective treatment strategy to increase the anticancer effects on apoptosis- or autophagy-resistant tumor types through the induction of RNCD is suggested.
Collapse
|
16
|
Xu W, Lin Q, Yin Y, Xu D, Huang X, Xu B, Wang G. A Review on Cancer Therapy Based on the Photothermal Effect of Gold Nanorod. Curr Pharm Des 2020; 25:4836-4847. [DOI: 10.2174/1381612825666191216150052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/29/2019] [Indexed: 02/05/2023]
Abstract
Background:
Cancer causes millions of deaths and huge economic losses every year. The currently
practiced methods for cancer therapy have many defects, such as side effects, low curate rate, and discomfort for
patients.
Objective:
Herein, we summarize the applications of gold nanorods (AuNRs) in cancer therapy based on their
photothermal effect-the conversion of light into local heat under irradiation.
Methods:
The recent advances in the synthesis and regulation of AuNRs, and facile surface functionalization
further facilitate their use in cancer treatment. For cancer therapy, AuNRs need to be modified or coated with
biocompatible molecules (e.g. polyethylene glycol) and materials (e.g. silicon) to reduce the cytotoxicity and
increase their biocompatibility, stability, and retention time in the bloodstream. The accumulation of AuNRs in
cancerous cells and tissues is due to the high leakage in tumors or the specific interaction between the cell surface
and functional molecules on AuNRs such as antibodies, aptamers, and receptors.
Results:
AuNRs are employed not only as therapeutics to ablate tumors solely based on the heat produced under
laser that could denature protein and activate the apoptotic pathway, but also as synergistic therapies combined
with photodynamic therapy, chemotherapy, and gene therapy to kill cancer more efficiently. More importantly,
other materials like TiO2, graphene oxide, and silicon, etc. are incorporated on the AuNR surface for multimodal
cancer treatment with high drug loadings and improved cancer-killing efficiency. To highlight their applications
in cancer treatment, examples of therapeutic effects both in vitro and in vivo are presented.
Conclusion:
AuNRs have potential applications for clinical cancer therapy.
Collapse
Affiliation(s)
- Weizhen Xu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Qinlu Lin
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yueqin Yin
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Dong Xu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaohui Huang
- Hunan Edible Fungi Institute, Changsha, 410004, China
| | - Bucheng Xu
- Wangcheng Commodity Inspection Center, Changsha, 410200, China
| | - Guangwei Wang
- Biomedical Research Center, Hunan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
17
|
Singh R. Nanotechnology based therapeutic application in cancer diagnosis and therapy. 3 Biotech 2019; 9:415. [PMID: 31696020 PMCID: PMC6811486 DOI: 10.1007/s13205-019-1940-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the lack of early diagnosis, cancer remains as one of the leading cause of human mortality. Inability to translate research into clinical trials and also inability of chemotherapeutics delivery to targeted tumor sites are major drawbacks in cancer therapeutics. With the emergence of nanomedicine, several nanoprobes (conjugated with targeting ligands and chemotherapeutic drugs) are developed. It can interact with biological system and thus sense and monitor the biological events with high efficiency and accuracy along with therapy application. Nanoparticles like gold and iron oxide are frequently used in the computed tomography and magnetic resonance imaging applications, respectively. Moreover, enzymatic activity of gold and iron oxide nanoparticles enables the visible colorimetric diagnostic of cancer cells, whereas, fluorescence property of quantum dots and upconversion nanoparticles helps in in vivo imaging application. Other than this, drug conjugation with nanoparticles also reduces the systemic toxic effect of chemotherapeutic drugs. Due to their several unique intrinsic properties, nanoparticles itself can also be employed as therapeutics in cancer treatment by photothermal therapy (PTT) and photodynamic therapy (PDT). Thus, the main focus of this review is to emphasize on current progress in diagnostic and therapeutic application of nanoprobes in cancer.
