1
|
Lee SH, Hofstede RP, Noriega de la Colina A, Gunton JH, Bernstock JD, Traverso G. Implantable systems for neurological chronotherapy. Adv Drug Deliv Rev 2025; 221:115574. [PMID: 40187646 DOI: 10.1016/j.addr.2025.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Implantable systems for neurological chronotherapy are poised to revolutionize the treatment of central nervous system diseases and disorders. These devices enable precise, time-controlled drug delivery aligned with the body's circadian rhythms, optimizing therapeutic outcomes. By bypassing the blood-brain barrier, they achieve high local drug concentrations while minimizing systemic side effects, offering significant advantages for conditions where traditional therapies often fall short. Platforms like SynchroMed II and CraniUS showcase this innovation, providing programmable delivery for conditions such as epilepsy and glioblastoma, with customizable profiles ranging from continuous infusion to timed bolus administration. Preclinical and clinical studies underscore the efficacy of aligning drug delivery with circadian rhythms, enhancing outcomes in chrono-chemotherapy and anti-epileptic treatments. Despite their promise, challenges remain, including the invasiveness of implantation within the brain, device longevity, synchronization complexities, and cost(s). Accordingly, this review explores the current state of implantable neurological systems that may be leveraged for chronotherapy, their applications, limitations, and potential to transform neurological disease/disorder management.
Collapse
Affiliation(s)
- Seung Ho Lee
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Roemer Pott Hofstede
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - John H Gunton
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua D Bernstock
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
He Z, Song K, Han H, Wang L, Chen Z, Shang W. RAC1 promotes the occurrence and development of tongue squamous cell carcinoma by regulating RAC1/PAK1/LIMK1 signaling pathway. Sci Rep 2025; 15:8831. [PMID: 40087375 PMCID: PMC11909172 DOI: 10.1038/s41598-025-92538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
Tongue squamous cell carcinoma (TSCC) remains an unsolved medical problem due to its poor local recurrence rate and prognosis. The purpose of this study was to investigate the expression characteristics of RAC-related C3 botulinum toxin substrate 1(RAC1) in TSCCS and its role in tumor invasion and metastasis. In this study, immunohistochemical staining was used to detect RAC1 expression in 150 tongue cancer specimens. The correlation between RAC1 and clinical-pathological characteristics is analyzed, along with the association between protein levels and disease-specific survival, metastasis-free survival, and local recurrence-free survival. In vitro experiments, RAC1 was knocked down by short hairpin RNA transfection to reveal the role of RAC1 in the invasion and metastasis of TSCC. The regulatory effects of RAC1 on CAL27 cell migration and invasion were evaluated by scratch and invasion methods. The influence of RAC1 expression on tumor growth was scrutinized using a subcutaneous transplant model in nude mice. RAC1 is overexpressed in TSCC and positively correlates with tumor invasion and metastasis. Moreover, elevated RAC1 expression is associated with poorer differentiation. Survival analysis further indicates that high expression of RAC1 is linked to increased recurrence and metastasis rates, as well as poorer prognosis. Additionally, both in vivo and in vitro studies demonstrate that RAC1 may impact tumor progression by modulating the epithelial-mesenchymal transition process through the RAC1/PAK1/LIMK1 signaling pathways. RAC1 overexpression is closely related to the progression of TSCC, and may provide a new prognostic indicator and therapeutic target for tongue cancer.
Collapse
Affiliation(s)
- Zongxuan He
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
- School of Stomatology, Qingdao University, Qingdao, Shandong Province, China
| | - Kai Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
- School of Stomatology, Qingdao University, Qingdao, Shandong Province, China
| | - Hongyu Han
- Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province, China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
- School of Stomatology, Qingdao University, Qingdao, Shandong Province, China
| | - Zhenggang Chen
- Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province, China.
| | - Wei Shang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China.
