1
|
Shafieizadegan S, Aberuyi N, Rahgozar S. The molecular impact of miR-326 in acute lymphoblastic leukemia and its cross talk with P53. Ann Hematol 2025:10.1007/s00277-024-06181-1. [PMID: 39909906 DOI: 10.1007/s00277-024-06181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025]
Abstract
MiR-326 downregulation is strongly associated with multidrug resistance (MDR) and has been identified as an adverse prognostic biomarker for pediatric acute lymphoblastic leukemia (pALL). The choice to study miR-326 as a tumor suppressor in cancer biology, particularly its regulation of apoptosis, drug resistance, and stemness, stems from its strong association with MDR and potential as a therapeutic target in pALL. The current study aimed to investigate, for the first time, the molecular mechanisms underlying the role of miR-326 in ALL, using Gene Ontology annotation network and multilayer network analysis. Our findings revealed that miR-326 exhibits a multifunctional anti-tumor behavior, affecting various aspects of drug resistance, stemness, and apoptosis in cancer, particularly in the context of ALL. Quantitative real-time PCR demonstrated downregulation of the ABC transporter mRNAs ABCC1 and ABCB1 but not ABCA3 in B-ALL cells transfected with miR-326 mimic, as confirmed by bioinformatic data. Western blot analysis showed a possible cross talk between miR-326 and P53 through the upregulation of Mdm2 and P53 proteins. The heightened functional activity of P53 was subsequently validated through the observed augmentation in levels of P21 and CCND1, alongside the evident disruption in the expression levels of Bcl-2, Bcl-xl, and Bax genes. Subsequently, the ceRNA network between miR-326 and LncRNAs was exhibited and the impact of exogenous miR-326 on the expression levels of its molecular sponges, H19 and SNHG1 was examined using RT-qPCR. Future studies will explore the potential impact of miR-326 on its targets, and how this may influence the development of novel therapeutic strategies for ALL.
Collapse
Affiliation(s)
- Saba Shafieizadegan
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jarib Street, Isfahan, 81746- 73441, Iran
| | - Narges Aberuyi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jarib Street, Isfahan, 81746- 73441, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jarib Street, Isfahan, 81746- 73441, Iran.
| |
Collapse
|
2
|
Liu Q, Song Y, Su J, Yang S, Lian Q, Wang T, Wei H, Fang J. PUF60 Promotes Chemoresistance Through Drug Efflux and Reducing Apoptosis in Gastric Cancer. Int J Med Sci 2025; 22:269-282. [PMID: 39781520 PMCID: PMC11704696 DOI: 10.7150/ijms.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Background: Chemotherapy resistance is a great challenge in the treatment of gastric cancer (GC), so it is urgent to explore the prognostic markers of chemoresistance. PUF60 (Poly (U)-binding splicing factor 60) is a nucleic acid-binding protein that has been shown to regulate transcription and link to tumorigenesis in various cancers. However, its biological role and function in chemotherapy resistance of GC is unclear. Methods: The expression and prognostic value of PUF60 in GC chemotherapy-resistant patients were analyzed by databases and K-M Plotter. The functional effect of PUF60 on chemoresistance in GC was studied by by RNA interference, CCK8 test, colony formation test and apoptosis detection. Moreover, further validation and mechanism exploration were conducted in clinical samples. Results: PUF60 was highly expressed in both GC and chemoresistant tissues, and was positively correlated with poor prognosis in GC patients treated with 5-fluorouracil (5-FU). In addition, the knockdown of PUF60 significantly reduced the proliferation of human gastric cancer cells and increased sensitivity to chemotherapy drugs, such as 5-FU and cisplatin (CDDP). Mechanistically, PUF60 enhances chemotherapy resistance in gastric cancer (GC) cells by actively excluding chemotherapy drugs via the recombinant ATP Binding Cassette Transporter A1 (ABCA1) and ATP Binding Cassette Subfamily C Member 1 (ABCC1). This process further affects the cell cycle, reduces cell apoptosis, and ultimately promotes resistance to chemotherapy in GC. Conclusion: PUF60 promotes chemoresistance in GC, resulting in poor prognosis of GC patients treated with 5-FU, and providing a new idea for overcoming the chemoresistance in GC.