Collapse
Affiliation(s)
- Ragini Singh
- School of Agriculture Science, Liaocheng University, No. 1 Hunan Road, Liaocheng, Shandong China
| |
Collapse
|
18
|
Chen Y, Khan AR, Yu D, Zhai Y, Ji J, Shi Y, Zhai G. Pluronic F127-functionalized molybdenum oxide nanosheets with pH-dependent degradability for chemo-photothermal cancer therapy. J Colloid Interface Sci 2019; 553:567-580. [DOI: 10.1016/j.jcis.2019.06.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023]
|
19
|
Lungu II, Grumezescu AM, Volceanov A, Andronescu E. Nanobiomaterials Used in Cancer Therapy: An Up-To-Date Overview. Molecules 2019; 24:E3547. [PMID: 31574993 PMCID: PMC6804091 DOI: 10.3390/molecules24193547] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023] Open
Abstract
The disadvantages that come with traditional cancer treatments, such as chemotherapy and radiotherapy, generated a research shift toward nanotechnology. However, even with the important advancements regarding cancer therapy, there are still serious stepping stones that need to be addressed. The use of both nanotechnology and nanomedicine has generated significant improvements in nano-sized materials development and their use as therapeutic, diagnosis, and imaging agents. The biological barriers that come from the healthy body, as well from the tumorous sites, are important parameters that need to be taken into consideration when designing drug delivery systems. There are several aspects of extreme importance such as the tumor microenvironment and vasculature, the reticuloendothelial system, the blood-brain barrier, the blood-tumor barrier, and the renal system. In order to achieve an effective system for cancer therapy, several characteristics of the nanoparticles have been outlined. Moreover, this review has also focused on the different types of nanoparticles that have been studied over the years as potential candidates for cancer therapy.
Collapse
Affiliation(s)
- Iulia Ioana Lungu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
- National Institute of Laser, Plasma and Radiation Physics (NILPRP), Bucharest-Magurele, 077125 Magurele, Romania.
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| | - Adrian Volceanov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| |
Collapse
|
20
|
Avvakumova S, Pandolfi L, Soprano E, Moretto L, Bellini M, Galbiati E, Rizzuto MA, Colombo M, Allevi R, Corsi F, Sánchez Iglesias A, Prosperi D. Does conjugation strategy matter? Cetuximab-conjugated gold nanocages for targeting triple-negative breast cancer cells. NANOSCALE ADVANCES 2019; 1:3626-3638. [PMID: 36133537 PMCID: PMC9419579 DOI: 10.1039/c9na00241c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/22/2019] [Indexed: 06/01/2023]
Abstract
The efficient targeting of cancer cells depends on the success of obtaining the active targeting of overexpressed receptors. A very accurate design of nanoconjugates should be done via the selection of the conjugation strategy to achieve effective targeted nanoconjugates. Here, we present a detailed study of cetuximab-conjugated nonspherical gold nanocages for the active targeting of triple-negative breast cancer cells, including MDA-MB-231 and MDA-MB-468. A few different general strategies were selected for monoclonal antibody conjugation to the nanoparticle surface. By varying the bioconjugation conditions, including antibody orientation or the presence of a polymeric spacer or recombinant protein biolinker, we demonstrate the importance of a rational design of nanoconjugates. A quantitative study of gold content via ICP-AES allowed us to compare the effectiveness of cellular uptake as a function of the conjugation strategy and confirmed the active nature of nanoparticle internalization in cancer cells via epidermal growth factor receptor recognition, corroborating the importance of the rational design of nanomaterials for nanomedicine.
