1
|
Baster Z, Russell L, Rajfur Z. A Review of Talin- and Integrin-Dependent Molecular Mechanisms in Cancer Invasion and Metastasis. Int J Mol Sci 2025; 26:1798. [PMID: 40076426 PMCID: PMC11899650 DOI: 10.3390/ijms26051798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer is the second most common cause of death in the world, representing one of the main economic burdens in health care and research. The effort of research has mainly focused on limiting the growth of a localized tumor, but most recently, there has been more attention focused on restricting the spreading of the cancer via invasion and metastasis. The signaling pathways behind these two processes share many molecules with physiological pathways regulating cell adhesion and migration, and, moreover, adhesion and migration processes themselves underlie tumor potential for invasion. In this work, we reviewed the latest literature about cancer development and invasion and their regulation by cell migration- and adhesion-related proteins, with a specific focus on talins and integrins. We also summarized the most recent developments and approaches to anti-cancer therapies, concentrating on cell migration-related therapies.
Collapse
Affiliation(s)
- Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lindsay Russell
- Undergraduate Program, Barnard College of Columbia University, New York, NY 10027, USA;
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348 Kraków, Poland
| |
Collapse
|
2
|
Shah K, Guo B, Hicks SC. Addressing the mean-variance relationship in spatially resolved transcriptomics data with spoon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621867. [PMID: 39574747 PMCID: PMC11580860 DOI: 10.1101/2024.11.04.621867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
An important task in the analysis of spatially resolved transcriptomics data is to identify spatially variable genes (SVGs), or genes that vary in a 2D space. Current approaches rank SVGs based on either p-values or an effect size, such as the proportion of spatial variance. However, previous work in the analysis of RNA-sequencing identified a technical bias, referred to as the "mean-variance relationship", where highly expressed genes are more likely to have a higher variance. Here, we demonstrate the mean-variance relationship in spatial transcriptomics data. Furthermore, we propose spoon, a statistical framework using Empirical Bayes techniques to remove this bias, leading to more accurate prioritization of SVGs. We demonstrate the performance of spoon in both simulated and real spatial transcriptomics data. A software implementation of our method is available at https://bioconductor.org/packages/spoon.
Collapse
Affiliation(s)
- Kinnary Shah
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Boyi Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, MD, USA
| |
Collapse
|
3
|
Rangarajan ES, Bois JL, Hansen SB, Izard T. High-resolution snapshots of the talin auto-inhibitory states suggest roles in cell adhesion and signaling. Nat Commun 2024; 15:9270. [PMID: 39468080 PMCID: PMC11519669 DOI: 10.1038/s41467-024-52581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Talin regulates crucial cellular functions, including cell adhesion and motility, and affects human diseases. Triggered by mechanical forces, talin plays crucial roles in facilitating the formation of focal adhesions and recruiting essential focal adhesion regulatory elements such as vinculin. The structural flexibility allows talin to fine-tune its signaling responses. This study presents our 2.7 Å cryoEM structures of talin, which surprisingly uncovers several auto-inhibitory states. Contrary to previous suggestions, our structures reveal that (1) the first and last three domains are not involved in maintaining talin in its closed state and are mobile, (2) the talin F-actin and membrane binding domain are loosely attached and thus available for binding, and (3) the main force-sensing domain is oriented with its vinculin binding sites ready for release. These structural snapshots offer insights and advancements in understanding the dynamic talin activation mechanism, which is crucial for mediating cell adhesion.
Collapse
Affiliation(s)
- Erumbi S Rangarajan
- Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA
| | - Julian L Bois
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA
| | - Scott B Hansen
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA
- The Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA
| | - Tina Izard
- Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, USA.
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA.