Collapse
Affiliation(s)
- Qianhui Liu
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingqiu Song
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Su
- Department of Nursing, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shangbin Yang
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qinghai Lian
- Department of Cell-Gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tiantian Wang
- Department of Medical Oncology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Ito S, Iwata Y, Otsuka M, Kaneko Y, Ogata S, Yagi R, Uemura T, Masuda T, Saito T, Saido T, Ohtsuki S. Progressive amyloid-β accumulation in the brain leads to altered protein expressions in the liver and kidneys of APP knock-in mice. J Pharm Sci 2024; 114:103596. [PMID: 39489376 DOI: 10.1016/j.xphs.2024.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Impaired hepatic and renal function influence Alzheimer's disease (AD) progression; however, whether AD progression affects these important organ functions remains unclear. Here, we investigated the impact of AD progression, characterized by brain amyloid-beta (Aβ) accumulation, on liver and kidney function of AppNL-G-F/NL-G-F (APP-KI) mice using quantitative proteomics. SWATH-based quantitative proteomics revealed changes in mitochondrial, drug metabolism, and pharmacokinetic-related proteins in mouse liver and kidneys during the early (2-month-old) and intermediate (5-month-old) stages of Aβ accumulation. Notably, in 5-month-old APP-KI mouse liver, 25 phase I/II metabolizing enzymes (8 CYPs, 7 UGTs, 7 CESs, and 3 SLCs) and five transporters (2 ABCs and 3 SLCs) were significantly altered; specifically, Ugt1a9 and Slc33a1 protein abundances increased, whereas Ugt1a1 and Abcc3 protein abundances decreased. In the kidneys, 13 phase I/II metabolizing enzymes and 10 ABC-SLC transporters were altered, including Ugt1a6, Ugt1a7, Slc22a7, and Abcb1a. Additionally, plasma proteins, such as albumin and alpha-1-acid glycoprotein, which are critical for drug binding and distribution, were also altered. These results underscore the significant role of progressive brain Aβ accumulation in modifying hepatic and renal protein abundances, potentially influencing drug metabolism and disposition in AD. Our findings provide novel insights into the complex relationship between AD progression and organ dysfunction.
Collapse
Affiliation(s)
- Shingo Ito
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yumi Iwata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mitsumi Otsuka
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yui Kaneko
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai 980-8575, Japan
| | - Ryotaro Yagi
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tatsuki Uemura
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Institute for Advanced Biosciences, Keio University, Nihonkoku 403-1, Daihouji, Tsuruoka 997-0017, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takaomi Saido
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, 2-1 Hirosawa, Wako 351-0198 Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
4
|
Leonov S, Dorfman A, Pershikova E, Inyang O, Alhaddad L, Wang Y, Pustovalova M, Merkher Y. Extracellular Vesicle- and Mitochondria-Based Targeting of Non-Small Cell Lung Cancer Response to Radiation: Challenges and Perspectives. Cancers (Basel) 2024; 16:2235. [PMID: 38927940 PMCID: PMC11201585 DOI: 10.3390/cancers16122235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
During the cell life cycle, extracellular vesicles (EVs) transport different cargos, including organelles, proteins, RNAs, DNAs, metabolites, etc., that influence cell proliferation and apoptosis in recipient cells. EVs from metastatic cancer cells remodel the extracellular matrix and cells of the tumor microenvironment (TME), promoting tumor invasion and metastatic niche preparation. Although the process is not fully understood, evidence suggests that EVs facilitate genetic material transfer between cells. In the context of NSCLC, EVs can mediate intercellular mitochondrial (Mt) transfer, delivering mitochondria organelle (MtO), mitochondrial DNA (mtDNA), and/or mtRNA/proteinaceous cargo signatures (MtS) through different mechanisms. On the other hand, certain populations of cancer cells can hijack the MtO from TME cells mainly by using tunneling nanotubes (TNTs). This transfer aids in restoring mitochondrial function, benefiting benign cells with impaired metabolism and enabling restoration of their metabolic activity. However, the impact of transferring mitochondria versus transplanting intact mitochondrial organelles in cancer remains uncertain and the subject of debate. Some studies suggest that EV-mediated mitochondria delivery to cancer cells can impact how cancer responds to radiation. It might make the cancer more resistant or more sensitive to radiation. In our review, we aimed to point out the current controversy surrounding experimental data and to highlight new paradigm-shifting modalities in radiation therapy that could potentially overcome cancer resistance mechanisms in NSCLC.
Collapse
Affiliation(s)
- Sergey Leonov
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
- Department of Cellular Mechanisms of Memory Pathology, Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna Dorfman
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Elizaveta Pershikova
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Olumide Inyang
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Lina Alhaddad
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Yuzhe Wang
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Margarita Pustovalova
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Yulia Merkher
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
- Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Casillo SM, Gatesman TA, Chilukuri A, Varadharajan S, Johnson BJ, David Premkumar DR, Jane EP, Plute TJ, Koncar RF, Stanton ACJ, Biagi-Junior CAO, Barber CS, Halbert ME, Golbourn BJ, Halligan K, Cruz AF, Mansi NM, Cheney A, Mullett SJ, Land CV, Perez JL, Myers MI, Agrawal N, Michel JJ, Chang YF, Vaske OM, MichaelRaj A, Lieberman FS, Felker J, Shiva S, Bertrand KC, Amankulor N, Hadjipanayis CG, Abdullah KG, Zinn PO, Friedlander RM, Abel TJ, Nazarian J, Venneti S, Filbin MG, Gelhaus SL, Mack SC, Pollack IF, Agnihotri S. An ERK5-PFKFB3 axis regulates glycolysis and represents a therapeutic vulnerability in pediatric diffuse midline glioma. Cell Rep 2024; 43:113557. [PMID: 38113141 DOI: 10.1016/j.celrep.2023.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 07/28/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Metabolic reprogramming in pediatric diffuse midline glioma is driven by gene expression changes induced by the hallmark histone mutation H3K27M, which results in aberrantly permissive activation of oncogenic signaling pathways. Previous studies of diffuse midline glioma with altered H3K27 (DMG-H3K27a) have shown that the RAS pathway, specifically through its downstream kinase, extracellular-signal-related kinase 5 (ERK5), is critical for tumor growth. Further downstream effectors of ERK5 and their role in DMG-H3K27a metabolic reprogramming have not been explored. We establish that ERK5 is a critical regulator of cell proliferation and glycolysis in DMG-H3K27a. We demonstrate that ERK5 mediates glycolysis through activation of transcription factor MEF2A, which subsequently modulates expression of glycolytic enzyme PFKFB3. We show that in vitro and mouse models of DMG-H3K27a are sensitive to the loss of PFKFB3. Multi-targeted drug therapy against the ERK5-PFKFB3 axis, such as with small-molecule inhibitors, may represent a promising therapeutic approach in patients with pediatric diffuse midline glioma.
