1
|
Noreen S, Simonelli N, Benedetti R, Carafa V, Grieco M, Ambrosino C, Dell'Aversana C, Nebbioso A, Conte M, Del Gaudio N, Altucci L. Unravelling the impact of the chromobox proteins in human cancers. Cell Death Dis 2025; 16:238. [PMID: 40175347 PMCID: PMC11965368 DOI: 10.1038/s41419-025-07585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
Chromobox (CBX) proteins play a crucial role in regulating epigenetic processes. They are extensively involved in various biological processes, including embryonic development, stem cell maintenance, cell proliferation and apoptosis control. The disruption and malfunction of CBXs in cancer typically results in the interference or abnormal activation of developmental pathways, which facilitate the onset, growth, and advancement of cancer. This review initially introduces the physiological properties and functions of the CBXs. Subsequently, it examines the involvement of CBXs in different cancer types. Cancer hallmarks driven by CBXs are mediated through multiple mechanisms, including changes in gene expression patterns, epigenetic dysregulation of chromatin control, disruption of intracellular signaling and alterations in cell metabolism. The study also highlights novel potential anticancer therapeutics targeting CBXs in cancer. In this review we provide novel perspectives and a solid foundation for future investigations on CBXs as promising therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Shabana Noreen
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Nicla Simonelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
- UP Medical Epigenetics, AOU Vanvitelli, Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
- Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy
| | - Michele Grieco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Carmela Dell'Aversana
- Department of Medicine and Surgery, LUM University, Casamassima, BA, Italy
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS)-National Research Council (CNR), 80131, Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
- UP Medical Epigenetics, AOU Vanvitelli, Naples, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Via del Casale Di San Pio V 44, 00165, Rome, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naples, Italy.
- UP Medical Epigenetics, AOU Vanvitelli, Naples, Italy.
- Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy.
| |
Collapse
|
2
|
Su W, Wang W, Zhang G, Yang L. Epigenetic regulatory protein chromobox family regulates multiple signalling pathways and mechanisms in cancer. Clin Epigenetics 2025; 17:48. [PMID: 40083014 PMCID: PMC11907984 DOI: 10.1186/s13148-025-01852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
Signal transduction plays a pivotal role in modulating a myriad of critical processes, including the tumour microenvironment (TME), cell cycle arrest, proliferation and apoptosis of tumour cells, as well as their migration, invasion, and the epithelial-mesenchymal transition (EMT). Epigenetic mechanisms are instrumental in the genesis and progression of tumours. The Chromobox (CBX) family proteins, which serve as significant epigenetic regulators, exhibit tumour-specific expression patterns and biological functionalities. These proteins are influenced by a multitude of factors and could modulate the activation of diverse signalling pathways within tumour cells through alterations in epigenetic modifications, thereby acting as either oncogenic agents or tumour suppressors. This review aims to succinctly delineate the composition, structure, function, and expression of CBXs within tumour cells, with an emphasis on synthesizing and deliberating the CBXs-mediated activation of intracellular signalling pathways and the intricate mechanisms governing tumourigenesis and progression. Moreover, a plethora of contemporary studies have substantiated that CBXs might represent a promising target for the diagnosis and therapeutic intervention of tumour patients. We have also compiled and scrutinized the current research landscape concerning inhibitors targeting CBXs, aspiring to aid researchers in gaining a deeper comprehension of the biological roles and mechanisms of CBXs in the malignant evolution of tumours, and to furnish novel perspectives for the innovation of targeted tumour therapeutics.
Collapse
Affiliation(s)
- Weiyu Su
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Weiwen Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Guanghui Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
| |
Collapse
|
3
|
Mei J, Zuo J, Mei J, Liu G, Xiao P. Circ-NUP98 Promotes Lung Adenocarcinoma Development Through Regulating CBX1 by miR-188-3p. Biochem Genet 2024; 62:3504-3522. [PMID: 38129720 DOI: 10.1007/s10528-023-10609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Lung cancer has a high morbidity and mortality among malignant tumors, and lung adenocarcinoma (LUAD) is the main type of lung cancer. In recent years, circular RNAs (circRNAs) have been confirmed to play an important role in the generation and development of human cancer. However, the specific role and mechanism of circ-NUP98 in LUAD are still unclear and need to be further investigated. Circ-NUP98, microRNA-188-3p (miR-188-3p), and chromobox homolog 1 (CBX1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell-counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, wound healing, and transwell assay were used to observe LUAD cell proliferation, apoptosis, migration, invasion, and cell-cycle progression. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were examined using special assay kits. CyclinD1, Bcl-2-related X protein (Bax), matrix metalloproteinase 9 (MMP9) protein, and CBX1 protein levels were determined using Western blot. The interaction between miR-188-3p and circ-NUP98 or CBX1 was identified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assay. In vivo efficacy of circ-NUP98 was evaluated in a xenograft tumor model. Besides, the expression of CBX1 and KI67 in the tumors was detected by immunohistochemical (IHC) assay. Circ-NUP98 and CBX1 expressions were upregulated in LUAD tissues and cells, and miR-188-3p was decreased. Downregulation of circ-NUP98 could inhibit the proliferation, migration, invasion, and oxidative stress, and promote apoptosis of LUAD cells. Mechanism experiments showed that circ-NUP98 acted as a sponge for miR-188-3p to increase CBX1 expression. Knockdown of circ-NUP98 could inhibit the growth of LUAD tumors in vivo. Circ-NUP98 might promote the malignant development of LUAD via the miR-188-3p/CBX1 axis, which might provide a potential new marker for early diagnosis of LUAD.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Laboratory, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Jing Zuo
- Department of Clinical Laboratory, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Jiazhuan Mei
- Department of Medical Oncology, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), No. 33, Huanghe Road, Jinshui District, Zhengzhou, 450000, China.
| | - Guiju Liu
- Department of Medical Oncology, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), No. 33, Huanghe Road, Jinshui District, Zhengzhou, 450000, China
| | - Peng Xiao
- Department of Medical Oncology, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), No. 33, Huanghe Road, Jinshui District, Zhengzhou, 450000, China
| |
Collapse
|
4
|
Park S, Choi J, Song JK, Jang B, Maeng YH. Subcellular expression pattern and clinical significance of CBX2 and CBX7 in breast cancer subtypes. Med Mol Morphol 2024; 57:11-22. [PMID: 37553450 DOI: 10.1007/s00795-023-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Chromobox (CBX)2 and CBX7, members of CBX family protein, show diverse expression patterns and contrasting roles in certain cancers. We aimed to investigate the subcellular expression patterns and clinical significances of CBXs in breast cancer (BC) subtypes, which have heterogeneous clinical course and therapeutic responses. Among the subtypes, the triple-negative BC (TNBC) is a heterogeneous group that lacks specific markers. We categorized TNBC into quadruple-negative BC (QNBC) and TNBC, based on androgen receptor (AR) status, to make the groups more homogeneous. Immunohistochemistry for CBX proteins was performed on 323 primary invasive BC tissues and their clinical significances were analyzed. Cytoplasmic CBX2 (CBX2-c) was linked to adverse clinicopathological factors and TNBC and QNBC subtypes. In contrast, nuclear CBX7 (CBX7-n) was associated with favorable parameters and luminal A subtype. CBX2-c expression increased progressively from that in benign lesions to that in in situ carcinomas and invasive cancers, whereas CBX7-n and AR expressions showed sequential downregulation. AR was lower in metastatic tissues compared to matched primary cancer tissues. We speculate that the upregulation of CBX2-c and downregulation of CBX7-n could play a role in breast oncogenesis and an adverse clinical course, suggesting them as potential prognostic markers and therapeutic targets in invasive BCs.
Collapse
Affiliation(s)
- Sungjoon Park
- Department of Pathology, Jeju National University Hospital, Jeju, 63241, South Korea
| | - Jaehyuck Choi
- Department of Surgery, Jeju National University School of Medicine, Jeju, 63241, South Korea
| | - Jung-Kook Song
- Department of Preventive Medicine, Jeju National University School of Medicine, Jeju, 63241, South Korea
| | - Bogun Jang
- Department of Pathology, Jeju National University Hospital, Jeju, 63241, South Korea
- Department of Pathology, Jeju National University School of Medicine, Aran 13-gil 15, Jeju, 63241, South Korea
| | - Young Hee Maeng
- Department of Pathology, Jeju National University Hospital, Jeju, 63241, South Korea.
- Department of Pathology, Jeju National University School of Medicine, Aran 13-gil 15, Jeju, 63241, South Korea.
| |
Collapse
|
5
|
Pan A, Xue Y, Ruan X, Dong W, Wang D, Liu Y, Liu L, Lin Y, E T, Lin H, Xu H, Liu X, Wang P. m5C modification of LINC00324 promotes angiogenesis in glioma through CBX3/VEGFR2 pathway. Int J Biol Macromol 2024; 257:128409. [PMID: 38016610 DOI: 10.1016/j.ijbiomac.2023.128409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Angiogenesis plays a major role in tumor initiation, progression, and metastasis. This is why finding antiangiogenic targets is essential in the treatment of gliomas. In this study, NSUN2 and LINC00324 were significantly upregulated in conditionally cultured glioblastoma endothelial cells (GECs). Knockdown of NSUN2 or LINC00324 inhibits GECs angiogenesis. NSUN2 increased the stability of LINC00324 by m5C modification and upregulated LINC00324 expression. LINC00324 competes with the 3'UTR of CBX3 mRNA to bind to AUH protein, reducing the degradation of CBX3 mRNA. In addition, CBX3 directly binds to the promoter region of VEGFR2, enhances VEGFR2 transcription, and promotes GECs angiogenesis. These findings demonstrated NSUN2/LINC00324/CBX3 axis plays a crucial role in regulating glioma angiogenesis, which provides new strategies for glioma therapy.
Collapse
Affiliation(s)
- Aini Pan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Di Wang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunhui Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Tiange E
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hailing Xu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China..
| |
Collapse
|
6
|
Xing Y, Ba-Tu J, Dong C, Cao X, Li B, Jia X, Juan Y, Lv X, Zhang H, Qin N, Han W, Wang D, Qi X, Wang Y, Hao X, Zhang S, Du X, Wang H, Wang M. Phosphorylation of USP27X by GSK3β maintains the stability and oncogenic functions of CBX2. Cell Death Dis 2023; 14:782. [PMID: 38030604 PMCID: PMC10687032 DOI: 10.1038/s41419-023-06304-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Chromobox protein homolog 2 (CBX2) exerts a multifaceted impact on the progression of aggressive cancers. The proteasome-dependent pathway is crucial for modulating CBX2 regulation, while the specific regulatory roles and mechanisms of deubiquitinating enzymes targeting CBX2 remain poorly understood. Mass spectrometry analysis identified ubiquitin-specific peptidase 27X (USP27X) as a deubiquitinating enzyme that targets CBX2. Overexpression of USP27X significantly enhances CBX2 levels by promoting deubiquitination, while deficiency of USP27X leads to CBX2 degradation, thereby inhibiting tumorigenesis. Furthermore, it has been revealed that glycogen synthase kinase 3 beta (GSK3β) can directly bind to and phosphorylate USP27X, thereby enhancing the interaction between USP27X and CBX2 and leading to further stabilization of the CBX2 protein. Clinically, the co-expression of high levels of USP27X and CBX2 in breast cancer tissues is indicative of a poor prognosis for patients with this disease. These findings collectively underscore the critical regulatory role played by USP27X in modulating CBX2, thereby establishing the GSK3β-USP27X-CBX2 axis as a pivotal driver of malignant progression in breast cancer.
