1
|
Desigaux T, Comperat L, Dusserre N, Stachowicz ML, Lea M, Dupuy JW, Vial A, Molinari M, Fricain JC, Paris F, Oliveira H. 3D bioprinted breast cancer model reveals stroma-mediated modulation of extracellular matrix and radiosensitivity. Bioact Mater 2024; 42:316-327. [PMID: 39290339 PMCID: PMC11405629 DOI: 10.1016/j.bioactmat.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Deciphering breast cancer treatment resistance remains hindered by the lack of models that can successfully capture the four-dimensional dynamics of the tumor microenvironment. Here, we show that microextrusion bioprinting can reproducibly generate distinct cancer and stromal compartments integrating cells relevant to human pathology. Our findings unveil the functional maturation of this millimeter-sized model, showcasing the development of a hypoxic cancer core and an increased surface proliferation. Maturation was also driven by the presence of cancer-associated fibroblasts (CAF) that induced elevated microvascular-like structures complexity. Such modulation was concomitant to extracellular matrix remodeling, with high levels of collagen and matricellular proteins deposition by CAF, simultaneously increasing tumor stiffness and recapitulating breast cancer fibrotic development. Importantly, our bioprinted model faithfully reproduced response to treatment, further modulated by CAF. Notably, CAF played a protective role for cancer cells against radiotherapy, facilitating increased paracrine communications. This model holds promise as a platform to decipher interactions within the microenvironment and evaluate stroma-targeted drugs in a context relevant to human pathology.
Collapse
Affiliation(s)
- Theo Desigaux
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Leo Comperat
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Nathalie Dusserre
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Marie-Laure Stachowicz
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Malou Lea
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| | - Jean-William Dupuy
- Univ. Bordeaux, Bordeaux Proteome, F-33000, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR 3427, OncoProt, F-33000, Bordeaux, France
| | - Anthony Vial
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
| | - Michael Molinari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
- Services d'Odontologie et de Santé Buccale, CHU Bordeaux, F-33000, Bordeaux, France
| | - François Paris
- CRCINA, INSERM, CNRS, Univ. Nantes, F-44000, Nantes, France
- Institut de Cancérologie de l'Ouest, F-44800, Saint Herblain, France
| | - Hugo Oliveira
- Univ. Bordeaux, Tissue Bioengineering INSERM U1026, F-33000, Bordeaux, France
- INSERM U1026, ART BioPrint, F-33000, Bordeaux, France
| |
Collapse
|
2
|
Bosoteanu M, Deacu M, Aschie M, Vamesu S, Cozaru GC, Mitroi AF, Voda RI, Orasanu CI, Vlad SE, Penciu RC, Chirila SI. The Role of Pathogenesis Associated with the Tumor Microclimate in the Differential Diagnosis of Uterine Myocytic Tumors. J Clin Med 2023; 12:4161. [PMID: 37373854 DOI: 10.3390/jcm12124161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Myocytic tumors of the uterus present vast morphological heterogeneity, which makes differential diagnosis between the different entities necessary. This study aims to enrich the existing data and highlight new potential therapeutic targets regarding aspects related to the pathogenic process and the tumor microenvironment in order to improve the quality of life of women. We performed a 5-year retrospective study, including particular cases of uterine myocyte tumors. Immunohistochemical analyses of pathogenic pathways (p53, RB1, and PTEN) and tumor microclimate using markers (CD8, PD-L1, and CD105), as well as genetic testing of the PTEN gene, were performed. The data were statistically analyzed using the appropriate parameters. In cases of atypical leiomyoma, a significant association was observed between PTEN deletion and an increased number of PD-L1+ T lymphocytes. For malignant lesions and STUMP, PTEN deletion was associated with the advanced disease stage. Advanced cases were also associated with an increased mean CD8+ T cell count. An increased number of lymphocytes was associated with an increased percentage of RB1+ nuclei. The study corroborated clinical and histogenetic data, highlighting the importance of the differential diagnosis of these tumors to improve the management of patients and increase their quality of life.
