1
|
Cao H, Li Z, Ye J, Lv Y, Zhang C, Liang T, Wang Y. Emerging roles of exosomes in the diagnosis and treatment of kidney diseases. Front Pharmacol 2025; 16:1525314. [PMID: 40308771 PMCID: PMC12041035 DOI: 10.3389/fphar.2025.1525314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
The complex etiology and spectrum of kidney diseases necessitate vigilant attention; the focus on early diagnosis and intervention in kidney diseases remains a critical issue in medical research. Recently, with the expanding studies on extracellular vesicles, exosomes have garnered increasing interest as a promising tool for the diagnosis and treatment of kidney diseases. Exosomes are nano-sized extracellular vesicles that transport a diverse array of bioactive substances, which can influence various pathological processes associated with kidney diseases and exhibit detrimental or beneficial effects. Within the kidney, exosomes derived from the glomeruli and renal tubules possess the ability to enter systemic circulation or urine. The biomarkers they carry can reflect alterations in the pathological state of the kidneys, thereby offering novel avenues for early diagnosis. Furthermore, research studies have confirmed that exosomes originating from multiple cell types exhibit therapeutic potential in treating kidney disease; notably, those derived from mesenchymal stem cells (MSCs) have shown significant treatment efficacy. This comprehensive review summarizes the contributions of exosomes from different cell types within the kidneys while exploring their physiological and pathological roles therein. Additionally, we emphasize recent advancements in exosome applications for the diagnosis and treatment of various forms of kidney diseases over the past decades. We not only introduce the urinary and blood biomarkers linked to kidney diseases found within exosomes but also explore their therapeutic effects. Finally, we discuss existing challenges and future directions concerning the clinical applications of exosomes for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Huanhuan Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixi Li
- Department of Clinical Laboratory, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Lv
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| |
Collapse
|
3
|
Tang H, Liu X, Ke J, Tang Y, Luo S, Li XK, Huang M. New perspectives of exosomes in urologic malignancies - Mainly focus on biomarkers and tumor microenvironment. Pathol Res Pract 2024; 263:155645. [PMID: 39476607 DOI: 10.1016/j.prp.2024.155645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/10/2024]
Abstract
Bladder cancer (BCa) and renal cell carcinoma (RCC) are prevalent urologic malignancies (UM) characterized by high morbidity and frequent recurrence. Current diagnostic approaches, often invasive, often indicate an advanced disease stage. And the complex tumor microenvironment often promotes tumor progression and induces resistance to chemotherapy. Current diagnostic and therapeutic modalities often fail to achieve satisfactory outcomes for patients. Exosomes transport diverse cargoes, including cytokines, proteins, lipids, non-coding RNAs, and microRNAs, crucial for intercellular communication. Exosomes have shown potential as biomarkers for UM, participating in tumor progression, especially within the tumor microenvironment (TME), including tumor cell apoptosis, proliferation, migration, invasion, depletion of immune cell function, epithelial-mesenchymal transition (EMT), angiogenesis, and more.In this review, we summarize research advances related to exosomes in UM, focusing on the role of exosomes as biomarkers in bladder and renal cancer, highlighting their significance within the TME.
Collapse
Affiliation(s)
- Hai Tang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xing Liu
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingwei Ke
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiquan Tang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Songtao Luo
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xu Kun Li
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingwei Huang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
4
|
Grützmann K, Salomo K, Krüger A, Lohse-Fischer A, Erdmann K, Seifert M, Baretton G, Aust D, William D, Schröck E, Thomas C, Füssel S. Identification of novel snoRNA-based biomarkers for clear cell renal cell carcinoma from urine-derived extracellular vesicles. Biol Direct 2024; 19:38. [PMID: 38741178 DOI: 10.1186/s13062-024-00467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC with high rates of metastasis. Targeted therapies such as tyrosine kinase and checkpoint inhibitors have improved treatment success, but therapy-related side effects and tumor recurrence remain a challenge. As a result, ccRCC still have a high mortality rate. Early detection before metastasis has great potential to improve outcomes, but no suitable biomarker specific for ccRCC is available so far. Therefore, molecular biomarkers derived from body fluids have been investigated over the past decade. Among them, RNAs from urine-derived extracellular vesicles (EVs) are very promising. METHODS RNA was extracted from urine-derived EVs from a cohort of 78 subjects (54 ccRCC patients, 24 urolithiasis controls). RNA-seq was performed on the discovery cohort, a subset of the whole cohort (47 ccRCC, 16 urolithiasis). Reads were then mapped to the genome, and expression was quantified based on 100 nt long contiguous genomic regions. Cluster analysis and differential region expression analysis were performed with adjustment for age and gender. The candidate biomarkers were validated by qPCR in the entire cohort. Receiver operating characteristic, area under the curve and odds ratios were used to evaluate the diagnostic potential of the models. RESULTS An initial cluster analysis of RNA-seq expression data showed separation by the subjects' gender, but not by tumor status. Therefore, the following analyses were done, adjusting for gender and age. The regions differentially expressed between ccRCC and urolithiasis patients mainly overlapped with small nucleolar RNAs (snoRNAs). The differential expression of four snoRNAs (SNORD99, SNORD22, SNORD26, SNORA50C) was validated by quantitative PCR. Confounder-adjusted regression models were then used to classify the validation cohort into ccRCC and tumor-free subjects. Corresponding accuracies ranged from 0.654 to 0.744. Models combining multiple genes and the risk factors obesity and hypertension showed improved diagnostic performance with an accuracy of up to 0.811 for SNORD99 and SNORA50C (p = 0.0091). CONCLUSIONS Our study uncovered four previously unrecognized snoRNA biomarkers from urine-derived EVs, advancing the search for a robust, easy-to-use ccRCC screening method.
Collapse
Affiliation(s)
- Konrad Grützmann
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Karsten Salomo
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Alexander Krüger
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Andrea Lohse-Fischer
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Kati Erdmann
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Gustavo Baretton
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Pathology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Daniela Aust
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Pathology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Doreen William
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Institute of Molecular Cell Biology and Genetics, ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Max Planck, 01307, Dresden, Germany
| | - Evelin Schröck
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Institute of Molecular Cell Biology and Genetics, ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Max Planck, 01307, Dresden, Germany
| | - Christian Thomas
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Susanne Füssel
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
5
|
Yu X, Du Z, Zhu P, Liao B. Diagnostic, prognostic, and therapeutic potential of exosomal microRNAs in renal cancer. Pharmacol Rep 2024; 76:273-286. [PMID: 38388810 DOI: 10.1007/s43440-024-00568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Renal cell carcinoma (RCC) arises from the tubular epithelial cells of the nephron. It has the highest mortality rate among urological cancers. There are no effective therapeutic approaches and no non-invasive biomarkers for diagnosis and follow-up. Thus, suitable novel biomarkers and therapeutic targets are essential for improving RCC diagnosis/prognosis and treatment. Circulating exosomes such as exosomal microRNAs (Exo-miRs) provide non-invasive prognostic/diagnostic biomarkers and valuable therapeutic targets, as they can be easily isolated and quantified and show high sensitivity and specificity. Exosomes secreted by an RCC can exhibit alterations in the miRs' profile that may reflect the cellular origin and (patho)physiological state, as a ''signature'' or ''fingerprint'' of the donor cell. It has been shown that the transportation of renal-specific miRs in exosomes can be rapidly detected and measured, holding great potential as biomarkers in RCC. The present review highlights the studies reporting tumor microenvironment-derived Exo-miRs with therapeutic potential as well as circulating Exo-miRs as potential diagnostic/prognostic biomarkers in patients with RCC.
Collapse
Affiliation(s)
- Xiaodong Yu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Zhongbo Du
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Pingyu Zhu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Bo Liao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
6
|
Zieren RC, Zondervan PJ, Pienta KJ, Bex A, de Reijke TM, Bins AD. Diagnostic liquid biopsy biomarkers in renal cell cancer. Nat Rev Urol 2024; 21:133-157. [PMID: 37758847 DOI: 10.1038/s41585-023-00818-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The clinical presentation of renal cell cancer (RCC) is shifting towards incidental and early detection, creating new challenges in RCC diagnosis. Overtreatment might be reduced with the development of new diagnostic biomarkers to distinguish benign from malignant small renal masses (SRMs). Differently from tissue biopsies, liquid biopsies are obtained from a patient's blood or urine and, therefore, are minimally invasive and suitable for longitudinal monitoring. The most promising types of liquid biopsy biomarkers for RCC diagnosis are circulating tumour cells, extracellular vesicles (EVs) and cell-free DNA. Circulating tumour cell assays have the highest specificity, with low processing time and costs. However, the biological characteristics and low sensitivity limit the use of these markers in SRM diagnostics. Cell-free DNA might complement the diagnosis of high-volume RCC, but the potential for clinical application in SRMs is limited. EVs have the highest biological abundance and the highest sensitivity in identifying low-volume disease; moreover, the molecular characteristics of these markers make EVs suitable for multiple analytical applications. Thus, currently, EV assays have the greatest potential for diagnostic application in RCC (including identification of SRMs). All these liquid biomarkers have potential in clinical practice, pending validation studies. Biomarker implementation will be needed to also improve characterization of RCC subtypes. Last, diagnostic biomarkers might be extended to prognostic or predictive applications.