Collapse
Affiliation(s)
- Stephanie M Casillo
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Taylor A Gatesman
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Akanksha Chilukuri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Srinidhi Varadharajan
- Department of Pediatric Hematology and Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brenden J Johnson
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Daniel R David Premkumar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Esther P Jane
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tritan J Plute
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Robert F Koncar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ann-Catherine J Stanton
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Carlos A O Biagi-Junior
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Callie S Barber
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Brian J Golbourn
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Katharine Halligan
- Division of Hematology Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pittsburgh, PA 15261, USA; Division of Hematology Oncology, Department of Pediatrics, Albany Medical College, Albany, NY 12208, USA
| | - Andrea F Cruz
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Neveen M Mansi
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Allison Cheney
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; University of California, Santa Cruz Genomics Institute, Santa Cruz, CA 95064, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Clinton Van't Land
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15261, USA; Rangos Metabolic Core Facility, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jennifer L Perez
- Department of Neurological Surgery, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Max I Myers
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nishant Agrawal
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Joshua J Michel
- Rangos Flow Cytometry Core Laboratory, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yue-Fang Chang
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Olena M Vaske
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; University of California, Santa Cruz Genomics Institute, Santa Cruz, CA 95064, USA
| | - Antony MichaelRaj
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Frank S Lieberman
- Adult Neuro-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - James Felker
- Pediatric Neuro-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Heart, Lung, Blood, and Vascular Medicine Institute, Department of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kelsey C Bertrand
- Department of Pediatric Hematology and Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Costas G Hadjipanayis
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kalil G Abdullah
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Javad Nazarian
- Brain Tumor Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan Medical School, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Stephen C Mack
- Department of Pediatric Hematology and Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pediatric Neuro-Oncology Program, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
6
|
Cunha A, Rocha AC, Barbosa F, Baião A, Silva P, Sarmento B, Queirós O. Glycolytic Inhibitors Potentiated the Activity of Paclitaxel and Their Nanoencapsulation Increased Their Delivery in a Lung Cancer Model. Pharmaceutics 2022; 14:pharmaceutics14102021. [PMID: 36297455 PMCID: PMC9611291 DOI: 10.3390/pharmaceutics14102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Antiglycolytic agents inhibit cell metabolism and modify the tumor’s microenvironment, affecting chemotherapy resistance mechanisms. In this work, we studied the effect of the glycolytic inhibitors 3-bromopyruvate (3BP), dichloroacetate (DCA) and 2-deoxyglucose (2DG) on cancer cell properties and on the multidrug resistance phenotype, using lung cancer cells as a model. All compounds led to the loss of cell viability, with different effects on the cell metabolism, migration and proliferation, depending on the drug and cell line assayed. DCA was the most promising compound, presenting the highest inhibitory effect on cell metabolism and proliferation. DCA treatment led to decreased glucose consumption and ATP and lactate production in both A549 and NCI-H460 cell lines. Furthermore, the DCA pretreatment sensitized the cancer cells to Paclitaxel (PTX), a conventional chemotherapeutic drug, with a 2.7-fold and a 10-fold decrease in PTX IC50 values in A549 and NCI-H460 cell lines, respectively. To increase the intracellular concentration of DCA, thereby potentiating its effect, DCA-loaded poly(lactic-co-glycolic acid) nanoparticles were produced. At higher DCA concentrations, encapsulation was found to increase its toxicity. These results may help find a new treatment strategy through combined therapy, which could open doors to new treatment approaches.
Collapse
Affiliation(s)
- Andrea Cunha
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
| | - Ana Catarina Rocha
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- DCM—Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Flávia Barbosa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- DCM—Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Baião
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Patrícia Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, 3810-193 Gandra, Portugal
| | - Bruno Sarmento
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- Correspondence:
| |
Collapse
|
7
|
Glucose Starvation or Pyruvate Dehydrogenase Activation Induce a Broad, ERK5-Mediated, Metabolic Remodeling Leading to Fatty Acid Oxidation. Cells 2022; 11:cells11091392. [PMID: 35563698 PMCID: PMC9104157 DOI: 10.3390/cells11091392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cells have metabolic flexibility that allows them to adapt to changes in substrate availability. Two highly relevant metabolites are glucose and fatty acids (FA), and hence, glycolysis and fatty acid oxidation (FAO) are key metabolic pathways leading to energy production. Both pathways affect each other, and in the absence of one substrate, metabolic flexibility allows cells to maintain sufficient energy production. Here, we show that glucose starvation or sustained pyruvate dehydrogenase (PDH) activation by dichloroacetate (DCA) induce large genetic remodeling to propel FAO. The extracellular signal-regulated kinase 5 (ERK5) is a key effector of this multistep metabolic remodeling. First, there is an increase in the lipid transport by expression of low-density lipoprotein receptor-related proteins (LRP), e.g., CD36, LRP1 and others. Second, an increase in the expression of members of the acyl-CoA synthetase long-chain (ACSL) family activates FA. Finally, the expression of the enzymes that catalyze the initial step in each cycle of FAO, i.e., the acyl-CoA dehydrogenases (ACADs), is induced. All of these pathways lead to enhanced cellular FAO. In summary, we show here that different families of enzymes, which are essential to perform FAO, are regulated by the signaling pathway, i.e., MEK5/ERK5, which transduces changes from the environment to genetic adaptations.