Collapse
Affiliation(s)
- Madalina Bosoteanu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Mariana Deacu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Mariana Aschie
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Department of Pathology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
- Academy of Medical Sciences of Romania, 030171 Bucharest, Romania
| | - Sorin Vamesu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
- Clinical Service of Pathology, Department of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Anca Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
- Clinical Service of Pathology, Department of Genetics, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Cristian Ionut Orasanu
- Clinical Service of Pathology, Department of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Sabina Elena Vlad
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanţa, 900591 Constanta, Romania
| | - Roxana Cleopatra Penciu
- Department of Obstetrics and Gynecology, Faculty of Medicine, "Ovidius" University of Constanţa, 900527 Constanta, Romania
| | - Sergiu Ioachim Chirila
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, Ovidius University, 900527 Constanta, Romania
| |
Collapse
|
3
|
Hakuno SK, Janson SGT, Trietsch MD, de Graaf M, de Jonge-Muller E, Crobach S, Harryvan TJ, Boonstra JJ, Dinjens WNM, Slingerland M, Hawinkels LJAC. Endoglin and squamous cell carcinomas. Front Med (Lausanne) 2023; 10:1112573. [PMID: 37396898 PMCID: PMC10313935 DOI: 10.3389/fmed.2023.1112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Despite the fact that the role of endoglin on endothelial cells has been extensively described, its expression and biological role on (epithelial) cancer cells is still debatable. Especially its function on squamous cell carcinoma (SCC) cells is largely unknown. Therefore, we investigated SCC endoglin expression and function in three types of SCCs; head and neck (HNSCC), esophageal (ESCC) and vulvar (VSCC) cancers. Endoglin expression was evaluated in tumor specimens and 14 patient-derived cell lines. Next to being expressed on angiogenic endothelial cells, endoglin is selectively expressed by individual SCC cells in tumor nests. Patient derived HNSCC, ESCC and VSCC cell lines express varying levels of endoglin with high interpatient variation. To assess the function of endoglin in signaling of TGF-β ligands, endoglin was overexpressed or knocked out or the signaling was blocked using TRC105, an endoglin neutralizing antibody. The endoglin ligand BMP-9 induced strong phosphorylation of SMAD1 independent of expression of the type-I receptor ALK1. Interestingly, we observed that endoglin overexpression leads to strongly increased soluble endoglin levels, which in turn decreases BMP-9 signaling. On the functional level, endoglin, both in a ligand dependent and independent manner, did not influence proliferation or migration of the SCC cells. In conclusion, these data show endoglin expression on individual cells in the tumor nests in SCCs and a role for (soluble) endoglin in paracrine signaling, without directly affecting proliferation or migration in an autocrine manner.
Collapse
Affiliation(s)
- Sarah K. Hakuno
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Stefanus G. T. Janson
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Marjolijn D. Trietsch
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Department of Gynecology, Leiden University Medical Center, Leiden, Netherlands
| | - Manon de Graaf
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Eveline de Jonge-Muller
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom J. Harryvan
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Jurjen J. Boonstra
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Winand N. M. Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Marije Slingerland
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Alessandrini L, Ferrari M, Taboni S, Sbaraglia M, Franz L, Saccardo T, Del Forno BM, Agugiaro F, Frigo AC, Dei Tos AP, Marioni G. Tumor-stroma ratio, neoangiogenesis and prognosis in laryngeal carcinoma. A pilot study on preoperative biopsies and matched surgical specimens. Oral Oncol 2022; 132:105982. [PMID: 35759860 DOI: 10.1016/j.oraloncology.2022.105982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The interaction between tumor cells and stroma is critical in tumorigenesis, tumor neo-angiogenesis and cancer progression. The aims of this study were to: (i) evaluate the concordance between tumor-stroma ratio (TSR) and microvascular density (MVD) on paired biopsy and surgical specimens of laryngeal carcinoma (LSCC); (ii) investigate the association of TSR with angiogenesis (CD105- and CD31-assessed MVD); (iii) assess the prognostic role of TSR and MVD evaluated on preoperative biopsies and paired surgical specimens. METHODS TSR, CD105- and CD31-assessed MVD were analyzed in paired biopsies and surgical specimens of 43 consecutive cases. RESULTS TSR showed good agreement between biopsies and surgical specimens (AC1 statistic: 0.7957). In biopsies, TSR low/stroma-rich cases showed higher CD105-assessed MVD (p = 0.0380). In surgical specimens both median CD105- and CD31-assessed MVD were significantly higher in TSR low/stroma-rich than in TSR high/stroma-poor patients (p = 0.0089 and p = 0.0391). In the univariate Cox's model, TSR predicted disease-free survival (DFS) in both biopsies and surgical specimens (p = 0.0003 and p = 0.0002). DFS was associated with CD105- and CD31-assessed MVD in biopsies (p < 0.0001 for both) and surgical specimens (p < 0.0001 for both). Considering biopsies, the multivariate analysis found both TSR (p = 0.0032; HR = 6.112, 95%CI: 1.833-20.378) and CD105-assessed MVD (p = 0.0002; HR = 1.201, 95%CI: 1.090-1.322) as DFS predictor. In paired surgical specimens, both TSR (p = 0.0074; HR = 6.137, 95%CI: 1.626-23.172) and CD105-assessed MVD (p = 0.0005; HR = 1.172 95 %CI 1.071-1.282) retained their significance in multivariate analysis. CONCLUSIONS If confirmed by large prospective studies, TSR and MVD could be proposed as prognostic biomarkers of LSCC for a possible treatment intensification or targeted therapy.