- School of Stomatology, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
3
|
Anselmino LE, Malizia F, Avila A, Cesatti Laluce N, Mamberto M, Zanotti LC, Farré C, Sauzeau V, Menacho Márquez M. Overcoming Therapy Resistance in Colorectal Cancer: Targeting the Rac1 Signaling Pathway as a Potential Therapeutic Approach. Cells 2024; 13:1776. [PMID: 39513883 PMCID: PMC11545287 DOI: 10.3390/cells13211776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide and is responsible for numerous deaths. 5-fluorouracil (5-FU) is an effective chemotherapy drug commonly used in the treatment of CRC, either as monotherapy or in combination with other drugs. However, half of CRC cases are resistant to 5-FU-based therapies. To contribute to the understanding of the mechanisms underlying CRC resistance or recurrence after 5-FU-based therapies, we performed a comprehensive study integrating in silico, in vitro, and in vivo approaches. We identified differentially expressed genes and enrichment of pathways associated with recurrence after 5-FU-based therapies. Using these bioinformatics data as a starting point, we selected a group of drugs that restored 5-FU sensitivity to 5-FU resistant cells. Interestingly, treatment with the novel Rac1 inhibitor, 1A-116, reversed morphological changes associated with 5-FU resistance.. Moreover, our in vivo studies have shown that 1A-116 affected tumor growth and the development of metastasis. All our data allowed us to postulate that targeting Rac1 represents a promising avenue for the development of new treatments for patients with CRC resistant to 5-FU-based therapies.
Collapse
Affiliation(s)
- Luciano E. Anselmino
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Florencia Malizia
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Aylén Avila
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Nahuel Cesatti Laluce
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Macarena Mamberto
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Lucía C. Zanotti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Vincent Sauzeau
- Institut du Thorax, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
| | - Mauricio Menacho Márquez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| |
Collapse
|
4
|
Chen XY, Cheng AY, Wang ZY, Jin JM, Lin JY, Wang B, Guan YY, Zhang H, Jiang YX, Luan X, Zhang LJ. Dbl family RhoGEFs in cancer: different roles and targeting strategies. Biochem Pharmacol 2024; 223:116141. [PMID: 38499108 DOI: 10.1016/j.bcp.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Small Ras homologous guanosine triphosphatase (Rho GTPase) family proteins are highly associated with tumorigenesis and development. As intrinsic exchange activity regulators of Rho GTPases, Rho guanine nucleotide exchange factors (RhoGEFs) have been demonstrated to be closely involved in tumor development and received increasing attention. They mainly contain two families: the diffuse B-cell lymphoma (Dbl) family and the dedicator of cytokinesis (Dock) family. More and more emphasis has been paid to the Dbl family members for their abnormally high expression in various cancers and their correlation to poor prognosis. In this review, the common and distinctive structures of Dbl family members are discussed, and their roles in cancer are summarized with a focus on Ect2, Tiam1/2, P-Rex1/2, Vav1/2/3, Trio, KALRN, and LARG. Significantly, the strategies targeting Dbl family RhoGEFs are highlighted as novel therapeutic opportunities for cancer.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ao-Yu Cheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zi-Ying Wang
- School of Biological Engineering, Tianjin University of Science&Technology, Tianjin 301617, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hao Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Nettnin EA, Nguyen T, Arana S, Barros Guinle MI, Garcia CA, Gibson EM, Prolo LM. Review: therapeutic approaches for circadian modulation of the glioma microenvironment. Front Oncol 2023; 13:1295030. [PMID: 38173841 PMCID: PMC10762863 DOI: 10.3389/fonc.2023.1295030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
High-grade gliomas are malignant brain tumors that are characteristically hard to treat because of their nature; they grow quickly and invasively through the brain tissue and develop chemoradiation resistance in adults. There is also a distinct lack of targeted treatment options in the pediatric population for this tumor type to date. Several approaches to overcome therapeutic resistance have been explored, including targeted therapy to growth pathways (ie. EGFR and VEGF inhibitors), epigenetic modulators, and immunotherapies such as Chimeric Antigen Receptor T-cell and vaccine therapies. One new promising approach relies on the timing of chemotherapy administration based on intrinsic circadian rhythms. Recent work in glioblastoma has demonstrated temporal variations in chemosensitivity and, thus, improved survival based on treatment time of day. This may be due to intrinsic rhythms of the glioma cells, permeability of the blood brain barrier to chemotherapy agents, the tumor immune microenvironment, or another unknown mechanism. We review the literature to discuss chronotherapeutic approaches to high-grade glioma treatment, circadian regulation of the immune system and tumor microenvironment in gliomas. We further discuss how these two areas may be combined to temporally regulate and/or improve the effectiveness of immunotherapies.
