1
|
Srivastava A, Ahmad R, Yadav K, Siddiqui S, Trivedi A, Misra A, Mehrotra S, Ahmad B, Ali Khan M. An update on existing therapeutic options and status of novel anti-metastatic agents in breast cancer: Elucidating the molecular mechanisms underlying the pleiotropic action of Withania somnifera (Indian ginseng) in breast cancer attenuation. Int Immunopharmacol 2024; 136:112232. [PMID: 38815352 DOI: 10.1016/j.intimp.2024.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Major significant advancements in pharmacology and drug technology have been made to heighten the impact of cancer therapies, improving the life expectancy of subjects diagnosed with malignancy. Statistically, 99% of breast cancers occur in women while 0.5-1% occur in men, the female gender being the strongest breast cancer risk factor. Despite several breakthroughs, breast cancer continues to have a worldwide impact and is one of the leading causes of mortality. Additionally, resistance to therapy is a crucial factor enabling cancer cell persistence and resurgence. As a result, the search and discovery of novel modulatory agents and effective therapies capable of controlling tumor progression and cancer cell proliferation is critical. Withania somnifera (L.) Dunal (WS), commonly known as Indian ginseng, has long been used traditionally for the treatment of several ailments in the Indian context. Recently, WS and its phytoconstituents have shown promising anti-breast cancer properties and, as such, can be employed as prophylactic as well as therapeutic adjuncts to the main line of breast cancer treatment. The present review is an attempt to explore and provide experimental evidences in support of the prophylactic and therapeutic potential of WS in breast cancer, along with a deeper insight into the multiple molecular mechanisms and novel targets through which it acts against breast and other hormonally-induced cancers viz. ovarian, uterine and cervical. This exploration might prove crucial in providing better understanding of breast cancer progression and metastasis and its use as an adjunct in improving disease prognosis and therapeutic outcome.
Collapse
Affiliation(s)
- Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow 226007, UP., India.
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Sudhir Mehrotra
- Dept. of Biochemistry, University of Lucknow, Lucknow 226007, UP., India.
| | - Bilal Ahmad
- Research Cell, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow 226003, UP., India.
| |
Collapse
|
2
|
Wu J, Tan S, Zhou Y, Zhao H, Yu H, Zhong B, Yu C, Wang H, Yang Y, Li H, Li Y. Clinical and gonadal transcriptome analysis of 38,XX disorder of sex development pigs†. Biol Reprod 2024; 111:212-226. [PMID: 38531779 DOI: 10.1093/biolre/ioae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Pigs serve as a robust animal model for the study of human diseases, notably in the context of disorders of sex development (DSD). This study aims to investigate the phenotypic characteristics and molecular mechanisms underlying the reproductive and developmental abnormalities of 38,XX ovotestis-DSD (OT-DSD) and 38,XX testis-DSD (T-DSD) in pigs. Clinical and transcriptome sequencing analyses were performed on DSD and normal female pigs. Cytogenetic and SRY analyses confirmed that OT/T-DSD pigs exhibited a 38,XX karyotype and lacked the SRY gene. The DSD pigs had higher levels of follicle-stimulating hormone, luteinizing hormone, and progesterone, but lower testosterone levels when compared with normal male pigs. The reproductive organs of OT/T-DSD pigs exhibit abnormal development, displaying both male and female characteristics, with an absence of germ cells in the seminiferous tubules. Sex determination and development-related differentially expressed genes shared between DSD pigs were identified in the gonads, including WT1, DKK1, CTNNB1, WTN9B, SHOC, PTPN11, NRG1, and NXK3-1. DKK1 is proposed as a candidate gene for investigating the regulatory mechanisms underlying gonadal phenotypic differences between OT-DSD and T-DSD pigs. Consequently, our findings provide insights into the molecular pathogenesis of DSD pigs and present an animal model for studying into DSD in humans.