Collapse
|
8
|
The metabolism of cells regulates their sensitivity to NK cells depending on p53 status. Sci Rep 2022; 12:3234. [PMID: 35217717 PMCID: PMC8881467 DOI: 10.1038/s41598-022-07281-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Leukemic cells proliferate faster than non-transformed counterparts. This requires them to change their metabolism to adapt to their high growth. This change can stress cells and facilitate recognition by immune cells such as cytotoxic lymphocytes, which express the activating receptor Natural Killer G2-D (NKG2D). The tumor suppressor gene p53 regulates cell metabolism, but its role in the expression of metabolism-induced ligands, and subsequent recognition by cytotoxic lymphocytes, is unknown. We show here that dichloroacetate (DCA), which induces oxidative phosphorylation (OXPHOS) in tumor cells, induces the expression of such ligands, e.g. MICA/B, ULBP1 and ICAM-I, by a wtp53-dependent mechanism. Mutant or null p53 have the opposite effect. Conversely, DCA sensitizes only wtp53-expressing cells to cytotoxic lymphocytes, i.e. cytotoxic T lymphocytes and NK cells. In xenograft in vivo models, DCA slows down the growth of tumors with low proliferation. Treatment with DCA, monoclonal antibodies and NK cells also decreased tumors with high proliferation. Treatment of patients with DCA, or a biosimilar drug, could be a clinical option to increase the effectiveness of CAR T cell or allogeneic NK cell therapies.
Collapse
|
9
|
Allende-Vega N, Marco Brualla J, Falvo P, Alexia C, Constantinides M, Fayd'herbe de Maudave A, Coenon L, Gitenay D, Mitola G, Massa P, Orecchioni S, Bertolini F, Marzo I, Anel A, Villalba M. Metformin sensitizes leukemic cells to cytotoxic lymphocytes by increasing expression of intercellular adhesion molecule-1 (ICAM-1). Sci Rep 2022; 12:1341. [PMID: 35079096 PMCID: PMC8789909 DOI: 10.1038/s41598-022-05470-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Solid tumor cells have an altered metabolism that can protect them from cytotoxic lymphocytes. The anti-diabetic drug metformin modifies tumor cell metabolism and several clinical trials are testing its effectiveness for the treatment of solid cancers. The use of metformin in hematologic cancers has received much less attention, although allogeneic cytotoxic lymphocytes are very effective against these tumors. We show here that metformin induces expression of Natural Killer G2-D (NKG2D) ligands (NKG2DL) and intercellular adhesion molecule-1 (ICAM-1), a ligand of the lymphocyte function-associated antigen 1 (LFA-1). This leads to enhance sensitivity to cytotoxic lymphocytes. Overexpression of anti-apoptotic Bcl-2 family members decrease both metformin effects. The sensitization to activated cytotoxic lymphocytes is mainly mediated by the increase on ICAM-1 levels, which favors cytotoxic lymphocytes binding to tumor cells. Finally, metformin decreases the growth of human hematological tumor cells in xenograft models, mainly in presence of monoclonal antibodies that recognize tumor antigens. Our results suggest that metformin could improve cytotoxic lymphocyte-mediated therapy.
Collapse
Affiliation(s)
| | - Joaquin Marco Brualla
- Apoptosis, Immunity and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Campus San Francisco Sq., 50009, Zaragoza, Spain
| | - Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | | | - Lois Coenon
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | | - Giulia Mitola
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Paul Massa
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Isabel Marzo
- Apoptosis, Immunity and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Campus San Francisco Sq., 50009, Zaragoza, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Campus San Francisco Sq., 50009, Zaragoza, Spain.
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, Montpellier, France.
- CNRS, IRMB, INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France.
- Institut Sainte Catherine, Avignon, France.