Collapse
Affiliation(s)
- Ella A. Nettnin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Thien Nguyen
- Division of Pediatric Hematology/Oncology, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| | - Sophia Arana
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Cesar A. Garcia
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Erin M. Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Laura M. Prolo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| |
Collapse
|
6
|
Gomes AR, Varela CL, Pires AS, Tavares-da-Silva EJ, Roleira FMF. Synthetic and natural guanidine derivatives as antitumor and antimicrobial agents: A review. Bioorg Chem 2023; 138:106600. [PMID: 37209561 DOI: 10.1016/j.bioorg.2023.106600] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
Guanidines are fascinating small nitrogen-rich organic compounds, which have been frequently associated with a wide range of biological activities. This is mainly due to their interesting chemical features. For these reasons, for the past decades, researchers have been synthesizing and evaluating guanidine derivatives. In fact, there are currently on the market several guanidine-bearing drugs. Given the broad panoply of pharmacological activities displayed by guanidine compounds, in this review, we chose to focus on antitumor, antibacterial, antiviral, antifungal, and antiprotozoal activities presented by several natural and synthetic guanidine derivatives, which are undergoing preclinical and clinical studies from January 2010 to January 2023. Moreover, we also present guanidine-containing drugs currently in the market for the treatment of cancer and several infectious diseases. In the preclinical and clinical setting, most of the synthesized and natural guanidine derivatives are being evaluated as antitumor and antibacterial agents. Even though DNA is the most known target of this type of compounds, their cytotoxicity also involves several other different mechanisms, such as interference with bacterial cell membranes, reactive oxygen species (ROS) formation, mitochondrial-mediated apoptosis, mediated-Rac1 inhibition, among others. As for the compounds already used as pharmacological drugs, their main application is in the treatment of different types of cancer, such as breast, lung, prostate, and leukemia. Guanidine-containing drugs are also being used for the treatment of bacterial, antiprotozoal, antiviral infections and, recently, have been proposed for the treatment of COVID-19. To conclude, the guanidine group is a privileged scaffold in drug design. Its remarkable cytotoxic activities, especially in the field of oncology, still make it suitable for a deeper investigation to afford more efficient and target-specific drugs.
Collapse
Affiliation(s)
- Ana R Gomes
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Carla L Varela
- Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, 3004-504 Coimbra, Portugal; Univ Coimbra, CIEPQPF, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Ana S Pires
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, 3004-504 Coimbra, Portugal
| | - Elisiário J Tavares-da-Silva
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| |
Collapse
|
7
|
Abstract
Circadian rhythms are natural rhythms that widely exist in all creatures, and regulate the processes and physiological functions of various biochemical reactions. The circadian clock is critical for cancer occurrence and progression. Its function is regulated by metabolic activities, and the expression and transcription of various genes. This review summarizes the composition of the circadian clock; the biological basis for its function; its relationship with, and mechanisms in, cancer; its various functions in different cancers; the effects of anti-tumor treatment; and potential therapeutic targets. Research in this area is expected to advance understanding of circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) in tumor diseases, and contribute to the development of new anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Chen Huang
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chenliang Zhang
- Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jian Li
- West China School of Medicine, Sichuan University, Chengdu 610000, China
| | - Feng Bi
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
8
|