Collapse
Affiliation(s)
- Yushu Xing
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jirimu Ba-Tu
- Medical Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chongyang Dong
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaodong Cao
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Bing Li
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xin Jia
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yu Juan
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaojie Lv
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Huiwen Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Na Qin
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wuri Han
- College of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Dongfeng Wang
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiao Qi
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yutong Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xulu Hao
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shuang Zhang
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaoli Du
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Huanyun Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Minjie Wang
- Medical Experimental Center of Basic Medical School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
7
|
Chen YH, Zhang X, Attarian D, Kraus VB. Synergistic roles of CBX4 chromo and SIM domains in regulating senescence of primary human osteoarthritic chondrocytes. Arthritis Res Ther 2023; 25:197. [PMID: 37828576 PMCID: PMC10568837 DOI: 10.1186/s13075-023-03183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Cellular senescence is a critical factor contributing to osteoarthritis (OA). Overexpression of chromobox homolog 4 (CBX4) in a mouse system was demonstrated to alleviate post-traumatic osteoarthritis (PTOA) by reducing cellular senescence. Additionally, replicative cellular senescence of WI-38 fibroblasts can be attenuated by CBX4. However, the mechanisms underlying this senomorphic function of CBX4 are not fully understood. In this study, we aimed to investigate the role of CBX4 in cellular senescence in human primary osteoarthritic chondrocytes and to identify the functional domains of CBX4 necessary for its function in modulating senescence. METHODS Chondrocytes, isolated from 6 individuals undergoing total knee replacement for OA, were transduced with wild-type CBX4, mutant CBX4, and control lentiviral constructs. Senescence-related phenotypic outcomes included the following: multiple flow cytometry-measured markers (p16INK4A, senescence-associated β-galactosidase [SA-β-gal] activity and dipeptidyl peptidase-4 [DPP4], and proliferation marker EdU), multiplex ELISA-measured markers in chondrocyte culture media (senescence-associated secretory phenotypes [SASPs], including IL-1β, IL-6, IL-8, TNF-α, MMP-1, MMP-3, and MMP-9), and PCR array-evaluated senescence-related genes. RESULTS Compared with control, CBX4 overexpression in OA chondrocytes decreased DPP4 expression and SASP secretion and increased chondrocyte proliferation confirming CBX4 senomorphic effects on primary human chondrocytes. Point mutations of the chromodomain domain (CDM, involved in chromatin modification) alone were sufficient to partially block the senomorphic activity of CBX4 (p16INK4A and DPP4 increased, and EdU decreased) but had minimal effect on SASP secretion. Although having no effect on p16INK4A, DPP4, and EdU, deletion of two small-ubiquitin-like-modifier-interaction motifs (CBX4 ΔSIMs) led to increased SASP secretion (IL-1β, TNF-α, IL-8). The combination CBX4 CDMΔSIMs altered all these measures adversely and to a greater degree than the single domain mutants. Deletion of the C-terminal (CBX4 ΔC-box) involved with transcriptional silencing of polycomb group proteins increased IL-1β slightly but significantly but altered none of the other senescence outcome measures. CONCLUSIONS CBX4 has a senomorphic effect on human osteoarthritic chondrocytes. CDM is critical for CBX4-mediated regulation of senescence. The SIMs are supportive but not indispensable for CBX4 senomorphic function while the C-box is dispensable.
Collapse
Affiliation(s)
- Yu-Hsiu Chen
- Duke Molecular Physiology Institute, Duke University, 300 N Duke St, Durham, NC, 27701, USA
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Xin Zhang
- Duke Molecular Physiology Institute, Duke University, 300 N Duke St, Durham, NC, 27701, USA
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - David Attarian
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University, 300 N Duke St, Durham, NC, 27701, USA.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Zhang KJ, Tan XL, Guo L. LncRNA TYMSOS facilitates breast cancer metastasis and immune escape through downregulating ULBP3. iScience 2023; 26:107556. [PMID: 37664624 PMCID: PMC10470366 DOI: 10.1016/j.isci.2023.107556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The focus of the study is to examine the function of TYMSOS in immune escape of breast cancer, which is the most frequently diagnosed malignancy among women globally. Our study demonstrated that upregulated TYMSOS was associated with unfavorable prognosis and immune escape in breast cancer. TYMSOS promoted the malignant phenotypes of breast cancer cells, and reduced the cytotoxicity of NK92 cells on these cells. CBX3 was a downstream effector in TYMSOS-induced malignant phenotypes in breast cancer cells. Mechanistic studies showed that TYMSOS facilitated CBX3-mediated transcriptional repression of ULBP3, and it also promoted SYVN1-mediated ubiquitin-proteasomal degradation of ULBP3. TYMSOS promoted cell growth, metastasis, and immune escape via CBX3/ULBP3 or SYVN1/ULBP3 axis. The in vivo studies further showed that silencing of TYMSOS repressed tumor growth and boosted NK cell cytotoxicity. In sum, TYMSOS boosted breast cancer metastasis and immune escape via CBX3/ULBP3 or SYVN1/ULBP3 axis.
Collapse
Affiliation(s)
- Ke-Jing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, P.R. China
- Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province 410008, P.R. China
| | - Xiao-Lang Tan
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan Province 410004, P.R. China
| | - Lei Guo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, P.R. China
- Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province 410008, P.R. China
| |
Collapse
|
9
|
Bosso G, Cipressa F, Tullo L, Cenci G. Co-amplification of CBX3 with EGFR or RAC1 in human cancers corroborated by a conserved genetic interaction among the genes. Cell Death Discov 2023; 9:317. [PMID: 37633946 PMCID: PMC10460438 DOI: 10.1038/s41420-023-01598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
Chromobox Protein 3 (CBX3) overexpression is a common event occurring in cancer, promotes cancer cell proliferation and represents a poor prognosis marker in a plethora of human cancers. Here we describe that a wide spectrum of human cancers harbors a co-amplification of CBX3 gene with either EGFR or RAC1, which yields a statistically significant increase of both mRNA and protein levels of CBX3, EGFR and RAC1. We also reveal that the simultaneous overexpression of CBX3, RAC1 and EGFR gene products correlates with a worse prognosis compared to the condition when CBX3, RAC1 and EGFR are singularly upregulated. Furthermore, we also show that a co-occurrence of low-grade amplification, in addition to high-grade amplification, between CBX3 and EGFR or RAC1 is associated with a reduced patient lifespan. Finally, we find that CBX3 and RAC1/EGFR genetically interact in the model organism Drosophila melanogaster, suggesting that the simultaneous overexpression as well as well the co-occurrence of high- or low-grade copy number alterations in these genes is not accidental and could reflect evolutionarily conserved functional relationships.
Collapse
Affiliation(s)
- Giuseppe Bosso
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy.
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| | - Francesca Cipressa
- Department of Ecological and Biological Sciences, Università degli Studi della Tuscia, Viterbo, Italy
| | - Liliana Tullo
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy.
- Fondazione Cenci Bolognetti, Istituto Pasteur Italia, Rome, Italy.
| |
Collapse
|
10
|
Wang Z, Zhang C, Guo J, Wang W, Si Q, Chen C, Luo Y, Duan Z. Exosomal miRNA-223-3p derived from tumor associated macrophages promotes pulmonary metastasis of breast cancer 4T1 cells. Transl Oncol 2023; 35:101715. [PMID: 37329828 PMCID: PMC10366638 DOI: 10.1016/j.tranon.2023.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Research about the effect of exosomes derived from tumor associated macrophages (TAM-exos) in the distant organ metastasis of breast cancer is limited. In this study, we found that TAM-exos could promote the migration of 4T1 cells. Through comparing the expression of microRNAs in 4T1 cells, TAM-exos, and exosomes from bone marrow derived macrophages (BMDM-exos) by sequencing, miR-223-3p and miR-379-5p were screened out as two noteworthy differentially expressed microRNAs. Furthermore, miR-223-3p was confirmed to be the reason for the improved migration and metastasis of 4T1 cells. The expression of miR-223-3p was also increased in 4T1 cells isolated from the lung of tumor-bearing mice. Cbx5, which has been reported to be closely related with metastasis of breast cancer, was identified to be the target of miR-223-3p. Based on the information of breast cancer patients from online databases, miR-223-3p had a negative correlation with the overall survival rate of breast cancer patients within a three-year follow-up, while Cbx5 showed an opposite relationship. Taken together, miR-223-3p in TAM-exos can be delivered into 4T1 cells and exosomal miR-223-3p promotes pulmonary metastasis of 4T1 cells by targeting Cbx5.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Chen Zhang
- Department of Immunology, Nankai University, Tianjin 300071, China
| | - Jian Guo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- BioMetas(Shanghai) Limited, 201203, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China.
| | - Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
11
|
Li X, Li L, Xiong X, Kuang Q, Peng M, Zhu K, Luo P. Identification of the Prognostic Biomarkers CBX6 and CBX7 in Bladder Cancer. Diagnostics (Basel) 2023; 13:diagnostics13081393. [PMID: 37189494 DOI: 10.3390/diagnostics13081393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Chromobox (CBX) proteins are essential components of polycomb group proteins and perform essential functions in bladder cancer (BLCA). However, research on CBX proteins is still limited, and the function of CBXs in BLCA has not been well illustrated. METHODS AND RESULTS We analyzed the expression of CBX family members in BLCA patients from The Cancer Genome Atlas database. By Cox regression analysis and survival analysis, CBX6 and CBX7 were identified as potential prognostic factors. Subsequently, we identified genes associated with CBX6/7 and performed enrichment analysis, and they were enriched in urothelial carcinoma and transitional carcinoma. Mutation rates of TP53 and TTN correlate with expression of CBX6/7. In addition, differential analysis indicated that the roles played by CBX6 and CBX7 may be related to immune checkpoints. The CIBERSORT algorithm was used to screen out immune cells that play a role in the prognosis of bladder cancer patients. Multiplex immunohistochemistry staining confirmed a negative correlation between CBX6 and M1 macrophages, as well as a consistent alteration in CBX6 and regulatory T cells (Tregs), a positive correlation between CBX7 and resting mast cells, and a negative correlation between CBX7 and M0 macrophages. CONCLUSIONS CBX6 and CBX7 expression levels may assist in predicting the prognosis of BLCA patients. CBX6 may contribute to a poor prognosis in patients by inhibiting M1 polarization and promoting Treg recruitment in the tumor microenvironment, while CBX7 may contribute to a better prognosis in patients by increasing resting mast cell numbers and decreasing macrophage M0 content.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Qihui Kuang
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kai Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
12
|
Wang L, Zhao L, Zhang Y, Shao S, Ning Q, Zhao X, Luo M. Comprehensive Analysis of the Expression and Prognosis of chromobox Family Members in Breast Cancer. Clin Breast Cancer 2023; 23:e206-e218. [PMID: 36890004 DOI: 10.1016/j.clbc.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Chromobox proteins are canonical components of the Polycomb group family and play pivotal roles in several cancers. However, little is known about the function, prognostic value and drug sensitivity of CBX family members in breast cancer. METHODS In this study we investigated the expression, prognosis value and drug sensitivity of CBX family in breast cancer using the ONCOMINE, GEPIA, Human Protein Atlas and Kaplan-Meier Plotter databases, etc. and preliminary verified the expression of CBX family in breast cancer cell lines by RT-qPCR. RESULTS We found that the expression levels of CBX1/2/3/4/8 members were elevated in breast cancer tissues compared to adjacent normal breast tissues, while the expression levels of CBX6/7 genes were reduced in breast cancer tissue. In vitro qRT-PCR validated the expression differences of CBX1/2/3/4/8 in breast cancer cell lines. Further analysis showed expression of CBX family members was remarkably correlated with cancer subgroups. As nodal metastasis status increased, the mRNA expression of CBX1/2/3/4/8 members tended to be higher, while CBX6/7 tended to be lower. The expression of CBX1/2/3 was higher in patients with TP53 mutation and CBX6/7 expression tended to be lower in patients with TP53 mutation groups. High transcription levels of CBX2/3 were significantly associated with shorter overall survival in breast cancer patients, while lower expression of CBX4/5/6/7 members was associated with unfavorable overall survival. Moreover, a high mutation rate of CBX gene members (43%) was observed in breast cancer patients, and genetic alterations in CBX genes was associated with poor prognosis. CONCLUSION Taken together, our results indicated that CBX2/3/6/7/8 could be considered prognostic and therapeutic biomarkers of breast cancer and are worthy of further study.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Lin Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Yujiao Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Shan Shao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qian Ning
- Department of Respiratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| | - Minna Luo
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
13
|
Wang J, Yang B, Zhang X, Liu S, Pan X, Ma C, Ma S, Yu D, Wu W. Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review). Int J Oncol 2023; 62:36. [PMID: 36734270 PMCID: PMC9937689 DOI: 10.3892/ijo.2023.5484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Chromobox (CBX) proteins are important epigenetic regulatory proteins and are widely involved in biological processes, such as embryonic development, the maintenance of stem cell characteristics and the regulation of cell proliferation and apoptosis. Disorder and dysfunction of CBXs in cancer usually lead to the blockade or ectoptic activation of developmental pathways, promoting the occurrence, development and progression of cancer. In the present review, the characteristics and functions of CBXs were first introduced. Subsequently, the expression of CBXs in cancers and the relationship between CBXs and clinical characteristics (mainly cancer grade, stage, metastasis and relapse) and prognosis were discussed. Finally, it was described how CBXs regulate cell proliferation and self‑renewal, apoptosis and the acquisition of malignant phenotypes, such as invasion, migration and chemoresistance, through mechanisms involving epigenetic modification, nuclear translocation, noncoding RNA interactions, transcriptional regulation, posttranslational modifications, protein‑protein interactions, signal transduction and metabolic reprogramming. The study also focused on cancer therapies targeting CBXs. The present review provides new insight and a comprehensive basis for follow‑up research on CBXs and cancer.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiuhang Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuhan Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaoqiang Pan
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Changkai Ma
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shiqiang Ma
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dehai Yu
- Department of Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Professor Dehai Yu, Public Research Platform, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin 130021, P.R. China, E-mail:
| | - Wei Wu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Correspondence to: Professor Wei Wu, Department of Neurovascular Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
14
|
Naqvi AAT, Rizvi SAM, Hassan MI. Pan-cancer analysis of Chromobox (CBX) genes for prognostic significance and cancer classification. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166561. [PMID: 36183965 DOI: 10.1016/j.bbadis.2022.166561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Polycomb group of proteins play a significant role in chromatin remodelling essential for epigenetic regulation of transcription. Chromobox (CBX) gene family is an important part of canonical polycomb repressive complex 1 (PRC1), belonging to the polycomb group involved in chromatin remodelling. Aberrations in CBX expression are linked to various cancers. To assess their biomarker significance, we performed a pan-cancer analysis of CBX mRNA levels in 18 cancer types. We also performed cancer classification using CBX genes as distinctive features for machine learning model development. Logistic regression (L.R.), support vector machine (SVM), random forest (R.F.), decision tree (D.T.), and XGBoost (XGB) algorithms for model training and classification. The expression of CBX genes was significantly changed in four cancer types, i.e., cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). The fold change (FC) values suggest that CBX2 was significantly upregulated in CHOL (FC = 1.639), COAD (FC = 1.734), and LUSC (FC = 1.506). On the other hand, CBX7 was found downregulated in COAD (FC = -1.209), LUAD (FC = -1.190), and LUSC (FC = -1.214). The performance of machine learning models for classification was excellent. L.R., R.F., SVM, and XGB obtained a prediction accuracy of 100 % for most cancers. However, D.T. performed comparatively poorly in prediction accuracy. The results suggest that CBX expression is significantly altered in all the cancers studied; therefore, they might be treated as potential biomarkers for therapeutic intervention of these cancers.