Collapse
Affiliation(s)
| | - Marco Ferrari
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy; Technology for Health (PhD program), Department of Information Engineering, University of Brescia, Brescia, Italy; University Health Network (UHN) Guided Therapeutics (GTx) Program International Scholar, UHN, Toronto, Canada
| | - Stefano Taboni
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy; University Health Network (UHN) Guided Therapeutics (GTx) Program International Scholar, UHN, Toronto, Canada; Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD program), Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marta Sbaraglia
- Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Leonardo Franz
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy; University Health Network (UHN) Guided Therapeutics (GTx) Program International Scholar, UHN, Toronto, Canada
| | - Tommaso Saccardo
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy
| | | | - Francesca Agugiaro
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy
| | - Anna Chiara Frigo
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | - Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy.
| |
Collapse
|
5
|
Temporal Bone Squamous Cell Carcinoma: Molecular Markers Involved in Carcinogenesis, Behavior, and Prognosis: A Systematic Review. Int J Mol Sci 2022; 23:ijms23094536. [PMID: 35562926 PMCID: PMC9100168 DOI: 10.3390/ijms23094536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023] Open
Abstract
Temporal bone squamous cell carcinoma (TBSCC) is an uncommon malignancy with a poor prognosis in advanced cases. The dismal outcome of advanced TBSSC cases is largely due to the cancer’s local aggressiveness and the complex anatomy of this region, as well as to persistent pitfalls in diagnosis and treatment. Molecular changes occur in malignancies before any morphological changes become visible, and are responsible for the disease’s clinical behavior. The main purpose of this critical systematic review is to assess the level of knowledge on the molecular markers involved in the biology, behavior, and prognosis of TBSCC. A search (updated to March 2022) was run in PubMed, Scopus, and Web of Science electronic databases without publication date limits for studies investigating molecular markers in cohorts of patients with primary TBSCC. The search terms used were: “temporal bone” OR “external auditory canal” OR “ear”, AND “cancer” OR “carcinoma” OR “malignancy”. We preliminarily decided not to consider series with less than five cases. Twenty-four case series of TBSCC were found in which different analytical techniques had been used to study the role of several biomarkers. In conclusion, only very limited information on the prognostic role of molecular markers in TBSCC are currently available; prospective, multi-institutional, international prognostic studies should be planned to identify the molecular markers involved in the clinical behavior and prognosis of TBSCC. A further, more ambitious goal would be to find targets for therapeutic agents able to improve disease-specific survival in patients with advanced TBSCC.
Collapse
|
6
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
7
|
M Abbas A, Shalabi MG, A Elsiddig S, Eltahir Z, M A Babker A, G Ahmed H. Evaluation of Angiogenesis by Using CD105 and CD34 in Sudanese Breast Cancer Patients. Pak J Biol Sci 2021; 24:1144-1151. [PMID: 34842386 DOI: 10.3923/pjbs.2021.1144.1151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
<b>Background and Objective:</b> Angiogenesis is a mechanism by which new blood vessels are developed in healing and tumour tissues, where it is necessary for regeneration growth, tumour cells survival and metastasis. This study aimed to assess the angiogenesis mechanism among Sudanese females with breast cancer using anti-CD34 and anti-CD105 markers. <b>Materials and Methods:</b> Three hundred female representative Formalin-Fixed Paraffin-Embedded (FFPE) breast tissue blocks were included in this study. Of the 300 representative tissue blocks, 200 were breast cancer patient's tissues (confirmed cases) and 100 were normal breast tissues (controls). Their ages mean±SD, 47.3±12.9 years. <b>Results:</b> The results showed the MVD of CD34 significantly increased in malignant lesions as compared to normal breast tissues. The mean of MVD CD34 and MVD CD105 showed statistical differences among different histologic types of breast cancer. Also, a strong positive correlation was detected between the manual and automated MVD counting methods. Also, the current study revealed no significant differences were observed in mean MVD counting for both markers and menopausal status or the age groups of the study population. <b>Conclusion:</b> The MVD is a good tool for assessing prognostic markers. The CD105 marker has a high specificity to the new evolving tumour vessels and is a useful predictor for angiogenesis and breast cancer metastasis.
