1
|
Nagata M, Ikuse T, Tokushima K, Arai N, Jimbo K, Kudo T, Shimizu T. High galectin expression in Helicobacter pylori-infected gastric mucosa in childhood. Pediatr Neonatol 2025; 66:241-246. [PMID: 39244403 DOI: 10.1016/j.pedneo.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Mild Th1 and Th17 immune responses in childhood against Helicobacter pylori are presumed to be responsible for H. pylori colonization and mucosal atrophy reduction. However, the mechanism remains unclear. In this study, we aimed to investigate the childhood-specific immune responses observed after H. pylori infection by analyzing galectin expression in the gastric mucosa. We focused on galectin-1 (Gal-1) and galectin-9 (Gal-9), which function to suppress Th1 and Th17 immune responses. METHODS We analyzed changes in the expression of Gal-1 and Gal-9 in the gastric mucosa of pediatric patients with H. pylori infection. Ten pediatric patients with and ten patients without H. pylori infection who underwent biopsy to assess the cause of chronic abdominal symptoms using esophagogastroduodenoscopy were evaluated. Gal-1 and Gal-9 expression in the biopsy tissues of the gastric antrum and corpus was analyzed by immunohistochemical staining. RESULTS Gal-1 expression was significantly increased in the stromal cells of the corpus owing to H. pylori infection. No alterations in Gal-1 expression due to H. pylori infection were observed in the antral tissue. Helicobacter pylori infection considerably increased Gal-9 expression in all tissues. According to previous reports, the increased expression of Gal-9 associated with H. pylori infection is not observed in adults. Therefore, the increased expression of Gal-9 associated with H. pylori infection is specific to pediatric patients. CONCLUSION The increased expression of Gal-1 and Gal-9 may suppress Th1 and Th17 immune responses against H. pylori infection during childhood, promote H. pylori colonization, and reduce inflammation in the gastric mucosa of pediatric patients.
Collapse
Affiliation(s)
- Masumi Nagata
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Tamaki Ikuse
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| | - Kaori Tokushima
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nobuyasu Arai
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Keisuke Jimbo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takahiro Kudo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
2
|
Sun M, Liu Y, Ni X, Tan R, Wang Y, Jiang Y, Ke D, Du H, Guo G, Liu K. Intranasal immunization with poly I:C and CpG ODN adjuvants enhances the protective efficacy against Helicobacter pylori infection in mice. Microbes Infect 2025; 27:105433. [PMID: 39461584 DOI: 10.1016/j.micinf.2024.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Helicobacter pylori (H. pylori) infection is a serious public health issue, and development of vaccines is a desirable preventive strategy for H. pylori. Toll-like receptor (TLR) ligands have shown potential as vaccine adjuvants that induce immune responses, but polyinosinic-polycytidylic acid (poly I:C), a nucleic acid-based TLR9 ligand, is less well studied in H. pylori vaccine research. Here, we evaluated the effects of poly I:C and CpG oligodeoxynucleotide (CpG ODN), a nucleic acid TLR3 ligand, as adjuvants in combination with the H. pylori recombinant proteins LpoB and UreA to protect against H. pylori infection. For analysis of specific immune responses, the levels of specific antibodies and splenic cytokines were measured in the immunized mice. Compared with CpG ODN, poly I:C could induce mucosal sIgA antibody responses and reduce H. pylori colonization. Additionally, the combination of poly I:C and CpG ODN caused greater immunoprotection and significantly reduced gastritis, exerting synergistic effects. Analysis of splenic cytokines revealed that poly I:C mainly triggered a mixed Th1/Th2/Th17 immune response, whereas the combination of CpG ODN and poly I:C induced a Th1/Th17 immune response. Our findings indicated that increased levels of mucosal sIgA antibodies and a robust splenic Th1/Th17 immune response were associated with reduced H. pylori colonization in vaccinated mice. This study identified a potential TLR ligand adjuvant for developing more effective H. pylori vaccines.