Collapse
Affiliation(s)
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
15
|
Mining Transcriptomic Data to Uncover the Association between CBX Family Members and Cancer Stemness. Int J Mol Sci 2022; 23:ijms232113083. [PMID: 36361869 PMCID: PMC9656300 DOI: 10.3390/ijms232113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Genetic and epigenetic changes might facilitate the acquisition of stem cell-like phenotypes of tumors, resulting in worse patients outcome. Although the role of chromobox (CBX) domain proteins, a family of epigenetic factors that recognize specific histone marks, in the pathogenesis of several tumor types is well documented, little is known about their association with cancer stemness. Here, we have characterized the relationship between the CBX family members' expression and cancer stemness in liver, lung, pancreatic, and uterine tumors using publicly available TCGA and GEO databases and harnessing several bioinformatic tools (i.e., Oncomine, GEPIA2, TISIDB, GSCA, UALCAN, R2 platform, Enrichr, GSEA). We demonstrated that significant upregulation of CBX3 and downregulation of CBX7 are consistently associated with enriched cancer stem-cell-like phenotype across distinct tumor types. High CBX3 expression is observed in higher-grade tumors that exhibit stem cell-like traits, and CBX3-associated gene expression profiles are robustly enriched with stemness markers and targets for c-Myc transcription factor regardless of the tumor type. Similar to high-stemness tumors, CBX3-overexpressing cancers manifest a higher mutation load. On the other hand, higher-grade tumors are characterized by the significant downregulation of CBX7, and CBX7-associated gene expression profiles are significantly depleted with stem cell markers. In contrast to high-stemness tumors, cancer with CBX7 upregulation exhibit a lower mutation burden. Our results clearly demonstrate yet unrecognized association of high CBX3 and low CBX7 expression with cancer stem cell-like phenotype of solid tumors.
Collapse
|
16
|
CBX Family Members in Two Major Subtypes of Renal Cell Carcinoma: A Comparative Bioinformatic Analysis. Diagnostics (Basel) 2022; 12:diagnostics12102452. [PMID: 36292141 PMCID: PMC9600067 DOI: 10.3390/diagnostics12102452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
The biological function and clinical values of Chromobox (CBX) family proteins in renal cell carcinoma (RCC) are still poorly investigated. This study aimed to compare the expression profiles and clinical relevance of CBXs between the two most frequent subtypes of RCC, clear cell renal cell carcinomas (ccRCC) and papillary renal cell carcinomas (pRCC), and to investigate whether CBXs would play a more or less similar role in the pathogenesis and progression of these RCC subtypes. Considering these two RCC populations in the TCGA database, we built a bioinformatics framework by integrating a computational pipeline with several online tools. CBXs showed a similar trend in ccRCC and pRCC tissues but with some features specific for each subtype. Specifically, the relative expressions of CBX3 and CBX2 were, respectively, the highest and lowest among all CBXs in both RCC subtypes. These data also found confirmation in cellular validation. Except for CBX4 and CBX8, all others were deregulated in the ccRCC subtype. CBX1, CBX6, and CBX7 were also significantly associated with the tumor stage. Further, low expression levels of CBX1, CBX5, CBX6, CBX7, and high expression of CBX8 were associated with poor prognosis. Otherwise, in the pRCC subtype, CBX2, CBX3, CBX7, and CBX8 were deregulated, and CBX2, CBX6, and CBX7 were associated with the tumor stage. In addition, in pRCC patients, low expression levels of CBX2, CBX4, and CBX7 were associated with an unfavorable prognosis. Similarly, CBX3, CBX6, and CBX7 presented the highest alteration rate in both subtypes and were found to be functionally related to histone binding, nuclear chromosomes, and heterochromatin. Furthermore, CBX gene expression levels correlated with immune cell infiltration, suggesting that CBXs might reflect the immune status of RCC subtypes. Our results highlight similarities and differences of CBXs within the two major RCC subtypes, providing new insights for future eligible biomarkers or possible molecular therapeutic targets for these diseases.
Collapse
|
17
|
Expression and Prognostic Value of Chromobox Family Proteins in Esophageal Cancer. Genes (Basel) 2022; 13:genes13091582. [PMID: 36140750 PMCID: PMC9498422 DOI: 10.3390/genes13091582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Esophageal cancer (EC) is one of the most common human malignant tumors worldwide. Chromobox (CBX) family proteins are significant components of epigenetic regulatory complexes. It is reported that CBXs play critical roles in the oncogenesis and development of various tumors. Nonetheless, their functions and specific roles in EC remain vague and obscure. Methods and Materials: We used multiple bioinformatics tools, including Oncomine, Gene Expression Profiling Interactive Analysis 2 (GEPIA2), UALCAN, Kaplan–Meier plotter, cBioPortal, Metascape, TIMER2 and TISIDB, to investigate the expression profile, gene alterations and prognostic roles of CBX family proteins, as well as their association with clinicopathologic parameters, immune cells and immune regulators. In addition, RT-qPCR, Western blot, CCK8, colony formation, wound healing and transwell assays were performed to investigate the biological functions of CBX3 in EC cells. Results: CBX3 and CBX5 were overexpressed in EC compared to normal tissues. Survival analysis revealed that high expression of CBX1 predicted worse disease-free survival (DFS) in EC patients. Functionally, CBXs might participate in mismatch repair, spliceosome, cell cycle, the Fanconi anemia pathway, tight junction, the mRNA surveillance pathway and the Hippo signaling pathway in EC development. Furthermore, CBXs were related to distinct immune cells infiltration and immune regulators. Additionally, depletion of CBX3 inhibited the proliferation, migration and invasion abilities of EC cells. Conclusions: Our study comprehensively investigated the expression pattern, prognostic value, and gene alterations of CBXs in EC, as well as their relationships with clinicopathologic variables, immune cells infiltration and immune regulators. These results suggested that CBX family proteins, especially CBX3, might be potential biomarkers in the progression of EC.
Collapse
|
18
|
Zhang YJ, Zhao LY, He X, Yao RF, Lu F, Lu BN, Pang ZR. CBXs-related prognostic gene signature correlates with immune microenvironment in gastric cancer. Aging (Albany NY) 2022; 14:6227-6254. [PMID: 35969177 PMCID: PMC9417237 DOI: 10.18632/aging.204214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 12/09/2022]
Abstract
Background: Chromobox (CBX) proteins are important Polycomb family proteins in the development of gastric cancer. Nonetheless, the relationship between CBXs and gastric cancer microenvironment remains unclear. Methods: Multiple databases were used for the analysis of CBXs expression and clinical value in gastric cancer patients. A Cox regression analysis was used to evaluate the prognostic importance of CBXs. Thereafter, regression analysis of LASSO Cox was used to construct the prognostic model. Spearman's correlation between risk score and immune infiltration was analyzed using the McP-counter algorithm. A predicted nomogram was developed to predict the overall survival of gastric cancer patients after 1, 2, and 3 years. Results: In contrast with normal tissues, mRNA and protein expression levels of CBX2/3 were significantly high in gastric cancer tissues, whereas those of CBX6/7 were low. CBXs significantly correlated with immune subtypes and molecular subtypes. A prognostic gene model based on five CBX genes (CBX1, CBX2, CBX3, CBX7, and CBX8) predicted the overall survival of gastric cancer patients. A significant correlation was noted between the risk score of the CBXs-related prognostic gene model and immune-cell infiltration. Low risk patients could achieve a better response to immune checkpoint inhibitors. A predictive nomogram constructed using the above five CBX genes revealed that overall survival rates over 1, 2, and 3 years could be reasonably predicted. Therefore, the roles of CBXs were associated with chromatin modifications and histone methylation, etc. Conclusion: In summary, we identified a prognostic CBXs model comprising five genes (CBX1, CBX2, CBX3, CBX7, and CBX8) for gastric cancer patients through bioinformatics analysis.
Collapse
Affiliation(s)
- Yin Jiang Zhang
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Lin Yi Zhao
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Xu He
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Rong Fei Yao
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Fan Lu
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Bi Nan Lu
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Zong Ran Pang
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| |
Collapse
|
19
|
The Epigenetic Regulatory Protein CBX2 Promotes mTORC1 Signalling and Inhibits DREAM Complex Activity to Drive Breast Cancer Cell Growth. Cancers (Basel) 2022; 14:cancers14143491. [PMID: 35884550 PMCID: PMC9321755 DOI: 10.3390/cancers14143491] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Chromobox 2 (CBX2) is a chromatin-binding component of polycomb repressive complex 1, which causes gene silencing. CBX2 expression is elevated in triple-negative breast cancer (TNBC), for which there are few therapeutic options. Here, we aimed to investigate the functional role of CBX2 in TNBC. CBX2 knockdown in TNBC models reduced cell numbers, which was rescued by ectopic expression of wild-type CBX2 but not a chromatin binding-deficient mutant. Blocking CBX2 chromatin interactions using the inhibitor SW2_152F also reduced cell growth, suggesting CBX2 chromatin binding is crucial for TNBC progression. RNA sequencing and gene set enrichment analysis of CBX2-depleted cells identified downregulation of oncogenic signalling pathways, including mTORC1 and E2F signalling. Subsequent analysis identified that CBX2 represses the expression of mTORC1 inhibitors and the tumour suppressor RBL2. RBL2 repression, in turn, inhibits DREAM complex activity. The DREAM complex inhibits E2F signalling, causing cell senescence; therefore, inhibition of the DREAM complex via CBX2 may be a key oncogenic driver. We observed similar effects in oestrogen receptor-positive breast cancer, and analysis of patient datasets suggested CBX2 inhibits RBL2 activity in other cancer types. Therapeutic inhibition of CBX2 could therefore repress mTORC1 activation and promote DREAM complex-mediated senescence in TNBC and could have similar effects in other cancer types.
