1
|
Subbanna MS, Winters MJ, Örd M, Davey NE, Pryciak PM. A quantitative intracellular peptide-binding assay reveals recognition determinants and context dependence of short linear motifs. J Biol Chem 2025; 301:108225. [PMID: 39864625 PMCID: PMC11879687 DOI: 10.1016/j.jbc.2025.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025] Open
Abstract
Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as short linear motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called systematic intracellular motif-binding analysis (SIMBA). In this method, binding of a foreign globular domain to its cognate SLiM peptide allows yeast cells to proliferate by blocking a growth arrest signal. A high-throughput application of the SIMBA method involving competitive growth and deep sequencing provides rapid quantification of the relative binding strength for thousands of SLiM sequence variants and a comprehensive interrogation of SLiM sequence features that control their recognition and potency. We show that multiple distinct classes of SLiM-binding domains can be analyzed by this method and that the relative binding strength of peptides in vivo correlates with their biochemical affinities measured in vitro. Deep mutational scanning provides high-resolution definitions of motif recognition determinants and reveals how sequence variations at noncore positions can modulate binding strength. Furthermore, mutational scanning of multiple parent peptides that bind human tankyrase ARC or YAP WW domains identifies distinct binding modes and uncovers context effects in which the preferred residues at one position depend on residues elsewhere. The findings establish SIMBA as a fast and incisive approach for interrogating SLiM recognition via massively parallel quantification of protein-peptide binding strength in vivo.
Collapse
Affiliation(s)
- Mythili S Subbanna
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Matthew J Winters
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mihkel Örd
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK; Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
2
|
Subbanna MS, Winters MJ, Örd M, Davey NE, Pryciak PM. A quantitative intracellular peptide binding assay reveals recognition determinants and context dependence of short linear motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621084. [PMID: 39553988 PMCID: PMC11565833 DOI: 10.1101/2024.10.30.621084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Transient protein-protein interactions play key roles in controlling dynamic cellular responses. Many examples involve globular protein domains that bind to peptide sequences known as Short Linear Motifs (SLiMs), which are enriched in intrinsically disordered regions of proteins. Here we describe a novel functional assay for measuring SLiM binding, called Systematic Intracellular Motif Binding Analysis (SIMBA). In this method, binding of a foreign globular domain to its cognate SLiM peptide allows yeast cells to proliferate by blocking a growth arrest signal. A high-throughput application of the SIMBA method involving competitive growth and deep sequencing provides rapid quantification of the relative binding strength for thousands of SLiM sequence variants, and a comprehensive interrogation of SLiM sequence features that control their recognition and potency. We show that multiple distinct classes of SLiM-binding domains can be analyzed by this method, and that the relative binding strength of peptides in vivo correlates with their biochemical affinities measured in vitro. Deep mutational scanning provides high-resolution definitions of motif recognition determinants and reveals how sequence variations at non-core positions can modulate binding strength. Furthermore, mutational scanning of multiple parent peptides that bind human tankyrase ARC or YAP WW domains identifies distinct binding modes and uncovers context effects in which the preferred residues at one position depend on residues elsewhere. The findings establish SIMBA as a fast and incisive approach for interrogating SLiM recognition via massively parallel quantification of protein-peptide binding strength in vivo.
Collapse
Affiliation(s)
- Mythili S. Subbanna
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Matthew J. Winters
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mihkel Örd
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Norman E. Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Peter M. Pryciak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Ma J, Fan H, Geng H. Distinct and overlapping functions of YAP and TAZ in tooth development and periodontal homeostasis. Front Cell Dev Biol 2024; 11:1281250. [PMID: 38259513 PMCID: PMC10800899 DOI: 10.3389/fcell.2023.1281250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Orthodontic tooth movement (OTM) involves mechanical-biochemical signal transduction, which results in tissue remodeling of the tooth-periodontium complex and the movement of orthodontic teeth. The dynamic regulation of osteogenesis and osteoclastogenesis serves as the biological basis for remodeling of the periodontium, and more importantly, the prerequisite for establishing periodontal homeostasis. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo signaling pathway, which actively respond to mechanical stimuli during tooth movement. Specifically, they participate in translating mechanical into biochemical signals, thereby regulating periodontal homeostasis, periodontal remodeling, and tooth development. YAP and TAZ have widely been considered as key factors to prevent dental dysplasia, accelerate orthodontic tooth movement, and shorten treatment time. In this review, we summarize the functions of YAP and TAZ in regulating tooth development and periodontal remodeling, with the aim to gain a better understanding of their mechanisms of action and provide insights into maintaining proper tooth development and establishing a healthy periodontal and alveolar bone environment. Our findings offer novel perspectives and directions for targeted clinical treatments. Moreover, considering the similarities and differences in the development, structure, and physiology between YAP and TAZ, these molecules may exhibit functional variations in specific regulatory processes. Hence, we pay special attention to their distinct roles in specific regulatory functions to gain a comprehensive and profound understanding of their contributions.