Preclinical Efficacy and Toxicology Evaluation of RAC1 Inhibitor 1A-116 in Human Glioblastoma Models. Cancers (Basel) 2022; 14:cancers14194810. [PMID: 36230732 PMCID: PMC9562863 DOI: 10.3390/cancers14194810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Malignant gliomas are the most common primary central nervous system tumors in adults. Currently, this disease is associated with poor prognosis and is virtually incurable. There is a need to find novel targets and treatments to improve patient survival. This study shows the preclinical evaluation of 1A-116, a Rac1 inhibitor that showed in vitro antitumor activity on glioma cells. We also evaluated 1A-116 in vivo, showing a favorable toxicological profile and antitumor efficacy in an intracranial mouse tumor model. Altogether, our study provides important evidence of 1A-116 as a signal transduction-based precision therapy for glioma and also increases the evidence of Rac1 as a key molecular target in cancer. Abstract Malignant gliomas are the most common primary central nervous system tumor in adults. Despite current therapeutics, these tumors are associated with poor prognosis and a median survival of 16 to 19 months. This highlights the need for innovative treatments for this incurable disease. Rac1 has long been associated with tumor progression and plays a key role in glioma’s infiltrative and invasive nature. The aim of this study is to evaluate the 1A-116 molecule, a Rac1 inhibitor, as targeted therapy for this aggressive disease. We found that targeting Rac1 inhibits cell proliferation and cell cycle progression using different in vitro human glioblastoma models. Additionally, we evaluated 1A-116 in vivo, showing a favorable toxicological profile. Using in silico tools, 1A-116 is also predicted to penetrate the blood–brain barrier and present a favorable metabolic fate. In line with these results, 1A-116 i.p daily treatment resulted in a dose-dependent antitumor effect in an orthotopic IDH-wt glioma model. Altogether, our study provides a strong potential for clinical translation of 1A-116 as a signal transduction-based precision therapy for glioma and also increases the evidence of Rac1 as a key molecular target.
Collapse
|
9
|
Hemsing AL, Rye KP, Hatfield KJ, Reikvam H. NPM1-Mutated Patient-Derived AML Cells Are More Vulnerable to Rac1 Inhibition. Biomedicines 2022; 10:biomedicines10081881. [PMID: 36009428 PMCID: PMC9405324 DOI: 10.3390/biomedicines10081881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 12/19/2022] Open
Abstract
The prognosis of acute myeloid leukemia (AML) is poor, especially for the elderly population. Targeted therapy with small molecules may be a potential strategy to overcome chemoresistance and improve survival in AML. We investigated the inhibition of the signaling molecule ras-related C3 botulinum toxin substrate 1 (Rac1) in leukemia cells derived from 79 consecutive AML patients, using five Rac1 inhibitors: ZINC69391, ITX3, EHOP-016, 1A-116, and NSC23766. In vitro cell proliferation and apoptosis assays and the assessment of cytokine profiles in culture media were conducted. All five inhibitors had an antiproliferative effect; IC50 ranged from 3−24 µM. They induced significant apoptosis and necrosis compared to the untreated controls (p < 0.0001) at concentrations around IC40 and IC80. A high versus an intermediate or low antiproliferative effect was more common in NPM1-mutated (p = 0.002) and CD34-negative (p = 0.008) samples, and when NPM1 and FLT3 (p = 0.027) were combined. Presence of NPM1 mutation was associated with reduced viability after treatment with EHOP-016 (p = 0.014), ITX3 (p = 0.047), and NSC23766 (p = 0.003). Several cytokines crucial for leukemogenesis were reduced after culture, with the strongest effects observed for 1A-116 and NSC23766. Our findings suggest potent effects of Rac1 inhibition in primary AML cells and, interestingly, samples harboring NPM1 mutation seem more vulnerable.
Collapse
Affiliation(s)
- Anette Lodvir Hemsing
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | | | - Kimberley Joanne Hatfield
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Correspondence: ; Tel.: +47-55975000
| |
Collapse
|
10
|
Reactive Oxygen Species in Acute Lymphoblastic Leukaemia: Reducing Radicals to Refine Responses. Antioxidants (Basel) 2021; 10:antiox10101616. [PMID: 34679751 PMCID: PMC8533157 DOI: 10.3390/antiox10101616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/27/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer diagnosed in children and adolescents. Approximately 70% of patients survive >5-years following diagnosis, however, for those that fail upfront therapies, survival is poor. Reactive oxygen species (ROS) are elevated in a range of cancers and are emerging as significant contributors to the leukaemogenesis of ALL. ROS modulate the function of signalling proteins through oxidation of cysteine residues, as well as promote genomic instability by damaging DNA, to promote chemotherapy resistance. Current therapeutic approaches exploit the pro-oxidant intracellular environment of malignant B and T lymphoblasts to cause irreversible DNA damage and cell death, however these strategies impact normal haematopoiesis and lead to long lasting side-effects. Therapies suppressing ROS production, especially those targeting ROS producing enzymes such as the NADPH oxidases (NOXs), are emerging alternatives to treat cancers and may be exploited to improve the ALL treatment. Here, we discuss the roles that ROS play in normal haematopoiesis and in ALL. We explore the molecular mechanisms underpinning overproduction of ROS in ALL, and their roles in disease progression and drug resistance. Finally, we examine strategies to target ROS production, with a specific focus on the NOX enzymes, to improve the treatment of ALL.