| |
Collapse
|
10
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
11
|
Fayd'herbe De Maudave A, Leconet W, Toupet K, Constantinides M, Bossis G, de Toledo M, Vialaret J, Hirtz C, Lopez-Noriega A, Jorgensen C, Noël D, Louis-Plence P, Grizot S, Villalba M. Intra-articular delivery of full-length antibodies through the use of an in situ forming depot. J Control Release 2021; 341:578-590. [PMID: 34915070 DOI: 10.1016/j.jconrel.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
Monoclonal antibodies (mAbs) are large size molecules that have demonstrated high therapeutic potential for the treatment of cancer or autoimmune diseases. Despite some excellent results, their intravenous administration results in high plasma concentration. This triggers off-target effects and sometimes poor targeted tissue distribution. To circumvent this issue, we investigated a local controlled-delivery approach using an in situ forming depot technology. Two clinically relevant mAbs, rituximab (RTX) and daratumumab (DARA), were formulated using an injectable technology based on biodegradable PEG-PLA copolymers. The stability and controlled release features of the formulations were investigated. HPLC and mass spectrometry revealed the preservation of the protein structure. In vitro binding of formulated antibodies to their target antigens and to their cellular FcγRIIIa natural killer cell receptor was fully maintained. Furthermore, encapsulated RTX was as efficient as classical intravenous RTX treatment to inhibit the in vivo tumor growth of malignant human B cells in immunodeficient NSG mice. Finally, the intra-articular administration of the formulated mAbs yielded a sustained local release associated with a lower plasma concentration compared to the intra-articular delivery of non-encapsulated mAbs. Our results demonstrate that the utilization of this polymeric technology is a reliable alternative for the local delivery of fully functional clinically relevant mAbs.
Collapse
Affiliation(s)
| | | | | | - Michael Constantinides
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France
| | | | | | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France
| | - Daniele Noël
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France
| | | | | | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France; IRMB, Univ Montpellier, INSERM, CNRS, CHU Montpellier, Montpellier, France; Institut Sainte-Catherine, Avignon, France.
| |
Collapse
|
12
|
Tung LT, Wang H, Belle JI, Petrov JC, Langlais D, Nijnik A. p53-dependent induction of P2X7 on hematopoietic stem and progenitor cells regulates hematopoietic response to genotoxic stress. Cell Death Dis 2021; 12:923. [PMID: 34625535 PMCID: PMC8501024 DOI: 10.1038/s41419-021-04202-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
Stem and progenitor cells are the main mediators of tissue renewal and repair, both under homeostatic conditions and in response to physiological stress and injury. Hematopoietic system is responsible for the regeneration of blood and immune cells and is maintained by bone marrow-resident hematopoietic stem and progenitor cells (HSPCs). Hematopoietic system is particularly susceptible to injury in response to genotoxic stress, resulting in the risk of bone marrow failure and secondary malignancies in cancer patients undergoing radiotherapy. Here we analyze the in vivo transcriptional response of HSPCs to genotoxic stress in a mouse whole-body irradiation model and, together with p53 ChIP-Seq and studies in p53-knockout (p53KO) mice, characterize the p53-dependent and p53-independent branches of this transcriptional response. Our work demonstrates the p53-independent induction of inflammatory transcriptional signatures in HSPCs in response to genotoxic stress and identifies multiple novel p53-target genes induced in HSPCs in response to whole-body irradiation. In particular, we establish the direct p53-mediated induction of P2X7 expression on HSCs and HSPCs in response to genotoxic stress. We further demonstrate the role of P2X7 in hematopoietic response to acute genotoxic stress, with P2X7 deficiency significantly extending mouse survival in irradiation-induced hematopoietic failure. We also demonstrate the role of P2X7 in the context of long-term HSC regenerative fitness following sublethal irradiation. Overall our studies provide important insights into the mechanisms of HSC response to genotoxic stress and further suggest P2X7 as a target for pharmacological modulation of HSC fitness and hematopoietic response to genotoxic injury.
Collapse
Affiliation(s)
- Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jad I Belle
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jessica C Petrov
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
The Metabolic Heterogeneity and Flexibility of Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12102780. [PMID: 32998263 PMCID: PMC7601708 DOI: 10.3390/cancers12102780] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) have been shown to be the main cause of therapy resistance and cancer recurrence. An analysis of their biological properties has revealed that CSCs have a particular metabolism that differs from non-CSCs to maintain their stemness properties. In this review, we analyze the flexible metabolic mechanisms of CSCs and highlight the new therapeutics that target CSC metabolism. Abstract Numerous findings have indicated that CSCs, which are present at a low frequency inside primary tumors, are the main cause of therapy resistance and cancer recurrence. Although various therapeutic methods targeting CSCs have been attempted for eliminating cancer cells completely, the complicated characteristics of CSCs have hampered such attempts. In analyzing the biological properties of CSCs, it was revealed that CSCs have a peculiar metabolism that is distinct from non-CSCs to maintain their stemness properties. The CSC metabolism involves not only the catabolic and anabolic pathways, but also intracellular signaling, gene expression, and redox balance. In addition, CSCs can reprogram their metabolism to flexibly respond to environmental changes. In this review, we focus on the flexible metabolic mechanisms of CSCs, and highlight the new therapeutics that target CSC metabolism.