Collapse
Affiliation(s)
- Jinhua Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shuwen Tan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yi Zhou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Bingzhou Zhong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Congying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Haoming Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Li X, Han Z, Li H. Hif3α Plays Key Roles in the Progression of Alzheimer's Disease Caused by Circadian Rhythm Disruption through Regulating the m 6A/KDM3A/TGF-β1 Axis. BIOLOGY 2024; 13:412. [PMID: 38927292 PMCID: PMC11201003 DOI: 10.3390/biology13060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Disrupted circadian rhythms are associated with the onset of chronic diseases and impairments, including cancer, diabetes, and hypertension. However, whether circadian disruptions accelerate the progression of Alzheimer's disease and the respective pathway remains unclear. In this study, we constructed animal models using male C57BL/6N and APP/PS1 mice. Irregular illumination during sleeping hours was administered to the mice in our intervention groups to consistently disrupt their circadian rhythms. The impact of the intervention was evaluated through body weight tracking, cerebral index determination, histopathological staining, and biochemical marker analysis. Transcriptomic sequencing identified critical genes, with the data subsequently validated using RNA m6A detection and site analysis. The evaluations revealed that circadian disruptions impaired normal weight gain, liver and kidney functions, neuronal cells, and overall brain function. Transcriptomic sequencing data revealed a trend of elevating expression of Hif3α mRNA in the intervention groups. Further analysis of specific gene sites revealed that m6A methylation of the Hif3α gene at m6A site 3632 primarily drove the observed variations in HIF3A protein expression in our model. Furthermore, the expression of proteins in PC12 cells, N2a cells, and mice brains validated that an increase in HIF3A expression decreased KDM3A and TGF-β1 protein expression. Our study reveals a hitherto unknown pathway through which the disruption of circadian rhythms, by triggering m6A methylation at m6A site 3632 in the Hif3α gene, leads to the initiation and acceleration of AD. These findings provide valuable insights and guidelines for treating AD patients and enhancing caregiving by professionals.
Collapse
Affiliation(s)
- Xinrui Li
- Beijing National Day School, Beijing 100062, China;
| | - Zhengkun Han
- Beijing Key Laboratory of Food Processing and Safety in Forest, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Huiying Li
- Beijing Key Laboratory of Food Processing and Safety in Forest, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| |
Collapse
|
4
|
Han Y, Maimaiti N, Sun Y, Yao J. Knockout of KDM3A in MDA-MB-231 breast cancer cells inhibits tumor malignancy and promotes apoptosis. J Mol Histol 2024; 55:139-148. [PMID: 38165573 PMCID: PMC10830655 DOI: 10.1007/s10735-023-10178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/03/2023] [Indexed: 01/04/2024]
Abstract
The histone lysine demethylase 3 A (KDM3A) is vital for the regulation of cancer physiology and pathophysiology. The purpose of this study was to investigate the effect of KDM3A expression with triple-negative breast cancer (TNBC) invasion and metastasis. In our results, knockout of KDM3A in TNBC MDA-MB-231 cells promoted apoptosis and inhibited the proliferation, invasion and metastasis of MDA-MB-231 cells. In addition, we found that in vivo experiments indicated that the growth, invasion and metastasis of metastatic neoplasms were significantly inhibited by knockout of KDM3A in a TNBC metastasis model. These findings suggest that KDM3A may be a potential therapeutic target for the treatment and prevention of TNBC, providing a critical theoretical basis for the effective prevention or treatment of breast cancer disease.
Collapse
Affiliation(s)
- Yuanxing Han
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Nueryemu Maimaiti
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Yue Sun
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China
| | - Juan Yao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
- Imaging Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
5
|
Dillingham CM, Cormaty H, Morgan EC, Tak AI, Esgdaille DE, Boutz PL, Sridharan R. KDM3A and KDM3B Maintain Naïve Pluripotency Through the Regulation of Alternative Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543088. [PMID: 37398291 PMCID: PMC10312572 DOI: 10.1101/2023.05.31.543088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Histone modifying enzymes play a central role in maintaining cell identity by establishing a conducive chromatin environment for lineage specific transcription factor activity. Pluripotent embryonic stem cell (ESC) identity is characterized by a lower abundance of gene repression associated histone modifications that enables rapid response to differentiation cues. The KDM3 family of histone demethylases removes the repressive histone H3 lysine 9 dimethylation (H3K9me2). Here we uncover a surprising role for the KDM3 proteins in the maintenance of the pluripotent state through post-transcriptional regulation. We find that KDM3A and KDM3B interact with RNA processing factors such as EFTUD2 and PRMT5. Acute selective degradation of the endogenous KDM3A and KDM3B proteins resulted in altered splicing independent of H3K9me2 status or catalytic activity. These splicing changes partially resemble the splicing pattern of the more blastocyst-like ground state of pluripotency and occurred in important chromatin and transcription factors such as Dnmt3b, Tbx3 and Tcf12. Our findings reveal non-canonical roles of histone demethylating enzymes in splicing to regulate cell identity.