Collapse
|
11
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
12
|
Trebucq LL, Cardama GA, Lorenzano Menna P, Golombek DA, Chiesa JJ, Marpegan L. Timing of Novel Drug 1A-116 to Circadian Rhythms Improves Therapeutic Effects against Glioblastoma. Pharmaceutics 2021; 13:1091. [PMID: 34371781 PMCID: PMC8309043 DOI: 10.3390/pharmaceutics13071091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022] Open
Abstract
The Ras homologous family of small guanosine triphosphate-binding enzymes (GTPases) is critical for cell migration and proliferation. The novel drug 1A-116 blocks the interaction site of the Ras-related C3 botulinum toxin substrate 1 (RAC1) GTPase with some of its guanine exchange factors (GEFs), such as T-cell lymphoma invasion and metastasis 1 (TIAM1), inhibiting cell motility and proliferation. Knowledge of circadian regulation of targets can improve chemotherapy in glioblastoma. Thus, circadian regulation in the efficacy of 1A-116 was studied in LN229 human glioblastoma cells and tumor-bearing nude mice. METHODS Wild-type LN229 and BMAL1-deficient (i.e., lacking a functional circadian clock) LN229E1 cells were assessed for rhythms in TIAM1, BMAL1, and period circadian protein homolog 1 (PER1), as well as Tiam1, Bmal1, and Rac1 mRNA levels. The effects of 1A-116 on proliferation, apoptosis, and migration were then assessed upon applying the drug at different circadian times. Finally, 1A-116 was administered to tumor-bearing mice at two different circadian times. RESULTS In LN229 cells, circadian oscillations were found for BMAL1, PER1, and TIAM1 (mRNA and protein), and for the effects of 1A-116 on proliferation, apoptosis, and migration, which were abolished in LN229E1 cells. Increased survival time was observed in tumor-bearing mice when treated with 1A-116 at the end of the light period (zeitgeber time 12, ZT12) compared either to animals treated at the beginning (ZT3) or with vehicle. CONCLUSIONS These results unveil the circadian modulation in the efficacy of 1A-116, likely through RAC1 pathway rhythmicity, suggesting that a chronopharmacological approach is a feasible strategy to improve glioblastoma treatment.
Collapse
Affiliation(s)
- Laura Lucía Trebucq
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (L.L.T.); (D.A.G.)
| | - Georgina Alexandra Cardama
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (G.A.C.); (P.L.M.)
| | - Pablo Lorenzano Menna
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (G.A.C.); (P.L.M.)
| | - Diego Andrés Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (L.L.T.); (D.A.G.)
| | - Juan José Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (L.L.T.); (D.A.G.)
| | - Luciano Marpegan
- Departamento de Física Médica, Comisión Nacional de Energía Atómica, Bariloche 8400, Río Negro, Argentina
| |
Collapse
|
13
|
Liang J, Oyang L, Rao S, Han Y, Luo X, Yi P, Lin J, Xia L, Hu J, Tan S, Tang L, Pan Q, Tang Y, Zhou Y, Liao Q. Rac1, A Potential Target for Tumor Therapy. Front Oncol 2021; 11:674426. [PMID: 34079763 PMCID: PMC8165220 DOI: 10.3389/fonc.2021.674426] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
RAS-related C3 botulinum toxin substrate 1 (Rac.1) is one of the important members of Rho GTPases. It is well known that Rac1 is a cytoskeleton regulation protein that regulates cell adhesion, morphology, and movement. Rac1 is highly expressed in different types of tumors, which is related to poor prognosis. Studies have shown that Rac1 not only participates in the tumor cell cycle, apoptosis, proliferation, invasion, migration and angiogenesis, but also participates in the regulation of tumor stem cell, thus promoting the occurrence of tumors. Rac1 also plays a key role in anti-tumor therapy and participates in immune escape mediated by the tumor microenvironment. In addition, the good prospects of Rac1 inhibitors in cancer prevention and treatment are exciting. Therefore, Rac1 is considered as a potential target for the prevention and treatment of cancer. The necessity and importance of Rac1 are obvious, but it still needs further study.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaqi Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lu Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,University of South China, Hengyang, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,University of South China, Hengyang, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha, China
| |
Collapse
|
14
|
Ruggiero C, Lalli E. Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS, 660 route des Lucioles-Sophia Antipolis, 06560, Valbonne, France.