- The Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
Wang X, Baster Z, Azizi L, Li L, Rajfur Z, Hytönen VP, Huang C. Talin2 binds to non-muscle myosin IIa and regulates cell attachment and fibronectin secretion. Sci Rep 2024; 14:20175. [PMID: 39215026 PMCID: PMC11364542 DOI: 10.1038/s41598-024-70866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Talin2 is localized to large focal adhesions and is indispensable for traction force generation, invadopodium formation, cell invasion as well as metastasis. Talin2 has a higher affinity toward β-integrin tails than talin1. Moreover, disruption of the talin2-β-integrin interaction inhibits traction force generation, invadopodium formation and cell invasion, indicating that a strong talin2-β-integrin interaction is required for talin2 to fulfill these functions. Nevertheless, the role of talin2 in mediation of these processes remains unknown. Here we show that talin2 binds to the N-terminus of non-muscle myosin IIA (NMIIA) through its F3 subdomain. Moreover, talin2 co-localizes with NMIIA at cell edges as well as at some cytoplasmic spots. Talin2 also co-localizes with cortactin, an invadopodium marker. Furthermore, overexpression of NMIIA promoted the talin2 head binding to the β1-integrin tail, whereas knockdown of NMIIA reduced fibronectin and matrix metalloproteinase secretion as well as inhibited cell attachment on fibronectin-coated substrates. These results suggest that talin2 binds to NMIIA to control the secretion of extracellular matrix proteins and this interaction modulates cell adhesion.
Collapse
Affiliation(s)
- Xiaochuan Wang
- The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| | - Zbigniew Baster
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Liqing Li
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348, Kraków, Poland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| | - Cai Huang
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA.
- Doer Biologics Inc, 2nd Floor, Building 3, Hexiang Science and Technology Center, Medicine Port Town, Qiantang District, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Wang Y, Huang H, Weng H, Jia C, Liao B, Long Y, Yu F, Nie Y. Talin mechanotransduction in disease. Int J Biochem Cell Biol 2024; 166:106490. [PMID: 37914021 DOI: 10.1016/j.biocel.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Talin protein (Talin 1/2) is a mechanosensitive cytoskeleton protein. The unique structure of the Talin plays a vital role in transmitting mechanical forces. Talin proteins connect the extracellular matrix to the cytoskeleton by linking to integrins and actin, thereby mediating the conversion of mechanical signals into biochemical signals and influencing disease progression as potential diagnostic indicators, therapeutic targets, and prognostic indicators of various diseases. Most studies in recent years have confirmed that mechanical forces also have a crucial role in the development of disease, and Talin has been found to play a role in several diseases. Still, more studies need to be done on how Talin is involved in mechanical signaling in disease. This review focuses on the mechanical signaling of Talin in disease, aiming to summarize the mechanisms by which Talin plays a role in disease and to provide references for further studies.
Collapse
Affiliation(s)
- Yingzi Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Haozhong Huang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Huimin Weng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Chunsen Jia
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China; Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China
| | - Yongmei Nie
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, China; Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, China.
| |
Collapse
|
6
|
Lončarić M, Stojanović N, Rac-Justament A, Coopmans K, Majhen D, Humphries JD, Humphries MJ, Ambriović-Ristov A. Talin2 and KANK2 functionally interact to regulate microtubule dynamics, paclitaxel sensitivity and cell migration in the MDA-MB-435S melanoma cell line. Cell Mol Biol Lett 2023; 28:56. [PMID: 37460977 PMCID: PMC10353188 DOI: 10.1186/s11658-023-00473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Focal adhesions (FAs) are integrin-containing, multi-protein structures that link intracellular actin to the extracellular matrix and trigger multiple signaling pathways that control cell proliferation, differentiation, survival and motility. Microtubules (MTs) are stabilized in the vicinity of FAs through interaction with the components of the cortical microtubule stabilizing complex (CMSC). KANK (KN motif and ankyrin repeat domains) family proteins within the CMSC, KANK1 or KANK2, bind talin within FAs and thus mediate actin-MT crosstalk. We previously identified in MDA-MB-435S cells, which preferentially use integrin αVβ5 for adhesion, KANK2 as a key molecule enabling the actin-MT crosstalk. KANK2 knockdown also resulted in increased sensitivity to MT poisons, paclitaxel (PTX) and vincristine and reduced migration. Here, we aimed to analyze whether KANK1 has a similar role and to distinguish which talin isoform binds KANK2. METHODS The cell model consisted of human melanoma cell line MDA-MB-435S and stably transfected clone with decreased expression of integrin αV (3αV). For transient knockdown of talin1, talin2, KANK1 or KANK2 we used gene-specific siRNAs transfection. Using previously standardized protocol we isolated integrin adhesion complexes. SDS-PAGE and Western blot was used for protein expression analysis. The immunofluorescence analysis and live cell imaging was done using confocal microscopy. Cell migration was analyzed with Transwell Cell Culture Inserts. Statistical analysis using GraphPad Software consisted of either one-way analysis of variance (ANOVA), unpaired Student's t-test or two-way ANOVA analysis. RESULTS We show that KANK1 is not a part of the CMSC associated with integrin αVβ5 FAs and its knockdown did not affect the velocity of MT growth or cell sensitivity to PTX. The talin2 knockdown mimicked KANK2 knockdown i.e. led to the perturbation of actin-MT crosstalk, which is indicated by the increased velocity of MT growth and increased sensitivity to PTX and also reduced migration. CONCLUSION We conclude that KANK2 functionally interacts with talin2 and that the mechanism of increased sensitivity to PTX involves changes in microtubule dynamics. These data elucidate a cell-type-specific role of talin2 and KANK2 isoforms and we propose that talin2 and KANK2 are therefore potential therapeutic targets for improved cancer therapy.