Collapse
|
8
|
Sier VQ, van der Vorst JR, Quax PHA, de Vries MR, Zonoobi E, Vahrmeijer AL, Dekkers IA, de Geus-Oei LF, Smits AM, Cai W, Sier CFM, Goumans MJTH, Hawinkels LJAC. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int J Mol Sci 2021; 22:4804. [PMID: 33946583 PMCID: PMC8124553 DOI: 10.3390/ijms22094804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-β (TGF-β) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: "Endoglin", "Imaging/Image-guided surgery". In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.
Collapse
Affiliation(s)
- Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Elham Zonoobi
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Edinburgh Molecular Imaging Ltd. (EMI), Edinburgh EH16 4UX, UK
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Ilona A. Dekkers
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Anke M. Smits
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Marie José T. H. Goumans
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|
9
|
Listik E, Horst B, Choi AS, Lee NY, Győrffy B, Mythreye K. A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors. PLoS One 2021; 16:e0249558. [PMID: 33819300 PMCID: PMC8021191 DOI: 10.1371/journal.pone.0249558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibins and activins are dimeric ligands belonging to the TGFβ superfamily with emergent roles in cancer. Inhibins contain an α-subunit (INHA) and a β-subunit (either INHBA or INHBB), while activins are mainly homodimers of either βA (INHBA) or βB (INHBB) subunits. Inhibins are biomarkers in a subset of cancers and utilize the coreceptors betaglycan (TGFBR3) and endoglin (ENG) for physiological or pathological outcomes. Given the array of prior reports on inhibin, activin and the coreceptors in cancer, this study aims to provide a comprehensive analysis, assessing their functional prognostic potential in cancer using a bioinformatics approach. We identify cancer cell lines and cancer types most dependent and impacted, which included p53 mutated breast and ovarian cancers and lung adenocarcinomas. Moreover, INHA itself was dependent on TGFBR3 and ENG/CD105 in multiple cancer types. INHA, INHBA, TGFBR3, and ENG also predicted patients' response to anthracycline and taxane therapy in luminal A breast cancers. We also obtained a gene signature model that could accurately classify 96.7% of the cases based on outcomes. Lastly, we cross-compared gene correlations revealing INHA dependency to TGFBR3 or ENG influencing different pathways themselves. These results suggest that inhibins are particularly important in a subset of cancers depending on the coreceptor TGFBR3 and ENG and are of substantial prognostic value, thereby warranting further investigation.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ben Horst
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alex Seok Choi
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nam. Y. Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Balázs Győrffy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
10
|
Brescia G, Padoan R, Schiavon F, Contro G, Parrino D, Tealdo G, Felicetti M, Frigo AC, Alessandrini L, Marioni G. Nasal polyps in eosinophilic granulomatosis with polyangiitis: Structured histopathology and CD105 expression. Am J Otolaryngol 2020; 41:102661. [PMID: 32810787 DOI: 10.1016/j.amjoto.2020.102661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Distinguishing the prodromal nasal polyposis of eosinophilic granulomatosis with polyangiitis (EGPA) from chronic rhinosinusitis with nasal polyps (CRSwNP) is a challenge for rhinologists and rheumatologists. It has recently been reported that angiogenesis and CD105 expressed on vascular endothelial cells could have a role in the pathogenesis and development of nasal polyps. This exploratory study examined the structured histopathology of nasal polyps in patients with EGPA and CRSwNP, comparing CD105 expression in their nasal tissue with that of a control group with no chronic sinonasal inflammation. METHODS A structured histopathological study was performed on surgical specimens of nasal tissue from 32 adults (13 with EGPA, 14 with CRSwNP, 5 controls), considering CD105 as a marker to determine microvessel density (MVD). RESULTS The mean eosinophil count was higher in EGPA patients with tissue inflammation (p = .002), and in CRSwNP patients with sub-epithelial edema (p = .009). Neutrophil infiltration was significantly associated with severe tissue inflammation in EGPA patients (p = .04), but with the absence of fibrosis in CRSwNP patients (p = .04). In the EGPA group, CD105-MVD correlated with tissue eosinophil count (p = .05). Mean CD105-MVD was significantly higher in EGPA patients with mucosal ulceration (p = .004). In the CRSwNP group, a CD105-MVD correlated positively and significantly with tissue eosinophil count (p = .01). CONCLUSION Alongside the known abundance of eosinophils, other cells might contribute to inflammatory processes. Neutrophils may amplify inflammation, eosinophil recruitment and tissue damage. CD105 expression in CRSwNP and EGPA nasal polyps supports the hypothesized involvement of angiogenesis in the pathogenesis and development of nasal polyps.