Collapse
Affiliation(s)
- Caleb M Dillingham
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Harshini Cormaty
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ellen C Morgan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Andrew I Tak
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dakarai E Esgdaille
- Department of Biochemistry and Biophysics, Center for RNA Biology, Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry
| | - Paul L Boutz
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| |
Collapse
|
6
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
7
|
Thakur C, Qiu Y, Fu Y, Bi Z, Zhang W, Ji H, Chen F. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies. Front Oncol 2022; 12:971288. [PMID: 36185256 PMCID: PMC9520778 DOI: 10.3389/fonc.2022.971288] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Delayed presentation of the disease, late stage at diagnosis, limited therapeutic options, metastasis, and relapse are the major factors contributing to breast cancer mortality. The development and progression of breast cancer is a complex and multi-step process that incorporates an accumulation of several genetic and epigenetic alterations. External environmental factors and internal cellular microenvironmental cues influence the occurrence of these alterations that drives tumorigenesis. Here, we discuss state-of-the-art information on the epigenetics of breast cancer and how environmental risk factors orchestrate major epigenetic events, emphasizing the necessity for a multidisciplinary approach toward a better understanding of the gene-environment interactions implicated in breast cancer. Since epigenetic modifications are reversible and are susceptible to extrinsic and intrinsic stimuli, they offer potential avenues that can be targeted for designing robust breast cancer therapies.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Yiran Qiu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yao Fu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Zhuoyue Bi
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Wenxuan Zhang
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Haoyan Ji
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Fei Chen
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
8
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
9
|
Sun X, Gu X, Li H, Xu P, Li M, Zhu Y, Zuo Q, Li B. H3K9me2 regulates early transcription factors to promote mesenchymal stem‑cell differentiation into cardiomyocytes. Mol Med Rep 2021; 24:616. [PMID: 34184085 DOI: 10.3892/mmr.2021.12255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/24/2021] [Indexed: 11/05/2022] Open
Abstract
Studies have shown that histone H3 at lysine 9 (H3K9me2) is an important epigenetic modifier of embryonic development, cell reprogramming and cell differentiation, but its specific role in cardiomyocyte formation remains to be elucidated. The present study established a model of 5‑Azacytidine‑induced differentiation of rat bone mesenchymal stem cells (MSCs) into cardiomyocytes and, on this basis, investigated the dimethylation of H3K9me2 and its effect on cardiomyocyte formation by knockdown of H3K9me2 methylase, euchromatic histone‑lysine N‑methyltransferase 2 (G9a) and H3K9me2 lysine demethylase 3A (KDM3A). The results demonstrated that, in comparison with the normal induction process, the knockdown of G9a could significantly reduce the H3K9me2 level of the MSCs in the induced model. Reverse transcription‑quantitative (RT‑q) PCR demonstrated that the expression of cardiac troponin T(cTnT) was significantly increased. In addition, flow cytometry demonstrated that the proportion of cTnT‑positive cells was significantly increased on day 21. With the knockdown of KDM3A, the opposite occurred. In order to explore the specific way of H3K9me2 regulating cardiomyocyte formation, western blotting and RT‑qPCR were used to detect the expression of key transcription factors including GATA binding protein 4 (GATA‑4), NK2 Homeobox 5 (Nkx2.5) and myocyte enhancer factor 2c (MEF2c) during cardiomyocyte formation. The decrease of H3K9me2 increased the expression of transcription factors GATA‑4, Nkx2.5 and MEF2c in the early stage of myocardial development while the increase of H3K9me2 inhibited the expression of those transcription factors. Accordingly, it was concluded that H3K9me2 is a negative regulator of cardiomyocyte formation and can participate in cardiomyocyte formation by activating or inhibiting key transcription factors of cardiomyocytes, which will lay the foundation for the optimized induction efficiency of cardiomyocytes in in vitro and clinical applications.