Collapse
|
20
|
Dai T, Liu Y, Cao R, Cao J. CBX7 regulates metastasis of basal-like breast cancer through Twist1/EphA2 pathway. Transl Oncol 2022; 24:101468. [PMID: 35843065 PMCID: PMC9294549 DOI: 10.1016/j.tranon.2022.101468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/09/2022] Open
Abstract
CBX7 was down-regulated, while twist and EphA2 were up-regulated in BLBC. EphA2 or twist silencing inhibited BLBC cell proliferation and metastasis. Twist bond to EphA2 and increased the expression of EphA2. CBX7 blocked the binding of twist to EphA2 and inhibited EphA2 expression. CBX7 regulated BLBC growth and metastasis via Twist/EphA2 axis.
Background Basal-like breast cancer (BLBC) is an important subtype of breast cancer. Twist1 is a key transcription factor in BLBC metastasis, which serves a key role in tumorigenesis. The potential mechanism of Twist1 in BLBC remains to be elucidated. Here, we explored the role and molecular mechanism of Twist1 in BLBC. Methods The levels of CBX7, Twist1 and EphA2 in BLBC tissues and cells were determined by Western blot. ChIP and dual-luciferase reporter assays confirmed the interaction between CBX7, Twist1 and EphA2 promoter. The cellular functions were analyzed by CCK-8, colony formation, wound healing and Transwell assays. Expression of EMT related proteins was analyzed by Western blot. IHC measured the expression of CBX7, Twist1 and EphA2 in tumor tissues. Results CBX7 was down-regulated in BLBC tissues and cells, whereas Twist1 and EphA2 were up-regulated. Twist1 silencing inhibited the cell migration, invasion and cancer metastasis of BLBC through targeting EphA2 and regulating EphA2 expression. Additionally, CBX7 blocked the binding of Twist1 to EphA2 promoter and inhibited EphA2 expression and suppressed BLBC growth and metastasis via Twist1/EphA2 axis. Conclusion CBX7 suppresses BLBC growth and metastasis through Twist1/EphA2 pathway. Our study may provide evidence and new therapeutic targets for the comprehensive treatment of BLBC.
Collapse
Affiliation(s)
- Tao Dai
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha 410013 Hunan Province, PR China
| | - Yiqi Liu
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Renxian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Jingying Cao
- Department of Medicine Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha 410013 Hunan Province, PR China.
| |
Collapse
|
21
|
Xu H, Jiang C, Chen D, Wu Y, Lu J, Zhong L, Yao F. Analysis of Pan-Cancer Revealed the Immunological and Prognostic Potential of CBX3 in Human Tumors. Front Med (Lausanne) 2022; 9:869994. [PMID: 35573019 PMCID: PMC9096250 DOI: 10.3389/fmed.2022.869994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Chromobox protein homolog 3 (CBX3) has been recognized as a member of the heterochromatin protein 1 family and participate in transcriptional activation or inhibition, cell differentiation and growth. Despite more and more evidence shows that CBX3 has a critical function in the development of some tumors, no systematic extensive analysis of CBX3 has been reported. Thus, we intended to examine the prognostic significance of CBX3 in 33 tumors and investigate its potential immune function. We employed several bioinformatics methods to explore the potential carcinogenic impact of CBX3 premised on the data sets collected from tumor genome maps, human protein maps, cBioPortal, and genotype tissue expression. The approaches include assessing the link between CBX3 and prognosis of different tumors, immune cell infiltration, micro-satellite instability (MSI), DNA methylation, and tumor mutational burden (TMB). The outcomes illustrated that CBX3 was increasingly expressed in 29 tumors. Moreover, CBX3 exhibited a negative correlation with the prognosis of many tumors. The expression of CBX3 was linked to MSI in 12 tumors and TMB in 16 tumors. In 24 tumors, the expression of CBX3 was linked to DNA methylation. Moreover, the CBX3 expression exhibited a negative relationship with the infiltration level of the majority of immune cells, but showed a positive link to T gamma delta cells, central memory T cells, and T helper cells, especially when invading breast carcinoma, thymic carcinoma, colon carcinoma, cutaneous melanoma, endometrial carcinoma, and lung squamous carcinoma. Our research indicates that CBX3 might be used as a prognostic indicator for different malignant tumors due to its function in tumor genesis as well as tumor immunity.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Caihong Jiang
- Department of Pediatric Surgery, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Dangui Chen
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Youzhi Wu
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Jia Lu
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Long Zhong
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Fusheng Yao
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| |
Collapse
|
22
|
Zhang H, Yu H, Ren D, Sun Y, Guo F, Cai H, Zhou C, Zhou Y, Jin X, Wu H. CBX3 Regulated By YBX1 Promotes Smoking-induced Pancreatic Cancer Progression via Inhibiting SMURF2 Expression. Int J Biol Sci 2022; 18:3484-3497. [PMID: 35637952 PMCID: PMC9134897 DOI: 10.7150/ijbs.68995] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022] Open
Abstract
As a key reversible and heritable mechanism of transcriptional regulation, the epigenetic modification plays a crucial role in tumorigenesis. Of note, tobacco smoking induces epigenetic modifications to promote pancreatic cancer development. Chromobox protein homolog 3 (CBX3) acts as an epigenetic regulator, modulating gene expression of downstream targets via chromatin modifications. To date, the relationship between CBX3 and smoking in pancreatic cancer remains unknown. This study aimed to uncover the specific role and underlying mechanism of CBX3 in smoking-related pancreatic cancer. The bioinformatics analyses were conducted to identify CBX3 as a key player in tobacco-induced pancreatic cancer. The abnormal upregulation of CBX3 was associated with poor prognosis in pancreatic cancer patients. Moreover, cigarette smoke extract (CSE) exposure promoted the overexpression of Y-box-binding protein 1 (YBX1), which consequently led to upregulated CBX3 in pancreatic cancer cells. We also revealed that CBX3 enhanced pancreatic cancer progression, likely by inhibiting the expression of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) and promoting the activation of TGF-β signaling. In summary, the YBX1/CBX3/SMURF2 signaling axis may be a promising therapeutic target in patients with smoking-related pancreatic cancer.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haixin Yu
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dianyuan Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongkun Cai
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
23
|
Fang X, Wang J, Chen J, Zhuang M, Huang T, Chen Z, Huang Y, Zheng B, Wang X. Identification and Validation of Chromobox Family Members as Potential Prognostic Biomarkers and Therapeutic Targets for Human Esophageal Cancer. Front Genet 2022; 13:851390. [PMID: 35464847 PMCID: PMC9019303 DOI: 10.3389/fgene.2022.851390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Chromobox family proteins (CBXs) are vital components of epigenetic regulation complexes and transcriptionally inhibit target genes by modifying the chromatin. Accumulating evidence indicates that CBXs are involved in the initiation and progression of multiple malignancies. However, the expression, function, and clinical relevance such as the prognostic and diagnostic values of different CBXs in esophageal carcinoma (ESCA) are still unclear. Methods: We applied Oncomine, TCGA, GEO, GEPIA, UALCAN, Kaplan–Meier plotter, cBioPortal, Metascape, and TIMER to investigate the roles of CBX family members in ESCA. Additionally, quantitative real-time PCR (RT-PCR), western blot, and immunofluorescence were used to verify the expression of CBX family members in ESCA clinical samples. Results: Compared with normal tissues, the mRNA expression levels of CBX1/3/8 were significantly increased in ESCA, whereas CBX7 mRNA expression was reduced in both the TCGA cohort and GEO cohort. In the TCGA cohort, ROC curves suggested that CBX1/2/3/4/8 had great diagnostic value in ESCA, and the AUCs were above 0.9. Furthermore, upregulation of CBX1/3/8 and downregulation of CBX7 were closely related to the clinicopathological parameters in ESCA patients, such as tumor grades, tumor nodal metastasis status, and TP53 mutation status. The survival analysis indicated that higher CBX1/3/8 mRNA expressions and lower CBX7 expression suggested an unfavorable prognosis in ESCA. High genetic change rate (52%) of CBXs was found in ESCA patients. Functions and pathways of mutations in CBXs and their 50 frequently altered neighbor genes in ESCA patients were investigated; the results showed that DNA repair and DNA replication were correlated to CBX alterations. Moreover, we found a significant correlation between the expression level of CBX family members and the infiltration of immune cells in ESCA. Finally, we verified the expression of CBX family members in clinical samples and found the results were consistent with the databases. Conclusion: Our study implied that CBX1/3/7/8 are potential targets of precision therapy for ESCA patients and new biomarkers for the prognosis.
Collapse
Affiliation(s)
- Xuefen Fang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Junjun Wang
- Department of Clinical Laboratory, Fujian Provincial Hospital Southern Branch, Fuzhou, China
| | - Jiabing Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Mingkai Zhuang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Tingxuan Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Zhixin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Yuehong Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Biyun Zheng
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China.,Department of Endoscopy Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaozhong Wang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| |
Collapse
|
24
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
25
|
Li J, Xu Z, Zhou L, Hu K. Expression profile and prognostic values of Chromobox family members in human glioblastoma. Aging (Albany NY) 2022; 14:1910-1931. [PMID: 35210369 PMCID: PMC8908931 DOI: 10.18632/aging.203912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/28/2022] [Indexed: 02/05/2023]
Abstract
Glioblastoma (GBM) is the most common and deadly malignant primary brain tumor. Chromobox (CBX) family proteins are essential components of the epigenetic regulatory complex and are involved in the occurrence and development of various cancers. However, the roles of CBX members in GBM is little known. In this analysis, we synthesized several mainstream bioinformatics databases to comprehensively explore the expression profiles, prognostic implications, genetic alterations, immune infiltration, and potential biological functions of the CBXs in GBM, and cell experiments were also conducted to investigate the role of CBX8 in GBM. We found that the elevated mRNA expression of CBX2/3/5/8 and reduced mRNA expression of CBX6/7 were found in GBM. The protein levels of CBX2/3/5/8 were elevated in GBM tissues, whereas the protein levels of CBX6/7 showed no significant difference. The upregulated expression of CBX2/3/8 was found to be both correlated with the tumor grade and recurrent status. The overexpression of CBX3/8 and underexpression of CBX6 mRNA were associated with the poor prognosis. These findings suggested that CBX3 and CBX8 might be useful diagnostic and prognostic biomarkers in GBM. Further cell experiment results supported that CBX8 promoted the proliferation of glioma cells. Moreover, a high genetic alteration rate of CBXs (37%) was found in GBM and to varying degrees. The expression of CBXs was significantly related to the immune cells infiltration. CBX7 methylation level was significantly increased in GBM tissues. Our results may provide novel ideas to find potential prognostic markers and new therapeutic targets among CBX family members in glioblastoma.