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560, Valbonne, France.
| | - Enzo Lalli
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
- Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles - Sophia Antipolis, 06560, Valbonne, France
| |
Collapse
|
15
|
Ciarlantini MS, Barquero A, Bayo J, Wetzler D, Dodes Traian MM, Bucci HA, Fiore EJ, Gandolfi Donadío L, Defelipe L, Turjanski A, Ramírez JA, Mazzolini G, Comin MJ. Development of an Improved Guanidine-Based Rac1 Inhibitor with in vivo Activity against Non-Small Cell Lung Cancer. ChemMedChem 2021; 16:1011-1021. [PMID: 33284505 DOI: 10.1002/cmdc.202000763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Indexed: 12/20/2022]
Abstract
The Rho GTPase Rac1 is involved in the control of cytoskeleton reorganization and other fundamental cellular functions. Aberrant activity of Rac1 and its regulators is common in human cancer. In particular, deregulated expression/activity of Rac GEFs, responsible for Rac1 activation, has been associated to a metastatic phenotype and drug resistance. Thus, the development of novel Rac1-GEF interaction inhibitors is a promising strategy for finding new preclinical candidates. Here, we studied structure-activity relationships within a new family of N,N'-disubstituted guanidine as Rac1 inhibitors. We found that compound 1D-142, presents superior antiproliferative activity in human cancer cell lines and higher potency as Rac1-GEF interaction inhibitor in vitro than parental compounds. In addition, 1D-142 reduces Rac1-mediated TNFα-induced NF-κB nuclear translocation during cell proliferation and migration in NSCLC. Notably, 1D-142 allowed us to show for the first time the application of a Rac1 inhibitor in a lung cancer animal model.
Collapse
Affiliation(s)
- Matías S Ciarlantini
- Departamento de Ingredientes Activos y Biorrefinerías, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, San Martin Buenos Aires, Argentina
| | - Andrea Barquero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Bayo
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, B1630FHB, Derqui-Pilar, Argentina
| | - Diana Wetzler
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín M Dodes Traian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Hernán A Bucci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Esteban J Fiore
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, B1630FHB, Derqui-Pilar, Argentina
| | - Lucía Gandolfi Donadío
- Departamento de Ingredientes Activos y Biorrefinerías, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, San Martin Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. General Paz 5445, B1650WAB, San Martin, Buenos Aires, Argentina
| | - Lucas Defelipe
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adrián Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)., Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier A Ramírez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.,Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, B1630FHB, Derqui-Pilar, Argentina.,Liver Unit, Hospital Universitario Austral, B1629AHJ, Derqui-Pilar, Buenos Aires, Argentina
| | - Maria J Comin
- Departamento de Ingredientes Activos y Biorrefinerías, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, San Martin Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. General Paz 5445, B1650WAB, San Martin, Buenos Aires, Argentina
| |
Collapse
|
16
|
Down-regulation of Bcl2 and Survivin, and up-regulation of Bax involved in copper (II) phenylthiosemicarbazone complex-induced apoptosis in leukemia stem-like KG1a cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
González N, Cardama GA, Chinestrad P, Robles-Valero J, Rodríguez-Fdez S, Lorenzo-Martín LF, Bustelo XR, Lorenzano Menna P, Gomez DE. Computational and in vitro Pharmacodynamics Characterization of 1A-116 Rac1 Inhibitor: Relevance of Trp56 in Its Biological Activity. Front Cell Dev Biol 2020; 8:240. [PMID: 32351958 PMCID: PMC7174510 DOI: 10.3389/fcell.2020.00240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