Collapse
Affiliation(s)
- Xiaolin Sun
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiang Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Hongxiao Li
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Pei Xu
- Department of Hematology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Mengting Li
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ye Zhu
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Bichun Li
- Key Laboratory of Animal Breeding and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
10
|
Ruiz TFR, Taboga SR, Leonel ECR. Molecular mechanisms of mammary gland remodeling: A review of the homeostatic versus bisphenol a disrupted microenvironment. Reprod Toxicol 2021; 105:1-16. [PMID: 34343637 DOI: 10.1016/j.reprotox.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Mammary gland (MG) undergoes critical points of structural changes throughout a woman's life. During the perinatal and pubertal stages, MG develops through growth and differentiation to establish a pre-mature feature. If pregnancy and lactation occur, the epithelial compartment branches and differentiates to create a specialized structure for milk secretion and nurturing of the newborn. However, the ultimate MG modification consists of a regression process aiming to reestablish the smaller and less energy demanding structure until another production cycle happens. The unraveling of these fascinating physiologic cycles has helped the scientific community elucidate aspects of molecular regulation of proliferative and apoptotic events and remodeling of the stromal compartment. However, greater understanding of the hormonal pathways involved in MG developmental stages led to concern that endocrine disruptors such as bisphenol A (BPA), may influence these specific development/involution stages, called "windows of susceptibility". Since it is used in the manufacture of polycarbonate plastics and epoxy resins, BPA is a ubiquitous chemical present in human everyday life, exerting an estrogenic effect. Thus, descriptions of its deleterious effects on the MG, especially in terms of serum hormone concentrations, hormonal receptor expression, molecular pathways, and epigenetic alterations, have been widely published. Therefore, allied to a didactic description of the main physiological mechanisms involved in different critical points of MG development, the current review provides a summary of key mechanisms by which the endocrine disruptor BPA impacts MG homeostasis at different windows of susceptibility, causing short- and long-term effects.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Sebastião Roberto Taboga
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Ellen Cristina Rivas Leonel
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil; Federal University of Goiás (UFG), Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Goiânia, Brazil.
| |
Collapse
|
11
|
MicroRNA-194 acts as a suppressor during abdominal aortic aneurysm via inhibition of KDM3A-mediated BNIP3. Life Sci 2021; 277:119309. [PMID: 33662431 DOI: 10.1016/j.lfs.2021.119309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022]
Abstract
AIMS Abdominal aortic aneurysm (AAA) is a serious disorder with a high disability rates and mortality rates. Accumulating evidence has identified the vital functions of microRNAs (miRNAs) in the treatment of AAA. Hence, this study is aimed at exploring the modulatory role of miR-194 in the development of AAA. MAIN METHODS After the establishment of mouse AAA models, the expression of miR-194 was determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR), while lysine demethylase 3A (KDM3A) was determined by Western blot analysis in vascular smooth muscle cells (VSMCs) from the abdominal aorta. Cell apoptosis, levels of inflammatory factors as well as expressions of matrix metallopeptidase 2 (MMP2) and matrix metallopeptidase 9 (MMP9) were measured after altering the expression of miR-194 and KDM3A in VSMCs. Moreover, the interactions among miR-194, KDM3A, and BCL2 interacting protein 3 (BNIP3) were investigated by chromatin immunoprecipitation (ChIP) assay and dual-luciferase reporter gene assay. KEY FINDINGS miR-194 was poorly expressed while the expression of KDM3A was up-regulated in mice with AAA. miR-194 inhibited the expression of KDM3A while BNIP3 was positively mediated by KDM3A. More importantly, the number of macrophages was significantly reduced whereas the rate of apoptosis in VSMCs was enhanced. miR-194 reduced the inflammatory response and oxidative stress by repressing KDM3A-mediated BNIP3 expression. SIGNIFICANCES miR-194 played a suppressive role in the progression of AAA by inhibiting the expression of BNIP3 via KDM3A, representing a promising target for AAA management.