Collapse
Affiliation(s)
- Richard C Zieren
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Patricia J Zondervan
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Axel Bex
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, United Kingdom
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Theo M de Reijke
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan D Bins
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Boussios S, Devo P, Goodall ICA, Sirlantzis K, Ghose A, Shinde SD, Papadopoulos V, Sanchez E, Rassy E, Ovsepian SV. Exosomes in the Diagnosis and Treatment of Renal Cell Cancer. Int J Mol Sci 2023; 24:14356. [PMID: 37762660 PMCID: PMC10531522 DOI: 10.3390/ijms241814356] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most prevalent type of kidney cancer originating from renal tubular epithelial cells, with clear cell RCC comprising approximately 80% of cases. The primary treatment modalities for RCC are surgery and targeted therapy, albeit with suboptimal efficacies. Despite progress in RCC research, significant challenges persist, including advanced distant metastasis, delayed diagnosis, and drug resistance. Growing evidence suggests that extracellular vesicles (EVs) play a pivotal role in multiple aspects of RCC, including tumorigenesis, metastasis, immune evasion, and drug response. These membrane-bound vesicles are released into the extracellular environment by nearly all cell types and are capable of transferring various bioactive molecules, including RNA, DNA, proteins, and lipids, aiding intercellular communication. The molecular cargo carried by EVs renders them an attractive resource for biomarker identification, while their multifarious role in the RCC offers opportunities for diagnosis and targeted interventions, including EV-based therapies. As the most versatile type of EVs, exosomes have attracted much attention as nanocarriers of biologicals, with multi-range signaling effects. Despite the growing interest in exosomes, there is currently no widely accepted consensus on their subtypes and properties. The emerging heterogeneity of exosomes presents both methodological challenges and exciting opportunities for diagnostic and clinical interventions. This article reviews the characteristics and functions of exosomes, with a particular reference to the recent advances in their application to the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| | - Perry Devo
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| | - Iain C. A. Goodall
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| | - Konstantinos Sirlantzis
- School of Engineering, Technology and Design, Canterbury Christ Church University, Canterbury CT1 1QU, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
- Barts Cancer Centre, Barts Health NHS Trust, London EC1A 7BE, UK
- Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK
- Immuno-Oncology Clinical Network, London, UK
| | - Sayali D. Shinde
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London EC1M 6BQ, UK;
| | | | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Saak V. Ovsepian
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| |
Collapse
|
8
|
Echesabal-Chen J, Huang K, Vojtech L, Oladosu O, Esobi I, Sachdeva R, Vyavahare N, Jo H, Stamatikos A. Constructing Lipoparticles Capable of Endothelial Cell-Derived Exosome-Mediated Delivery of Anti-miR-33a-5p to Cultured Macrophages. Curr Issues Mol Biol 2023; 45:5631-5644. [PMID: 37504271 PMCID: PMC10378689 DOI: 10.3390/cimb45070355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
Atherosclerosis is driven by intimal arterial macrophages accumulating cholesterol. Atherosclerosis also predominantly occurs in areas consisting of proinflammatory arterial endothelial cells. At time of writing, there are no available clinical treatments that precisely remove excess cholesterol from lipid-laden intimal arterial macrophages. Delivery of anti-miR-33a-5p to macrophages has been shown to increase apoAI-mediated cholesterol efflux via ABCA1 upregulation but delivering transgenes to intimal arterial macrophages is challenging due to endothelial cell barrier integrity. In this study, we aimed to test whether lipoparticles targeting proinflammatory endothelial cells can participate in endothelial cell-derived exosome exploitation to facilitate exosome-mediated transgene delivery to macrophages. We constructed lipoparticles that precisely target the proinflammatory endothelium and contain a plasmid that expresses XMOTIF-tagged anti-miR-33a-5p (LP-pXMoAntimiR33a5p), as XMOTIF-tagged small RNA demonstrates the capacity to be selectively shuttled into exosomes. The cultured cells used in our study were immortalized mouse aortic endothelial cells (iMAECs) and RAW 264.7 macrophages. From our results, we observed a significant decrease in miR-33a-5p expression in macrophages treated with exosomes released basolaterally by LPS-challenged iMAECs incubated with LP-pXMoAntimiR33a5p when compared to control macrophages. This decrease in miR-33a-5p expression in the treated macrophages caused ABCA1 upregulation as determined by a significant increase in ABCA1 protein expression in the treated macrophages when compared to the macrophage control group. The increase in ABCA1 protein also simulated ABCA1-dependent cholesterol efflux in treated macrophages-as we observed a significant increase in apoAI-mediated cholesterol efflux-when compared to the control group of macrophages. Based on these findings, strategies that involve combining proinflammatory-targeting lipoparticles and exploitation of endothelial cell-derived exosomes appear to be promising approaches for delivering atheroprotective transgenes to lipid-laden arterial intimal macrophages.
Collapse
Affiliation(s)
- Jing Echesabal-Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (J.E.-C.); (K.H.); (O.O.); (I.E.)
| | - Kun Huang
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (J.E.-C.); (K.H.); (O.O.); (I.E.)
| | - Lucia Vojtech
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98109, USA;
| | - Olanrewaju Oladosu
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (J.E.-C.); (K.H.); (O.O.); (I.E.)
| | - Ikechukwu Esobi
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (J.E.-C.); (K.H.); (O.O.); (I.E.)
| | - Rakesh Sachdeva
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA;
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA;
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA;
| | - Alexis Stamatikos
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (J.E.-C.); (K.H.); (O.O.); (I.E.)
| |
Collapse
|
9
|
Xue Y, Chen T, Hou N, Wu X, Kong W, Huang J, Zhang J, Chen Y, Zheng J, Zhai W, Xue W. Serum extracellular vesicles derived hsa-miR-320d as an indicator for progression of clear cell renal cell carcinoma. Discov Oncol 2023; 14:114. [PMID: 37380801 DOI: 10.1007/s12672-023-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a prevalent malignancy with a rising incidence in developing countries. Clear cell renal cell carcinoma (ccRCC) constitutes 70% of RCC cases and is prone to metastasis and recurrence, yet lacks a liquid biomarker for surveillance. Extracellular vesicles (EVs) have shown promise as biomarkers in various malignancies. In this study, we investigated the potential of serum EV-derived miRNAs as a biomarker for ccRCC metastasis and recurrence. MATERIALS AND METHODS Patients diagnosed with ccRCC between 2017 and 2020 were recruited in this study. In the discovery phase, high throughput small RNA sequencing was used to analyze RNA extracted from serum EVs derived from localized ccRCC (LccRCC) and advanced ccRCC (AccRCC). In the validation phase, qPCR was employed for quantitative detection of candidate biomarkers. Migration and invasion assays were performed on ccRCC cell line OSRC2. RESULTS Serum EVs derived hsa-miR-320d was significantly up-regulated in patients with AccRCC than in patients with LccRCC (p < 0.01). In addition, Serum EVs derived hsa-miR-320d was also significantly up-regulated in patients who experienced recurrence or metastasis (p < 0.01). Besides, hsa-miR-320d enhances the pro-metastatic phenotype of ccRCC cells in vitro. CONCLUSIONS Serum EVs derived hsa-miR-320d as a liquid biomarker exhibits significant potential for identifying the recurrence or metastasis of ccRCC, as well as hsa-miR-320d promotes ccRCC cells migration and invasion.
Collapse
Affiliation(s)
- Yizheng Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Tianyi Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Naiqiao Hou
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Xiaorong Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Wen Kong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Jiwei Huang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China.
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160# Pu Jian Ave, Shanghai, 200127, China.
| |
Collapse
|
10
|
Takeda M, Akamatsu S, Kita Y, Goto T, Kobayashi T. The Roles of Extracellular Vesicles in the Progression of Renal Cell Carcinoma and Their Potential for Future Clinical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101611. [PMID: 37242027 DOI: 10.3390/nano13101611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer and is thought to originate from renal tubular epithelial cells. Extracellular vesicles (EVs) are nanosized lipid bilayer vesicles that are secreted into extracellular spaces by nearly all cell types, including cancer cells and non-cancerous cells. EVs are involved in multiple steps of RCC progression, such as local invasion, host immune modulation, drug resistance, and metastasis. Therefore, EVs secreted from RCC are attracting rapidly increasing attention from researchers. In this review, we highlight the mechanism by which RCC-derived EVs lead to disease progression as well as the potential and challenges related to the clinical implications of EV-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Masashi Takeda
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yuki Kita
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
11
|
Jiang T, Zhu Z, Zhang J, Chen M, Chen S. Role of tumor-derived exosomes in metastasis, drug resistance and diagnosis of clear cell renal cell carcinoma. Front Oncol 2022; 12:1066288. [PMID: 36620603 PMCID: PMC9810999 DOI: 10.3389/fonc.2022.1066288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Renal cancer is one of the most extensively studied human tumors today, with clear cell renal cell carcinoma accounting for approximately 80% of all cases. Despite recent advances in research on clear cell renal cell carcinoma, advanced distant metastasis of the disease, delay in diagnosis, as well as drug resistance remain major problems. In recent years, as an important mediator of material and information exchange between cells in the tumor microenvironment, exosomes have attracted widespread attention for their role in tumor development. It has been reported that tumor-derived exosomes may act as regulators and have an important effect on the metastasis, drug resistance formation, and providing targets for early diagnosis of clear cell renal cell carcinoma. Therefore, the extensive study of tumour-derived exosomes will provide a meaningful reference for the development of the diagnostic and therapeutic field of clear cell renal cell carcinoma. This article reviews the biological role and research progress of tumor-derived exosomes in different aspects of premetastatic niche formation, tumor angiogenesis, and epithelial-mesenchymal transition during the progression of clear cell renal cell carcinoma. In addition, the role of tumor-derived exosomes in the development of drug resistance in clear cell renal cell carcinoma is also addressed in this review. Furthermore, recent studies have found that cargoes of exosomes in serum and urine, for example, a series of miRNAs, have the potential to be biological markers of clear cell renal cell carcinoma and provide meaningful targets for early diagnosis and monitoring of tumors, which is also covered in this article.
Collapse
Affiliation(s)
- Tiancheng Jiang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Zepeng Zhu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Jiawei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| |
Collapse
|
12
|
K S, T D, M P. Small extracellular vesicles as a multicomponent biomarker platform in urinary tract carcinomas. Front Mol Biosci 2022; 9:916666. [PMID: 36237572 PMCID: PMC9551577 DOI: 10.3389/fmolb.2022.916666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles are a large group of nano-sized vesicles released by all cells. The variety of possible cargo (mRNAs, miRNAs, lncRNAs, proteins, and lipids) and the presence of surface proteins, signaling molecules, and receptor ligands make them a rich source of biomarkers for malignancy diagnosis. One of the groups gathering the most interest in cancer diagnostic applications is small extracellular vesicles (sEVs), with ≤200 nm diameter, mainly composed of exosomes. Many studies were conducted recently, evaluating the diagnostic potential of sEVs in urinary tract carcinomas (UTCs), discovering and clinically evaluating various classes of biomarkers. The amount of research concerning different types of UTCs understandably reflects their incidence. sEV cargos getting the most interest are non-coding RNAs (miRNA and lncRNA). However, implementation of other approaches such as metabolomic and proteomic analysis is also evaluated. The results of many studies indicate that sEVs have an essential role in the cancer process and possess many possible diagnostic and prognostic applications for UTC. The relative ease of obtaining biofluids rich in sEVs (urine and blood) confirms that sEVs are essential for UTC detection in the liquid biopsy approach. A noticeable rise in research quality is observed as more researchers are aware of the research standardization necessity, which is essential for considering the clinical application of their findings.