Collapse
|
14
|
Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat 2020; 53:100715. [PMID: 32679188 DOI: 10.1016/j.drup.2020.100715] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
Abstract
It is well established that multifactorial drug resistance hinders successful cancer treatment. Tumor cell interactions with the tumor microenvironment (TME) are crucial in epithelial-mesenchymal transition (EMT) and multidrug resistance (MDR). TME-induced factors secreted by cancer cells and cancer-associated fibroblasts (CAFs) create an inflammatory microenvironment by recruiting immune cells. CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) and inflammatory tumor associated macrophages (TAMs) are main immune cell types which further enhance chronic inflammation. Chronic inflammation nurtures tumor-initiating/cancer stem-like cells (CSCs), induces both EMT and MDR leading to tumor relapses. Pro-thrombotic microenvironment created by inflammatory cytokines and chemokines from TAMs, MDSCs and CAFs is also involved in EMT and MDR. MDSCs are the most common mediators of immunosuppression and are also involved in resistance to targeted therapies, e.g. BRAF inhibitors and oncolytic viruses-based therapies. Expansion of both cancer and stroma cells causes hypoxia by hypoxia-inducible transcription factors (e.g. HIF-1α) resulting in drug resistance. TME factors induce the expression of transcriptional EMT factors, MDR and metabolic adaptation of cancer cells. Promoters of several ATP-binding cassette (ABC) transporter genes contain binding sites for canonical EMT transcription factors, e.g. ZEB, TWIST and SNAIL. Changes in glycolysis, oxidative phosphorylation and autophagy during EMT also promote MDR. Conclusively, EMT signaling simultaneously increases MDR. Owing to the multifactorial nature of MDR, targeting one mechanism seems to be non-sufficient to overcome resistance. Targeting inflammatory processes by immune modulatory compounds such as mTOR inhibitors, demethylating agents, low-dosed histone deacetylase inhibitors may decrease MDR. Targeting EMT and metabolic adaptation by small molecular inhibitors might also reverse MDR. In this review, we summarize evidence for TME components as causative factors of EMT and anticancer drug resistance.
Collapse
|
15
|
Cristea S, Coles GL, Hornburg D, Gershkovitz M, Arand J, Cao S, Sen T, Williamson SC, Kim JW, Drainas AP, He A, Cam LL, Byers LA, Snyder MP, Contrepois K, Sage J. The MEK5-ERK5 Kinase Axis Controls Lipid Metabolism in Small-Cell Lung Cancer. Cancer Res 2020; 80:1293-1303. [PMID: 31969375 PMCID: PMC7073279 DOI: 10.1158/0008-5472.can-19-1027] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
Abstract
Small-cell lung cancer (SCLC) is an aggressive form of lung cancer with dismal survival rates. While kinases often play key roles driving tumorigenesis, there are strikingly few kinases known to promote the development of SCLC. Here, we investigated the contribution of the MAPK module MEK5-ERK5 to SCLC growth. MEK5 and ERK5 were required for optimal survival and expansion of SCLC cell lines in vitro and in vivo. Transcriptomics analyses identified a role for the MEK5-ERK5 axis in the metabolism of SCLC cells, including lipid metabolism. In-depth lipidomics analyses showed that loss of MEK5/ERK5 perturbs several lipid metabolism pathways, including the mevalonate pathway that controls cholesterol synthesis. Notably, depletion of MEK5/ERK5 sensitized SCLC cells to pharmacologic inhibition of the mevalonate pathway by statins. These data identify a new MEK5-ERK5-lipid metabolism axis that promotes the growth of SCLC. SIGNIFICANCE: This study is the first to investigate MEK5 and ERK5 in SCLC, linking the activity of these two kinases to the control of cell survival and lipid metabolism.
Collapse
Affiliation(s)
- Sandra Cristea
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Garry L Coles
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Daniel Hornburg
- Department of Genetics, Stanford University, Stanford, California
| | - Maya Gershkovitz
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Julia Arand
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Siqi Cao
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Triparna Sen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stuart C Williamson
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Jun W Kim
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Andrew He
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Laurent Le Cam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, California
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California.
- Department of Genetics, Stanford University, Stanford, California
| |
Collapse
|
16
|
Held MA, Greenfest-Allen E, Su S, Stoeckert CJ, Stokes MP, Wojchowski DM. Phospho-PTM proteomic discovery of novel EPO- modulated kinases and phosphatases, including PTPN18 as a positive regulator of EPOR/JAK2 Signaling. Cell Signal 2020; 69:109554. [PMID: 32027948 DOI: 10.1016/j.cellsig.2020.109554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
The formation of erythroid progenitor cells depends sharply upon erythropoietin (EPO), its cell surface receptor (erythropoietin receptor, EPOR), and Janus kinase 2 (JAK2). Clinically, recombinant human EPO (rhEPO) additionally is an important anti-anemia agent for chronic kidney disease (CKD), myelodysplastic syndrome (MDS) and chemotherapy, but induces hypertension, and can exert certain pro-tumorigenic effects. Cellular signals transduced by EPOR/JAK2 complexes, and the nature of EPO-modulated signal transduction factors, therefore are of significant interest. By employing phospho-tyrosine post-translational modification (p-Y PTM) proteomics and human EPO- dependent UT7epo cells, we have identified 22 novel kinases and phosphatases as novel EPO targets, together with their specific sites of p-Y modification. New kinases modified due to EPO include membrane palmitoylated protein 1 (MPP1) and guanylate kinase 1 (GUK1) guanylate kinases, together with the cytoskeleton remodeling kinases, pseudopodium enriched atypical kinase 1 (PEAK1) and AP2 associated kinase 1 (AAK1). Novel EPO- modified phosphatases include protein tyrosine phosphatase receptor type A (PTPRA), phosphohistidine phosphatase 1 (PHPT1), tensin 2 (TENC1), ubiquitin associated and SH3 domain containing B (UBASH3B) and protein tyrosine phosphatase non-receptor type 18 (PTPN18). Based on PTPN18's high expression in hematopoietic progenitors, its novel connection to JAK kinase signaling, and a unique EPO- regulated PTPN18-pY389 motif which is modulated by JAK2 inhibitors, PTPN18's actions in UT7epo cells were investigated. Upon ectopic expression, wt-PTPN18 promoted EPO dose-dependent cell proliferation, and survival. Mechanistically, PTPN18 sustained the EPO- induced activation of not only mitogen-activated protein kinases 1 and 3 (ERK1/2), AKT serine/threonine kinase 1-3 (AKT), and signal transducer and activator of transcription 5A and 5B (STAT5), but also JAK2. Each effect further proved to depend upon PTPN18's EPO- modulated (p)Y389 site. In analyses of the EPOR and the associated adaptor protein RHEX (regulator of hemoglobinization and erythroid cell expansion), wt-PTPN18 increased high molecular weight EPOR forms, while sharply inhibiting the EPO-induced phosphorylation of RHEX-pY141. Each effect likewise depended upon PTPN18-Y389. PTPN18 thus promotes signals for EPO-dependent hematopoietic cell growth, and may represent a new druggable target for myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Matthew A Held
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Emily Greenfest-Allen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Su Su
- Molecular Medicine Department, Maine Medical Center Research Institute, Scarborough, ME, 04074, United States of America
| | - Christian J Stoeckert
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Matthew P Stokes
- Proteomics Division, Cell Signaling Technology, Danvers, MA, 01923., United States of America
| | - Don M Wojchowski
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America.