Collapse
Affiliation(s)
- Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anja Rac-Justament
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Kaatje Coopmans
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jonathan D Humphries
- Department of Life Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
7
|
Jia G, Ping J, Shu X, Yang Y, Cai Q, Kweon SS, Choi JY, Kubo M, Park SK, Bolla MK, Dennis J, Wang Q, Guo X, Li B, Tao R, Aronson KJ, Chan TL, Gao YT, Hartman M, Ho WK, Ito H, Iwasaki M, Iwata H, John EM, Kasuga Y, Kim MK, Kurian AW, Kwong A, Li J, Lophatananon A, Low SK, Mariapun S, Matsuda K, Matsuo K, Muir K, Noh DY, Park B, Park MH, Shen CY, Shin MH, Spinelli JJ, Takahashi A, Tseng C, Tsugane S, Wu AH, Yamaji T, Zheng Y, Dunning AM, Pharoah PDP, Teo SH, Kang D, Easton DF, Simard J, Shu XO, Long J, Zheng W. Genome- and transcriptome-wide association studies of 386,000 Asian and European-ancestry women provide new insights into breast cancer genetics. Am J Hum Genet 2022; 109:2185-2195. [PMID: 36356581 PMCID: PMC9748250 DOI: 10.1016/j.ajhg.2022.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
By combining data from 160,500 individuals with breast cancer and 226,196 controls of Asian and European ancestry, we conducted genome- and transcriptome-wide association studies of breast cancer. We identified 222 genetic risk loci and 137 genes that were associated with breast cancer risk at a p < 5.0 × 10-8 and a Bonferroni-corrected p < 4.6 × 10-6, respectively. Of them, 32 loci and 15 genes showed a significantly different association between ER-positive and ER-negative breast cancer after Bonferroni correction. Significant ancestral differences in risk variant allele frequencies and their association strengths with breast cancer risk were identified. Of the significant associations identified in this study, 17 loci and 14 genes are located 1Mb away from any of the previously reported breast cancer risk variants. Pathways analyses including 221 putative risk genes identified multiple signaling pathways that may play a significant role in the development of breast cancer. Our study provides a comprehensive understanding of and new biological insights into the genetics of this common malignancy.
Collapse
Affiliation(s)
- Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Xiang Shu
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea; Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sue K Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristan J Aronson
- Department of Public Health Sciences and Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China; Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mikael Hartman
- Department of Surgery, National University Hospital, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Weang Kee Ho
- Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan; Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Aichi, Japan
| | - Esther M John
- Departments of Epidemiology, Cancer Prevention Institute of California, Fremont, CA, USA; Departments of Health Research and Policy, School of Medicine, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yoshio Kasuga
- Department of Surgery, Nagano Matsushiro General Hospital, Nagano, Japan
| | - Mi-Kyung Kim
- Division of Cancer Epidemiology and Management, National Cancer Center, Goyang, Korea
| | - Allison W Kurian
- Departments of Health Research and Policy, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China; Department of Surgery, University of Hong Kong, Hong Kong SAR, China; Department of Surgery, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Jingmei Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK; Institute of Population Health, University of Manchester, Manchester, UK
| | - Siew-Kee Low
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK; Institute of Population Health, University of Manchester, Manchester, UK
| | - Dong-Young Noh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Boyoung Park
- Department of Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Min-Ho Park
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Chen-Yang Shen
- College of Public Health, China Medical University, Taichong, Taiwan; Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, Korea
| | - John J Spinelli
- Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Atsushi Takahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Chiuchen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shoichiro Tsugane
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Ying Zheng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia; Department of Surgery, Faculty of Medicine, University Malaya, Kuala Lumpar, Malaysia
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval, Research Center, Québec City, QC, Canada
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN, USA.