Collapse
Affiliation(s)
- Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lei Zhou
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
26
|
Niu H, Chen P, Fan L, Sun B. Comprehensive pan-cancer analysis on CBX3 as a prognostic and immunological biomarker. BMC Med Genomics 2022; 15:29. [PMID: 35172803 PMCID: PMC8851738 DOI: 10.1186/s12920-022-01179-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/31/2022] [Indexed: 01/09/2023] Open
Abstract
Background Increased evidence supports the relationship between chromobox protein homolog 3 (CBX3) and tumorigenesis of some cancers. However, the role of CBX3 in pan-cancers remains poorly defined. In the research, we aimed to investigate the prognostic value and the immunological functions of CBX3. Results We explored the potential oncogenic roles of CBX3 in mRNA and protein levels based on the diverse databases, including the expression, the correlation with prognosis, tumor microenvironment (TME), DNA methylation, protein phosphorylation and enrichment analysis across all TCGA tumors. The results show that CBX3 is overexpressed in multiple cancers, and significant correlations exist between high expression and adverse prognosis in most tumor patients. We observed an enhanced phosphorylation level in uterine corpus endometrial carcinoma, colon cancer and lung adenocarcinoma. A distinct relationship was also found between CBX3 expression and TME, including immune infiltration of tumor-infiltrating lymphocytes and cancer-associated fibroblasts, immune score or matrix score, immune checkpoints. The correlative transcription factors and miRNAs of CBX3-binding hub genes were analyzed to investigate the molecular mechanism. Moreover, alcoholism and alteration of DNA cellular biology may be involved in the functional mechanisms of CBX3. Conclusion The first pan-cancer study offers a relatively comprehensive cognition on the oncogenic roles of CBX3 as a prognostic and immunological marker in various malignant tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01179-y.
Collapse
Affiliation(s)
- Hongjuan Niu
- School of Pharmacy in Minzu University of China, Beijing, 100081, China
| | - Peiqiong Chen
- Department of Pharmacy in Zhengzhou Ninth People's Hospital, Zhengzhou, 450000, China
| | - Lu Fan
- School of Pharmacy in Minzu University of China, Beijing, 100081, China
| | - Boyu Sun
- The Third People's Hospital of Qingdao, Qingdao, 266000, China.
| |
Collapse
|
27
|
Zhang X, Zhou W, Zhang Y, Liu Z. CBX3 is a Prognostic Biomarker Correlated with ATR Activation and Immune Infiltration in Head and Neck Squamous Cell Carcinoma. Int J Gen Med 2022; 15:1497-1508. [PMID: 35210823 PMCID: PMC8857981 DOI: 10.2147/ijgm.s344390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chromobox protein homolog (CBX) family members play important roles in the progression and prognosis of many cancers. However, their functional role in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. METHODS In this study, we analyzed the expression and functions of CBX family members using The Cancer Genome Atlas data. Most CBX family members were found to be differentially expressed in various tumors, including HNSCC, compared to normal tissues. Multivariate Cox regression analysis showed that CBX3 expression is an independent prognostic factor for HNSCC patients. A nomogram based on CBX3 expression was constructed for use as a diagnostic indicator for HNSCC patients. We also used qPCR to validate the expression of CBX3. RESULTS Gene set enrichment analysis suggested that CBX3 participates in ataxia-telangiectasia mutated and Rad3-related protein kinase (ATR) activation and tumor progression. Analysis of immune infiltration indicated that CBX3 expression is negatively correlated with mast cells, DCs, immature DCs, and neutrophils. CONCLUSION Our findings show that high CBX3 expression predicts poor prognosis in HNSCC and that CBX3 may act as an oncoprotein by activating ATR and affecting immune infiltration.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| | - Wenkai Zhou
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| | - Yu Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| | - Zheqi Liu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| |
Collapse
|
28
|
Hu K, Yao L, Xu Z, Yan Y, Li J. Prognostic Value and Therapeutic Potential of CBX Family Members in Ovarian Cancer. Front Cell Dev Biol 2022; 10:832354. [PMID: 35155439 PMCID: PMC8829121 DOI: 10.3389/fcell.2022.832354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Ovarian cancer (OV) is one of the common malignant tumors and has a poor prognosis. Chromobox (CBX) family proteins are critical components of epigenetic regulation complexes that repress target genes transcriptionally via chromatin modification. Some studies have investigated the function specifications among several CBXs members in multiple cancer types, however, little is known about the functions and prognostic roles of distinct CBXs family proteins in ovarian cancer. Methods: In this study, several bioinformatics databases and in vitro experiments were used to analyze the expression profiles, prognostic values, and therapeutic potential of the CBXs family (CBX1-8) in ovarian cancer. Results: It was found that higher expression of CBX3/8 and lower expression of CBX1/6/7 were detected in OV tissues. CBX2/4/5/8 were significantly correlated with individual cancer stages of OV. The expression of CBX1/2/3 were all significantly associated with worse overall survival (OS) and progression-free survival (PFS) for OV patients, whereas the expression of other five CBXs members showed either irrelevant (CBX5 and CBX8) or inconsistent (CBX4, CBX6, and CBX7) results for both OS and PFS in OV. These results showed that only CBX3 had consistent results in expression and prognosis. Further cell experiments also showed that CBX3 promoted the proliferation of ovarian cancer cells. CBX3 was highly expressed in chemoresistant OV tissues. These results indicated that CBX3 was the most likely prognostic indicator and new therapeutic target in OV. Furthermore, gene enrichment analysis suggests that the CBXs family was primarily involved in mast cell activation and mast cell mediated immunity. Individual CBXs members were associated with varying degrees of the infiltration of immune cells, especially B cells. Finally, a high genetic alteration rate of CBXs family (39%) was observed in OV. The low methylation status of CBX3/8 in OV may be associated with their high expression levels. Conclusions: Taken together, these findings exhibited the pivotal value of CBXs family members (especially CBX3) in the prognosis and chemoresistance of ovarian cancer. Our results may provide new insight to explore new prognostic biomarkers and therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Yao
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Zhang C, Chang L, Yao Y, Chao C, Ge Z, Fan C, Yu H, Wang B, Yang J. Role of the CBX Molecular Family in Lung Adenocarcinoma Tumorigenesis and Immune Infiltration. Front Genet 2021; 12:771062. [PMID: 34966411 PMCID: PMC8710700 DOI: 10.3389/fgene.2021.771062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The members of the Chromobox (CBX) family are important epigenetic regulatory molecules with critical biological roles in many tumors. However, no study has analyzed or verified their role in lung adenocarcinoma (LUAD). Methods: UALCAN and Oncomine databases were used to analyze CBX expression in LUAD, and the cBioPortal database was used to analyze CBX genetic variations. The Kaplan-Meier plotter and UALCAN databases were used to identify molecules with prognostic value. Gene Ontology pathway, receiver operating characteristic curves, and tumor-infiltrating immune cell analyses were used to clarify the biological function of the CBX hub molecules. Paired tumor samples and lung adenocarcinoma cell lines were collected for molecular functional assays to validate the results of the bioinformatics analysis. Results: CBX3/5 may have a cancer-promoting effect and its expression is associated with a poor patient prognosis, while CBX7 shows an opposite trend. CBX3/5/7 can regulate signaling pathways, regulate tumor immune cell infiltration, and has diagnostic value. Molecular biology experiments show that CBX3/5 is highly expressed in LUAD patients; in vitro it promotes the proliferation and migration of the LUAD cell line and can regulate the expression of the corresponding cytokines. CBX7 has opposite effects. Conclusion: Our bioinformatics analysis and subsequent experimental verification confirmed the CBX family members acted as hub signaling molecules in LUAD. The results provide new potential targets for the diagnosis and treatment of this cancer.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lisha Chang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yizhen Yao
- Department of Respiratory Medicine, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing, China
| | - Ce Chao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhongchun Ge
- Department of Cardiology, People's Hospital of Xuyi, Xuyi, China
| | - Chengfeng Fan
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hualin Yu
- Department of Radiotherapy, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Bin Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingsong Yang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Hu CY, Li X, Zeng T, Ye DM, Li YK, Yan HX. Significance of chromobox protein (CBX) expression in diffuse LBCL. Gene 2021; 813:146092. [PMID: 34896523 DOI: 10.1016/j.gene.2021.146092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is the main pathological type of non-Hodgkin lymphoma (NHL). Chromobox (CBX) family proteins are classical components of polycomb group (PcG) complexes in many cancer types, resulting in accelerated carcinogenesis. Nevertheless, the prognostic, functional and expression significance of these CBX family members in DLBCL remain unclear and elusive. METHODS CBX transcriptional levels were confirmed using Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA) and Cancer Cell Line Encyclopedia (CCLE) databases. The protein levels of CBX family members were analysed using The Human Protein Atlas (HPA) database. Information on the PPI network, functional enrichment, drug sensitivity, prognostic value, miRNA network, protein structure, genetic alteration and immune cell infiltration were generated using the GeneMANIA, Metascape, GSCALite, GEPIA, PDB, cBioPortal, and TIMER databases, and the correlation of these factors with CBX expression levels in DLBCL was assessed. RESULTS CBX1/2/3/5/6/8 mRNA levels were significantly enhanced in DLBCL tissues compared to corresponding normal tissues. CBX1/3/4/5/8 protein expression levels were obviously increased, whereas CBX7 was obviously decreased. This difference might be attributed to miRNA regulation based on the miRNA network. Overall survival (OS) analysis showed that CBX levels were not correlated with prognosis in DLBCL patients, indicating that CBXs are not good biomarkers for DLBCL patients. Furthermore, functional enrichment analyses indicated that CBXs were closely related to DNA duplex unwinding, covalent chromatin modification, and histone lysine methylation. The levels of CBXs were also significantly associated with diverse immune cell infiltration in DLBCL. CONCLUSIONS This study reveals that dysregulated CBXs are involved in DLBCL development and might represent potential therapeutic targets for DLBCL.
Collapse
Affiliation(s)
- Chun-Yan Hu
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xuan Li
- Department of Embryo Laboratory, Changsha Reproductive Medical Hospital, Changsha, Hunan 410000, PR China
| | - Tian Zeng
- Hengyang Medical College & Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, PR China
| | - Dong-Mei Ye
- Department of Pathology, The First Hospital of Nanchang City, Nanchang, Jiangxi 330008, PR China
| | - Yu-Kun Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Hong-Xia Yan
- Department of Pediatrics, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
31
|
De Morais JA, Zelanis A. Bioinformatic reanalysis of public proteomics data reveals that nuclear proteins are recurrent in cancer secretomes. Traffic 2021; 23:98-108. [PMID: 34806804 DOI: 10.1111/tra.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
Proteins secreted by tumoral cells (cancer secretomes) have been continuously associated with cancer development and progression processes. In this context, secreted proteins contribute to the signaling mechanisms related to tumor growth and spreading and studies on tumor secretomes provide valuable clues on putative tumor biomarkers. Although the in vitro identification of intracellular proteins in cancer secretome studies has usually been associated with contamination derived from cell lysis or fetal bovine serum, accumulated evidence reports on intracellular proteins with moonlighting functions in the extracellular environment. In this study, we performed a systematic reanalysis of public proteomics data regarding different cancer secretomes, aiming to identify intracellular proteins potentially secreted by tumor cells via unconventional secretion pathways. We found a similar repertoire of unconventionally secreted proteins, including the recurrent identification of nuclear proteins secreted by different cancer cells. In addition, in some cancer types, immunohistochemical data were in line with proteomics identifications and suggested that nuclear proteins might relocate from the nucleus to the cytoplasm. Both the presence of nuclear proteins and the likely unconventional secretion of such proteins may comprise biological signatures of malignant transformation in distinct cancer types and may be targeted for further analysis aiming at the prognostic/therapeutic value of such features.
Collapse
Affiliation(s)
- Juliana A De Morais
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
32
|
Li J, Ouyang T, Li M, Hong T, Alriashy M, Meng W, Zhang N. CBX7 is Dualistic in Cancer Progression Based on its Function and Molecular Interactions. Front Genet 2021; 12:740794. [PMID: 34659360 PMCID: PMC8517511 DOI: 10.3389/fgene.2021.740794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chromobox protein homolog 7 (CBX7) is a member of the Chromobox protein family and participates in the formation of the polycomb repressive complex 1(PRC1). In cells, CBX7 often acts as an epigenetic regulator to regulate gene expression. However, pathologically, abnormal expression of CBX7 can lead to an imbalance of gene expression, which is closely related to the occurrence and progression of cancers. In cancers, CBX7 plays a dual role; On the one hand, it contributes to cancer progression in some cancers by inhibiting oncosuppressor genes. On the other hand, it suppresses cancer progression by interacting with different molecules to regulate the synthesis of cell cycle-related proteins. In addition, CBX7 protein may interact with different RNAs (microRNAs, long noncoding RNAs, circular RNAs) in different cancer environments to participate in a variety of pathways, affecting the development of cancers. Furthermore, CBX7 is involved in cancer-related immune response and DNA repair. In conclusion, CBX7 expression is a key factor in the occurrence and progression of cancers.