Collapse
Affiliation(s)
- Giuseppe Brescia
- Department of Neuroscience - DNS, Otolaryngology Section, Padova University, Via Giustiniani 2, 35128 Padova, Italy
| | - Roberto Padoan
- Department of Medicine - DIMED, Rheumatology Division, Padova University, Italy
| | - Franco Schiavon
- Department of Medicine - DIMED, Rheumatology Division, Padova University, Italy
| | - Giacomo Contro
- Department of Neuroscience - DNS, Otolaryngology Section, Padova University, Via Giustiniani 2, 35128 Padova, Italy
| | - Daniela Parrino
- Department of Neuroscience - DNS, Otolaryngology Section, Padova University, Via Giustiniani 2, 35128 Padova, Italy
| | - Giulia Tealdo
- Department of Neuroscience - DNS, Otolaryngology Section, Padova University, Via Giustiniani 2, 35128 Padova, Italy
| | - Mara Felicetti
- Department of Medicine - DIMED, Rheumatology Division, Padova University, Italy
| | - Anna Chiara Frigo
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, Padova University, Padova, Italy
| | | | - Gino Marioni
- Department of Neuroscience - DNS, Otolaryngology Section, Padova University, Via Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|
11
|
Franz L, Alessandrini L, Saccardo T, Frigo AC, Marioni G. CD105- and CD31-assessed microvessel density in laryngeal carcinoma biopsies as a predictor of recurrence after exclusive primary surgery. Ann Diagn Pathol 2020; 48:151608. [PMID: 32890907 DOI: 10.1016/j.anndiagpath.2020.151608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Surgery is currently indicated as a unimodal therapeutic approach with curative intent in selected laryngeal squamous cell carcinomas (LSCCs) ranging from stage I to III. The main aim of this study was to evaluate the prognostic role of CD105- and CD31-assessed microvessel density (MVD) in biopsy and in surgical specimens from a cohort of consecutive stage I-III LSCCs who had undergone exclusive primary surgery, according to current guidelines. MATERIALS AND METHODS CD105- and CD31-assessed MVD were analyzed in paired biopsies and surgical specimens of 24 consecutive cases of LSCC who underwent exclusive surgery. RESULTS On biopsy specimens, CD105- and CD31-assessed MVD were positively associated with recurrence risk (hazard ratio [HR] 1.266, p = 0.0034 and HR 1.265, p = 0.0081, respectively). In surgical specimens, CD105- and CD31-assessed MVD were significantly associated with disease-free survival (DFS) (HR 1.213, p = 0.0016 and HR 1.237, p = 0.0023 respectively). Considering a stratification based on median value, recurrence risk was higher in patients with a CD105-assessed MVD>0 in both biopsies and surgical specimens (HR 11.005, p = 0.0326 and HR 34.483, p = 0.0311). No significant differences in terms of recurrence risk were found for CD31-assessed on biopsies or on surgical specimens. CONCLUSIONS This study supports the role of biopsy CD105-MVD as a predictor of recurrence after exclusive surgery for LSCCs. Further prospective studies are mandatory to better characterize the prognostic role of CD105-MVD evaluated on biopsies to develop novel criteria to identify patients at higher risk of recurrence for more aggressive approaches or adjuvant treatment.
Collapse
Affiliation(s)
- Leonardo Franz
- Department of Neuroscience-DNS, Otolaryngology Section, University of Padova, Padova, Italy
| | | | - Tommaso Saccardo
- Department of Neuroscience-DNS, Otolaryngology Section, University of Padova, Padova, Italy
| | - Anna Chiara Frigo
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, Padova University, Padova, Italy
| | - Gino Marioni
- Department of Neuroscience-DNS, Otolaryngology Section, University of Padova, Padova, Italy.
| |
Collapse
|
12
|
Prognostic Significance of CD105- and CD31-Assessed Microvessel Density in Paired Biopsies and Surgical Samples of Laryngeal Carcinoma. Cancers (Basel) 2020; 12:cancers12082059. [PMID: 32722476 PMCID: PMC7465153 DOI: 10.3390/cancers12082059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Small pretreatment laryngeal biopsies may not fully represent a tumor's biological profile. This study on laryngeal squamous cell carcinoma (LSCC) aimed to investigate the prognostic role of CD105- and CD31-assessed microvessel density (MVD) in paired biopsies and surgical specimens and the association and discrepancy between CD105- and CD31-assessed MVD in biopsies and surgical specimens. CD105- and CD31-assessed MVD was analyzed in paired biopsies and surgical specimens of 45 consecutive cases of LSCC. In the LSCC biopsies and surgical specimens, median CD105-assessed MVD was significantly higher in N+ than in N0 cases (p = 0.0008, and p = 0.0002, respectively). Disease-free survival (DFS) was associated with CD105- and CD31-assessed MVD in both biopsies and surgical specimens (p < 0.0001 for all specimens). Multivariable Cox's regression showed that pathological grade (p < 0.0001) and CD105-assessed MVD in LSCC biopsies (p = 0.0209) predicted DFS. Lin's concordance coefficient showed that CD31 overestimated MVD compared with CD105 in LSCC biopsies and surgical specimens. CD105-assessed MVD should be further investigated in larger LSCC series as a potential prognostic marker for identifying: patients at higher risk of recurrence who might warrant more aggressive therapy; and cN0 patients requiring elective neck dissection for a significant risk of regional metastasis.