Collapse
|
12
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
13
|
Liu J, Feng Y, Zeng X, He M, Gong Y, Liu Y. Extracellular vesicles-encapsulated let-7i shed from bone mesenchymal stem cells suppress lung cancer via KDM3A/DCLK1/FXYD3 axis. J Cell Mol Med 2020; 25:1911-1926. [PMID: 33350586 PMCID: PMC7882949 DOI: 10.1111/jcmm.15866] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/23/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has suggested that extracellular vesicles (EVs) play a crucial role in lung cancer treatment. Thus, we aimed to investigate the modulatory role of bone marrow mesenchymal stem cell (BMSC)-EV-derived let-7i and their molecular mechanism in lung cancer progression. Microarray-based analysis was applied to predict lung cancer-related miRNAs and their downstream genes. RT-qPCR and Western blot analyses were conducted to determine Let-7i, lysine demethylase 3A (KDM3A), doublecortin-like kinase 1 (DCLK1) and FXYD domain-containing ion transport regulator 3 (FXYD3) expressions, after which dual-luciferase reporter gene assay and ChIP assay were used to identify the relationship among them. After loss- and gain-of-function assays, the effects of let-7i, KDM3A, DCLK1 and FXYD3 on the biological characteristics of lung cancer cells were assessed. Finally, tumour growth in nude mice was assessed by xenograft tumours in nude mice. Bioinformatics analysis screened out the let-7i and its downstream gene, that is KDM3A. The findings showed the presence of a high expression of KDM3A and DCLK1 and reduced expression of let-7i and FXYD3 in lung cancer. KDM3A elevated DCLK1 by removing the methylation of H3K9me2. Moreover, DCLK1 suppressed the FXYD3 expression. BMSC-EV-derived let-7i resulted in the down-regulation of KDM3A expression and reversed its promoting role in lung cancer development. Consistently, in vivo experiments in nude mice also confirmed that tumour growth was suppressed by the BMSC-EV-derived let-7i. In conclusion, our findings demonstrated that the BMSC-EV-derived let-7i possesses an inhibitory role in lung cancer progression through the KDM3A/DCLK1/FXYD3 axis, suggesting a new molecular target for lung cancer treatment.
Collapse
Affiliation(s)
- Jiefeng Liu
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Yuhua Feng
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Zeng
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Miao He
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Yujing Gong
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, China
| | - Yiping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Sui Y, Gu R, Janknecht R. Crucial Functions of the JMJD1/KDM3 Epigenetic Regulators in Cancer. Mol Cancer Res 2020; 19:3-13. [PMID: 32605929 DOI: 10.1158/1541-7786.mcr-20-0404] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
Epigenetic changes are one underlying cause for cancer development and often due to dysregulation of enzymes modifying DNA or histones. Most Jumonji C domain-containing (JMJD) proteins are histone lysine demethylases (KDM) and therefore epigenetic regulators. One JMJD subfamily consists of JMJD1A/KDM3A, JMJD1B/KDM3B, and JMJD1C/KDM3C that are roughly 50% identical at the amino acid level. All three JMJD1 proteins are capable of removing dimethyl and monomethyl marks from lysine 9 on histone H3 and might also demethylate histone H4 on arginine 3 and nonhistone proteins. Analysis of knockout mice revealed critical roles for JMJD1 proteins in fertility, obesity, metabolic syndrome, and heart disease. Importantly, a plethora of studies demonstrated that especially JMJD1A and JMJD1C are overexpressed in various tumors, stimulate cancer cell proliferation and invasion, and facilitate efficient tumor growth. However, JMJD1A may also inhibit the formation of germ cell tumors. Likewise, JMJD1B appears to be a tumor suppressor in acute myeloid leukemia, but a tumor promoter in other cancers. Notably, by reducing methylation levels on histone H3 lysine 9, JMJD1 proteins can profoundly alter the transcriptome and thereby affect tumorigenesis, including through upregulating oncogenes such as CCND1, JUN, and MYC This epigenetic activity of JMJD1 proteins is sensitive to heavy metals, oncometabolites, oxygen, and reactive oxygen species, whose levels are frequently altered within cancer cells. In conclusion, inhibition of JMJD1 enzymatic activity through small molecules is predicted to be beneficial in many different cancers, but not in the few malignancies where JMJD1 proteins apparently exert tumor-suppressive functions.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ruicai Gu
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ralf Janknecht
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
15
|