Collapse
Affiliation(s)
- Jun Li
- Department of the Second Clinical Medical College of Nanchang University, Jiangxi Province, China
| | - Taohui Ouyang
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Mhs Alriashy
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wei Meng
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| |
Collapse
|
33
|
Zhou H, Xiong Y, Liu Z, Hou S, Zhou T. Expression and prognostic significance of CBX2 in colorectal cancer: database mining for CBX family members in malignancies and vitro analyses. Cancer Cell Int 2021; 21:402. [PMID: 34321009 PMCID: PMC8317347 DOI: 10.1186/s12935-021-02106-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
Background The Chromobox (CBX) domain protein family, a core component of polycomb repressive complexes 1, is involved in transcriptional repression, cell differentiation, and program development by binding to methylated histone tails. Each CBX family member plays a distinct role in various biological processes through their own specific chromatin domains, due to differences in conserved sequences of the CBX proteins. It has been demonstrated that colorectal cancer (CRC) is a multiple-step biological evolutionary process, whereas the roles of the CBX family in CRC remain largely unclear. Methods In the present study, the expression and prognostic significance of the CBX family in CRC were systematically analyzed through a series of online databases, including Cancer Cell Line Encyclopedia (CCLE), Oncomine, Human Protein Atlas (HPA), and Gene Expression Profiling Interactive Analysis (GEPIA). For in vitro verification, we performed cell cloning, flow cytometry and transwell experiments to verify the proliferation and invasion ability of CRC cells after knocking down CBX2. Results Most CBX proteins were found to be highly expressed in CRC, but only the elevated expression of CBX2 could be associated with poor prognosis in patients with CRC. Further examination of the role of CBX2 in CRC was performed through several in vitro experiments. CBX2 was overexpressed in CRC cell lines via the CCLE database and the results were verified by RT-qPCR. Moreover, the knockdown of CBX2 significantly suppressed CRC cell proliferation and invasion. Furthermore, the downregulation of CBX2 was found to promote CRC cell apoptosis. Conclusions Based on these findings, CBX2 may function as an oncogene and potential prognostic biomarker. Thus, the association between the abnormal expression of CBX2 and the initiation of CRC deserves further exploration.
Collapse
Affiliation(s)
- He Zhou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yongfu Xiong
- The First Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Zuoliang Liu
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Songlin Hou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Tong Zhou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, Sichuan Province, China. .,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
34
|
Fan L, Hou J, Qin G. Prediction of Disease Genes Based on Stage-Specific Gene Regulatory Networks in Breast Cancer. Front Genet 2021; 12:717557. [PMID: 34335705 PMCID: PMC8321251 DOI: 10.3389/fgene.2021.717557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women, which seriously endangers women’s health. Great advances have been made over the last decades, however, most studies predict driver genes of breast cancer using biological experiments and/or computational methods, regardless of stage information. In this study, we propose a computational framework to predict the disease genes of breast cancer based on stage-specific gene regulatory networks. Firstly, we screen out differentially expressed genes and hypomethylated/hypermethylated genes by comparing tumor samples with corresponding normal samples. Secondly, we construct three stage-specific gene regulatory networks by integrating RNA-seq profiles and TF-target pairs, and apply WGCNA to detect modules from these networks. Subsequently, we perform network topological analysis and gene set enrichment analysis. Finally, the key genes of specific modules for each stage are screened as candidate disease genes. We obtain seven stage-specific modules, and identify 20, 12, and 22 key genes for three stages, respectively. Furthermore, 55%, 83%, and 64% of the genes are associated with breast cancer, for example E2F2, E2F8, TPX2, BUB1, and CKAP2L. So it may be of great importance for further verification by cancer experts.
Collapse
Affiliation(s)
- Linzhuo Fan
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Jinhong Hou
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Guimin Qin
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
35
|
He M, Yue L, Wang H, Yu F, Yu M, Ni P, Zhang K, Chen S, Duan G, Zhang R. Evaluation of the prognostic value of CBXs in gastric cancer patients. Sci Rep 2021; 11:12375. [PMID: 34117289 PMCID: PMC8196000 DOI: 10.1038/s41598-021-91649-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Chromobox (CBX) proteins were suggested to exert epigenetic regulatory and transcriptionally repressing effects on target genes and might play key roles in the carcinogenesis of a variety of carcinomas. Nevertheless, the functions and prognostic significance of CBXs in gastric cancer (GC) remain unclear. The current study investigated the roles of CBXs in the prognosis of GC using the Oncomine, The Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, The Cancer Genome Atlas (TCGA), and cBioPortal databases. CBX1/2/3/4/5 were significantly upregulated in GC tissues compared with normal tissues, and CBX7 was downregulated. Multivariate analysis showed that high mRNA expression levels of CBX3/8 were independent prognostic factors for prolonged OS in GC patients. In addition, the genetic mutation rate of CBXs was 37% in GC patients, and genetic alterations in CBXs showed no association with OS or disease-free survival (DFS) in GC patients. These results indicated that CBX3/8 can be prognostic biomarkers for the survival of GC patients.
Collapse
Affiliation(s)
- Mengya He
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Limin Yue
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China.
| | - Haiyan Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Feiyan Yu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Mingyang Yu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Ke Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China.
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Hainan Medical University, Longhua District, No.3 Xueyuan Road, Haikou, 570216, China.
- Department of Experimentation Center, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
36
|
Zhou J, Chen Z, Zou M, Wan R, Wu T, Luo Y, Wu G, Wang W, Liu T. Prognosis and Immune Infiltration of Chromobox Family Genes in Sarcoma. Front Oncol 2021; 11:657595. [PMID: 34046352 PMCID: PMC8147558 DOI: 10.3389/fonc.2021.657595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Background Chromobox family genes (CBXs) are known to play roles in numerous modifications of the chromatin in order to inhibit the transcription of target genes. CBXs have been shown to be expressed at high levels in many types of cancer and can also serve as a target gene for therapeutic purposes. However, little is known about the expression and prognostic value of CBXs in human sarcomas. Methods The transcription level of CBXs was analyzed using the Oncomine dataset, and the differential expression of CBXs in sarcoma was reported by the Gene Expression Profiling Interactive Analysis (GEPIA) dataset. We also used the CCLE dataset to evaluate the expression of CBXs in a sarcoma cell line. The prognostic value of CBXs was analyzed using GEPIA and Kaplan–Meier analysis. In addition, the corrections between CBXs and their co-expressed genes were reported using Oncomine and GEPIA datasets. DAVID was used to perform GO function enrichment analysis for the CBXs and their co-expression genes. Finally, TIMER was used to analyze the immune cell infiltration of CBXs in patients with sarcoma. Results HP1-α/β/γ (CBX1/3/5) and CBX4/6/8 were found to be overexpressed in human sarcoma, and CBXs were upregulated in almost all the sarcoma cell line. The expression levels of HP1-α/β/γ (CBX1/3/5) and CBX7 were associated with overall survival (OS) in patients with sarcoma, while high expression levels of CBX7 were related to disease-free survival (DFS). In addition, the expression levels of CBX2/6/7 were related to recurrence-free survival (RFS). We also found that the CBX family was positively correlated with the infiltration of immune cells, including CD8+ T cells, CD4+ T cells, B cells, macrophages, neutrophils, and dendritic cells, in sarcoma. Conclusions The results from the present study indicated that CBXs were significantly associated with prognosis and immunological status in sarcoma. These data suggest that CBXs could serve as potential biomarkers for prognosis and immune infiltration in human sarcoma.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziyuan Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zou
- Department of Orthopedics, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, China
| | - Rongjun Wan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Tong Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingquan Luo
- Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gen Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Medicine Eight-Year Program, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Li H, Wu N, Liu ZY, Chen YC, Cheng Q, Wang J. Development of a novel transcription factors-related prognostic signature for serous ovarian cancer. Sci Rep 2021; 11:7207. [PMID: 33785763 PMCID: PMC8010122 DOI: 10.1038/s41598-021-86294-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggest that transcription factors (TFs) play vital roles in serous ovarian cancer (SOC). In the present study, TFs mRNA expression profiles of 564 SOC subjects in the TCGA database, and 70 SOC subjects in the GEO database were screened. A 17-TFs related prognostic signature was constructed using lasso cox regression and validated in the TCGA and GEO cohorts. Consensus clustering analysis was applied to establish a cluster model. The 17-TFs related prognostic signature, risk score and cluster models were effective at accurately distinguishing the overall survival of SOC. Analysis of genomic alterations were used to elaborate on the association between the 17-TFs related prognostic signature and genomic aberrations. The GSEA assay results suggested that there was a significant difference in the inflammatory and immune response pathways between the high-risk and low-risk score groups. The potential immune infiltration, immunotherapy, and chemotherapy responses were analyzed due to the significant difference in the regulation of lymphocyte migration and T cell-mediated cytotoxicity between the two groups. The results indicated that patients with low-risk score were more likely to respond anti-PD-1, etoposide, paclitaxel, and veliparib but not to gemcitabine, doxorubicin, docetaxel, and cisplatin. Also, the prognostic nomogram model revealed that the risk score was a good prognostic indicator for SOC patients. In conclusion, we explored the prognostic values of TFs in SOC and developed a 17-TFs related prognostic signature to predict the survival of SOC patients.
Collapse
Affiliation(s)
- He Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Zhao-Yi Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Yong-Chang Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Jing Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
38
|
Sun Y, Wang R. A Risk Score System Based on the Methylation Levels of 15 RNAs in Breast Cancer. Cancer Biother Radiopharm 2021; 37:697-707. [PMID: 33571027 DOI: 10.1089/cbr.2020.4074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Breast cancer (BC) occurs in the epithelial tissues of the breast gland, which is the most common cancer in women. This study is implemented to construct a risk score system for BC. Methods: The methylation data of BC from The Cancer Genome Atlas database (the training set) and GSE37754 from Gene Expression Omnibus database (the validation set) were downloaded. The differentially methylated RNAs (DMRs) between BC and normal samples were screened by limma package, and the correlations between the expression levels and methylation levels of the DMRs were analyzed to calculate their Pearson correlation coefficients (PCCs) using the cor.test function. To build the risk score system, the optimal RNAs were identified by penalized package. Subsequently, the nomogram survival model was established using the rms package. The lncRNA-mRNA comethylation network was constructed by Cytoscape software, and then enrichment analysis was performed using DAVID tool. Results: From the 1170 DMRs between BC and normal samples, 800 DMRs with significant negative PCCs were screened. For building the risk score system, the 15 optimal RNAs were selected. Afterward, the nomogram survival model based on four independent clinical prognostic factors (including age, radiation therapy, tumor recurrence, and RS model status) was constructed. In the comethylation network, the long noncoding RNA (lncRNA) PRNT was comethylated with FAM19A5 and RBM24. For the mRNAs in the comethylation network, angiogenesis and pathways in cancer were enriched. Conclusion: The risk score system and the nomogram survival model might be of great importance for the prognosis prediction of BC patients.