In the last years, the development of new drugs in oncology has evolved notably. In particular, drug development has shifted from empirical screening of active cytotoxic compounds to molecularly targeted drugs blocking specific biologic pathways that drive cancer progression and metastasis. Using a rational design approach, our group has developed 1A-116 as a promising Rac1 inhibitor, with antitumoral and antimetastatic effects in several types of cancer. Rac1 is over activated in a wide range of tumor types and and it is one of the most studied proteins of the Rho GTPase family. Its role in actin cytoskeleton reorganization has effects on endocytosis, vesicular trafficking, cell cycle progression and cellular migration. In this context, the regulatory activity of Rac1 affects several key processes in the course of the cancer including invasion and metastasis. The purpose of this preclinical study was to focus on the mode of action of 1A-116, conducting an interdisciplinary approach with in silico bioinformatics tools and in vitro assays. Here, we demonstrate that the tryptophan 56 residue is necessary for the inhibitory effects of 1A-116 since this compound interferes with protein-protein interactions (PPI) of Rac1GTPase involving several GEF activators. 1A-116 is also able to inhibit the oncogenic Rac1P29S mutant protein, one of the oncogenic drivers found in sun-exposed melanoma. It also inhibits numerous Rac1-regulated cellular processes such as membrane ruffling and lamellipodia formation. These results deepen our knowledge of 1A-116 inhibition of Rac1 and its biological impact on cancer progression. They also represent a good example of how in silico analyses represent a valuable approach for drug development.
Collapse
Affiliation(s)
- Nazareno González
- Laboratory of Molecular Oncology, National University of Quilmes, Bernal, Argentina
| | - Georgina A Cardama
- Laboratory of Molecular Oncology, National University of Quilmes, Bernal, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Patricio Chinestrad
- Molecular Pharmacology Laboratory, National University of Quilmes, Bernal, Argentina
| | - Javier Robles-Valero
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - L Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Salamanca, Spain
| | - Pablo Lorenzano Menna
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Molecular Pharmacology Laboratory, National University of Quilmes, Bernal, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, National University of Quilmes, Bernal, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
Parsa FG, Feizi MAH, Safaralizadeh R, Hosseini-Yazdi SA, Mahdavi M. Molecular mechanisms of apoptosis induction in K562 and KG1a leukemia cells by a water-soluble copper(II) thiosemicarbazone complex. J Biol Inorg Chem 2020; 25:383-394. [PMID: 32274578 DOI: 10.1007/s00775-020-01769-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/25/2020] [Indexed: 11/26/2022]
Abstract
Thiosemicarbazones (TSCs) and their metal complexes exhibit pronounced and selective cytotoxic potential against a broad span of cancers. Here, we assessed the anti-cancer activity of a water-soluble copper(II) complex of thiosemicarbazone (Cu-TSC) against two cancer cell lines of human leukemia. Our analysis revealed that Cu-TSC treatment results in a time and dose-dependent growth inhibition in K562 and KG1a cells while sparing normal human fibroblast (HFF2) cells. The IC50 values for the Cu-TSC treatment were measured to be 21.7 ± 1.5 µM and 50.25 ± 2.5 µM for K562 and KG1a cells, respectively. Cell cycle analysis indicated that Cu-TSC induces the accumulation of cells in the sub-G1 fraction as well as the reversible arrest in G0/G1 and G2/M phases in K562 and KG1a cells, respectively. Furthermore, the occurrence of apoptosis as the prime mode of cell death was verified through apoptotic body formation, phosphatidylserine externalization, and caspase-3 activation. Additionally, the real-time quantitative PCR analysis revealed that Cu-TSC triggers apoptosis in both cell lines via the upregulation of caspases-8, -9, and the changing of Bax/Bcl2 ratio. Finally, flow cytometric analysis confirmed that Cu-TSC treatment causes the enhancement of reactive oxygen species formation in both K562 and KG1a cells. Altogether, these findings suggest that Cu-TSC is a promising inducer of apoptosis in leukemia cells and carries potential as an anti-cancer compound.