| |
Collapse
|
8
|
高 鹏, 朱 海, 裴 文, 许 培, 丁 勇. [Expression of miR-4324 and its targeted gene Talin2 in breast cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1517-1525. [PMID: 36329586 PMCID: PMC9637493 DOI: 10.12122/j.issn.1673-4254.2022.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate the regulatory effect of miR-4324 on ankyrin 2(Talin2) expression and biological behaviors of breast cancer cells and the clinical implications of changes in miR-4324 and Talin2 expressions in breast cancer. METHODS In breast cancer and adjacent tissues, the expressions of Talin2 and miR-4324 were examined with immunohistochemistry and qRT-PCR, respectively and the association of Talin2 expression levels with the prognosis and clinicopathological features of breast cancer patients was analyzed.The human breast cancer cell line SKBR-3 was transfected with miR-4324 mimic, miR-4324 inhibitor, si-Talin2, or both miR-4324 inhibitor and si-Talin2, and the changes in biological behaviors of the cells were examined; the cellular expression of Talin2at the mRNA and protein levels were detected with qRT-PCR and Western blotting.Dual luciferase reporter gene assay was used to verify the targeting relationship between miR-4324 and Talin2.The effect of miR-4324-mediated regulation of Talin2 on SKBR-3 cell migration was assessed using Transwell assays. RESULTS Talin2 expression was significantly higher in breast cancer tissues than in the adjacent tissues, and its expression level was correlated with lymph node metastasis and high HER-2 expression in breast cancer (P < 0.05) but not with the patient's age, clinical stage, histological grade or expressions of estrogen and progesterone receptors (P >0.05).The expression of miR-4324 was significantly reduced in breast cancer tissues as compared with the adjacent tissues (P < 0.01).In SKBR-3 cells, transfection with miR-4324 mimics significantly inhibited proliferation, migration and invasion (P < 0.05) and promoted apoptosis (P < 0.01) of the cells.Dual luciferase reporter gene assay confirmed that cotransfection with miR-4324 mimics significantly reduced luciferase activity of Talin2-3'-UTR WT reporter plasmid (P < 0.05).Transfection of the cells with miR-4324 mimics significantly reduced mRNA and protein expressions of Talin2(P < 0.05).Transwell migration assay showed that the migration ability of SKBR-3 cells was significantly enhanced after transfection with miR-4324 inhibitor (P < 0.01), lowered after transfection with si-Talin2(P < 0.01), and maintained at the intermediate level after co-transfection with miR-4324 inhibitor+si-Talin2 group (P < 0.05). CONCLUSIONS High expression of Talin2 is associated with lymph node metastasis and HER-2 overexpression in breast cancer patients.Down-regulation of miR-4324 inhibits the proliferation, invasion and migration and induces apoptosis of breast cancer cells, and the inhibitory effect of miR-4324 knockdown on breast cancer cell migration is mediated probably by targeted inhibition of Talin2 expression.