He C, Yu L, Ding L, Yao H, Chen Y, Hao Y. Lysine demethylase KDM3A regulates nanophotonic hyperthermia resistance generated by 2D silicene in breast cancer. Biomaterials 2020; 255:120181. [PMID: 32569864 DOI: 10.1016/j.biomaterials.2020.120181] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) is the most common malignant disease affecting women's health worldwide. The benefits from conventional therapeutic modalities are severely limited. An increasing number of promising photothermal materials have been recently developed and introduced into the therapeutic regimens of BC, but the underlying biological mechanism remains unclear. Silicon-based materials have enjoyed many popularities in the biomedical field owing to their desirable biocompatibility, biodegradability and versatility. Herein, we introduced two dimensional (2D) silicene nanosheets (SNSs) into the BC treatment and achieved profound photothermal-ablation efficacy. Importantly, this work reveals the underlying biological mechanism and regulation factors of photonic hyperthermia in BC. The RNA sequencing and immunoblot demonstrated that photothermia enhanced apoptosis in BC by activating caspase 3 and caspase 7. Importantly, knockdown of lysine demethylase KDM3A sensitized BC to photothermia epigenetically. It has been revealed that KDM3A could erase p53K372me1 and suppress the anti-cancer functions of p53, leading to the downregulation of pro-apoptotic proteins-PUMA and NOXA verified by Co-IP and ChIP-qPCR assays. Therefore, our results not only import near infrared light (NIR) induced photothermal ablation generated by SNSs-BSA into the BC treatment, but also clarify the underlying mechanism and regulation factors for further photothermal performance optimization and clinical translation.
Collapse
Affiliation(s)
- Chao He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Luodan Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Li Ding
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Heliang Yao
- Analysis & Testing Center for Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
16
|
Sui Y, Li X, Oh S, Zhang B, Freeman WM, Shin S, Janknecht R. Opposite Roles of the JMJD1A Interaction Partners MDFI and MDFIC in Colorectal Cancer. Sci Rep 2020; 10:8710. [PMID: 32457453 PMCID: PMC7250871 DOI: 10.1038/s41598-020-65536-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
MyoD family inhibitor (MDFI) and MDFI domain-containing (MDFIC) are homologous proteins known to regulate myogenic transcription factors. Hitherto, their role in cancer is unknown. We discovered that MDFI is up- and MDFIC downregulated in colorectal tumors. Mirroring these different expression patterns, MDFI stimulated and MDFIC inhibited growth of HCT116 colorectal cancer cells. Further, MDFI and MDFIC interacted with Jumonji C domain-containing (JMJD) 1 A, a histone demethylase and epigenetic regulator involved in colorectal cancer. JMJD1A influenced transcription of several genes that were also regulated by MDFI or MDFIC. Notably, the HIC1 tumor suppressor gene was stimulated by JMJD1A and MDFIC, but not by MDFI, and HIC1 overexpression phenocopied the growth suppressive effects of MDFIC in HCT116 cells. Similar to colorectal cancer, MDFI was up- and MDFIC downregulated in breast, ovarian and prostate cancer, but both were overexpressed in brain, gastric and pancreatic tumors that implies MDFIC to also promote tumorigenesis in certain tissues. Altogether, our data suggest a tumor modulating function for MDFI and MDFIC in colorectal and other cancers that may involve their interaction with JMJD1A and a MDFIC→HIC1 axis.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xiaomeng Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
| | - Bin Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Willard M Freeman
- Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.,Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
| | - Ralf Janknecht
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
17
|
Yoo J, Jeon YH, Cho HY, Lee SW, Kim GW, Lee DH, Kwon SH. Advances in Histone Demethylase KDM3A as a Cancer Therapeutic Target. Cancers (Basel) 2020; 12:cancers12051098. [PMID: 32354028 PMCID: PMC7280979 DOI: 10.3390/cancers12051098] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Lysine-specific histone demethylase 3 (KDM3) subfamily proteins are H3K9me2/me1 histone demethylases that promote gene expression. The KDM3 subfamily primarily consists of four proteins (KDM3A−D). All four proteins contain the catalytic Jumonji C domain (JmjC) at their C-termini, but whether KDM3C has demethylase activity is under debate. In addition, KDM3 proteins contain a zinc-finger domain for DNA binding and an LXXLL motif for interacting with nuclear receptors. Of the KDM3 proteins, KDM3A is especially deregulated or overexpressed in multiple cancers, making it a potential cancer therapeutic target. However, no KDM3A-selective inhibitors have been identified to date because of the lack of structural information. Uncovering the distinct physiological and pathological functions of KDM3A and their structure will give insight into the development of novel selective inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM3A in cancer. We also discuss existing KDM3A-related inhibitors and review their potential as therapeutic agents for overcoming cancer.