Collapse
|
13
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
14
|
Abstract
Extracellular vesicles are released by the majority of cell types and circulate in body fluids. They function as a long-distance cell-to-cell communication mechanism that modulates the gene expression profile and fate of target cells. Increasing evidence has established a central role of extracellular vesicles in kidney physiology and pathology. Urinary extracellular vesicles mediate crosstalk between glomerular and tubular cells and between different segments of the tubule, whereas circulating extracellular vesicles mediate organ crosstalk and are involved in the amplification of kidney damage and inflammation. The molecular profile of extracellular vesicles reflects the type and pathophysiological status of the originating cell so could potentially be exploited for diagnostic and prognostic purposes. In addition, robust preclinical data suggest that administration of exogenous extracellular vesicles could promote kidney regeneration and reduce inflammation and fibrosis in acute and chronic kidney diseases. Stem cells are thought to be the most promising source of extracellular vesicles with regenerative activity. Extracellular vesicles are also attractive candidates for drug delivery and various engineering strategies are being investigated to alter their cargo and increase their efficacy. However, rigorous standardization and scalable production strategies will be necessary to enable the clinical application of extracellular vesicles as potential therapeutics. In this Review, the authors discuss the roles of extracellular vesicles in kidney physiology and disease as well as the beneficial effects of stem cell-derived extracellular vesicles in preclinical models of acute kidney injury and chronic kidney disease. They also highlight current and future clinical applications of extracellular vesicles in kidney diseases. Urinary extracellular vesicles have roles in intra-glomerular, glomerulo-tubular and intra-tubular crosstalk, whereas circulating extracellular vesicles might mediate organ crosstalk; these mechanisms could amplify kidney damage and contribute to disease progression. Urinary extracellular vesicles could potentially be analysed using multiplex diagnostic platforms to identify pathological processes and the originating cell types; technological advances including single extracellular vesicle analysis might increase the specificity of bulk analysis of extracellular vesicle preparations. Robust standardization and validation in large patient cohorts are required to enable clinical application of extracellular vesicle-based biomarkers. Stem cell-derived extracellular vesicles have been shown to improve renal recovery, limit progression of injury and reduce fibrosis in animal models of acute kidney injury and chronic kidney disease. Various engineering approaches can be used to load extracellular vesicles with therapeutic molecules and increase their delivery to the kidney. A small clinical trial that tested the efficacy of mesenchymal stem cell extracellular vesicle administration in patients with chronic kidney disease reported promising results; however, therapeutic application of extracellular vesicles is limited by a lack of scalable manufacturing protocols and clear criteria for standardization.
Collapse
|
15
|
Monti M, Lunardini S, Magli IA, Campi R, Primiceri G, Berardinelli F, Amparore D, Terracciano D, Lucarelli G, Schips L, Ferro M, Marchioni M. Micro-RNAs Predict Response to Systemic Treatments in Metastatic Renal Cell Carcinoma Patients: Results from a Systematic Review of the Literature. Biomedicines 2022; 10:biomedicines10061287. [PMID: 35740309 PMCID: PMC9220270 DOI: 10.3390/biomedicines10061287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
Locally advanced or metastatic renal cell carcinomas (mRCCs) account for up to 15% of all kidney cancer diagnoses. Systemic therapies (with or without surgery) represent gold standard treatments, mostly based on tyrosine kinase inhibitors in association with immunotherapy. We provide an overview of the current knowledge of miRNAs as predictors of treatment resistance. A systematic review of the literature was carried out in January 2022 following the PICO methodology. Overall, we included seven studies—four testing plasmatic miRNAs, two exosomal miRNAs, and one urinary miRNA. A total of 789 patients were included (354 for plasmatic miRNAs, 366 for urinary miRNAs, and 69 for exosomal miRNAs). Several miRNAs were tested within the included studies, but six plasmatic (miR9-5-p¸ miR-192, miR193-3p, miR-501-3p¸ miR-221, miR-376b-3p) one urinary (miR-30a-5p), and three exosomal (miR-35-5p, miR-301a-3p, miR-1293) were associated with resistance to systemic treatments or treatment failure in mRCC patients. Results showed a fair accuracy of these biomarkers in predicting treatment resistance and overall survival. However, to date, the biomarkers tested have not been validated and their clinical uses are not recommended. Nevertheless, the literature results are encouraging; future large clinical trials are warranted to validate the effectiveness of these tools in clinical decision-making.
Collapse
Affiliation(s)
- Martina Monti
- Department of Medical Oral and Biotechnological Science, “G. d’Annunzio” University of Chieti and Pescara, 66100 Chieti, Italy; (M.M.); (S.L.); (I.A.M.); (G.P.); (F.B.); (L.S.); (M.M.)
| | - Susanna Lunardini
- Department of Medical Oral and Biotechnological Science, “G. d’Annunzio” University of Chieti and Pescara, 66100 Chieti, Italy; (M.M.); (S.L.); (I.A.M.); (G.P.); (F.B.); (L.S.); (M.M.)
| | - Igino Andrea Magli
- Department of Medical Oral and Biotechnological Science, “G. d’Annunzio” University of Chieti and Pescara, 66100 Chieti, Italy; (M.M.); (S.L.); (I.A.M.); (G.P.); (F.B.); (L.S.); (M.M.)
| | - Riccardo Campi
- Unit of Urological Robotic Surgery and Renal Transplantation, Careggi Hospital, University of Florence, 50134 Florence, Italy;
| | - Giulia Primiceri
- Department of Medical Oral and Biotechnological Science, “G. d’Annunzio” University of Chieti and Pescara, 66100 Chieti, Italy; (M.M.); (S.L.); (I.A.M.); (G.P.); (F.B.); (L.S.); (M.M.)
| | - Francesco Berardinelli
- Department of Medical Oral and Biotechnological Science, “G. d’Annunzio” University of Chieti and Pescara, 66100 Chieti, Italy; (M.M.); (S.L.); (I.A.M.); (G.P.); (F.B.); (L.S.); (M.M.)
| | - Daniele Amparore
- Department of Oncology, School of Medicine, San Luigi Hospital, University of Turin, Orbassano, 10124 Turin, Italy;
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University ‘Federico II’, 80138 Naples, Italy;
| | - Giuseppe Lucarelli
- Department of Emergency & Organ Transplantation—Urology, Andrology & Kidney Transplantation Unit, University of Bari, 70121 Bari, Italy;
| | - Luigi Schips
- Department of Medical Oral and Biotechnological Science, “G. d’Annunzio” University of Chieti and Pescara, 66100 Chieti, Italy; (M.M.); (S.L.); (I.A.M.); (G.P.); (F.B.); (L.S.); (M.M.)
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 10060 Milan, Italy
- Correspondence:
| | - Michele Marchioni
- Department of Medical Oral and Biotechnological Science, “G. d’Annunzio” University of Chieti and Pescara, 66100 Chieti, Italy; (M.M.); (S.L.); (I.A.M.); (G.P.); (F.B.); (L.S.); (M.M.)
| |
Collapse
|
16
|
Li DY, Lin FF, Li GP, Zeng FC. Exosomal microRNA-15a from ACHN cells aggravates clear cell renal cell carcinoma via the BTG2/PI3K/AKT axis. Kaohsiung J Med Sci 2021; 37:973-982. [PMID: 34337864 DOI: 10.1002/kjm2.12428] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
Accumulating studies have indicated that exosomal microRNAs (miRNAs/miRs) can mediate clear cell renal cell carcinoma (ccRCC) at the early stage, but the mechanisms remain to be specified. Here, we investigated the mechanism of exosomal miR-15a in ccRCC. After successful isolation of exosomes from RCC cells, we found that miR-15a was upregulated in ccRCC cells. Moreover, upregulation of miR-15a by pre-miR-15a promoted the proliferation, migration, invasion, and epithelial-mesenchymal transition of ccRCC cells. A luciferase assay revealed that B-cell translocation gene 2 (BTG2) was a target gene of miR-15a and negatively correlated with miR-15a expression. BTG2 was poorly expressed in ccRCC, which reduced the proliferation of ccRCC cells. In addition, overexpression of BTG2 could reverse the promotive effects of miR-15a on ccRCC. Furthermore, BTG2 reduced PI3K/AKT pathway activity. Our results collectively indicated that exosomal miR-15a from RCC cells accelerated cell viability by downregulating BTG2 and promoting the activity of the PI3K/AKT signaling pathway. We demonstrated a novel mechanism by which exosomal miR-15a exerted pro-proliferatory effects on ccRCC, highlighting the potential of exosomal miR-15a as a target for ccRCC prognosis.
Collapse
Affiliation(s)
- Dao-Yuan Li
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Fei-Fei Lin
- Department of Otorhinolaryngology - Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Guo-Ping Li
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Fan-Chang Zeng
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
17
|
Unveiling the World of Circulating and Exosomal microRNAs in Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13215252. [PMID: 34771419 PMCID: PMC8582552 DOI: 10.3390/cancers13215252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Liquid biopsies have emerged as a new tool for early diagnosis. In renal cell carcinoma, this need is also evident and may represent an improvement in disease management. Hence, in this review we discuss the most updated advances in the assessment of miRNAs in liquid biopsies. Moreover, we explore the potential of circulating or exosome miRNAs in renal cell carcinoma to overcome the tissue biopsies limitations. Abstract Renal cell carcinoma is the third most common urological cancer. Despite recent advances, late diagnosis and poor prognosis of advanced-stage disease remain a major problem, entailing the need for novel early diagnosis tools. Liquid biopsies represent a promising minimally invasive clinical tool, providing real-time feedback of tumor behavior and biological potential, addressing its clonal evolution and representing its heterogeneity. In particular, the study of circulating microRNAs and exosomal microRNAs in liquid biopsies experienced an exponential increase in recent years, considering the potential clinical utility and available technology that facilitates implementation. Herein, we provide a systematic review on the applicability of these biomarkers in the context of renal cell carcinoma. Issues such as additional benefit from extracting microRNAs transported in extracellular vesicles, use for subtyping and representation of different histological types, correlation with tumor burden, and prediction of patient outcome are also addressed. Despite the need for more conclusive research, available data indicate that exosomal microRNAs represent a robust minimally invasive biomarker for renal cell carcinoma. Thus, innovative research on microRNAs and novel detection techniques are likely to provide clinically relevant biomarkers, overcome current clinical challenges, and improve patient management.
Collapse
|
18
|
Rimmer MP, Gregory CD, Mitchell RT. Extracellular vesicles in urological malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188570. [PMID: 34019971 PMCID: PMC8351753 DOI: 10.1016/j.bbcan.2021.188570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bound structures released from cells containing bioactive cargoes. Both the type of cargo and amount loaded varies compared to that of the parent cell. The characterisation of EVs in cancers of the male urogenital tract has identified several cargoes with promising diagnostic and disease monitoring potential. EVs released by cancers of the male urogenital tract promote cell-to-cell communication, migration, cancer progression and manipulate the immune system promoting metastasis by evading the immune response. Their use as diagnostic biomarkers represents a new area of screening and disease detection, potentially reducing the need for invasive biopsies. Many validated EV cargoes have been found to have superior sensitivity and specificity than current diagnostic tools currently in use. The use of EVs to improve disease monitoring and develop novel therapeutics will enable clinicians to individualise patient management in the exciting era of personalised medicine.