Collapse
Affiliation(s)
- Jing Ma
- Department of Oral Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Haixia Fan
- Department of Oral Medicine, Jining Medical University, Jining, Shandong, China
| | - Haixia Geng
- Department of Orthodontics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
4
|
Osama M, Essibayi MA, Osama M, Ibrahim IA, Nasr Mostafa M, Şakir Ekşi M. The impact of interaction between verteporfin and yes-associated protein 1/transcriptional coactivator with PDZ-binding motif-TEA domain pathway on the progression of isocitrate dehydrogenase wild-type glioblastoma. J Cent Nerv Syst Dis 2023; 15:11795735231195760. [PMID: 37600236 PMCID: PMC10439684 DOI: 10.1177/11795735231195760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Verteporfin and 5-ALA are used for visualizing malignant tissue components in different body tumors and as photodynamic therapy in treating isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM). Additionally, verteporfin interferes with Yes-associated protein 1 (YAP)/Transcriptional coactivator with PDZ-binding motif - TEA domain (TAZ-TEAD) pathway, thus inhibiting the downstream effect of these oncogenes and reducing the malignant properties of GBM. Animal studies have shown verteporfin to be successful in increasing survival rates, which have led to the conduction of phase 1 and 2 clinical trials to further investigate its efficacy in treating GBM. In this article, we aimed to review the novel mechanism of verteporfin's action, the impact of its interaction with YAP/TAZ-TEAD, its effect on glioblastoma stem cells, and its role in inducing ferroptosis.
Collapse
Affiliation(s)
- Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Muhammed Amir Essibayi
- Department of Neurosurgery, Albert Einstein College of Medicine, New York City, NY, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Mona Osama
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ismail A. Ibrahim
- Department of Physical Therapy and Rehabilitation, Fenerbahce University, Istanbul, Turkey
| | | | - Murat Şakir Ekşi
- Neurosurgery Clinic, FSM Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Rotem-Bamberger S, Fahoum J, Keinan-Adamsky K, Tsaban T, Avraham O, Shalev DE, Chill JH, Schueler-Furman O. Structural insights into the role of the WW2 domain on tandem WW/PPxY-motif interactions of oxidoreductase WWOX. J Biol Chem 2022; 298:102145. [PMID: 35716775 PMCID: PMC9293652 DOI: 10.1016/j.jbc.2022.102145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Class I WW domains are present in many proteins of various functions and mediate protein interactions by binding to short linear PPxY motifs. Tandem WW domains often bind peptides with multiple PPxY motifs, but the interplay of WW–peptide interactions is not always intuitive. The WW domain–containing oxidoreductase (WWOX) harbors two WW domains: an unstable WW1 capable of PPxY binding and stable WW2 that cannot bind PPxY. The WW2 domain has been suggested to act as a WW1 domain chaperone, but the underlying mechanism of its chaperone activity remains to be revealed. Here, we combined NMR, isothermal calorimetry, and structural modeling to elucidate the roles of both WW domains in WWOX binding to its PPxY-containing substrate ErbB4. Using NMR, we identified an interaction surface between these two domains that supports a WWOX conformation compatible with peptide substrate binding. Isothermal calorimetry and NMR measurements also indicated that while binding affinity to a single PPxY motif is marginally increased in the presence of WW2, affinity to a dual-motif peptide increases 10-fold. Furthermore, we found WW2 can directly bind double-motif peptides using its canonical binding site. Finally, differential binding of peptides in mutagenesis experiments was consistent with a parallel N- to C-terminal PPxY tandem motif orientation in binding to the WW1–WW2 tandem domain, validating structural models of the interaction. Taken together, our results reveal the complex nature of tandem WW-domain organization and substrate binding, highlighting the contribution of WWOX WW2 to both protein stability and target binding.