Collapse
|
13
|
Schoonderwoerd MJA, Koops MFM, Angela RA, Koolmoes B, Toitou M, Paauwe M, Barnhoorn MC, Liu Y, Sier CFM, Hardwick JCH, Nixon AB, Theuer CP, Fransen MF, Hawinkels LJAC. Targeting Endoglin-Expressing Regulatory T Cells in the Tumor Microenvironment Enhances the Effect of PD1 Checkpoint Inhibitor Immunotherapy. Clin Cancer Res 2020; 26:3831-3842. [PMID: 32332012 DOI: 10.1158/1078-0432.ccr-19-2889] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/16/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Endoglin is a coreceptor for TGFβ ligands that is highly expressed on proliferating endothelial cells and other cells in the tumor microenvironment. Clinical studies have noted increased programmed cell death (PD)-1 expression on cytotoxic T cells in the peripheral blood of patients with cancer treated with TRC105, an endoglin-targeting antibody. In this study, we investigated the combination of endoglin antibodies (TRC105 and M1043) with an anti-PD1 antibody. EXPERIMENTAL DESIGN The combination anti-endoglin/anti-PD1 antibodies was tested in four preclinical mouse models representing different stages of cancer development. To investigate the underlying mechanism, Fc-receptor-knockout mice were used complemented with depletion of multiple immune subsets in mice. Tumor growth and the composition of immune infiltrate were analyzed by flow cytometry. Finally, human colorectal cancer specimens were analyzed for presence of endoglin-expressing regulatory T cells (Treg). RESULTS In all models, the combination of endoglin antibody and PD1 inhibition produced durable tumor responses, leading to complete regressions in 30% to 40% of the mice. These effects were dependent on the presence of Fcγ receptors, indicating the involvement of antibody-dependent cytotoxic responses and the presence of CD8+ cytotoxic T cells and CD4+ Th cells. Interestingly, treatment with the endoglin antibody, TRC105, significantly decreased the number of intratumoral Tregs. Endoglin-expressing Tregs were also detected in human colorectal cancer specimens. CONCLUSIONS Taken together, these data provide a rationale for combining TRC105 and anti-PD1 therapy and provide additional evidence of endoglin's immunomodulatory role.
Collapse
Affiliation(s)
- Mark J A Schoonderwoerd
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike F M Koops
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ricardo A Angela
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bryan Koolmoes
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Melpomeni Toitou
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Madelon Paauwe
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke C Barnhoorn
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yingmiao Liu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - James C H Hardwick
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew B Nixon
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
14
|
Franz L, Tealdo G, Contro G, Bandolin L, Carraro V, Giacomelli L, Alessandrini L, Blandamura S, Marioni G. Biological tumor markers (maspin,
CD105
,
nm23‐H1
) and disease relapse in laryngeal cancer: cluster analysis. Head Neck 2020; 42:2129-2136. [DOI: 10.1002/hed.26152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/06/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Leonardo Franz
- Department of Neuroscience DNS, Otolaryngology SectionUniversity of Padova Padova Italy
| | - Giulia Tealdo
- Department of Neuroscience DNS, Otolaryngology SectionUniversity of Padova Padova Italy
| | - Giacomo Contro
- Department of Neuroscience DNS, Otolaryngology SectionUniversity of Padova Padova Italy
| | - Luigia Bandolin
- Department of Neuroscience DNS, Otolaryngology SectionUniversity of Padova Padova Italy
| | | | - Luciano Giacomelli
- Department of Neuroscience DNS, Otolaryngology SectionUniversity of Padova Padova Italy
| | | | | | - Gino Marioni
- Department of Neuroscience DNS, Otolaryngology SectionUniversity of Padova Padova Italy
| |
Collapse
|
15
|
Ollauri-Ibáñez C, Núñez-Gómez E, Egido-Turrión C, Silva-Sousa L, Díaz-Rodríguez E, Rodríguez-Barbero A, López-Novoa JM, Pericacho M. Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis 2020; 23:231-247. [PMID: 31897911 PMCID: PMC7160077 DOI: 10.1007/s10456-019-09703-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Endoglin (CD105) is an auxiliary receptor for members of the TFG-β superfamily. Whereas it has been demonstrated that the deficiency of endoglin leads to minor and defective angiogenesis, little is known about the effect of its increased expression, characteristic of several types of cancer. Angiogenesis is essential for tumor growth, so high levels of proangiogenic molecules, such as endoglin, are supposed to be related to greater tumor growth leading to a poor cancer prognosis. However, we demonstrate here that endoglin overexpression do not stimulate sprouting or vascularization in several in vitro and in vivo models. Instead, steady endoglin overexpression keep endothelial cells in an active phenotype that results in an impairment of the correct stabilization of the endothelium and the recruitment of mural cells. In a context of continuous enhanced angiogenesis, such as in tumors, endoglin overexpression gives rise to altered vessels with an incomplete mural coverage that permit the extravasation of blood. Moreover, these alterations allow the intravasation of tumor cells, the subsequent development of metastases and, thus, a worse cancer prognosis.