| |
Collapse
|
17
|
Dichloroacetate (DCA) and Cancer: An Overview towards Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8201079. [PMID: 31827705 PMCID: PMC6885244 DOI: 10.1155/2019/8201079] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/12/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Abstract
An extensive body of literature describes anticancer property of dichloroacetate (DCA), but its effective clinical administration in cancer therapy is still limited to clinical trials. The occurrence of side effects such as neurotoxicity as well as the suspicion of DCA carcinogenicity still restricts the clinical use of DCA. However, in the last years, the number of reports supporting DCA employment against cancer increased also because of the great interest in targeting metabolism of tumour cells. Dissecting DCA mechanism of action helped to understand the bases of its selective efficacy against cancer cells. A successful coadministration of DCA with conventional chemotherapy, radiotherapy, other drugs, or natural compounds has been tested in several cancer models. New drug delivery systems and multiaction compounds containing DCA and other drugs seem to ameliorate bioavailability and appear more efficient thanks to a synergistic action of multiple agents. The spread of reports supporting the efficiency of DCA in cancer therapy has prompted additional studies that let to find other potential molecular targets of DCA. Interestingly, DCA could significantly affect cancer stem cell fraction and contribute to cancer eradication. Collectively, these findings provide a strong rationale towards novel clinical translational studies of DCA in cancer therapy.
Collapse
|
18
|
Modulation of hepatic ABC transporters by Eruca vesicaria intake: Potential diet-drug interactions. Food Chem Toxicol 2019; 133:110797. [PMID: 31479713 DOI: 10.1016/j.fct.2019.110797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/02/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The aim of this work was to evaluate whether oral administration of Eruca vesicaria, a species of rocket cultivated in Argentina, could modify cyclophosphamide (CP)-induced genotoxicity through modulation of hepatic ABC transporters. Daily oral administration of E. vesicaria fresh leaves juice (1.0, 1.4 and 2.0 g/kg) for 14 days did not alter genotoxicity biomarkers -alkaline comet assay and micronucleus test -in neither male nor female mice. Instead, repeated intake of this cruciferous decreased CP-induced DNA damage dose-dependently and it caused hepatic overexpression of P-glycoprotein (P-gp; 1.4 and 2.0 g/kg) and multidrug resistance protein 2 (MRP2; 2.0 g/kg), but not breast cancer resistance protein (Bcrp). The antigenotoxic effect of E. vesicaria was prevented by 50 mg/kg verapamil (P-gp inhibitor) or 10 mg/kg indomethacin (MRP2 inhibitor). In turn, CP-induced cytotoxicity (10 mM, 24 h) on human hepatoma cells (HepG2/C3A) was significantly reduced by preincubation with E. vesicaria (1.4 mg/ml; 48 h); this effect was absent when CP was coincubated with 35 μM verapamil, 80 μM indomethacin or 10 μM KO-143 (BCRP inhibitor). Altogether, these results allow us to demonstrate that repeated intake of E. vesicaria exhibited antigenotoxicity, at least in part, by induction of hepatic ABC transporters in vivo in mice as well as in vitro in human liver cells. This could account for other diet-drug interactions.