Collapse
Affiliation(s)
- Ying Sun
- Department of Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Rengui Wang
- Department of Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, Paradise CR, Wu Z. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone 2021; 143:115659. [PMID: 32979540 DOI: 10.1016/j.bone.2020.115659] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulatory proteins support mammalian development, cancer, aging and tissue repair by controlling many cellular processes including stem cell self-renewal, lineage-commitment and senescence in both skeletal and non-skeletal tissues. We review here our knowledge of epigenetic regulatory protein complexes that support the formation of inaccessible heterochromatin and suppress expression of cell and tissue-type specific biomarkers during development. Maintenance and formation of heterochromatin critically depends on epigenetic regulators that recognize histone 3 lysine trimethylation at residues K9 and K27 (respectively, H3K9me3 and H3K27me3), which represent transcriptionally suppressive epigenetic marks. Three chromobox proteins (i.e., CBX1, CBX3 or CBX5) associated with the heterochromatin protein 1 (HP1) complex are methyl readers that interpret H3K9me3 marks which are mediated by H3K9 methyltransferases (i.e., SUV39H1 or SUV39H2). Other chromobox proteins (i.e., CBX2, CBX4, CBX6, CBX7 and CBX8) recognize H3K27me3, which is deposited by Polycomb Repressive Complex 2 (PRC2; a complex containing SUZ12, EED, RBAP46/48 and the methyl transferases EZH1 or EZH2). This second set of CBX proteins resides in PRC1, which has many subunits including other polycomb group factors (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6), human polyhomeotic homologs (HPH1, HPH2, HPH3) and E3-ubiquitin ligases (RING1 or RING2). The latter enzymes catalyze the subsequent mono-ubiquitination of lysine 119 in H2A (H2AK119ub). We discuss biological, cellular and molecular functions of CBX proteins and their physiological and pathological activities in non-skeletal cells and tissues in anticipation of new discoveries on novel roles for CBX proteins in bone formation and skeletal development.
Collapse
Affiliation(s)
- Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amr A Badreldin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Christopher R Paradise
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Zhong Wu
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
40
|
Lin PC, Chen HO, Lee CJ, Yeh YM, Shen MR, Chiang JH. Comprehensive assessments of germline deletion structural variants reveal the association between prognostic MUC4 and CEP72 deletions and immune response gene expression in colorectal cancer patients. Hum Genomics 2021; 15:3. [PMID: 33431054 PMCID: PMC7802320 DOI: 10.1186/s40246-020-00302-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
Background Functional disruptions by large germline genomic structural variants in susceptible genes are known risks for cancer. We used deletion structural variants (DSVs) generated from germline whole-genome sequencing (WGS) and DSV immune-related association tumor microenvironment (TME) to predict cancer risk and prognosis. Methods We investigated the contribution of germline DSVs to cancer susceptibility and prognosis by silicon and causal inference models. DSVs in germline WGS data were generated from the blood samples of 192 cancer and 499 non-cancer subjects. Clinical information, including family cancer history (FCH), was obtained from the National Cheng Kung University Hospital and Taiwan Biobank. Ninety-nine colorectal cancer (CRC) patients had immune response gene expression data. We used joint calling tools and an attention-weighted model to build the cancer risk predictive model and identify DSVs in familial cancer. The survival support vector machine (survival-SVM) was used to select prognostic DSVs. Results We identified 671 DSVs that could predict cancer risk. The area under the curve (AUC) of the receiver operating characteristic curve (ROC) of the attention-weighted model was 0.71. The 3 most frequent DSV genes observed in cancer patients were identified as ADCY9, AURKAPS1, and RAB3GAP2 (p < 0.05). The DSVs in SGSM2 and LHFPL3 were relevant to colorectal cancer. We found a higher incidence of FCH in cancer patients than in non-cancer subjects (p < 0.05). SMYD3 and NKD2DSV genes were associated with cancer patients with FCH (p < 0.05). We identified 65 immune-associated DSV markers for assessing cancer prognosis (p < 0.05). The functional protein of MUC4 DSV gene interacted with MAGE1 expression, according to the STRING database. The causal inference model showed that deleting the CEP72 DSV gene affect the recurrence-free survival (RFS) of IFIT1 expression. Conclusions We established an explainable attention-weighted model for cancer risk prediction and used the survival-SVM for prognostic stratification by using germline DSVs and immune gene expression datasets. Comprehensive assessments of germline DSVs can predict the cancer risk and clinical outcome of colon cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-020-00302-3.
Collapse
Affiliation(s)
- Peng-Chan Lin
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan, Taiwan.,Institute of Medical Informatics, National Cheng Kung University, Tainan, Taiwan.,Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-O Chen
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jung Lee
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Yeh
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Hsien Chiang
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan, Taiwan. .,Institute of Medical Informatics, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
41
|
Mehboob R, Kurdi M, Ahmad M, Gilani SA, Khalid S, Nasief H, Mirdad A, Malibary H, Hakamy S, Hassan A, Alaifan M, Bamaga A, Shahzad SA. Comprehensive Analysis of Genes Associated With Sudden Infant Death Syndrome. Front Pediatr 2021; 9:742225. [PMID: 34722422 PMCID: PMC8555024 DOI: 10.3389/fped.2021.742225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Sudden infant death syndrome (SIDS) is a tragic incident which remains a mystery even after post-mortem investigation and thorough researches. Methods: This comprehensive review is based on the genes reported in the molecular autopsy studies conducted on SIDS so far. A total of 20 original studies and 7 case reports were identified and included in this analysis. The genes identified in children or adults were not included. Most of the genes reported in these studies belonged to cardiac channel and cardiomyopathy. Cardiac channel genes in SIDS were scrutinized for further analysis. Results: After screening and removing the duplicates, 42 unique genes were extracted. When the location of these genes was assessed, it was observed that most of these belonged to Chromosomes 11, 1 and 3 in sequential manner. The pathway analysis shows that these genes are involved in the regulation of heart rate, action potential, cardiac muscle cell contraction and heart contraction. The protein-protein interaction network was also very big and highly interactive. SCN5A, CAV3, ALG10B, AKAP9 and many more were mainly found in these cases and were regulated by many transcription factors such as MYOG C2C1 and CBX3 HCT11. Micro RNA, "hsa-miR-133a-3p" was found to be prevalent in the targeted genes. Conclusions: Molecular and computational approaches are a step forward toward exploration of these sad demises. It is so far a new arena but seems promising to dig out the genetic cause of SIDS in the years to come.
Collapse
Affiliation(s)
- Riffat Mehboob
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan.,Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Maher Kurdi
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mursleen Ahmad
- Department of Medicine, Sahiwal Medical College, Sahiwal, Pakistan
| | - Syed Amir Gilani
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Sidra Khalid
- Lahore Medical Research Center, LLP, Lahore, Pakistan
| | - Hisham Nasief
- Department of Obstetric and Gynecology, Faculty of Medicine, King Abdulaziz University and Hospital, Jeddah, Saudi Arabia
| | - Abeer Mirdad
- Pediatric Department, East Jeddah Hospital, Jeddah, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Sahar Hakamy
- Center of Excellence in Genomic Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amber Hassan
- Research Unit, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Meshari Alaifan
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bamaga
- Paediatric Department, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia.,Neurology and Pediatric Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Adnan Shahzad
- Faculty of Medicine and University Hospital of Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
42
|
Identification of the Roles of Chromobox Family Members in Gastric Cancer: A Study Based on Multiple Datasets. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5306509. [PMID: 33344640 PMCID: PMC7732380 DOI: 10.1155/2020/5306509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022]
Abstract
Background As the important components in polycomb repressive complexes 1 (PRC1) and heterochromatin protein 1 (HP1), Chromobox (CBX) family members are involved in epigenetic regulatory function, transcriptional repression, and other cellular metabolisms. Increasing studies have indicated significant associations between CBX and tumorigenesis, which is a progression in different types of cancers. However, the information about the roles of each CBX in gastric cancer is extremely limited. Methods We explored CBX mRNA expression, corrections with clinicopathological parameters, protein expression, prognostic values, enrichment analysis with several databases including Oncomine, Human Protein Atlas, UALCAN, Kaplan-Meier plotter, cBioPortal, GeneMANIA, and Enrichr. Results In our study, comparing to the normal tissues, higher mRNA expression of CBX1/2/3/4/5/8 and lower mRNA expression of CBX7 were found in GC tissues while upregulations of CBX1/2/3/4/5/8 and downregulations of CBX7 were indicated to be significantly correlated to the nodal metastasis status and individual cancer stages in GC patients. As for protein level, the expression of CBX2/3/4/5/6 was higher and the expression of CBX7 was lower in the GC tissues than those in the normal. What is more, higher mRNA expression of CBX1/5/6/8 and lower mRNA expression of CBX7 were markedly correlated to poor outcomes of OS and FP in GC patients. Besides, high mutation rate of CBXs (42%) was observed in GC patients. Conclusions We suggest that CBX5/7 may serve as potential therapeutic targets for GC while CBX1/8 may serve as potential prognostic indicators for GC.
Collapse
|
43
|
Ma T, Ma N, Chen JL, Tang FX, Zong Z, Yu ZM, Chen S, Zhou TC. Expression and prognostic value of Chromobox family members in gastric cancer. J Gastrointest Oncol 2020; 11:983-998. [PMID: 33209492 DOI: 10.21037/jgo-20-223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The Chromobox (CBX) protein family, which is a crucial part of the epigenetic regulatory complex, plays an important role in the occurrence and development of cancer; however, the function and prognostic value of CBX family members in gastric cancer is not clear. Methods we investigated the relationship between CBX members and gastric cancer using a range of tools and databases: Oncomine, Kaplan-Meier plotter, cBioPortal, ULCAN, Metascape, and GEPIA. Results The results showed that, relative to normal gastric tissue, mRNA expression levels of CBX1-6 were significantly higher in gastric cancer tissue, whereas the level of CBX7 was significantly lower. Furthermore, overexpression of CBX3-6 and underexpression of CBX7 mRNAs was significantly related to the poor prognosis and survival of gastric cancer patients, making these CBX family members useful biomarkers. Finally, overexpression of CBX1 mRNA was significantly related to the poor prognosis of gastric cancer patients treated with adjuvant 5-fluorouracil-based chemotherapy. Conclusions The members of the CBX family can be used as prognosis and survival biomarkers for gastric cancer and CBX1 may be a biomarker for choosing the chemotherapy regimen of gastric cancer patients.
Collapse
Affiliation(s)
- Tao Ma
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Ning Ma
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Jia-Lin Chen
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Fu-Xin Tang
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhuo-Min Yu
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Shuang Chen
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Tai-Cheng Zhou
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| |
Collapse
|
44
|
Xie X, Ning Y, Long J, Wang H, Chen X. Diverse CBX family members as potential prognostic biomarkers in non-small-cell lung cancer. FEBS Open Bio 2020; 10:2206-2215. [PMID: 32894652 PMCID: PMC7530393 DOI: 10.1002/2211-5463.12971] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Chromobox (CBX) family members are vital epigenetic regulators that repress the transcription of target genes through chromatin modification. Several studies have investigated the role of CBX family members in cancer. However, the function and prognostic value of diverse CBX family members in non‐small‐cell lung cancer remain largely unknown. In this study, we reveal that CBX family members are overexpressed in non‐small‐cell lung cancer tissue compared with normal lung tissue, with the exception of CBX6. Kaplan–Meier analysis demonstrated that high expressions of CBX1 and CBX3 are correlated with overall survival, disease‐specific survival, disease‐free interval, and progression‐free interval for patients with lung adenocarcinoma (LUAD). Furthermore, regression model analysis suggests that CBX3 may be suitable as an independent prediction factor for overall survival and progression‐free interval in patients with LUAD. In addition, CBX3 mRNA expression was found to be associated with tumor diameter and lymph node metastasis. Gene enrichment analysis suggests that CBX3 is involved in the cell cycle and P53 signaling pathways. Aberrant expression of CBX3 in LUAD is correlated with DNA copy number alteration. In summary, our data imply that CBX3 plays an important role in the promotion of LUAD and may thus have potential as a prognostic biomarker and molecular therapeutic target for the disease.