Collapse
Affiliation(s)
| | | | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Majid Mahdavi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
19
|
Durand-Onaylı V, Haslauer T, Härzschel A, Hartmann TN. Rac GTPases in Hematological Malignancies. Int J Mol Sci 2018; 19:ijms19124041. [PMID: 30558116 PMCID: PMC6321480 DOI: 10.3390/ijms19124041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that crosstalk between hematologic tumor cells and the tumor microenvironment contributes to leukemia and lymphoma cell migration, survival, and proliferation. The supportive tumor cell-microenvironment interactions and the resulting cellular processes require adaptations and modulations of the cytoskeleton. The Rac subfamily of the Rho family GTPases includes key regulators of the cytoskeleton, with essential functions in both normal and transformed leukocytes. Rac proteins function downstream of receptor tyrosine kinases, chemokine receptors, and integrins, orchestrating a multitude of signals arising from the microenvironment. As such, it is not surprising that deregulation of Rac expression and activation plays a role in the development and progression of hematological malignancies. In this review, we will give an overview of the specific contribution of the deregulation of Rac GTPases in hematologic malignancies.
Collapse
Affiliation(s)
- Valerie Durand-Onaylı
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Theresa Haslauer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Andrea Härzschel
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Tanja Nicole Hartmann
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectious Disease, Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
20
|
Maldonado MDM, Dharmawardhane S. Targeting Rac and Cdc42 GTPases in Cancer. Cancer Res 2018; 78:3101-3111. [PMID: 29858187 PMCID: PMC6004249 DOI: 10.1158/0008-5472.can-18-0619] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/20/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
Abstract
Rac and Cdc42 are small GTPases that have been linked to multiple human cancers and are implicated in epithelial to mesenchymal transition, cell-cycle progression, migration/invasion, tumor growth, angiogenesis, and oncogenic transformation. With the exception of the P29S driver mutation in melanoma, Rac and Cdc42 are not generally mutated in cancer, but are overexpressed (gene amplification and mRNA upregulation) or hyperactivated. Rac and Cdc42 are hyperactivated via signaling through oncogenic cell surface receptors, such as growth factor receptors, which converge on the guanine nucleotide exchange factors that regulate their GDP/GTP exchange. Hence, targeting Rac and Cdc42 represents a promising strategy for precise cancer therapy, as well as for inhibition of bypass signaling that promotes resistance to cell surface receptor-targeted therapies. Therefore, an understanding of the regulatory mechanisms of these pivotal signaling intermediates is key for the development of effective inhibitors. In this review, we focus on the role of Rac and Cdc42 in cancer and summarize the regulatory mechanisms, inhibitory efficacy, and the anticancer potential of Rac- and Cdc42-targeting agents. Cancer Res; 78(12); 3101-11. ©2018 AACR.
Collapse
Affiliation(s)
- María Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
| |
Collapse
|
21
|
Cardama GA, Alonso DF, Gonzalez N, Maggio J, Gomez DE, Rolfo C, Menna PL. Relevance of small GTPase Rac1 pathway in drug and radio-resistance mechanisms: Opportunities in cancer therapeutics. Crit Rev Oncol Hematol 2018; 124:29-36. [PMID: 29548483 DOI: 10.1016/j.critrevonc.2018.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 10/18/2022] Open
Abstract
Rac1 GTPase signaling pathway has a critical role in the regulation of a plethora of cellular functions governing cancer cell behavior. Recently, it has been shown a critical role of Rac1 in the emergence of resistance mechanisms to cancer therapy. This review describes the current knowledge regarding Rac1 pathway deregulation and its association with chemoresistance, radioresistance, resistance to targeted therapies and immune evasion. This supports the idea that interfering Rac1 signaling pathway could be an interesting approach to tackle cancer resistance.
Collapse
Affiliation(s)
- G A Cardama
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina
| | - D F Alonso
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - N Gonzalez
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina
| | - J Maggio
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina
| | - D E Gomez
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - C Rolfo
- Phase I-Early Clinical trials Unit, Oncology Department Antwerp University Hospital & Center for Oncological Research (CORE), Antwerp University, Belgium.
| | - P L Menna
- Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|