Collapse
Affiliation(s)
- Shahar Rotem-Bamberger
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jamal Fahoum
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Tomer Tsaban
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orly Avraham
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E Shalev
- Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Pharmaceutical Engineering, Azrieli College of Engineering, Jerusalem, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel.
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
Rosa E Silva I, Binó L, Johnson CM, Rutherford TJ, Neuhaus D, Andreeva A, Čajánek L, van Breugel M. Molecular mechanisms underlying the role of the centriolar CEP164-TTBK2 complex in ciliopathies. Structure 2022; 30:114-128.e9. [PMID: 34499853 PMCID: PMC8752127 DOI: 10.1016/j.str.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Cilia formation is essential for human life. One of the earliest events in the ciliogenesis program is the recruitment of tau-tubulin kinase 2 (TTBK2) by the centriole distal appendage component CEP164. Due to the lack of high-resolution structural information on this complex, it is unclear how it is affected in human ciliopathies such as nephronophthisis. Furthermore, it is poorly understood if binding to CEP164 influences TTBK2 activities. Here, we present a detailed biochemical, structural, and functional analysis of the CEP164-TTBK2 complex and demonstrate how it is compromised by two ciliopathic mutations in CEP164. Moreover, we also provide insights into how binding to CEP164 is coordinated with TTBK2 activities. Together, our data deepen our understanding of a crucial step in cilia formation and will inform future studies aimed at restoring CEP164 functionality in a debilitating human ciliopathy.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Queen Mary University of London, School of Biological and Chemical Sciences, 2 Newark Street, London E1 2AT, UK; Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Lucia Binó
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Christopher M Johnson
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Trevor J Rutherford
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Neuhaus
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lukáš Čajánek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Mark van Breugel
- Queen Mary University of London, School of Biological and Chemical Sciences, 2 Newark Street, London E1 2AT, UK; Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
7
|
Chen F, Wang Q, Mu Y, Sun S, Yuan X, Shang P, Ji B. Systematic profiling and identification of the peptide-mediated interactions between human Yes-associated protein and its partners in esophageal cancer. J Mol Recognit 2021; 35:e2947. [PMID: 34964176 DOI: 10.1002/jmr.2947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/07/2022]
Abstract
Human Yes-associated protein (YAP) is involved in the Hippo signaling pathway and serves as a coactivator to modulate gene expression, which contains a transactivation domain (TD) responsible for binding to the downstream TEA domain family (TEAD) of transcription factors and two WW1/2 domains that recognize the proline-rich motifs (PRMs) present in a variety of upstream protein partners through peptide-mediated interactions (PMIs). The downstream YAP TD-TEAD interactions are closely associated with gastric cancer, and a number of therapeutic agents have been developed to target the interactions. In contrast, the upstream YAP WW1/2-partner interactions are thought to be involved in esophageal cancer but still remain largely unexplored. Here, we attempted to elucidate the complicated PMIs between the YAP WW1/2 domains and various PRMs of YAP-interacting proteins. A total of 106 peptide segments carrying the class I WW-binding motif [P/L]Px[Y/P] were extracted from 22 partner candidates, which are potential recognition sites of YAP WW1/2 domains. Structural and energetic analyses of the intermolecular interactions between the domains and peptides created a systematic domain-peptide binding profile, from which a number of biologically functional PMIs were identified and then substantiated in vitro using fluorescence spectroscopy assays. It is revealed that: (a) The sequence requirement for the partner recognition site binding to YAP WW1/2 domains is a decapeptide segment that contains a core PRM motif as well as two three-residue extensions from each side of the motif; the core motif and extended sections are responsible for the binding stability and recognition specificity of domain-peptide interaction, respectively. (b) There is an exquisite difference in the recognition specificity of the two domains; the LPxP and PPxP appear to more prefer WW1 than WW2, whereas the WW2 can bind more effectively to LPxY and PPxY than WW1. (c) WW2 generally exhibits a higher affinity to the panel of recognition site candidates than WW1. In addition, a number of partner peptides were found as promising recognition sites of the two domains and/or to have a good selectivity between the two domains. For example, the DVL1 peptide was determined to have moderate affinity to WW2 and strong selectivity for WW2 over WW1. Hydrogen bonds play a central role in selectivity.