Collapse
Affiliation(s)
- Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Ha Young Cho
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-32-749-4513
| |
Collapse
|
18
|
Wang T, Luo R, Li W, Yan H, Xie S, Xiao W, Wang Y, Chen B, Bai P, Xing J. Dihydroartemisinin suppresses bladder cancer cell invasion and migration by regulating KDM3A and p21. J Cancer 2020; 11:1115-1124. [PMID: 31956358 PMCID: PMC6959076 DOI: 10.7150/jca.36174] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging evidences have shown that Dihydroartemisinin (DHA), used in malaria treatment, possess anti-cancer activity. However, the study of its potential functional roles and the anti-cancer mechanisms in bladder cancer is limited. We performed this study to elucidate the influence of DHA in the biological behavior of bladder cancer cells and tried to explore the molecular mechanism. The results of CCK-8 assay showed that DHA significantly inhibited bladder cancer cell 5637, UMUC3 and T24 proliferation and the inhibitory effect is dose- and time- dependent. Further mechanism study showed that DHA performed its function via down-regulating the expression of histone demethylase KDM3A and inducing p21 expression. Moreover, wound healing and transwell migration/invasion assays revealed that DHA inhibited the ability of migration and metastasis in bladder cancer cell line T24. Finally, flow cytometry and colony formation assays demonstrated that DHA significantly promoted apoptosis of T24 cells and suppressed tumorigenesis as expected. Taken together, our study identifies the anti-cancer capacity of DHA in bladder cancer and explores the underlying mechanism.
Collapse
Affiliation(s)
- Tao Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Rongtuan Luo
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Wei Li
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Houyu Yan
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Shunqiang Xie
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Wen Xiao
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Yongfeng Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Bin Chen
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Peide Bai
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Jinchun Xing
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| |
Collapse
|
19
|
Zhang QJ, Tran TAT, Wang M, Ranek MJ, Kokkonen-Simon KM, Gao J, Luo X, Tan W, Kyrychenko V, Liao L, Xu J, Hill JA, Olson EN, Kass DA, Martinez ED, Liu ZP. Histone lysine dimethyl-demethylase KDM3A controls pathological cardiac hypertrophy and fibrosis. Nat Commun 2018; 9:5230. [PMID: 30531796 PMCID: PMC6286331 DOI: 10.1038/s41467-018-07173-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022] Open
Abstract
Left ventricular hypertrophy (LVH) is a major risk factor for cardiovascular morbidity and mortality. Pathological LVH engages transcriptional programs including reactivation of canonical fetal genes and those inducing fibrosis. Histone lysine demethylases (KDMs) are emerging regulators of transcriptional reprogramming in cancer, though their potential role in abnormal heart growth and fibrosis remains little understood. Here, we investigate gain and loss of function of an H3K9me2 specific demethylase, Kdm3a, and show it promotes LVH and fibrosis in response to pressure-overload. Cardiomyocyte KDM3A activates Timp1 transcription with pro-fibrotic activity. By contrast, a pan-KDM inhibitor, JIB-04, suppresses pressure overload-induced LVH and fibrosis. JIB-04 inhibits KDM3A and suppresses the transcription of fibrotic genes that overlap with genes downregulated in Kdm3a-KO mice versus WT controls. Our study provides genetic and biochemical evidence for a pro-hypertrophic function of KDM3A and proof-of principle for pharmacological targeting of KDMs as an effective strategy to counter LVH and pathological fibrosis.
Collapse
Affiliation(s)
- Qing-Jun Zhang
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tram Anh T Tran
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ming Wang
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Nephrology Center of Integrated Traditional Chinese and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P.R. China
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Kristen M Kokkonen-Simon
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Jason Gao
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiang Luo
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wei Tan
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Viktoriia Kyrychenko
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joseph A Hill
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
| | - Elisabeth D Martinez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 77030, USA.
| | - Zhi-Ping Liu
- Department of Internal Medicine-Cardiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|