Collapse
Affiliation(s)
- S Avvakumova
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - L Pandolfi
- Clinica di Malattie dell'Apparato Respiratorio, IRCCS Fondazione Policlinico San Matteo Pavia Italy
| | - E Soprano
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - L Moretto
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M Bellini
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - E Galbiati
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M A Rizzuto
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - M Colombo
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
| | - R Allevi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano via G.B. Grassi 74 20157 Milano Italy
| | - F Corsi
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Università di Milano via G.B. Grassi 74 20157 Milano Italy
- Surgery Department, Breast Unit, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
- Nanomedicine Laboratory, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
| | - A Sánchez Iglesias
- Bionanoplasmonics Laboratory, CICbiomaGUNE Paseo de Miramón 182 20014 Donostia-San Sebastián Spain
| | - D Prosperi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience Piazza della Scienza, 2 20126 Milano Italy
- Nanomedicine Laboratory, ICS Maugeri S.p.A. SB via S. Maugeri 10 Pavia Italy
| |
Collapse
|
21
|
Targeting integrins for cancer management using nanotherapeutic approaches: Recent advances and challenges. Semin Cancer Biol 2019; 69:325-336. [PMID: 31454671 DOI: 10.1016/j.semcancer.2019.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Integrins are the main cell surface receptors and execute multifaceted functions such as the bidirectional transmission of signals (i.e., inside-out and outside-in) and provide communication between cells and their microenvironments. Integrins are the key regulators of critical biological functions and contribute significantly to the promotion of cancer at almost every stage of disease progression from initial tumor formation to metastasis. Integrin expressions are frequently altered in different cancers, and consequently, several therapeutic strategies targeting integrins have been developed. Furthermore, nanotechnology-based approaches have been devised to overcome the intrinsic limitations of conventional therapies for cancer management, and have been shown to more precise, safer, and highly effective therapeutic tools. Although nanotechnology-based approaches have achieved substantial success for the management of cancer, certain obstacles remain such as inadequate knowledge of nano-bio interactions and the challenges associated with the three stages of clinical trials. This review highlights the different roles of integrins and of integrin-dependent signaling in various cancers and describes the applications of nanotherapeutics targeting integrins. In addition, we discuss RGD-based approaches and challenges posed to cancer management.
Collapse
|
22
|
Dykman LA, Khlebtsov NG. Gold nanoparticles in chemo-, immuno-, and combined therapy: review [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:3152-3182. [PMID: 31467774 PMCID: PMC6706047 DOI: 10.1364/boe.10.003152] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 05/19/2023]
Abstract
Functionalized gold nanoparticles (GNPs) with controlled geometrical and optical properties have been the subject of intense research and biomedical applications. This review summarizes recent data and topical problems in nanomedicine that are related to the use of variously sized, shaped, and structured GNPs. We focus on three topical fields in current nanomedicine: (1) use of GNP-based nanoplatforms for the targeted delivery of anticancer and antimicrobial drugs and of genes; (2) GNP-based cancer immunotherapy; and (3) combined chemo-, immuno-, and phototherapy. We present a summary of the available literature data and a short discussion of future work.
Collapse
Affiliation(s)
- L A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov National Research State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
23
|
Bermúdez-Jiménez C, Niño-Martínez N, Patiño-Marín N, Martínez-Gutiérrez F, Ruiz F, Bach H, Martínez-Castañón G. Effective control of biofilms by photothermal therapy using a gold nanorod hydrogel. J Biomed Mater Res B Appl Biomater 2019; 108:333-342. [PMID: 31041849 DOI: 10.1002/jbm.b.34392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Biofilms are matrices synthesized by bacteria containing polysaccharides, DNA, and proteins. The development of biofilms in infectious processes can induce a chronic inflammatory response that may progress to the destruction of tissues. The treatment of biofilms is difficult because they serve as a bacterial mechanism of defense and high doses of antibiotics are necessary to treat these infections with limited positive results. It has been demonstrated that photothermal therapy using gold nanorods (AuNRs) is an attractive treatment because of its anti-biofilm activity. The purpose of this work was to generate a novel chitosan-based hydrogel embedded with AuNRs to evaluate its anti-biofilm activity. AuNRs were synthesized by the seed-mediated growth method and mixed with the chitosan-based hydrogel. Hydrogels were characterized and tested against two bacterial strains by irradiating the produced biofilm in the presence of the nanoformulation with a laser adjusted at the near infrared spectrum. In addition, the safety of the nanoformulation was assessed with normal human gingival fibroblasts. Results showed that a significant bacterial killing was measured when biofilms were exposed to an increase of 10°C for a short time of 2 min. Moreover, no cytotoxicity was measured when normal gingival fibroblasts were exposed to the nanoformulation using the bactericidal conditions. The development of the reported formulation can be used as a direct application to treat periodontal diseases or biofilm-produced bacteria that colonize the oral cavity.