Collapse
Affiliation(s)
- Fei Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Qifei Wang
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Yushu Mu
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Shibin Sun
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Xulong Yuan
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Pan Shang
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Bo Ji
- Department of Thoracic Medicine, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
8
|
LeBlanc L, Ramirez N, Kim J. Context-dependent roles of YAP/TAZ in stem cell fates and cancer. Cell Mol Life Sci 2021; 78:4201-4219. [PMID: 33582842 PMCID: PMC8164607 DOI: 10.1007/s00018-021-03781-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Hippo effectors YAP and TAZ control cell fate and survival through various mechanisms, including transcriptional regulation of key genes. However, much of this research has been marked by conflicting results, as well as controversy over whether YAP and TAZ are redundant. A substantial portion of the discordance stems from their contradictory roles in stem cell self-renewal vs. differentiation and cancer cell survival vs. apoptosis. In this review, we present an overview of the multiple context-dependent functions of YAP and TAZ in regulating cell fate decisions in stem cells and organoids, as well as their mechanisms of controlling programmed cell death pathways in cancer.
Collapse
Affiliation(s)
- Lucy LeBlanc
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA. .,Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Nereida Ramirez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA. .,Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA. .,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
Liu M, Yan M, Lv H, Wang B, Lv X, Zhang H, Xiang S, Du J, Liu T, Tian Y, Zhang X, Zhou F, Cheng T, Zhu Y, Jiang H, Cao Y, Ai D. Macrophage K63-Linked Ubiquitination of YAP Promotes Its Nuclear Localization and Exacerbates Atherosclerosis. Cell Rep 2020; 32:107990. [PMID: 32755583 DOI: 10.1016/j.celrep.2020.107990] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/23/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
The Hippo/Yes-associated protein (YAP) pathway has pivotal roles in innate immune responses against pathogens in macrophages. However, the role of YAP in macrophages during atherosclerosis and its mechanism of YAP activation remain unknown. Here, we find that YAP overexpression in myeloid cells aggravates atherosclerotic lesion size and infiltration of macrophages, whereas YAP deficiency reduces atherosclerotic plaque. Tumor necrosis factor receptor-associated factor 6 (TRAF6), a downstream effector of interleukin-1β (IL-1β), triggers YAP ubiquitination at K252, which interrupts the interaction between YAP and angiomotin and results in enhanced YAP nuclear translocation. The recombinant IL-1 receptor antagonist anakinra reduces atherosclerotic lesion formation, which is abrogated by YAP overexpression. YAP level is increased in human and mouse atherosclerotic vessels, and plasma IL-1β level in patients with STEMI is correlated with YAP protein level in peripheral blood mononuclear cells. These findings elucidate a mechanism of YAP activation, which might be a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Mingming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Meng Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Huizhen Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Biqing Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Xue Lv
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hang Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Song Xiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yikui Tian
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Xu Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Fangfang Zhou
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yi Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden.