Collapse
Affiliation(s)
- 鹏 高
- 蚌埠医学院附属蚌埠市第三人民医院普外科, 安徽 蚌埠 233099Department of General Surgery, Bengbu Third People's Hospital Affiliated to Bengbu Medical College, Bengbu 233099, China
| | - 海涛 朱
- 蚌埠医学院癌症转化医学安徽省重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China
| | - 文浩 裴
- 蚌埠医学院癌症转化医学安徽省重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China
| | - 培海 许
- 蚌埠医学院附属蚌埠市第三人民医院普外科, 安徽 蚌埠 233099Department of General Surgery, Bengbu Third People's Hospital Affiliated to Bengbu Medical College, Bengbu 233099, China
| | - 勇兴 丁
- 蚌埠医学院附属蚌埠市第三人民医院普外科, 安徽 蚌埠 233099Department of General Surgery, Bengbu Third People's Hospital Affiliated to Bengbu Medical College, Bengbu 233099, China
| |
Collapse
|
9
|
Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene 2021; 40:1043-1063. [PMID: 33420366 DOI: 10.1038/s41388-020-01588-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Integrins are cell adhesion receptors, which are typically transmembrane glycoproteins that connect to the extracellular matrix (ECM). The function of integrins regulated by biochemical events within the cells. Understanding the mechanisms of cell growth by integrins is important in elucidating their effects on tumor progression. One of the major events in integrin signaling is integrin binding to extracellular ligands. Another event is distant signaling that gathers chemical signals from outside of the cell and transmit the signals upon cell adhesion to the inside of the cell. In normal breast tissue, integrins function as checkpoints to monitor effects on cell proliferation, while in cancer tissue these functions altered. The combination of tumor microenvironment and its associated components determines the cell fate. Hypoxia can increase the expression of several integrins. The exosomal integrins promote the growth of metastatic cells. Expression of certain integrins is associated with increased metastasis and decreased prognosis in cancers. In addition, integrin-binding proteins promote invasion and metastasis in breast cancer. Targeting specific integrins and integrin-binding proteins may provide new therapeutic approaches for breast cancer therapies. This review will examine the current knowledge of integrins' role in breast cancer.
Collapse
|
10
|
Synergistic Beneficial Effect of Docosahexaenoic Acid (DHA) and Docetaxel on the Expression Level of Matrix Metalloproteinase-2 (MMP-2) and MicroRNA-106b in Gastric Cancer. J Gastrointest Cancer 2020; 51:70-75. [PMID: 30680612 DOI: 10.1007/s12029-019-00205-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers with the majority of patients recognized in advanced stages. The efficacy of using docosahexaenoic acid (DHA) as a supplementary agent has been suggested in treatment along with chemotherapeutics including docetaxel. However, the molecular signatures of such beneficial effects are not well-understood. OBJECTIVE(S) We aimed to evaluate the effects of DHA and docetaxel on the expression level of metastasis-related genes, including MMP-2 and talin-2, and their controlling miRNAs, miR-106b and miR-194, in metastatic GC cell line, MKN45. METHOD(S) GC cell line, MKN45, was cultured, and determination of IC50 of DHA was done by MTT test. Cells were treated with docetaxel, DHA, and their combination for 24 h, and then total RNA was extracted and cDNA synthesis was done using standard protocols. The expression level of target genes, MMP-2 and talin-2, and miR-106b and miR-194 were determined by using quantitative real-time PCR. RESULTS The expression level of MMP-2 was decreased significantly in all treated cells. However, talin-2 showed significant downregulation only after treatment with docetaxel. In contrary to increased expression after treatment with docetaxel, DHA led to a significant under-expression of miR-106b. The similar effect was seen for miR-194. CONCLUSION(S) Combination of docetaxel and DHA led to the significant downregulation of MMP-2. Also, DHA lowered the docetaxel-mediated upregulation of miR-106b oncomiR. In conclusion, supplementation of docetaxel therapy with DHA in GC patients would be considered as a beneficial approach in cancer treatment.