Collapse
Affiliation(s)
- Min Sun
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiumei Ni
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Runqing Tan
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Wang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yajun Jiang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingxin Ke
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Han Du
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Guo
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Kaiyun Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Zhang H, Liu Z, Li Y, Tao Z, Shen L, Shang Y, Huang X, Liu Q. Adjuvants for Helicobacter pylori vaccines: Outer membrane vesicles provide an alternative strategy. Virulence 2024; 15:2425773. [PMID: 39501551 PMCID: PMC11583678 DOI: 10.1080/21505594.2024.2425773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that colonizes the human stomach, leading to various gastric diseases. The efficacy of traditional treatments, such as bismuth-based triple and quadruple therapies, has been reduced due to increasing antibiotic resistance and drug toxicity. As a result, the development of effective vaccines was proposed to control H. pylori-induced infections; however, one of the primary challenges is the lack of potent adjuvants. Although various adjuvants, both toxic (e.g. cholera toxin and Escherichia coli heat-labile toxin) and non-toxic (e.g. aluminum and propolis), have been tested for vaccine development, no clinically favorable adjuvants have been identified due to high toxicity, weak immunostimulatory effects, inability to elicit specific immune responses, or latent side effects. Outer membrane vesicles (OMVs), mainly secreted by gram-negative bacteria, have emerged as promising candidates for H. pylori vaccine adjuvants due to their potential applications. OMVs enhance mucosal immunity and Th1 and Th17 cell responses, which have been recognized to have protective effects and guarantee safety and efficacy. The development of an effective vaccine against H. pylori infection is ongoing, with clinical trials expected in the future.
Collapse
Affiliation(s)
- Hanchi Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Zhili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Ziwei Tao
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lu Shen
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yinpan Shang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Al-Wraikat M, Abubaker MA, Liu Y, Shen XP, He Y, Li L, Liu Y. Label-free quantitative proteomic analysis of functional changes of goat milk whey proteins subject to heat treatments of ultra-high-temperature and the common low-temperature. Food Chem X 2024; 23:101691. [PMID: 39184313 PMCID: PMC11342887 DOI: 10.1016/j.fochx.2024.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/27/2024] Open
Abstract
This work investigated the functional changes in whey proteins obtained from goat milk subject to various temperature treatments. Ultra-high temperature instantaneous sterilization (UHTIS) caused less damage than the common low-temperature, whereas spray-drying treatment had the opposite effect. A total of 426 proteins were identified in UHTIS and control treatment groups, including 386 common proteins and 16 and 14 unique proteins. The UHTIS treatment upregulated 55 whey proteins while down-regulated 98. The UHTIS-treated whey proteins may upregulate three metabolic pathways but downregulate one. Overall, UHTIS only slightly impacted the composition and functions of whey proteins from goat milk compared to the common low-temperature treatments.
Collapse
Affiliation(s)
- Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yingli Liu
- Hospital of Shaanxi Normal University, Shaanxi Normal University, Xi'an 710119, China
| | - Xi Ping Shen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - YongFeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
5
|
Sun H, He T, Wu Y, Yuan H, Ning J, Zhang Z, Deng X, Li B, Wu C. Cytotoxin-Associated Gene A-Negative Helicobacter pylori Promotes Gastric Mucosal CX3CR1+CD4+ Effector Memory T Cell Recruitment in Mice. Front Microbiol 2022; 13:813774. [PMID: 35154057 PMCID: PMC8829513 DOI: 10.3389/fmicb.2022.813774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Helicobacter pylori can cause many kinds of gastric disorders, ranging from gastritis to gastric cancer. Cytotoxin-associated gene A (CagA)+H. pylori is more likely to cause gastric histopathologic damage than CagA–H. pylori. However, the underlying mechanism needs to be further investigated. Materials and methods Mice were intragastrically administered equal amounts of CagA+ or CagA–H. pylori. Four weeks later, 24 chemokines in stomachs were measured using a mouse chemokine array, and the phenotypes of the recruited gastric CD4+ T cells were analyzed. The migration pathway was evaluated. Finally, the correlation between each pair among the recruited CD4+ T cell sub-population, H. pylori colonization level, and histopathologic damage score were determined by Pearson correlation analysis. Results The concentration of chemokines, CCL3 and CX3CL1, were significantly elevated in CagA–H. pylori-infected gastric mucosa than in CagA+H. pylori-infected gastric mucosa. Among them, CX3CL1 secreted by gastric epithelial cells, which was elicited more effectively by CagA–H. pylori than by the CagA+ strain, dramatically promoted mucosal CD4+ T cell migration. The expression of CX3CR1, the only known receptor of CX3CL1, was upregulated on the surface of gastric CD4+ T cells in CagA–H. pylori-infected stomach. In addition, most of the CX3CR1-positive gastric CD4+ T cells were CD44+CD69–CCR7– effector memory T cells (Tem). Pearson correlation analysis showed that the recruited CX3CR1+CD4+ Tem cell population was negatively correlated with H. pylori colonization level and histopathologic damage score. Conclusion CagA–H. pylori promotes gastric mucosal CX3CR1+CD4+ Tem recruitment in mice.