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
10
|
Vargas RE, Duong VT, Han H, Ta AP, Chen Y, Zhao S, Yang B, Seo G, Chuc K, Oh S, El Ali A, Razorenova OV, Chen J, Luo R, Li X, Wang W. Elucidation of WW domain ligand binding specificities in the Hippo pathway reveals STXBP4 as YAP inhibitor. EMBO J 2020; 39:e102406. [PMID: 31782549 PMCID: PMC6939200 DOI: 10.15252/embj.2019102406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
The Hippo pathway, which plays a critical role in organ size control and cancer, features numerous WW domain-based protein-protein interactions. However, ~100 WW domains and 2,000 PY motif-containing peptide ligands are found in the human proteome, raising a "WW-PY" binding specificity issue in the Hippo pathway. In this study, we have established the WW domain binding specificity for Hippo pathway components and uncovered a unique amino acid sequence required for it. By using this criterion, we have identified a WW domain-containing protein, STXBP4, as a negative regulator of YAP. Mechanistically, STXBP4 assembles a protein complex comprising α-catenin and a group of Hippo PY motif-containing components/regulators to inhibit YAP, a process that is regulated by actin cytoskeleton tension. Interestingly, STXBP4 is a potential tumor suppressor for human kidney cancer, whose downregulation is correlated with YAP activation in clear cell renal cell carcinoma. Taken together, our study not only elucidates the WW domain binding specificity for the Hippo pathway, but also reveals STXBP4 as a player in actin cytoskeleton tension-mediated Hippo pathway regulation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Hippo Signaling Pathway
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prognosis
- Protein Binding
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Survival Rate
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Vesicular Transport Proteins/genetics
- Vesicular Transport Proteins/metabolism
- WW Domains
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Rebecca E Vargas
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Vy Thuy Duong
- Department of ChemistryUniversity of California, IrvineIrvineCAUSA
| | - Han Han
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Albert Paul Ta
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Yuxuan Chen
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Shiji Zhao
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Bing Yang
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Gayoung Seo
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Kimberly Chuc
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Sunwoo Oh
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Amal El Ali
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
| | - Olga V Razorenova
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
| | - Junjie Chen
- Department of Experimental Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ray Luo
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of California, IrvineIrvineCAUSA
- Department of Materials Science and EngineeringUniversity of California, IrvineIrvineCAUSA
- Department of Biomedical EngineeringUniversity of California, IrvineIrvineCAUSA
| | - Xu Li
- School of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Wenqi Wang
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| |
Collapse
|
11
|
Lin Z, Yang Z, Xie R, Ji Z, Guan K, Zhang M. Decoding WW domain tandem-mediated target recognitions in tissue growth and cell polarity. eLife 2019; 8:49439. [PMID: 31486770 PMCID: PMC6744271 DOI: 10.7554/elife.49439] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
WW domain tandem-containing proteins such as KIBRA, YAP, and MAGI play critical roles in cell growth and polarity via binding to and positioning target proteins in specific subcellular regions. An immense disparity exists between promiscuity of WW domain-mediated target bindings and specific roles of WW domain proteins in cell growth regulation. Here, we discovered that WW domain tandems of KIBRA and MAGI, but not YAP, bind to specific target proteins with extremely high affinity and exquisite sequence specificity. Via systematic structural biology and biochemistry approaches, we decoded the target binding rules of WW domain tandems from cell growth regulatory proteins and uncovered a list of previously unknown WW tandem binding proteins including β-Dystroglycan, JCAD, and PTPN21. The WW tandem-mediated target recognition mechanisms elucidated here can guide functional studies of WW domain proteins in cell growth and polarity as well as in other cellular processes including neuronal synaptic signaling.
Collapse
Affiliation(s)
- Zhijie Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhou Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruiling Xie
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, United States.,Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Zeyang Ji
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Kunliang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, United States
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, China
| |
Collapse
|
12
|
Ming Q, Gonzalez-Perez D, Luca VC. Molecular engineering strategies for visualizing low-affinity protein complexes. Exp Biol Med (Maywood) 2019; 244:1559-1567. [PMID: 31184923 DOI: 10.1177/1535370219855401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The growing availability of complex structures in the Protein Data Bank has provided key insight into the molecular architecture of protein–protein interfaces. The remarkable diversity observed in protein binding modes is paralleled by a tremendous variation in binding affinities, with interaction half-lives ranging from days to milliseconds. Within the protein interactome, low-affinity binding events have been particularly difficult to visualize by traditional structural methods, which has spurred the development of innovative strategies for reconstituting these short-lived yet biologically essential assemblies. An important takeaway from structural studies of low-affinity systems is that there is no universal solution for stabilizing protein complexes, and approaches such as single-chain fusions, biochemical linkages, and affinity-maturation have each been successful in certain contexts. In this article, we review how advances in molecular engineering have been used to capture weakly associated complexes for structure determination, and we provide perspectives on how the continued application of these methods can shed new light on the “hidden world” of low-affinity interactions. Impact statement Low-affinity protein interactions, while biologically essential, have been difficult to visualize by traditional methods in structural biology. In this review, we describe a series of innovative molecular engineering strategies that have been used to stabilize weakly bound protein complexes for structure determination. By highlighting several examples from the literature along with potential advantages and disadvantages of the individual approaches, we hope to provide an introductory resource for structural biologists studying low-affinity systems.