Collapse
Affiliation(s)
- Carlos Bermúdez-Jiménez
- Laboratorio de Nanobiomateriales, Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Nereyda Niño-Martínez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Nuria Patiño-Marín
- Laboratorio de Nanobiomateriales, Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Facundo Ruiz
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabriel Martínez-Castañón
- Laboratorio de Nanobiomateriales, Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
24
|
Hashemi F, Hormozi-Nezhad MR, Corbo C, Farvadi F, Shokrgozar MA, Mehrjoo M, Atyabi F, Ghahremani MH, Mahmoudi M, Dinarvand R. Laser irradiation affects the biological identity and cellular uptake of plasmonic nanoparticles. NANOSCALE 2019; 11:5974-5981. [PMID: 30892307 DOI: 10.1039/c8nr09622h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The biological identity of nanoparticles (NPs) is defined by a protein layer formed on their surface, called protein corona (PC), once they meet the biological milieu. Any change in the PC composition may influence the biological fate of NPs. The PC composition is strongly dependent on several parameters including the physicochemical properties of NPs, and biological and environmental factors. As one of the main features of plasmonic NPs is their capacity to induce local heating by laser irradiation, we hypothesized that laser irradiation may change the biological identity of NPs and therefore alter their biological fate. To test this hypothesis, here we investigated the effects of either simultaneous or sequential laser irradiation on the conformations of a few proteins selected from two main categories of plasma proteins (i.e. human serum albumin and human fibrinogen) on the surfaces of gold nanorods (AuNRs). The outcomes revealed a significant role of laser irradiation on conformational changes of fibrinogen compared to albumin. Moreover, the effects of plasmonic heating - at various times - on the achieved corona composition from interactions of AuNRs and human plasma with various concentrations were monitored. Consequently, the cellular uptake of the corona coated AuNRs was measured in two cell types: malignant (MCF-7) and normal (MCF-10A) breast cell lines. The results demonstrated a substantial reduction in the cellular uptake of AuNRs in response to an increase in the laser irradiation time, especially in MCF-10A. Our results may pave the way for a mechanistic understanding of the biological identity of plasmonic NPs which in turn can help their safe and efficient clinical translations.
Collapse
Affiliation(s)
- Fatemeh Hashemi
- Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Khot MI, Andrew H, Svavarsdottir HS, Armstrong G, Quyn AJ, Jayne DG. A Review on the Scope of Photothermal Therapy-Based Nanomedicines in Preclinical Models of Colorectal Cancer. Clin Colorectal Cancer 2019; 18:e200-e209. [PMID: 30852125 DOI: 10.1016/j.clcc.2019.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Oncologic thermal ablation involves the use of hyperthermic temperatures to damage and treat solid cancers. Thermal ablation is being investigated as a method of treatment in colorectal cancers and has the potential to complement conventional anticancer treatments in managing local recurrence and metastatic disease. Photothermal therapy utilizes photosensitive agents to generate local heat and induce thermal ablation. There is growing interest in developing nanotechnology platforms to deliver such photosensitive agents. An advantage of nanomedicines is their multifunctionality, with the capability to deliver combinations of chemotherapeutics and cancer-imaging agents. To date, there have been no clinical studies evaluating photothermal therapy-based nanomedicines in colorectal cancers. This review presents the current scope of preclinical studies, investigating nanomedicines that have been developed for delivering multimodal photothermal therapy to colorectal cancers, with an emphasis on potential clinical applications.