Collapse
|
11
|
Baster Z, Li L, Rajfur Z, Huang C. Talin2 mediates secretion and trafficking of matrix metallopeptidase 9 during invadopodium formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118693. [DOI: 10.1016/j.bbamcr.2020.118693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
|
12
|
Baster Z, Li L, Kukkurainen S, Chen J, Pentikäinen O, Győrffy B, Hytönen VP, Zhu H, Rajfur Z, Huang C. Cyanidin-3-glucoside binds to talin and modulates colon cancer cell adhesions and 3D growth. FASEB J 2020; 34:2227-2237. [PMID: 31916632 DOI: 10.1096/fj.201900945r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
Cyanidin-3-glucoside (C3G) is a natural pigment, found in many colorful fruits and vegetables. It has many health benefits, including anti-inflammation, cancer prevention, and anti-diabetes. Although C3G is assumed to be an antioxidant, it has been reported to affect cell-matrix adhesions. However, the underlying molecular mechanism is unknown. Here, we show that the expression of talin1, a key regulator of integrins and cell adhesions, negatively correlated with the survival rate of colon cancer patients and that depletion of talin1 inhibited 3D spheroid growth in colon cancer cells. Interestingly, C3G bound to talin and promoted the interaction of talin with β1A-integrin. Molecular docking analysis shows that C3G binds to the interface of the talin-β-integrin complex, acting as an allosteric regulator and altering the interaction between talin and integrin. Moreover, C3G promoted colon cancer cell attachment to fibronectin. While C3G had no significant effect on colon cancer cell proliferation, it significantly inhibited 3D spheroid growth in fibrin gel assays. Since C3G has no or very low toxicity, it could be potentially used for colon cancer prevention or therapy.
Collapse
Affiliation(s)
- Zbigniew Baster
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.,Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Liqing Li
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Sampo Kukkurainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, FL, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Olli Pentikäinen
- Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, Turku, FL, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, FL, USA.,Fimlab Laboratories, Tampere, FL, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Cai Huang
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Cobbaut M, Karagil S, Bruno L, Diaz de la Loza MDC, Mackenzie FE, Stolinski M, Elbediwy A. Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease. Cells 2020; 9:cells9010151. [PMID: 31936297 PMCID: PMC7016982 DOI: 10.3390/cells9010151] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK;
| | - Simge Karagil
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Lucrezia Bruno
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | | | - Francesca E Mackenzie
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | - Michael Stolinski
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Correspondence:
| |
Collapse
|
14
|
Javadian M, Shekari N, Soltani ‐ Zangbar MS, Mohammadi A, Mansoori B, Maralbashi S, Shanehbandi D, Baradaran B, Darabi M, Kazemi T. Docosahexaenoic acid suppresses migration of triple‐negative breast cancer cell through targeting metastasis‐related genes and microRNA under normoxic and hypoxic conditions. J Cell Biochem 2019; 121:2416-2427. [DOI: 10.1002/jcb.29464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mahsa Javadian
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Najibeh Shekari
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Mohammad S. Soltani ‐ Zangbar
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Ali Mohammadi
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Behzad Mansoori
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Sepideh Maralbashi
- Department of Immunology, Faculty of Medicine Kermanshah University of Medical Sciences Kermanshah Iran
| | - Dariush Shanehbandi
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| | - Masood Darabi
- Biochemistry & Clinical Laboratories School of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Tohid Kazemi
- Immunology Research Center Tabriz University of Medical Science Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
15
|
Ashaie MA, Islam RA, Kamaruzman NI, Ibnat N, Tha KK, Chowdhury EH. Targeting Cell Adhesion Molecules via Carbonate Apatite-Mediated Delivery of Specific siRNAs to Breast Cancer Cells In Vitro and In Vivo. Pharmaceutics 2019; 11:pharmaceutics11070309. [PMID: 31269666 PMCID: PMC6680929 DOI: 10.3390/pharmaceutics11070309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
While several treatment strategies are applied to cure breast cancer, it still remains one of the leading causes of female deaths worldwide. Since chemotherapeutic drugs have severe side effects and are responsible for development of drug resistance in cancer cells, gene therapy is now considered as one of the promising options to address the current treatment limitations. Identification of the over-expressed genes accounting for constitutive activation of certain pathways, and their subsequent knockdown with specific small interfering RNAs (siRNAs), could be a powerful tool in inhibiting proliferation and survival of cancer cells. In this study, we delivered siRNAs against mRNA transcripts of over-regulated cell adhesion molecules such as catenin alpha 1 (CTNNA1), catenin beta 1 (CTNNB1), talin-1 (TLN1), vinculin (VCL), paxillin (PXN), and actinin-1 (ACTN1) in human (MCF-7 and MDA-MB-231) and murine (4T1) cell lines as well as in the murine female Balb/c mice model. In order to overcome the barriers of cell permeability and nuclease-mediated degradation, the pH-sensitive carbonate apatite (CA) nanocarrier was used as a delivery vehicle. While targeting CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 resulted in a reduction of cell viability in MCF-7 and MDA-MB-231 cells, delivery of all these siRNAs via carbonate apatite (CA) nanoparticles successfully reduced the cell viability in 4T1 cells. In 4T1 cells, delivery of CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 siRNAs with CA caused significant reduction in phosphorylated and total AKT levels. Furthermore, reduced band intensity was observed for phosphorylated and total MAPK upon transfection of 4T1 cells with CTNNA1, CTNNB1, and VCL siRNAs. Intravenous delivery of CTNNA1 siRNA with CA nanoparticles significantly reduced tumor volume in the initial phase of the study, while siRNAs targeting CTNNB1, TLN1, VCL, PXN, and ACTN1 genes significantly decreased the tumor burden at all time points. The tumor weights at the end of the treatments were also notably smaller compared to CA. This successfully demonstrates that targeting these dysregulated genes via RNAi and by using a suitable delivery vehicle such as CA could serve as a promising therapeutic treatment modality for breast cancers.