Collapse
Affiliation(s)
- Michael P Rimmer
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| | - Christopher D Gregory
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| |
Collapse
|
19
|
Cinque A, Vago R, Trevisani F. Circulating RNA in Kidney Cancer: What We Know and What We Still Suppose. Genes (Basel) 2021; 12:835. [PMID: 34071652 PMCID: PMC8227397 DOI: 10.3390/genes12060835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Renal cancer represents the 7th most common tumor worldwide, affecting 400,000 people annually. This malignancy, which is the third most frequent cancer among urological diseases, displays a completely different prognosis if the tumor is detected in the early stages or advance phases. Unfortunately, more than 50% of renal cancers are discovered incidentally, with a consistent percentage of cases where the tumor remains clinically silent till the metastatic process is established. In day-to-day clinical practice, no available predictive biomarkers exist, and the existent imaging diagnostic techniques harbor several gaps in terms of diagnosis and prognosis. In the last decade, many efforts have been reported to detect new predictive molecular biomarkers using liquid biopsies, which are less invasive in comparison to renal biopsy. However, until now, there has been no clear evidence that a liquid biopsy biomarker could be relevant to the creation of a precise and tailored medical management in these oncological patients, even though circulating RNA biomarkers remain among the most promising. Given the idea that liquid biopsies will play a future key role in the management of these patients, in the present review, we summarize the current state of circulating RNA (miRNA, lncRNAs, and circRNAs) as possible biomarkers of renal cancer presence and aggressiveness in patients.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/urine
- Carcinoma, Renal Cell/blood
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/urine
- Circulating MicroRNA/blood
- Circulating MicroRNA/genetics
- Circulating MicroRNA/urine
- Extracellular Vesicles/genetics
- Extracellular Vesicles/metabolism
- Humans
- Kidney Neoplasms/blood
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/urine
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/urine
Collapse
Affiliation(s)
- Alessandra Cinque
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milano, Italy; (A.C.); (R.V.)
| | - Riccardo Vago
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milano, Italy; (A.C.); (R.V.)
- Department of Urology, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Francesco Trevisani
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milano, Italy; (A.C.); (R.V.)
- Unit of Urology, San Raffaele Scientific Institute, 20132 Milano, Italy
| |
Collapse
|
20
|
Dessie EY, Tsai JJP, Chang JG, Ng KL. A novel miRNA-based classification model of risks and stages for clear cell renal cell carcinoma patients. BMC Bioinformatics 2021; 22:270. [PMID: 34058987 PMCID: PMC8323484 DOI: 10.1186/s12859-021-04189-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal carcinoma and patients at advanced stage showed poor survival rate. Despite microRNAs (miRNAs) are used as potential biomarkers in many cancers, miRNA biomarkers for predicting the tumor stage of ccRCC are still limitedly identified. Therefore, we proposed a new integrated machine learning (ML) strategy to identify a novel miRNA signature related to tumor stage and prognosis of ccRCC patients using miRNA expression profiles. A multivariate Cox regression model with three hybrid penalties including Least absolute shrinkage and selection operator (Lasso), Adaptive lasso and Elastic net algorithms was used to screen relevant prognostic related miRNAs. The best subset regression (BSR) model was used to identify optimal prognostic model. Five ML algorithms were used to develop stage classification models. The biological significance of the miRNA signature was analyzed by utilizing DIANA-mirPath. Results A four-miRNA signature associated with survival was identified and the expression of this signature was strongly correlated with high risk patients. The high risk patients had unfavorable overall survival compared with the low risk group (HR = 4.523, P-value = 2.86e−08). Univariate and multivariate analyses confirmed independent and translational value of this predictive model. A combined ML algorithm identified six miRNA signatures for cancer staging prediction. After using the data balancing algorithm SMOTE, the Support Vector Machine (SVM) algorithm achieved the best classification performance (accuracy = 0.923, sensitivity = 0.927, specificity = 0.919, MCC = 0.843) when compared with other classifiers. Furthermore, enrichment analysis indicated that the identified miRNA signature involved in cancer-associated pathways. Conclusions A novel miRNA classification model using the identified prognostic and tumor stage associated miRNA signature will be useful for risk and stage stratification for clinical practice, and the identified miRNA signature can provide promising insight to understand the progression mechanism of ccRCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04189-2.
Collapse
Affiliation(s)
- Eskezeia Y Dessie
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.,Center for Artificial Intelligence and Precision Medicine Research, Asia University, Taichung, Taiwan
| | - Jeffrey J P Tsai
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jan-Gowth Chang
- Department of Laboratory Medicine, China Medical University, Taichung, Taiwan.
| | - Ka-Lok Ng
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Center for Artificial Intelligence and Precision Medicine Research, Asia University, Taichung, Taiwan.
| |
Collapse
|
21
|
Delivery of miR-224-5p by Exosomes from Cancer-Associated Fibroblasts Potentiates Progression of Clear Cell Renal Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5517747. [PMID: 34122615 PMCID: PMC8169240 DOI: 10.1155/2021/5517747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/07/2021] [Indexed: 11/18/2022]
Abstract
Objectives Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma. Cancer-associated fibroblasts (CAFs) as the primary components of cancer stroma can affect tumor progression by secreting exosomes, while exosomes are carriers for proteins, nucleic acids, and other agents that responsible for delivery of biological information. Given this, exosomes derived from CAFs are emerging as promising biomarkers in clinical cancer diagnosis. Nevertheless, their role in clear cell renal cell carcinoma (ccRCC) remains poorly understood. Methods Here, we separated fibroblasts from ccRCC tissue, extracted exosomes, observed their morphology, and detected the expression of exosome marker proteins including Hsp70, CD9, and CD63. In the meantime, we labeled exosomes and performed coculture experiment to verify the delivery of miR-224-5p from CAFs to 769-P cells with exosomes as a carrier, so as to clarify the effect of CAF-derived exosomes on ccRCC cell malignant behaviors, as well as to discuss how miR-224-5p involves in above regulation. Results Transmission electron microscopy was firstly applied, and it was noted that the exosomes we isolated were in normal range. Besides, Western blot also confirmed the presence of exosome marker proteins Hsp70, CD9, and CD63. Furthermore, coculture experiments were performed and the CAF-derived exosomes were observed to be able to facilitate the malignant behaviors of ccRCC cells, and the exosomal miR-224-5p could be internalized by ccRCC cells to participate in regulation of cell proliferation, migration, invasion, and apoptosis. Conclusion To sum up, miR-224-5p can enter ccRCC cells via CAF-derived exosomes, in turn, promoting the malignant behaviors of ccRCC cells, which indicates that miR-224-5p has the potential severing as a therapeutic target for ccRCC.
Collapse
|
22
|
Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:148-174. [PMID: 39703905 PMCID: PMC11656527 DOI: 10.20517/evcna.2021.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2024]
Abstract
Liquid biopsy is a minimally invasive biopsy method that uses molecules in body fluids as biomarkers, and it has attracted attention as a new cancer therapy tool. Liquid biopsy has considerable clinical application potential, such as in early diagnosis, pathological condition monitoring, and tailored treatment development based on cancer biology and the predicted treatment response of individual patients. Extracellular vesicles (EVs) are lipid membranous vesicles released from almost all cell types, and they represent a novel liquid biopsy resource. EVs carry complex molecular cargoes, such as proteins, RNAs [e.g., mRNA and noncoding RNAs (microRNA, transfer RNA, circular RNA and long noncoding RNA)], and DNA fragments; these cargoes are delivered to recipient cells and serve as a cell-to-cell communication system. The molecular contents of EVs largely reflect the cell of origin and thus show cell-type specificity. In particular, cancer-derived EVs contain cancer-specific molecules expressed in parental cancer cells. Therefore, analysis of cancer-derived EVs might indicate the presence and nature of cancer. High-speed analytical technologies, such as mass spectrometry and high-throughput sequencing, have generated large data sets for EV cargoes that can be used to identify many candidate EV-associated biomarkers. Here, we will discuss the challenges and prospects of EV-based liquid biopsy compared to other biological resources (e.g., circulating tumor cells and cell-free DNA) and summarize the novel studies that have identified the remarkable potential of EVs as a cancer biomarker.
Collapse
Affiliation(s)
- Takaaki Tamura
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| |
Collapse
|
23
|
Salmond N, Williams KC. Isolation and characterization of extracellular vesicles for clinical applications in cancer - time for standardization? NANOSCALE ADVANCES 2021; 3:1830-1852. [PMID: 36133088 PMCID: PMC9419267 DOI: 10.1039/d0na00676a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/13/2021] [Indexed: 05/08/2023]
Abstract
Extracellular vesicles (EVs) are nanometer sized lipid enclosed particles released by all cell types into the extracellular space and biological fluids in vivo, and into cell culture media in vitro. An important physiological role of EVs is cell-cell communication. EVs interact with, and deliver, their contents to recipient cells in a functional capacity; this makes EVs desirable vehicles for the delivery of therapeutic cargoes. In addition, as EVs contain proteins, lipids, glycans, and nucleic acids that reflect their cell of origin, their potential utility in disease diagnosis and prognostication is of great interest. The number of published studies analyzing EVs and their contents in the pre-clinical and clinical setting is rapidly expanding. However, there is little standardization as to what techniques should be used to isolate, purify and characterize EVs. Here we provide a comprehensive literature review encompassing the use of EVs as diagnostic and prognostic biomarkers in cancer. We also detail their use as therapeutic delivery vehicles to treat cancer in pre-clinical and clinical settings and assess the EV isolation and characterization strategies currently being employed. Our report details diverse isolation strategies which are often dependent upon multiple factors such as biofluid type, sample volume, and desired purity of EVs. As isolation strategies vary greatly between studies, thorough EV characterization would be of great importance. However, to date, EV characterization in pre-clinical and clinical studies is not consistently or routinely adhered to. Standardization of EV characterization so that all studies image EVs, quantitate protein concentration, identify the presence of EV protein markers and contaminants, and measure EV particle size and concentration is suggested. Additionally, the use of RNase, DNase and protease EV membrane protection control experiments is recommended to ensure that the cargo being investigated is truly EV associated. Overall, diverse methodology for EV isolation is advantageous as it can support different sample types and volumes. Nevertheless, EV characterization is crucial and should be performed in a rigorous manor.