Collapse
Affiliation(s)
- Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Cristina Egido-Turrión
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Laura Silva-Sousa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular Y Celular del Cáncer. CSIC, IBSAL and CIBERONC, Salamanca, Spain
| | - Alicia Rodríguez-Barbero
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
16
|
Marioni G, Blandamura S, Nicolè L, Denaro L, Cazzador D, Pavone C, Giacomelli L, Guzzardo V, Fassina A, Mazzoni A, D’Avella D, Martini A, Zanoletti E. Endoglin-based assessment of neoangiogenesis in sporadic VIII cranial nerve schwannoma. Pathol Res Pract 2019; 215:152648. [DOI: 10.1016/j.prp.2019.152648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023]
|
17
|
Bhakdi SC, Suriyaphol P, Thaicharoen P, Grote STK, Komoltri C, Chaiyaprasithi B, Charnkaew K. Accuracy of Tumour-Associated Circulating Endothelial Cells as a Screening Biomarker for Clinically Significant Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081064. [PMID: 31357651 PMCID: PMC6721410 DOI: 10.3390/cancers11081064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
Even though more than 350,000 men die from prostate cancer every year, broad-based screening for the disease remains a controversial topic. Guidelines demand that the only commonly accepted screening tool, prostate-specific antigen (PSA) testing, must be followed by prostate biopsy if results are elevated. Due to the procedure’s low positive predictive value (PPV), however, over 80% of biopsies are performed on healthy men or men with clinically insignificant cancer—prompting calls for new ways of vetting equivocal PSA readings prior to the procedure. Responding to the challenge, the present study investigated the diagnostic potential of tumour-associated circulating endothelial cells (tCECs), which have previously been described as a novel, blood-based biomarker for clinically significant cancers. Specifically, the objective was to determine the diagnostic accuracy of a tCEC-based blood test to detect clinically significant prostate cancer (defined as Gleason score ≥ 3 + 4) in high-risk patients. Performed in a blinded, prospective, single-centre set-up, it compared a novel tCEC index test with transrectal ultrasound-guided biopsy as a reference on a total of 170 patients and found that a tCEC add-on test will almost double the PPV of a standalone PSA test (32% vs. 17%; p = 0.0012), while retaining a negative predictive value above 90%.
Collapse
Affiliation(s)
- Sebastian Chakrit Bhakdi
- Department of Pathobiology, Mahidol University, Bangkok 10400, Thailand.
- X-ZELL, 133 Cecil Street, #06-02 Keck Seng Tower, Singapore 069535, Singapore.