Collapse
Affiliation(s)
- Qianqian Ming
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - David Gonzalez-Perez
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Vincent C Luca
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Haymond A, Dey D, Carter R, Dailing A, Nara V, Nara P, Venkatayogi S, Paige M, Liotta L, Luchini A. Protein painting, an optimized MS-based technique, reveals functionally relevant interfaces of the PD-1/PD-L1 complex and the YAP2/ZO-1 complex. J Biol Chem 2019; 294:11180-11198. [PMID: 31167787 DOI: 10.1074/jbc.ra118.007310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/31/2019] [Indexed: 12/26/2022] Open
Abstract
Protein-protein interactions lie at the heart of many biological processes and therefore represent promising drug targets. Despite this opportunity, identification of protein-protein interfaces remains challenging. We have previously developed a method that relies on coating protein surfaces with small-molecule dyes to discriminate between solvent-accessible protein surfaces and hidden interface regions. Dye-bound, solvent-accessible protein regions resist trypsin digestion, whereas hidden interface regions are revealed by denaturation and sequenced by MS. The small-molecule dyes bind promiscuously and with high affinity, but their binding mechanism is unknown. Here, we report on the optimization of a novel dye probe used in protein painting, Fast Blue B + naphthionic acid, and show that its affinity for proteins strongly depends on hydrophobic moieties that we call here "hydrophobic clamps." We demonstrate the utility of this probe by sequencing the protein-protein interaction regions between the Hippo pathway protein Yes-associated protein 2 (YAP2) and tight junction protein 1 (TJP1 or ZO-1), uncovering interactions via the known binding domain as well as ZO-1's MAGUK domain and YAP's N-terminal proline-rich domain. Additionally, we demonstrate how residues predicted by protein painting are present exclusively in the complex interface and how these residues may guide the development of peptide inhibitors using a case study of programmed cell death protein 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1). Inhibitors designed around the PD-1/PD-L1 interface regions identified via protein painting effectively disrupted complex formation, with the most potent inhibitor having an IC50 of 5 μm.
Collapse
Affiliation(s)
- Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110
| | - Douglass Dey
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110
| | - Rachel Carter
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110
| | - Angela Dailing
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110
| | - Vaishnavi Nara
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia 22312
| | - Pranavi Nara
- University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Sravani Venkatayogi
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110
| | - Mikell Paige
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 20110
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110
| |
Collapse
|
14
|
Biophysical studies and modelling indicate the binding preference of TAZ WW domain for LATS1 PPxY motif. Biochem Biophys Res Commun 2018; 502:307-312. [PMID: 29787761 DOI: 10.1016/j.bbrc.2018.05.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 11/22/2022]
Abstract
The Hippo tumor suppressor pathway is an important regulator of cell proliferation and apoptosis, and signal transduction occurs through phosphorylation of the effector protein TAZ by the serine/threonine kinase LATS1/2. Here, we report the biophysical and computational studies to characterize the interaction between TAZ and LATS1/2 through WW domain-PPxY motif binding. We show that the TAZ WW domain exhibits a binding preference for the second of the two PPxY motifs of LATS1 in vitro. We modelled the structure of the domain in complex with LATS1 PPxY2 peptide and, through molecular dynamics simulations, show that WW domain-PPxY2 complex is stable with some flexibility in the peptide region. Next, we predict and verify that L143 and T150 of the WW domain are important for TAZ binding with the PPxY2 peptide using mutational and isothermal titration calorimetric studies. Furthermore, we suggest that the electrostatic potential of charged residues within the binding pocket may influence the ligand affinity among otherwise highly similar WW domains.
Collapse
|