Collapse
Affiliation(s)
- Nikki Salmond
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| | - Karla C Williams
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| |
Collapse
|
24
|
Qin Z, Hu H, Sun W, Chen L, Jin S, Xu Q, Liu Y, Yu L, Zeng S. miR-224-5p Contained in Urinary Extracellular Vesicles Regulates PD-L1 Expression by Inhibiting Cyclin D1 in Renal Cell Carcinoma Cells. Cancers (Basel) 2021; 13:cancers13040618. [PMID: 33557163 PMCID: PMC7913995 DOI: 10.3390/cancers13040618] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
The abundant miRNAs in urinary extracellular vesicles (EVs) represent ideal reservoirs for biomarker discovery, especially in renal cell carcinoma (RCC). However, the content and biological functions of microRNAs contained in urinary EVs in RCC remain ambiguous. In this study, urinary EVs were isolated and characterized from RCC patients and healthy volunteers. Differentially expressed microRNAs in urinary EVs were screened by small RNA sequencing. The target gene and biological functions of selected microRNAs were investigated through multifaceted methods. Results indicated that miR-224-5p was significantly upregulated in urinary EVs of RCC patients compared to healthy volunteers. The overexpression of miR-224-5p inhibited RCC cell proliferation and induced cell cycle arrest. The gene CCND1 encoding cyclin D1 was identified as a direct target of miR-224-5p via prediction and validation. Moreover, the invasive and metastatic abilities of RCC cells were enhanced by miR-224-5p. Interestingly, miR-224-5p also increased the stability of PD-L1 protein by inhibiting CCND1. This effect could be transmitted via EVs and further promoted the resistance of RCC cells to T cell-dependent toxicity. In summary, urinary EVs containing miR-224-5p were identified as a potential biomarker in RCC. Regulation of PD-L1 protein expression by miR-224-5p through suppressing CCND1 elucidates new roles of miR-224-5p in RCC progression.
Collapse
Affiliation(s)
- Zhiyuan Qin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Z.Q.); (H.H.); (W.S.); (L.C.); (S.J.); (Q.X.); (Y.L.)
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Z.Q.); (H.H.); (W.S.); (L.C.); (S.J.); (Q.X.); (Y.L.)
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Wen Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Z.Q.); (H.H.); (W.S.); (L.C.); (S.J.); (Q.X.); (Y.L.)
| | - Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Z.Q.); (H.H.); (W.S.); (L.C.); (S.J.); (Q.X.); (Y.L.)
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Shengnan Jin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Z.Q.); (H.H.); (W.S.); (L.C.); (S.J.); (Q.X.); (Y.L.)
| | - Qingwen Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Z.Q.); (H.H.); (W.S.); (L.C.); (S.J.); (Q.X.); (Y.L.)
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Z.Q.); (H.H.); (W.S.); (L.C.); (S.J.); (Q.X.); (Y.L.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Z.Q.); (H.H.); (W.S.); (L.C.); (S.J.); (Q.X.); (Y.L.)
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China
- Correspondence: (L.Y.); (S.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Z.Q.); (H.H.); (W.S.); (L.C.); (S.J.); (Q.X.); (Y.L.)
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China
- Correspondence: (L.Y.); (S.Z.)
| |
Collapse
|
25
|
Albakova Z, Siam MKS, Sacitharan PK, Ziganshin RH, Ryazantsev DY, Sapozhnikov AM. Extracellular heat shock proteins and cancer: New perspectives. Transl Oncol 2020; 14:100995. [PMID: 33338880 PMCID: PMC7749402 DOI: 10.1016/j.tranon.2020.100995] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
High expression of extracellular heat shock proteins (HSPs) indicates highly aggressive tumors. HSP profiling of extracellular vesicles (EVs) derived from various biological fluids and released by immune cells may open new perspectives for an identification of diagnostic, prognostic and predictive biomarkers of cancer. Identification of specific microRNAs targeting HSPs in EVs may be a promising strategy for the discovery of novel biomarkers of cancer.
Heat shock proteins (HSPs) are a large family of molecular chaperones aberrantly expressed in cancer. The expression of HSPs in tumor cells has been shown to be implicated in the regulation of apoptosis, immune responses, angiogenesis and metastasis. Given that extracellular vesicles (EVs) can serve as potential source for the discovery of clinically useful biomarkers and therapeutic targets, it is of particular interest to study proteomic profiling of HSPs in EVs derived from various biological fluids of cancer patients. Furthermore, a divergent expression of circulating microRNAs (miRNAs) in patient samples has opened new opportunities in exploiting miRNAs as diagnostic tools. Herein, we address the current literature on the expression of extracellular HSPs with particular interest in HSPs in EVs derived from various biological fluids of cancer patients and different types of immune cells as promising targets for identification of clinical biomarkers of cancer. We also discuss the emerging role of miRNAs in HSP regulation for the discovery of blood-based biomarkers of cancer. We outline the importance of understanding relationships between various HSP networks and co-chaperones and propose the model for identification of HSP signatures in cancer. Elucidating the role of HSPs in EVs from the proteomic and miRNAs perspectives may provide new opportunities for the discovery of novel biomarkers of cancer.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, 199192 Moscow, Russia.
| | | | - Pradeep Kumar Sacitharan
- The Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitriy Y Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander M Sapozhnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
26
|
Cheng G, Li M, Ma X, Nan F, Zhang L, Yan Z, Li H, Zhang G, Han Y, Xie L, Guo X. Systematic Analysis of microRNA Biomarkers for Diagnosis, Prognosis, and Therapy in Patients With Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:543817. [PMID: 33344224 PMCID: PMC7746831 DOI: 10.3389/fonc.2020.543817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The ever-increasing morbidity and mortality of clear cell renal cell carcinoma (ccRCC) urgently demands updated biomarkers. MicroRNAs (miRNAs) are involved in diverse biological processes such as cell proliferation, differentiation, apoptosis by regulating their target genes' expression. In kidney cancers, miRNAs have been reported to be involved in tumorigenesis and to be the diagnostic, prognostic, and therapeutic response biomarkers. Here, we performed a systematic analysis for ccRCC-related miRNAs as biomarkers by searching keywords in the NCBI PubMed database and found 118 miRNAs as diagnostic biomarkers, 28 miRNAs as prognostic biomarkers, and 80 miRNAs as therapeutic biomarkers in ccRCC. miRNA-21, miRNA-155, miRNA-141, miRNA-126, and miRNA-221, as significantly differentially expressed miRNAs between cancer and normal tissues, play extensive roles in the cell proliferation, differentiation, apoptosis of ccRCC. GO and KEGG enrichment analysis of these miRNAs' target genes through Metascape showed these target genes are enriched in Protein Domain Specific Binding (GO:0019904). In this paper, we identified highly specific miRNAs in the pathogenesis of ccRCC and explored their potential applications for diagnosis, prognosis, and treatment of ccRCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Longxiang Xie
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Ghafouri-Fard S, Shirvani-Farsani Z, Branicki W, Taheri M. MicroRNA Signature in Renal Cell Carcinoma. Front Oncol 2020; 10:596359. [PMID: 33330087 PMCID: PMC7734191 DOI: 10.3389/fonc.2020.596359] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) includes 2.2% of all diagnosed cancers and 1.8% of cancer-related mortalities. The available biomarkers or screening methods for RCC suffer from lack of sensitivity or high cost, necessitating identification of novel biomarkers that facilitate early diagnosis of this cancer especially in the susceptible individuals. MicroRNAs (miRNAs) have several advantageous properties that potentiate them as biomarkers for cancer detection. Expression profile of miRNAs has been assessed in biological samples from RCC patients. Circulatory or urinary levels of certain miRNAs have been proposed as markers for RCC diagnosis or follow-up. Moreover, expression profile of some miRNAs has been correlated with response to chemotherapy, immunotherapy or targeted therapeutic options such as sunitinib. In the current study, we summarize the results of studies that assessed the application of miRNAs as biomarkers, therapeutic targets or modulators of response to treatment modalities in RCC patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Zhao Y, Tao Z, Chen X. Identification of the miRNA-mRNA regulatory pathways and a miR-21-5p based nomogram model in clear cell renal cell carcinoma. PeerJ 2020; 8:e10292. [PMID: 33194441 PMCID: PMC7648458 DOI: 10.7717/peerj.10292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background The purpose of this study was to determine the key microRNAs (miRNAs) and their regulatory networks in clear cell renal cell carcinoma (ccRCC). Methods Five mRNA and three microRNA microarray datasets were downloaded from the Gene Expression Omnibus database and used to screen the differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs). Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed with Metascape. A miRNA-mRNA network was mapped with the Cytoscape tool. The results were validated with data from The Cancer Genome Atlas (TCGA) and qRT-PCR. A nomogram model based on independent prognostic key DEMs, stage and grade was constructed for further investigation. Results A total of 26 key DEMs and 307 DEGs were identified. Dysregulation of four key DEMs (miR-21-5p, miR-142-3p, miR-155-5p and miR-342-5p) was identified to correlate with overall survival. The results were validated with TCGA data and qRT-PCR. The nomogram model showed high accuracy in predicting the prognosis of patients with ccRCC. Conclusion We identified 26 DEMs that may play vital roles in the regulatory networks of ccRCC. Four miRNAs (miR-21-5p, miR-142-3p, miR-155-5p and miR-342-5p) were considered as potential biomarkers in the prognosis of ccRCC, among which only miR-21-5p was found to be an independent prognostic factor. A nomogram model was then created on the basis of independent factors for better prediction of prognosis for patients with ccRCC. Our results suggest a need for further experimental validation studies.
Collapse
Affiliation(s)
- Yiqiao Zhao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zijia Tao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
29
|
Barth DA, Drula R, Ott L, Fabris L, Slaby O, Calin GA, Pichler M. Circulating Non-coding RNAs in Renal Cell Carcinoma-Pathogenesis and Potential Implications as Clinical Biomarkers. Front Cell Dev Biol 2020; 8:828. [PMID: 33042985 PMCID: PMC7523432 DOI: 10.3389/fcell.2020.00828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy-the determination of circulating cells, proteins, DNA or RNA from biofluids through a "less invasive" approach-has emerged as a novel approach in all cancer entities. Circulating non-(protein) coding RNAs including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and YRNAs can be passively released by tissue or cell damage or actively secreted as cell-free circulating RNAs, bound to lipoproteins or carried by exosomes. In renal cell carcinoma (RCC), a growing body of evidence suggests circulating non-coding RNAs (ncRNAs) such as miRNAs, lncRNAs, and YRNAs as promising and easily accessible blood-based biomarkers for the early diagnosis of RCC as well as for the prediction of prognosis and treatment response. In addition, circulating ncRNAs could also play a role in RCC pathogenesis and progression. This review gives an overview over the current study landscape of circulating ncRNAs and their involvement in RCC pathogenesis as well as their potential utility as future biomarkers in RCC diagnosis and treatment.
Collapse
Affiliation(s)
- Dominik A Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rares Drula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Research Centre for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Leonie Ott
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
30
|
Outeiro-Pinho G, Barros-Silva D, Correia MP, Henrique R, Jerónimo C. Renal Cell Tumors: Uncovering the Biomarker Potential of ncRNAs. Cancers (Basel) 2020; 12:cancers12082214. [PMID: 32784737 PMCID: PMC7465320 DOI: 10.3390/cancers12082214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell tumors (RCT) remain as one of the most common and lethal urological tumors worldwide. Discrimination between (1) benign and malignant disease, (2) indolent and aggressive tumors, and (3) patient responsiveness to a specific therapy is of major clinical importance, allowing for a more efficient patient management. Nonetheless, currently available tools provide limited information and novel strategies are needed. Over the years, a putative role of non-coding RNAs (ncRNAs) as disease biomarkers has gained relevance and is now one of the most prolific fields in biological sciences. Herein, we extensively sought the most significant reports on ncRNAs as potential RCTs' diagnostic, prognostic, predictive, and monitoring biomarkers. We could conclude that ncRNAs, either alone or in combination with currently used clinical and pathological parameters, might represent key elements to improve patient management, potentiating the implementation of precision medicine. Nevertheless, most ncRNA biomarkers require large-scale validation studies, prior to clinical implementation.