| | - Prapat Suriyaphol
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ponpan Thaicharoen
- X-ZELL, 133 Cecil Street, #06-02 Keck Seng Tower, Singapore 069535, Singapore
| | | | - Chulaluk Komoltri
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Bansithi Chaiyaprasithi
- Division of Urology, Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Komgrid Charnkaew
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
18
|
Marioni G, Nicolè L, Cazzador D, Pavone C, D'Avella D, Martini A, Mazzoni A, Zanoletti E. Endoglin (CD105) expression in neurofibromatosis type 2 vestibular schwannoma. Head Neck 2019; 41:3612-3617. [DOI: 10.1002/hed.25881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Gino Marioni
- Department of Neuroscience, Otolaryngology SectionPadova University Padova Italy
| | | | - Diego Cazzador
- Department of Neuroscience, Otolaryngology SectionPadova University Padova Italy
- Department of Neuroscience, Section of Human AnatomyPadova University Padova Italy
| | - Chiara Pavone
- Department of Neuroscience, Otolaryngology SectionPadova University Padova Italy
| | - Domenico D'Avella
- Department of NeuroscienceAcademic Neurosurgery, Padova University Padova Italy
| | - Alessandro Martini
- Department of Neuroscience, Otolaryngology SectionPadova University Padova Italy
| | - Antonio Mazzoni
- Department of Neuroscience, Otolaryngology SectionPadova University Padova Italy
| | - Elisabetta Zanoletti
- Department of Neuroscience, Otolaryngology SectionPadova University Padova Italy
| |
Collapse
|
19
|
Kather JN, Hörner C, Weis CA, Aung T, Vokuhl C, Weiss C, Scheer M, Marx A, Simon-Keller K. CD163+ immune cell infiltrates and presence of CD54+ microvessels are prognostic markers for patients with embryonal rhabdomyosarcoma. Sci Rep 2019; 9:9211. [PMID: 31239476 PMCID: PMC6592899 DOI: 10.1038/s41598-019-45551-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/07/2019] [Indexed: 01/06/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are rare and often lethal diseases. It is assumed that the tumor microenvironment (TME) of RMS exerts an immunosuppressive function, but there is currently no systematic analysis of the immune cells infiltrating sarcoma tissue. Focusing on two common types of RMS (alveolar [RMA] and embryonal [RME]), we performed a comprehensive immunohistochemical analysis of tumor-infiltrating immune cells in the TME. We performed a qualitative estimation of infiltrating immune cells in the tumor microenvironment by an experienced pathologist as well as a quantitative digital pathology analysis. We found that (1) manual and automatic quantification of tumor-infiltrating immune cells were consistent; (2) RME tumors showed a higher degree of immune cell infiltration than RMA tumors but (3) the number of tumor infiltrating lymphocytes was low compared to other solid tumor types; (4) microvascular density correlated with immune cell infiltration and (5) CD163 positive macrophages as well as CD54 positive microvessels were more often detected in RME than in RMA and correlated with patient overall and event free survival. Our systematic analysis provides a comprehensive view of the immune landscape of RMS which needs to be taken into account for developing immunotherapies for this rare type of cancer.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany.,Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Hörner
- Institute of Pathology, University Medical Center Mannheim, Mannheim, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Center Mannheim, Mannheim, Germany
| | - Thiha Aung
- Center of Plastic-, Hand- and Reconstructive Surgery, University of Regensburg, Regensburg, Germany
| | - Christian Vokuhl
- Institute of Pathology, Paidopathology, University Medical Center Kiel, Kiel, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, University Medical Centre Mannheim, Mannheim, Germany
| | - Monika Scheer
- Pediatrics 5 (Oncology, Hematology, Immunology), Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Mannheim, Mannheim, Germany
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
20
|
Kasprzak A, Adamek A. Role of Endoglin (CD105) in the Progression of Hepatocellular Carcinoma and Anti-Angiogenic Therapy. Int J Mol Sci 2018; 19:E3887. [PMID: 30563158 PMCID: PMC6321450 DOI: 10.3390/ijms19123887] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
The liver is perfused by both arterial and venous blood, with a resulting abnormal microenvironment selecting for more-aggressive malignancies. Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, the sixth most common cancer globally, and the third leading cause of cancer-related mortality worldwide. HCC is characterized by its hypervascularization. Improving the efficiency of anti-angiogenic treatment and mitigation of anti-angiogenic drug resistance are the top priorities in the development of non-surgical HCC therapies. Endoglin (CD105), a transmembrane glycoprotein, is one of the transforming growth factor β (TGF-β) co-receptors. Involvement of that protein in angiogenesis of solid tumours is well documented. Endoglin is a marker of activated endothelial cells (ECs), and is preferentially expressed in the angiogenic endothelium of solid tumours, including HCC. HCC is associated with changes in CD105-positive ECs within and around the tumour. The large spectrum of endoglin effects in the liver is cell-type- and HCC- stage-specific. High expression of endoglin in non-tumour tissue suggests that this microenvironment might play an especially important role in the progression of HCC. Evaluation of tissue expression, as well as serum concentrations of this glycoprotein in HCC, tends to confirm its role as an important biomarker in HCC diagnosis and prognosis. The role of endoglin in liver fibrosis and HCC progression also makes it an attractive therapeutic target. Despite these facts, the exact molecular mechanisms of endoglin functioning in hepatocarcinogenesis are still poorly understood. This review summarizes the current data concerning the role and signalling pathways of endoglin in hepatocellular carcinoma development and progression, and provides an overview of the strategies available for a specific targeting of CD105 in anti-angiogenic therapy in HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Poznań 60-781, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Poznań 61-285, Poland.
| |
Collapse
|