Collapse
Affiliation(s)
- M Ibrahim Khot
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK.
| | - Helen Andrew
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | | | - Gemma Armstrong
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Aaron J Quyn
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - David G Jayne
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| |
Collapse
|
26
|
Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed Pharmacother 2019; 110:319-341. [DOI: 10.1016/j.biopha.2018.11.122] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/10/2018] [Accepted: 11/25/2018] [Indexed: 12/16/2022] Open
|
27
|
Costa DF, Mendes LP, Torchilin VP. The effect of low- and high-penetration light on localized cancer therapy. Adv Drug Deliv Rev 2019; 138:105-116. [PMID: 30217518 DOI: 10.1016/j.addr.2018.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/30/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022]
Abstract
The design of a delivery system allowing targeted and controlled drug release has been considered one of the main strategies used to provide individualized cancer therapy, to improve survival statistics, and to enhance quality-of-life. External stimuli including low- and high-penetration light have been shown to have the ability to turn drug delivery on and off in a non-invasive remotely-controlled fashion. The success of this approach has been closely related to the development of a variety of drug delivery systems - from photosensitive liposomes to gold nanocages - and relies on multiple mechanisms of drug release activation. In this review, we make reference to the two extremes of the light spectrum and their potential as triggers for the delivery of antitumor drugs, along with the most recent achievements in preclinical trials and the challenges to an efficient translation of this technology to the clinical setting.
Collapse
|
28
|
Non-Platinum Metal Complexes as Potential Anti-Triple Negative Breast Cancer Agents. CRYSTALS 2018. [DOI: 10.3390/cryst8100369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, with a mortality rate that has been forecasted to rise in the next decade. This is especially worrying for people with triple-negative BC (TNBC), because of its unresponsiveness to current therapies. Different drugs to treat TNBC have been assessed, and, although platinum chemotherapy drugs seem to offer some hope, their drawbacks have motivated extensive investigations into alternative metal-based BC therapies. This paper aims to: (i) describe the preliminary in vitro and in vivo anticancer properties of non-platinum metal-based complexes (NPMBC) against TNBC; and (ii) analyze the likely molecular targets involved in their anticancer activity.
Collapse
|
29
|
Spyratou E, Makropoulou M, Efstathopoulos EP, Georgakilas AG, Sihver L. Recent Advances in Cancer Therapy Based on Dual Mode Gold Nanoparticles. Cancers (Basel) 2017; 9:cancers9120173. [PMID: 29257070 PMCID: PMC5742821 DOI: 10.3390/cancers9120173] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022] Open
Abstract
Many tumor-targeted strategies have been used worldwide to limit the side effects and improve the effectiveness of therapies, such as chemotherapy, radiotherapy (RT), etc. Biophotonic therapy modalities comprise very promising alternative techniques for cancer treatment with minimal invasiveness and side-effects. These modalities use light e.g., laser irradiation in an extracorporeal or intravenous mode to activate photosensitizer agents with selectivity in the target tissue. Photothermal therapy (PTT) is a minimally invasive technique for cancer treatment which uses laser-activated photoabsorbers to convert photon energy into heat sufficient to induce cells destruction via apoptosis, necroptosis and/or necrosis. During the last decade, PTT has attracted an increased interest since the therapy can be combined with customized functionalized nanoparticles (NPs). Recent advances in nanotechnology have given rise to generation of various types of NPs, like gold NPs (AuNPs), designed to act both as radiosensitizers and photothermal sensitizing agents due to their unique optical and electrical properties i.e., functioning in dual mode. Functionalized AuNPS can be employed in combination with non-ionizing and ionizing radiation to significantly improve the efficacy of cancer treatment while at the same time sparing normal tissues. Here, we first provide an overview of the use of NPs for cancer therapy. Then we review many recent advances on the use of gold NPs in PTT, RT and PTT/RT based on different types of AuNPs, irradiation conditions and protocols. We refer to the interaction mechanisms of AuNPs with cancer cells via the effects of non-ionizing and ionizing radiations and we provide recent existing experimental data as a baseline for the design of optimized protocols in PTT, RT and PTT/RT combined treatment.
Collapse
Affiliation(s)
- Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece.
| | - Mersini Makropoulou
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| | - Efstathios P Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece.
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| | - Lembit Sihver
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria.
| |
Collapse
|