Collapse
Affiliation(s)
- Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000; Fax: +351-225084199
| |
Collapse
|
31
|
Dias F, Teixeira AL, Nogueira I, Morais M, Maia J, Bodo C, Ferreira M, Silva A, Vilhena M, Lobo J, Sequeira JP, Maurício J, Oliveira J, Kok K, Costa-Silva B, Medeiros R. Extracellular Vesicles Enriched in hsa-miR-301a-3p and hsa-miR-1293 Dynamics in Clear Cell Renal Cell Carcinoma Patients: Potential Biomarkers of Metastatic Disease. Cancers (Basel) 2020; 12:cancers12061450. [PMID: 32498409 PMCID: PMC7352268 DOI: 10.3390/cancers12061450] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most aggressive subtype of kidney cancer and up to 40% of patients submitted to surgery with a curative intent will relapse. Thus, the aim of this study was to analyze the applicability of an Extracellular vesicle (EV) derived miRNA profile as potential prognosis biomarkers in ccRCC patients. We analyzed a nine-miRNA profile in plasma EVs from 32 ccRCC patients with localized disease (before and after surgery) and in 37 patients with metastatic disease. We observed that the levels of EV-derived hsa-miR-25-3p, hsa-miR-126-5p, hsa-miR-200c-3p, and hsa-miR-301a-3p decreased after surgery, whereas hsa-miR-1293 EV-levels increased. Furthermore, metastatic patients presented higher levels of hsa-miR-301a-3p and lower levels of hsa-miR-1293 when compared to patients with localized disease after surgery. Functional enrichment analysis of the targets of the four miRNAs that decreased after surgery resulted in an enrichment of terms related to cell cycle, proliferation, and metabolism, suggesting that EV-miRNA enrichment in the presence of the tumor could represent an epigenetic mechanism to sustain tumor development. Taken together, these results suggest that EVs content varies depending on the presence or absence of the disease and that an increase of EV-derived hsa-miR-301a-3p, and decrease of EV-derived hsa-miR-1293, may be potential biomarkers of metastatic ccRCC.
Collapse
Affiliation(s)
- Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Correspondence: ; Tel.: +351-225084000 (ext. 5410)
| | - Inês Nogueira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Joana Maia
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (J.M.); (C.B.); (B.C.-S.)
- Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, 4200-135 Porto, Portugal
| | - Cristian Bodo
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (J.M.); (C.B.); (B.C.-S.)
| | - Marta Ferreira
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.F.); (J.M.)
| | - Alexandra Silva
- Department of Urology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.S.); (M.V.); (J.O.)
| | - Manuela Vilhena
- Department of Urology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.S.); (M.V.); (J.O.)
| | - João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB3, F Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB3, F Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.F.); (J.M.)
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (A.S.); (M.V.); (J.O.)
| | - Klaas Kok
- Department of Genetics, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713 GZ Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (J.M.); (C.B.); (B.C.-S.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center- LAB2, E Bdg 1st floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (I.N.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
| |
Collapse
|
32
|
Qin Z, Xu Q, Hu H, Yu L, Zeng S. Extracellular Vesicles in Renal Cell Carcinoma: Multifaceted Roles and Potential Applications Identified by Experimental and Computational Methods. Front Oncol 2020; 10:724. [PMID: 32457844 PMCID: PMC7221139 DOI: 10.3389/fonc.2020.00724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer. Increasingly evidences indicate that extracellular vesicles (EVs) orchestrate multiple processes in tumorigenesis, metastasis, immune evasion, and drug response of RCC. EVs are lipid membrane-bound vesicles in nanometer size and secreted by almost all cell types into the extracellular milieu. A myriad of bioactive molecules such as RNA, DNA, protein, and lipid are able to be delivered via EVs for the intercellular communication. Hence, the abundant content of EVs is appealing reservoir for biomarker identification through computational analysis and experimental validation. EVs with excellent biocompatibility and biodistribution are natural platforms that can be engineered to offer achievable drug delivery strategies for RCC therapies. Moreover, the multifaceted roles of EVs in RCC progression also provide substantial targets and facilitate EVs-based drug discovery, which will be accelerated by using artificial intelligence approaches. In this review, we summarized the vital roles of EVs in occurrence, metastasis, immune evasion, and drug resistance of RCC. Furthermore, we also recapitulated and prospected the EVs-based potential applications in RCC, including biomarker identification, drug vehicle development as well as drug target discovery.
Collapse
Affiliation(s)
| | | | | | | | - Su Zeng
- College of Pharmaceutical Sciences, Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Klimentova EA, Gilyazova IR, Bermisheva MA, Blinnikova AM, Safiullin RI, Izmailov AA, Yang B, Pavlov VN, Khusnutdinova EK. Investigation of the Role of microRNA Associated with the VHL-HIFα-Dependent Pathway in Patients with Clear Cell Renal Cell Carcinoma. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420030096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Stamatikos A, Knight E, Vojtech L, Bi L, Wacker BK, Tang C, Dichek DA. Exosome-Mediated Transfer of Anti-miR-33a-5p from Transduced Endothelial Cells Enhances Macrophage and Vascular Smooth Muscle Cell Cholesterol Efflux. Hum Gene Ther 2020; 31:219-232. [PMID: 31842627 PMCID: PMC7047121 DOI: 10.1089/hum.2019.245] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is a disease of large- and medium-sized arteries that is caused by cholesterol accumulation in arterial intimal cells, including macrophages and smooth muscle cells (SMC). Cholesterol accumulation in these cells can be prevented or reversed in preclinical models-and atherosclerosis reduced-by transgenesis that increases expression of molecules that control cholesterol efflux, including apolipoprotein AI (apoAI) and ATP-binding cassette subfamily A, member 1 (ABCA1). In a previous work, we showed that transduction of arterial endothelial cells (EC)-with a helper-dependent adenovirus (HDAd) expressing apoAI-enhanced EC cholesterol efflux in vitro and decreased atherosclerosis in vivo. Similarly, overexpression of ABCA1 in cultured EC increased cholesterol efflux and decreased inflammatory gene expression. These EC-targeted gene-therapy strategies might be improved by concurrent upregulation of cholesterol-efflux pathways in other intimal cell types. Here, we report modification of this strategy to enable delivery of therapeutic nucleic acids to cells of the sub-endothelium. We constructed an HDAd (HDAdXMoAntimiR33a5p) that expresses an antagomiR directed at miR-33a-5p (a microRNA that suppresses cholesterol efflux by silencing ABCA1). HDAdXMoAntimiR33a5p contains a sequence motif that enhances uptake of anti-miR-33a-5p into exosomes. Cultured EC release exosomes containing small RNA, including miR-33a-5p. After transduction with HDAdXMoAntimiR33a5p, EC-derived exosomes containing anti-miR-33a-5p accumulate in conditioned medium (CM). When this CM is added to macrophages or SMC, anti-miR-33a-5p is detected in these target cells. Exosome-mediated transfer of anti-miR-33a-5p reduces miR-33a-5p by ∼65-80%, increases ABCA1 protein by 1.6-2.2-fold, and increases apoAI-mediated cholesterol efflux by 1.4-1.6-fold (all p ≤ 0.01). These effects were absent in macrophages and SMC incubated in exosome-depleted CM. EC transduced with HDAdXMoAntimiR33a5p release exosomes that can transfer anti-miR-33a-5p to other intimal cell types, upregulating cholesterol efflux from these cells. This strategy provides a platform for genetic modification of intimal and medial cells, using a vector that transduces only EC.
Collapse
Affiliation(s)
- Alexis Stamatikos
- Department of Medicine, University of Washington, Seattle, Washington
| | - Ethan Knight
- Department of Medicine, University of Washington, Seattle, Washington
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - Lianxiang Bi
- Department of Medicine, University of Washington, Seattle, Washington
| | - Bradley K. Wacker
- Department of Medicine, University of Washington, Seattle, Washington
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington
| | - David A. Dichek
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
35
|
Thongboonkerd V. Roles for Exosome in Various Kidney Diseases and Disorders. Front Pharmacol 2020; 10:1655. [PMID: 32082158 PMCID: PMC7005210 DOI: 10.3389/fphar.2019.01655] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Exosome is a nanoscale vesicle with a size range of 30–100 nm. It is secreted from cell to extracellular space by exocytosis after fusion of multivesicular body (MVB) (formed by endocytic vesicles) with plasma membrane. Exosome plays several important roles in cellular homeostasis and intercellular communications. During the last two decades, exosome has acquired a wide attention to explore its additional roles in various aspects of cell biology and function in several organ systems. For the kidney, several lines of evidence have demonstrated 1that exosome is involved in the renal physiology and pathogenic mechanisms of various kidney diseases/disorders. This article summarizes roles of the exosome as the potential source of biomarkers, pathogenic molecules, and therapeutic biologics that have been extensively investigated in many kidney diseases/disorders, including lupus nephritis (LN), other glomerular diseases, acute kidney injury (AKI), diabetic nephropathy (DN), as well as in the process of renal fibrosis and chronic kidney disease (CKD) progression, in addition to polycystic kidney disease (PKD), kidney transplantation, and renal cell carcinoma (RCC). Moreover, the most recent evidence has shown its emerging role in kidney stone disease (or nephrolithiasis), involving inflammasome activation and inflammatory cascade frequently found in kidney stone pathogenesis.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Abstract
Extracellular vesicles (EVs) have an essential functional role in local tumour progression, metastatic spread and the emergence of drug resistance in bladder, kidney and prostate cancer. Thus, EVs could be diagnostic, prognostic and predictive biomarkers for these malignancies. Virtually all biomolecules (including DNA, mRNA, microRNA, long non-coding RNA, proteins and lipids) packaged into EVs have been tested as biomarkers in blood and urine samples. The results are very heterogeneous, but promising biomarker candidates have been identified. Differing methods of EV isolation, characterization and analysis of their content have been used owing to a lack of international consensus; hence, comparing study results is challenging. Furthermore, validation of potential biomarkers in independent cohorts or prospective trials has rarely been performed. Future efforts to establish EV-derived biomarkers need to adequately address these points. In addition, emerging technologies such as mass spectroscopy and chip-based approaches can identify surface markers specific for cancer-associated EVs and will enable specific separation from blood and urine EVs, which probably will improve their performance as biomarkers. Moreover, EVs could be harnessed as therapeutic drug delivery vehicles for precise and effective anticancer therapy.