Collapse
|
19
|
What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat 2019; 46:100643. [PMID: 31493711 DOI: 10.1016/j.drup.2019.100643] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Identification of multidrug (MDR) efflux transporters that belong to the ATP-Binding Cassette (ABC) superfamily, represented an important breakthrough for understanding cancer multidrug resistance (MDR) and its possible overcoming. However, recent data indicate that drug resistant cells have a complex intracellular physiology that involves constant changes in energetic and oxidative-reductive metabolic pathways, as well as in the molecular circuitries connecting mitochondria, endoplasmic reticulum (ER) and lysosomes. The aim of this review is to discuss the key molecular mechanisms of cellular reprogramming that induce and maintain MDR, beyond the presence of MDR efflux transporters. We specifically highlight how cancer cells characterized by high metabolic plasticity - i.e. cells able to shift the energy metabolism between glycolysis and oxidative phosphorylation, to survive both the normoxic and hypoxic conditions, to modify the cytosolic and mitochondrial oxidative-reductive metabolism, are more prone to adapt to exogenous stressors such as anti-cancer drugs and acquire a MDR phenotype. Similarly, we discuss how changes in mitochondria dynamics and mitophagy rates, changes in proteome stability ensuring non-oncogenic proteostatic mechanisms, changes in ubiquitin/proteasome- and autophagy/lysosome-related pathways, promote the cellular survival under stress conditions, along with the acquisition or maintenance of MDR. After dissecting the complex intracellular crosstalk that takes place during the development of MDR, we suggest that mapping the specific adaptation pathways underlying cell survival in response to stress and targeting these pathways with potent pharmacologic agents may be a new approach to enhance therapeutic efficacy against MDR tumors.
Collapse
|
20
|
MEK5/ERK5 activation regulates colon cancer stem-like cell properties. Cell Death Discov 2019; 5:68. [PMID: 30774996 PMCID: PMC6370793 DOI: 10.1038/s41420-019-0150-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Colon cancer has been proposed to be sustained by a small subpopulation of stem-like cells with unique properties allowing them to survive conventional therapies and drive tumor recurrence. Identification of targetable signaling pathways contributing to malignant stem-like cell maintenance may therefore translate into new therapeutic strategies to overcome drug resistance. Here we demonstrated that MEK5/ERK5 signaling activation is associated with stem-like malignant phenotypes. Conversely, using a panel of cell line-derived three-dimensional models, we showed that ERK5 inhibition markedly suppresses the molecular and functional features of colon cancer stem-like cells. Particularly, pharmacological inhibition of ERK5 using XMD8-92 reduced the rate of primary and secondary sphere formation, the expression of pluripotency transcription factors SOX2, NANOG, and OCT4, and the proportion of tumor cells with increased ALDH activity. Notably, this was further associated with increased sensitivity to 5-fluorouracil-based chemotherapy. Mechanistically, ERK5 inhibition resulted in decreased IL-8 expression and NF-κB transcriptional activity, suggesting a possible ERK5/NF-κB/IL-8 signaling axis regulating stem-like cell malignancy. Taken together, our results provide proof of principle that ERK5-targeted inhibition may be a promising therapeutic approach to eliminate drug-resistant cancer stem-like cells and improve colon cancer treatment.
Collapse
|
21
|
Stanevičiūtė J, Juknevičienė M, Palubinskienė J, Balnytė I, Valančiūtė A, Vosyliūtė R, Sužiedėlis K, Lesauskaitė V, Stakišaitis D. Sodium Dichloroacetate Pharmacological Effect as Related to Na-K-2Cl Cotransporter Inhibition in Rats. Dose Response 2018; 16:1559325818811522. [PMID: 30479587 PMCID: PMC6247491 DOI: 10.1177/1559325818811522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/06/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
The study objective was to investigate a possible sodium dichloroacetate (DCA) pharmacological mechanism causing an increase in diuresis in rats. The aim was to define characteristics of 24-hour urinary Na+, K+, Cl-, Ca2+, and Mg2+ excretion in Wistar male rats and to evaluate effect of a single-dose DCA and repeated DCA dosage on diuresis. Six control and 6 DCA-treated male rats aged 5 to weeks after a single DCA dose and repeated dosage were tested. The single DCA dose treatment caused a significantly higher 24-hour diuresis when compared to control (P < .05), and it was related to increased Cl-, Na+, and K+ urine excretion and a significant increase in Ca2+ and Mg2+ excretion (P < .05); after the repeated 4-week DCA dosage, the diuresis was not increased, but the excretion of the Na+, Cl-, Ca2+, and Mg2+ ions was significantly higher. Kidney immunohistochemistry has revealed that DCA continuous treatment results in an increase in the size of Henle loop thick ascending limb epithelial cells (P < .001). The study results show a significantly reduced RNA expression of Na-K-2Cl co-transporter (NKCC1) in thymus of 4-week DCA-treated rats (P < .03). The study data have indicated a possible mechanism of such pharmacological effect to be NKCC inhibition.
Collapse
Affiliation(s)
- Jūratė Stanevičiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jolita Palubinskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rūta Vosyliūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Vaiva Lesauskaitė
- Institute of Cardiology of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
22
|
Sadeghi MR, Jeddi F, Soozangar N, Somi MH, Shirmohamadi M, Khaze V, Samadi N. Nrf2/P–glycoprotein axis is associated with clinicopathological characteristics in colorectal cancer. Biomed Pharmacother 2018; 104:458-464. [DOI: 10.1016/j.biopha.2018.05.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
|
23
|
Simabuco FM, Morale MG, Pavan IC, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget 2018; 9:23780-23823. [PMID: 29805774 PMCID: PMC5955117 DOI: 10.18632/oncotarget.25267] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics.
Collapse
Affiliation(s)
- Fernando M. Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mirian G. Morale
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Isadora C.B. Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P. Morelli
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando R. Silva
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo E. Tamura
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|