Collapse
Affiliation(s)
- Xiaobin Xie
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Long
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaowei Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou, China
| |
Collapse
|
45
|
Li Q, Pan Y, Cao Z, Zhao S. Comprehensive Analysis of Prognostic Value and Immune Infiltration of Chromobox Family Members in Colorectal Cancer. Front Oncol 2020; 10:582667. [PMID: 33014884 PMCID: PMC7498700 DOI: 10.3389/fonc.2020.582667] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: Colorectal cancer (CRC) is one of the common malignant tumors worldwide. Chromobox (CBX) family proteins are important components of epigenetic regulation complexes and are implicated in the development of multiple cancers by blocking differentiation and promoting proliferation. However, little is known about the function of distinct CBX proteins in colorectal cancer. Methods: Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, GeneMANIA, and TIMER were utilized to analyze differential expression, prognostic value, genetic alteration and immune cell infiltration of CBXs in colorectal cancer patients. Results: The expression levels of CBX1/2/3/4/5 and CBX8 were significantly elevated in CRC tissues, whereas the expression levels of CBX6/7 were reduced. CBX3 was significantly associated with the clinical cancer stage and short disease-free survival (DFS) in CRC patients. High mRNA expression of CBX5/6 was associated with short overall survival (OS) in rectal cancer patients. CBX3/5/6 could be potential prognostic biomarkers for the survival of CRC patients. Moreover, the functions of the differentially expressed CBXs were primarily related to the SUMOylation of DNA methylation proteins and chromatin organization and may regulate the pluripotency of stem cells. The expression of CBXs were significantly correlated with the infiltration of diverse immune cells, including six types of CD4+ T cells, macrophages, neutrophils, B cells, CD8+ T cells, and dendritic cells in colon cancers and rectal cancers. Conclusions: Our study may provide novel insights for the selection of prognostic biomarkers of CBX family in colorectal cancer.
Collapse
Affiliation(s)
- Qingshang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, School of Medicine, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Pan
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, School of Medicine, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Cao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, School of Medicine, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuliang Zhao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, School of Medicine, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Li D, Liu Y, Hao S, Chen B, Li A. Mining database for the clinical significance and prognostic value of CBX family in skin cutaneous melanoma. J Clin Lab Anal 2020; 34:e23537. [PMID: 32860274 PMCID: PMC7755763 DOI: 10.1002/jcla.23537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of the most aggressive malignancies with high invasiveness. Chromobox (CBX) family are involved in the regulation of the tumorigenesis, progression, invasion, and apoptosis of many malignancies. METHODS The clinical significance and prognostic value of CBX family in SKCM were analyzed via a series of databases, including ONCOMINE, GEPIA, UALCAN, TIMER, GSCALite, DAVID 6.8, GeneMANIA, and LinkedOmics. RESULTS We found that the level of CBX2, CBX3, CBX5, and CBX6 was upregulated while the level of CBX7 and CBX8 was downregulated in tumor tissues in SKCM. Moreover, the mRNA expression of CBX1 and CBX2 was significantly associated with the pathological stage in SKCM. Prognosis analysis revealed that SKCM patients with high CBX5 level and low CBX7 level had a poor prognosis. Immune infiltrations analysis revealed that the expression of CBX family was associated with the abundance of certain immune cells in SKCM. We also found that CBX family were associated with the activation of cell cycle pathway and DNA damage response, and the inhibition of apoptosis pathway. Moreover, enrichment analysis revealed that CBX family and correlated genes were enriched in chromatin modification, PcG protein complex, transcription coactivator activity, protein binding, and RNA splicing. Several Kinase targets (ATM, CDK1, and PLK1) and miRNA targets (MIR-331, MIR-296, and MIR-496) of CBX family were also identified. CONCLUSION Our study may uncover CBX family-associated molecular mechanisms involved in the tumorigenesis and progression of SKCM and provide additional choice for the prognosis and therapy biomarker for SKCM.
Collapse
Affiliation(s)
- Ding Li
- Integrated Chinese and Western Medicine Center, Qingdao University Medical College, Qingdao, China
| | - YiRan Liu
- The Third Institute of Clinical Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Shuai Hao
- Department of Traditional Chinese Medicine, Qingdao Huangdao District Central Hospital, Qingdao, China
| | - Bo Chen
- Department of Traditional Chinese Medicine, Qingdao Huangdao District Central Hospital, Qingdao, China
| | - AnHai Li
- Department of Dermatology, Qingdao Huangdao District Central Hospital, Qingdao, China
| |
Collapse
|
47
|
G protein-coupled estrogen receptor 1 (GPER-1) and agonist G-1 inhibit growth of ovarian cancer cells by activation of anti-tumoral transcriptome responses: impact of GPER-1 mRNA on survival. J Cancer Res Clin Oncol 2020; 146:3175-3188. [PMID: 32813115 DOI: 10.1007/s00432-020-03333-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE The present study intended to further elucidate the role of G protein-coupled estrogen receptor 1 (GPER-1) in ovarian cancer by comparing the effects of a GPER-1 knockdown and treatment with its agonist G-1 on cell growth, apoptosis, and the transcriptome of two ovarian cancer cell lines. Furthermore, the role of GPER-1 in ovarian cancer survival was examined. METHODS GPER-1 expression in OVCAR-3 and OAW-42 ovarian cancer cells was knocked down by RNAi. The effects on cell growth were measured by means of the fluorimetric cell titer blue assay and on the transcriptome by Affymetrix GeneChip analysis. The effect of GPER-1 on patient's survival was examined using open source mRNA and clinical data of 1657 ovarian cancer patients. RESULTS GPER-1 knockdown resulted in a significant growth stimulation of both cell lines, whereas treatment with agonist G-1 decreased growth of both cell lines in a dose-dependent manner. Transcriptome analyses revealed a set of 18 genes being conversely regulated after GPER-1 knockdown and G-1 treatment. Generally, treatment with G-1 led to a transcriptome response associated with growth inhibition. In contrast, knockdown of GPER-1 exerted opposite effects, stimulating pathways activating mitosis, but inhibiting pathways associated with apoptosis or interferon signaling. Further analyses using open-access mRNA and clinical data by bioinformatical online tools revealed a longer OS (HR = 0.86, p = 0.057) and PFS (HR = 0.81, p = 0.0035) of ovarian cancer patients with high GPER-1 mRNA expression. CONCLUSIONS The results of this study clearly support the hypothesis that GPER-1 acts as a tumor suppressor in ovarian cancer.
Collapse
|
48
|
Xu Y, Pan S, Song Y, Pan C, Chen C, Zhu X. The Prognostic Value of the Chromobox Family in Human Ovarian Cancer. J Cancer 2020; 11:5198-5209. [PMID: 32742466 PMCID: PMC7378907 DOI: 10.7150/jca.44475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecologic tumors in women and has a poor prognosis. The purpose of our study was to identify new prognostic markers in ovarian cancer. We examined the prognostic roles of mRNA expression of the chromobox (CBX) family in patients with ovarian cancer utilizing the Kaplan-Meier plotter database. The prognostic values and expression levels of CBX members associated with prognosis were further evaluated using KM plotter in diverse subgroups and immunohistochemistry (IHC) analysis in ovarian carcinoma. The results revealed that elevated CBX1-3 mRNA expression may predict poor overall survival (OS) and progression-free survival (PFS) outcomes in patients with ovarian cancer. Notably, in women with ovarian cancer, increased CBX1 mRNA expression was linked to a short OS in all stages and in the grade II and grade III subgroups. Additionally, CBX2 and CBX3 were strongly related to short OS in stage III+IV patients, and a link between high CBX3 mRNA expression and unfavorable OS in grade II patients was observed. High expression levels of CBX1 and CBX3 were significantly associated with chemotherapy resistance in ovarian cancer patients. IHC staining showed that the CBX1-3 proteins were upregulated in serous ovarian carcinoma tissues compared with normal ovarian tissues. Therefore, our results indicated that CBX1-3 could be attractive biomarkers for predicting poor prognosis of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
Jiang N, Niu G, Pan YH, Pan W, Zhang MF, Zhang CZ, Shen H. CBX4 transcriptionally suppresses KLF6 via interaction with HDAC1 to exert oncogenic activities in clear cell renal cell carcinoma. EBioMedicine 2020; 53:102692. [PMID: 32113161 PMCID: PMC7044754 DOI: 10.1016/j.ebiom.2020.102692] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background Dysregulation of polycomb chromobox (CBX) proteins that mediate epigenetic gene silencing contributes to the progression of human cancers. Yet their roles in clear cell renal cell carcinoma (ccRCC) remain to be explored. Methods The expression of CBX4 and its clinical significance were determined by qRT-PCR, western blot, immunohistochemistry and statistical analyses. The biological function of CBX4 in ccRCC tumor growth and metastasis and the underlying mechanism were investigated using in vitro and in vivo models. Findings CBX4 exerts oncogenic activities in ccRCC via interaction with HDAC1 to transcriptionally suppress tumor suppressor KLF6. CBX4 expression is increased in ccRCC and correlated with poor prognosis in two independent cohorts containing 840 patients. High CBX4 expression is significantly associated with Fuhrman grade and tumor lymph node invasion. CBX4 overexpression promotes tumor growth and metastasis, whereas CBX4 knockdown results in the opposite phenotypes. Mechanistically, CBX4 downregulates KLF6 via repressing the transcriptional activity of its promoter. Further studies show that CBX4 physically binds to HDAC1 to maintain its localization on the KLF6 promoter. Ectopic expression of KLF6 or disruption of CBX4-HDAC1 interaction attenuates CBX4-mediated cell growth and migration. Furthermore, CBX4 depletion markedly enhances the histone deacetylase inhibitor (HDACi)-induced cell apoptosis and suppression of tumor growth. Interpretation Our data suggest CBX4 as an oncogene with prognostic potential in ccRCC. The newly identified CBX4/HDAC1/KLF6 axis may represent a potential therapeutic target for the clinical intervention of ccRCC.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Gang Niu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Hua Pan
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510600, China
| | - Wenwei Pan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, China; State Key Laboratory of Oncology in South China, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Chris Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, China; State Key Laboratory of Oncology in South China, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Huimin Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
50
|
Zhang Y, Kang M, Zhang B, Meng F, Song J, Kaneko H, Shimamoto F, Tang B. m 6A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol Cancer 2019; 18:185. [PMID: 31849331 PMCID: PMC6918584 DOI: 10.1186/s12943-019-1116-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colon cancer (CC) cells can exhibit stemness and expansion capabilities, which contribute to resistance to conventional chemotherapies. Aberrant expression of CBX8 has been identified in many types of cancer, but the cause of this aberrant CBX8 expression and whether CBX8 is associated with stemness properties in CC remain unknown. METHODS qRT-PCR and IHC were applied to examine CBX8 levels in normal and chemoresistant CC tissues. Cancer cell stemness and chemosensitivity were evaluated by spheroid formation, colony formation, Western blot and flow cytometry assays. RNA-seq combined with ChIP-seq was used to identify target genes, and ChIP, IP and dual luciferase reporter assays were applied to explore the underlying mechanisms. RESULTS CBX8 was significantly overexpressed in chemoresistant CC tissues. In addition, CBX8 could promote stemness and suppress chemosensitivity through LGR5. Mechanistic studies revealed that CBX8 activate the transcription of LGR5 in a noncanonical manner with assistance of Pol II. CBX8 recruited KMT2b to the LGR5 promoter, which maintained H3K4me3 status to promote LGR5 expression. Moreover, m6A methylation participated in the upregulation of CBX8 by maintaining CBX8 mRNA stability. CONCLUSIONS Upon m6A methylation-induced upregulation, CBX8 interacts with KMT2b and Pol II to promote LGR5 expression in a noncanonical manner, which contributes to increased cancer stemness and decreased chemosensitivity in CC. This study provides potential new therapeutic targets and valuable prognostic markers for CC.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Health Sciences, Hiroshima Shudo University, 1-1-1, Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3195, Japan
- Department of General Surgery, Affiliated hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Min Kang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fanchao Meng
- Department of General Surgery, Affiliated hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jun Song
- Department of General Surgery, Affiliated hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Hiroshi Kaneko
- Department of Health Sciences, Hiroshima Shudo University, 1-1-1, Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3195, Japan
| | - Fumio Shimamoto
- Department of Health Sciences, Hiroshima Shudo University, 1-1-1, Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3195, Japan.
| | - Bo Tang
- Department of Health Sciences, Hiroshima Shudo University, 1-1-1, Ozuka-higashi, Asaminami-ku, Hiroshima, 731-3195, Japan.
| |
Collapse
|