Collapse
|
37
|
Wu Z, Zhang Z, Xia W, Cai J, Li Y, Wu S. Extracellular vesicles in urologic malignancies-Implementations for future cancer care. Cell Prolif 2019; 52:e12659. [PMID: 31469460 PMCID: PMC6869217 DOI: 10.1111/cpr.12659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs), a heterogeneous group of vesicles differing in size and shape, cargo content and function, are membrane-bound and nano-sized vesicles that could be released by nearly all variations of cells. EVs have gained considerable attention in the past decades for their functions in modulating intercellular signalling and roles as potential pools for the novel diagnostic and prognostic biomarkers, as well as therapeutic targets in several cancers including urological neoplasms. In general, human and animal cells both can release distinct types of EVs, including exosomes, microvesicles, oncosomes and large oncosomes, and apoptotic bodies, while the content of EVs can be divided into proteins, lipids and nucleic acids. However, the lack of standard methods for isolation and detection platforms rein the widespread usage in clinical applications warranted furthermore investigations in the development of reliable, specific and sensitive isolation techniques. Whether and how the EVs work has become pertinent issues. With the aid of high-throughput proteomics or genomics methods, a fully understanding of contents contained in EVs from urogenital tumours, beyond all doubt, will improve our ability to identify the complex genomic alterations in the process of cancer and, in turn, contribute to detect potential therapeutic target and then provide personalization strategy for patient.
Collapse
Affiliation(s)
- Zhangsong Wu
- Medical CollegeShenzhen UniversityShenzhenChina
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
| | - Zhiqiang Zhang
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
| | - Wuchao Xia
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Medical CollegeAnhui University of Science and TechnologyHuainanChina
| | - Jiajia Cai
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Medical CollegeAnhui University of Science and TechnologyHuainanChina
| | - Yuqing Li
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
| | - Song Wu
- Medical CollegeShenzhen UniversityShenzhenChina
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Medical CollegeAnhui University of Science and TechnologyHuainanChina
- Department of Urological Surgery, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
38
|
Zeuschner P, Linxweiler J, Junker K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert Rev Mol Diagn 2019; 20:151-167. [DOI: 10.1080/14737159.2019.1665998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| |
Collapse
|
39
|
Huang Y, Zhang Y, Jia L, Liu C, Xu F. Circular RNA ABCB10 promotes tumor progression and correlates with pejorative prognosis in clear cell renal cell carcinoma. Int J Biol Markers 2019; 34:176-183. [PMID: 31106654 DOI: 10.1177/1724600819842279] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Our study aimed to evaluate the effect of circular RNA ABCB10 (circ-ABCB10) on proliferation and apoptosis of clear cell renal cell carcinoma (ccRCC) cells, and its prognostic value in patients with ccRCC. METHODS Circ-ABCB10 expression in five ccRCC cell lines and normal kidney epithelial cell line was measured by quantitative polymerase chain reaction (qPCR). Empty overexpression, circ-ABCB10 overexpression, empty shRNA, and circ-ABCB10 shRNA plasmids were transfected into A498 cells as negative control for circ-ABCB10 over expression {NC (+)}, Circ-ABCB10(+), negative control (-){NC(-)}, and Circ-ABCB10(-) groups, then cell proliferation and apoptosis were evaluated by Cell Counting Kit-8 and annexin V/propidium iodide. Meanwhile, apoptotic markers were measured by western blot. Subsequently, circ-ABCB10 expression in tumor tissues and paired adjacent tissues from 120 ccRCC patients was measured by qPCR. RESULTS Circ-ABCB10 expression was elevated in all the ccRCC cell lines compared with the normal kidney cells line. A498 cell proliferation was enhanced in the Circ-ABCB10(+) group compared with the NC(+) group, while it was inhibited in the Circ-ABCB10(-) group compared with the NC (-) group; and A498 cell apoptosis was repressed in the Circ-ABCB10(+) group than the NC(+) group, but was promoted in the Circ-ABCB10(-) group compared with the NC(-) group. In addition, circ-ABCB10 was up-regulated in tumor tissues compared with paired adjacent tissues, and its high expression correlated with the advanced pathological grade and the tumor node metastasis stage as well as independently predicting worse overall survival in ccRCC patients. CONCLUSION Circ-ABCB10 promotes tumor progression and correlates with pejorative prognosis in ccRCC.
Collapse
Affiliation(s)
- Yunfang Huang
- 1 Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhang
- 2 Department of Nephrology, The Sixth Hospital of Wuhan, Wuhan, China
| | - Lin Jia
- 1 Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changxuan Liu
- 1 Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Xu
- 1 Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes. Front Genet 2019; 10:320. [PMID: 31110513 PMCID: PMC6499217 DOI: 10.3389/fgene.2019.00320] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer, and it has the highest mortality rate. The increasing drug resistance of metastatic ccRCC has resulted in the search for new biomarkers. Epigenetic regulatory mechanisms, such as genome-wide DNA methylation and inhibition of protein translation by interaction of microRNA (miRNA) with its target messenger RNA (mRNA), are deeply involved in the pathogenesis of human cancers, including ccRCC, and may be used in its diagnosis and prognosis. Here, we review oncogenic and oncosuppressive miRNAs, their putative target genes, and the crucial pathways they are involved in. The contradictory behavior of a number of miRNAs, such as suppressive and anti-metastatic miRNAs with oncogenic potential (for example, miR-99a, miR-106a, miR-125b, miR-144, miR-203, miR-378), is examined. miRNAs that contribute mostly to important pathways and processes in ccRCC, for instance, PI3K/AKT/mTOR, Wnt-β, histone modification, and chromatin remodeling, are discussed in detail. We also separately consider their participation in crucial oncogenic processes, such as hypoxia and angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). The review also considers the interactions of long non-coding RNAs (lncRNAs) and miRNAs of significance in ccRCC. Recent advances in the understanding of the role of hypermethylated miRNA genes in ccRCC and their usefulness as biomarkers are reviewed based on our own data and those available in the literature. Finally, new data and perspectives concerning the clinical applications of miRNAs in the diagnosis, prognosis, and treatment of ccRCC are discussed.
Collapse
Affiliation(s)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Center of Medical Genetics, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
41
|
Dong L, Zieren RC, Wang Y, de Reijke TM, Xue W, Pienta KJ. Recent advances in extracellular vesicle research for urological cancers: From technology to application. Biochim Biophys Acta Rev Cancer 2019; 1871:342-360. [DOI: 10.1016/j.bbcan.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 02/09/2023]
|
42
|
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication in cancer and in normal tissues. EVs transfer biologically active molecules from the cell of origin to recipient cells. This review summarizes the studies on EVs derived from renal cell carcinoma and from a subpopulation of CD105-positive renal cancer stem cells. While EVs from renal cell carcinoma show mild biological activity, EVs from renal cancer stem cells enhance tumor angiogenesis and metastasis formation. The effect is probably due to the transfer of proangiogenic RNA cargo to endothelial cells, which acquire an activated angiogenic phenotype. In vivo, treatment with EVs favors the formation of a premetastatic niche in the lungs. Moreover, EVs derived from renal cancer stem cells modify gene expression in mesenchymal stromal cells, enhancing the expression of genes involved in matrix remodeling, cell migration, and tumor growth. Mesenchymal stromal cells preconditioned with tumor EVs and then coinjected in vivo with renal cancer cells support tumor growth and vessel formation. Finally, tumor EVs promote tumor immune escape by inhibiting the differentiation process of dendritic cells and the activation of T cells. Thus, tumor-derived EVs act on the microenvironment favoring tumor aggressiveness, may contribute to angiogenesis through both direct and indirect mechanisms and are involved in tumor immune escape. Membrane-bound packages called extracellular vesicles (EVs) released by kidney cancer stem cells can make tumors more aggressive, promote the onset of cancer at other sites, and help tumors escape the anti-cancer immune response. Giovanni Camussi and colleagues at the University of Turin, Italy, review understanding of EVs from kidney cancer cells. EVs from cancer stem cells are especially effective in promoting cancer, unlike those from mature cancer cells. This is partly due to their ability to promote the formation of new blood vessels to sustain tumor growth. Some of the vesicles’ effects are mediated by transferring small molecules of ribonucleic acid (RNA) into other cells. These RNAs can regulate the activity of specific genes, promoting cancer. Studying patients’ EVs may assist cancer diagnosis and help predict the likely progression of the disease.
Collapse
|
43
|
Zhang L, Xiao Y, Zhong X, Zeng Q, Hu W. Decreased expression of VPS33B correlates with disease progression and unfavorable prognosis in renal cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:835-842. [PMID: 31933891 PMCID: PMC6945141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/11/2018] [Indexed: 06/10/2023]
Abstract
The aim of this study was to examine correlation between low cytoplasmic expression of VPS33B and clinicopathologic features of renal cell carcinoma (RCC). In this study, ninety RCC patients ranging from years 2006 to 2012 were reviewed. VPS33B expression in tumor tissues and adjacent normal tissues was examined using immunohistochemistry (IHC) and association of VPS33B expression with RCC patient clinicopathologic parameters was evaluated. Final staining scores of 0-5 and 6-7 were respectively considered to be low and high expression. Immunohistochemical analysis confirmed that VPS33B protein expression was predominantly localized in cytoplasm of both RCC and adjacent normal tissues. Lower cytoplasmic VPS33B expression was observed in RCC compared to normal cells (P = 0.007). In addition, cytoplasmic VPS33B protein levels in tumor tissues were correlated with T stage (T1 vs. T2 vs. T3) (P = 0.038), stage (I-II vs. III-IV) (P = 0.035), and renal vein invasion (P = 0.039) of RCC patients. Lower RCC cytoplasmic VPS33B expression had a significantly shorter disease free survival (DFS) compared to the higher expression group (P = 0.030). Multivariate analysis suggested that low cytoplasmic VPS33B expression was an independent predictor for DFS of RCC patients. (P = 0.030). Our results suggest that low cytoplasmic VPS33B expression is a potential unfavorable prognostic factor for progression and prognosis of RCC.