Collapse
Affiliation(s)
- Maeirah Afzal Ashaie
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Izyani Kamaruzman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nabilah Ibnat
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Kyi Kyi Tha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Health & Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
- Health & Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
| |
Collapse
|
16
|
Liang Y, Chen H, Ji L, Du J, Xie X, Li X, Lou Y. Talin2 regulates breast cancer cell migration and invasion by apoptosis. Oncol Lett 2018; 16:285-293. [PMID: 29928413 PMCID: PMC6006181 DOI: 10.3892/ol.2018.8641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/12/2018] [Indexed: 01/04/2023] Open
Abstract
Talin is a key component molecule of the extracellular matrix-integrin-cytoskeleton. It serves an important role in the activation of integrin, which, in turn, is known to mediate physiological and pathological processes, including cell adhesion, growth, tumorigenesis, and metastasis. In vertebrates, there are two Talin genes, Talin1 and Talin2. Talin1 is known to regulate focal adhesion dynamics, cell migration and cell invasion; however, the precise role of Talin2 in cancer remains unclear. In the present study, the functional role of Talin2 was examined in the MDA-MB-231 breast cancer cell line. Talin2 knockdown significantly inhibited growth, migratory capacity and invasiveness of MDA-MB-231 cells, and promoted apoptosis. The expression levels of Talin2 in breast cancer cells and in the peritumoral normal breast tissues were also determined by immunohistochemistry. Talin2 was identified to be overexpressed in breast cancer tissues compared with that in the peritumoral breast tissues. In addition, the knockdown of Talin2 by specific RNA interference markedly inhibited cell growth, and caused the downregulation of the apoptotic markers, cleaved Caspase-3 and phosphorylation of poly ADP-ribose polymerase. These findings demonstrate that Talin2 expression is upregulated in human breast cancer and that downregulation of Talin2 may serve as a useful therapeutic target in patients with breast cancer.
Collapse
Affiliation(s)
- Yingfan Liang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Institute of Medical Virology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hongwei Chen
- Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P.R. China
| | - Ling Ji
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jinfu Du
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaofan Xie
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiang Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Institute of Medical Virology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yongliang Lou
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Institute of Medical Virology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
17
|
Gough RE, Goult BT. The tale of two talins - two isoforms to fine-tune integrin signalling. FEBS Lett 2018; 592:2108-2125. [PMID: 29723415 PMCID: PMC6032930 DOI: 10.1002/1873-3468.13081] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 11/08/2022]
Abstract
Talins are cytoplasmic adapter proteins essential for integrin-mediated cell adhesion to the extracellular matrix. Talins control the activation state of integrins, link integrins to cytoskeletal actin, recruit numerous signalling molecules that mediate integrin signalling and coordinate recruitment of microtubules to adhesion sites via interaction with KANK (kidney ankyrin repeat-containing) proteins. Vertebrates have two talin genes, TLN1 and TLN2. Although talin1 and talin2 share 76% protein sequence identity (88% similarity), they are not functionally redundant, and the differences between the two isoforms are not fully understood. In this Review, we focus on the similarities and differences between the two talins in terms of structure, biochemistry and function, which hint at subtle differences in fine-tuning adhesion signalling.
Collapse
|