Collapse
Affiliation(s)
- Lei Zhang
- Southern Medical UniversityGuangzhou, China
- Department of Urology, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou, China
| | - Yuansong Xiao
- Department of Urology, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou, China
| | - Xintai Zhong
- Department of Urology, Shunde Hospital of Southern Medical UniversityFoshan, China
| | - Qinsong Zeng
- Department of Urology, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou, China
| | - Weilie Hu
- Southern Medical UniversityGuangzhou, China
- Department of Urology, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou, China
| |
Collapse
|
44
|
Wang W, Hu W, Wang Y, Yang J, Yue Z. MicroRNA-508 is downregulated in clear cell renal cell carcinoma and targets ZEB1 to suppress cell proliferation and invasion. Exp Ther Med 2019; 17:3814-3822. [PMID: 30988768 DOI: 10.3892/etm.2019.7332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 02/14/2019] [Indexed: 12/29/2022] Open
Abstract
Recent studies have identified several microRNAs (miRNAs/miRs) that are dysregulated in clear cell renal cell carcinoma (ccRCC), and their dysregulation may serve important roles in the occurrence and development of ccRCC. Therefore, understanding the expression pattern and functional roles of miRNAs in ccRCC may facilitate the identification of novel therapeutic targets for the treatment of ccRCC. In the current study, reverse transcription-quantitative polymerase chain reaction was used to determine miR-508 expression levels in ccRCC tissue samples and cell lines. The cell counting kit-8 and in vitro Transwell invasion assays were used to examine the effects of miR-508 overexpression on ccRCC cell proliferation and invasion, respectively. In addition, bioinformatics analysis and dual-luciferase reporter gene assays were used to investigate the underlying mechanism of miR-508 in ccRCC cells. Furthermore, the regulatory role of miR-508 on zinc finger E-box-binding homeobox 1 (ZEB1) mRNA and protein expression in ccRCC cells was investigated using RT-qPCR and western blot analysis, respectively. Additionally, the association between miR-508 and ZEB1 expression in ccRCC tissue samples was examined. Rescue experiments were performed to determine whether the tumor suppressive effects of miR-508 may be mediated by ZEB1 in ccRCC cells. The results of the current study demonstrated that miR-508 expression was significantly downregulated in ccRCC tissue samples and cell lines. In addition, miR-508 overexpression significantly decreased the proliferation and invasion of ccRCC cells. ZEB1 was identified as a direct target gene of miR-508 in ccRCC cells and the relative expression level of ZEB1 mRNA was significantly increased in ccRCC tissue samples. Furthermore, a negative correlation between miR-508 and ZEB1 expression was identified in ccRCC tissues. ZEB1 knockdown exhibited a functional role similar to miR-508 overexpression in ccRCC cells, and restoration of ZEB1 expression significantly reversed the inhibitory effects of miR-508 on the malignant phenotype of ccRCC cells. Taken together, the results of the current study demonstrated that miR-508 may serve a tumor suppressive role in ccRCC via direct targeting of ZEB1. MiR-508 may present a novel and efficient therapeutic target for the treatment of patients with ccRCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Wentao Hu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Ya Wang
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jing Yang
- Clinical Laboratory, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhongjin Yue
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
45
|
Wong CH, Chen YC. Clinical significance of exosomes as potential biomarkers in cancer. World J Clin Cases 2019; 7:171-190. [PMID: 30705894 PMCID: PMC6354096 DOI: 10.12998/wjcc.v7.i2.171] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Exosomes are microvesicles, measuring 30-100 nm in diameter. They are widely distributed in body fluids, including blood, bile, urine and saliva. Cancer-derived exosomes carry a wide variety of DNA, RNA, proteins and lipids, and may serve as novel biomarkers in cancer.
AIM To summarize the performance of exosomal biomarkers in cancer diagnosis and prognosis.
METHODS Relevant publications in the literature were identified by search of the “PubMed” database up to September 11, 2018. The quality of the included studies was assessed by QUADAS-2 and REMARK. For assessment of diagnostic biomarkers, 47 biomarkers and 2240 patients from 30 studies were included.
RESULTS Our results suggested that these exosomal biomarkers had excellent diagnostic ability in various types of cancer, with good sensitivity and specificity. For assessment of prognostic markers, 50 biomarkers and 4797 patients from 42 studies were included. We observed that exosomal biomarkers had prognostic values in overall survival, disease-free survival and recurrence-free survival.
CONCLUSION Exosomes can function as potential biomarkers in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Chi-Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yang-Chao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
46
|
Identification of a nine-miRNA signature for the prognosis of Uveal Melanoma. Exp Eye Res 2019; 180:242-249. [PMID: 30615885 DOI: 10.1016/j.exer.2019.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023]
Abstract
The present study aims to construct a miRNA-based predictive signature of Uveal melanoma (UM) based on the database of the cancer genome atlas (TCGA). We obtained miRNA expression profiles and clinical information of 80 UM patients from TCGA, and randomly divided them into a training and a testing set. After data processing and forward screening, a total of 204 miRNAs with prognostic value were then examined by the Cox proportional hazard regression model in the training set. Receiver operating curve (ROC) analysis was applied to validate the accuracy of the signature. The biological relevance of putative miRNA target genes was also analyzed using the bioinformatics method. As a result, a linear prognostic model consisting of 9 miRNAs (miR-195, miR-224, miR-365a, miR-365b, miR-452, miR-4709, miR-7702, miR-513c, miR-873) was developed to divide UM patients into a high- and a low-risk group. Patients assigned to the high-risk group had significantly shorter overall survival than those in the low-risk group, which was further confirmed by the Area under curve (AUC) value of 0.858 at 5 year obtained from ROC. Gene Ontology (GO) analysis indicated that predicted target genes of these miRNAs are primarily associated with the modulation of protein expression and function, such as the activity of ubiquitin protein ligase and protein kinase. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these genes were involved in multiple signaling pathways linked to carcinogenesis. The tumor specific 9-miRNA signature was also verified in the testing and entire set. In summary, based on UM data of TCGA, we identified and validated a 9-miRNA-based prognostic signature.
Collapse
|
47
|
Liu Y, Jiao D, Tian Z. MicroRNA‑663 inhibits the proliferation and invasion of clear cell renal cell carcinoma cells by directly targeting PAK4. Mol Med Rep 2018; 19:711-718. [PMID: 30431118 DOI: 10.3892/mmr.2018.9652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/16/2018] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence has demonstrated that microRNAs (miRNAs) are key gene regulators and are abnormally expressed in clear cell renal cell carcinoma (ccRCC). The dysregulation of miRNAs has been implicated in the initiation and progression of ccRCC. Therefore, identification of ccRCC‑associated miRNAs may facilitate the determination of promising therapeutic targets for anti‑cancer treatment. In the present study, miRNA‑663 (miR‑663) expression was downregulated in ccRCC tissues and cell lines. Functional experiments suggested that restoration of miR‑663 expression inhibited the proliferation and invasion of ccRCC cells. In addition, p21 activated kinase 4 (PAK4) was validated as a direct target of miR‑663 in ccRCC cells. PAK4 was upregulated in ccRCC tissues, and the expression level of PAK4 was inversely correlated with the miR‑663 expression level. PAK4 restoration partially attenuated the suppressive roles of miR‑663 overexpression on the proliferation and invasion of ccRCC cells. The present results provide novel insight into the mechanism underlying the occurrence and development of ccRCC, suggesting that the miR‑663/PAK4 axis may be a novel therapeutic target for treatment of patients with ccRCC.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Nephrology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dan Jiao
- Department of Ultrasound, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhen Tian
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
48
|
Dong X, Kong C, Liu X, Bi J, Li Z, Li Z, Zhu Y, Zhang Z. GAS5 functions as a ceRNA to regulate hZIP1 expression by sponging miR-223 in clear cell renal cell carcinoma. Am J Cancer Res 2018; 8:1414-1426. [PMID: 30210913 PMCID: PMC6129482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023] Open
Abstract
Several studies have shown that low expression of hZIP1 is closely associated with many human cancers, including clear cell renal cell carcinoma (ccRCC). In this study, we aimed to explore the potential mechanism responsible for hZIP1 silencing and revealed a novel regulatory pathway in the pathogenesis of ccRCC. Here, miR-223 was predicted and experimentally validated to be a regulator of hZIP1, and its expression was negatively correlated with the mRNA levels of hZIP1 in primary tumors. Upregulation of hZIP1 inhibited cell proliferation, cell cycle progression, and invasion and induced apoptosis, while inhibition of miR-223 showed the opposite effect on cellular processes. Moreover, GAS5 interacted with miR-223 and was markedly downregulated in tumors. Knockdown of GAS5 partially reversed the effect of the miR-223 inhibitor on cell proliferation, cell cycle distribution, apoptosis and invasion. In addition, GAS5 acted as a molecular sponge to positively regulate the mRNA and protein levels of hZIP1 via regulating miR-223. The tumorigenicity of ccRCC cells was enhanced by silencing GAS5 but diminished by overexpression of hZIP1 in vivo. Clinically, the low expression of hZIP1 was significantly correlated with advanced clinical stage and Fuhrman stage. Downregulation of GAS5 indicated tumor progression and recurrence and was independently associated with disease-free survival of patients. Taken together, our results suggest that GAS5 may act as a competing endogenous RNA (ceRNA) to regulate hZIP1 by sponging miR-223 in the progression of ccRCC and that targeting the GAS5/miR-223/hZIP1 axis may serve as a therapeutic strategy for patients.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Urology, The First Hospital of China Medical University 155 Nanjing North Street, Shenyang 110002, Liaoning, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University 155 Nanjing North Street, Shenyang 110002, Liaoning, China
| | - Xiankui Liu
- Department of Urology, The First Hospital of China Medical University 155 Nanjing North Street, Shenyang 110002, Liaoning, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University 155 Nanjing North Street, Shenyang 110002, Liaoning, China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University 155 Nanjing North Street, Shenyang 110002, Liaoning, China
| | - Zeliang Li
- Department of Urology, The First Hospital of China Medical University 155 Nanjing North Street, Shenyang 110002, Liaoning, China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University 155 Nanjing North Street, Shenyang 110002, Liaoning, China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University 155 Nanjing North Street, Shenyang 110002, Liaoning, China
| |
Collapse
|
49
|
Urabe F, Kosaka N, Kimura T, Egawa S, Ochiya T. Extracellular vesicles: Toward a clinical application in urological cancer treatment. Int J Urol 2018; 25:533-543. [PMID: 29726046 DOI: 10.1111/iju.13594] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles are nanometer-sized lipid membranous vesicles that are released from almost all types of cells into the extracellular space. Extracellular vesicles have gained considerable attention in the past decade, and emerging evidence suggests that they play novel roles in mediating cancer biology. Extracellular vesicles contain pathogenic components, such as proteins, DNA fragments, messenger ribonucleic acids, non-coding ribonucleic acids and lipids, all of which mediate paracrine signaling in the tumor microenvironment. Extracellular vesicles impact the multistep process of cancer progression through modulation of the immune system, angiogenesis and pre-metastatic niche formation through transfer of their contents. Therefore, a better understanding of their roles in urological cancers will provide opportunities for novel therapeutic strategies. In addition, the contents of extracellular vesicles hold promise for the discovery of liquid-based biomarkers for prostate, kidney and bladder cancers. Here, we summarize the current research regarding extracellular vesicles in urological cancer and discuss potential clinical applications for extracellular vesicles in urological cancer.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Shin Egawa
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|