Collapse
Affiliation(s)
- Heqiang Sun
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yanan Wu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhenhua Zhang
- Department of Gastroenterology of the 305 Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Xinli Deng
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Bin Li,
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Chao Wu,
| |
Collapse
|
6
|
|
7
|
Mohammadzadeh R, Soleimanpour S, Pishdadian A, Farsiani H. Designing and development of epitope-based vaccines against Helicobacter pylori. Crit Rev Microbiol 2021; 48:489-512. [PMID: 34559599 DOI: 10.1080/1040841x.2021.1979934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the principal cause of serious diseases (e.g. gastric cancer and peptic ulcers). Antibiotic therapy is an inadequate strategy in H. pylori eradication because of which vaccination is an inevitable approach. Despite the presence of countless vaccine candidates, current vaccines in clinical trials have performed with poor efficacy which makes vaccination extremely challenging. Remarkable advancements in immunology and pathogenic biology have provided an appropriate opportunity to develop various epitope-based vaccines. The fusion of proper antigens involved in different aspects of H. pylori colonization and pathogenesis as well as peptide linkers and built-in adjuvants results in producing epitope-based vaccines with excellent therapeutic efficacy and negligible adverse effects. Difficulties of the in vitro culture of H. pylori, high genetic variation, and unfavourable immune responses against feeble epitopes in the complete antigen are major drawbacks of current vaccine strategies that epitope-based vaccines may overcome. Besides decreasing the biohazard risk, designing precise formulations, saving time and cost, and induction of maximum immunity with minimum adverse effects are the advantages of epitope-based vaccines. The present article is a comprehensive review of strategies for designing and developing epitope-based vaccines to provide insights into the innovative vaccination against H. pylori.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Pishdadian
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Dos Santos Viana I, Cordeiro Santos ML, Santos Marques H, Lima de Souza Gonçalves V, Bittencourt de Brito B, França da Silva FA, Oliveira E Silva N, Dantas Pinheiro F, Fernandes Teixeira A, Tanajura Costa D, Oliveira Souza B, Lima Souza C, Vasconcelos Oliveira M, Freire de Melo F. Vaccine development against Helicobacter pylori: from ideal antigens to the current landscape. Expert Rev Vaccines 2021; 20:989-999. [PMID: 34139141 DOI: 10.1080/14760584.2021.1945450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
Introduction: The interest of the world scientific community for an effective vaccine against Helicobacter pylori infection arises from its high prevalence and association with many diseases. Moreover, with an immunological response that is not always effective for the eradication of the bacteria and an increasing antibiotic resistance in the treatment of this infection, the search for a vaccine and new therapeutic modalities to control this infection is urgent.Areas covered: We bring an overview of the infection worldwide, discussing its prevalence, increasing resistance to antibiotics used in its therapy, in addition to the response of the immune system to the infection registered so far. Moreover, we address the most used antigens and their respective immunological responses expected or registered up to now. Finally, we address the trials and their partial results in development for such vaccines.Expert opinion: Although several studies for the development of an effective vaccine against this pathogen are taking place, many are still in the preclinical phase or even without updated information. In this sense, taking into account the high prevalence and association with important comorbidities, the interest of the pharmaceutical industry in developing an effective vaccine against this pathogen is questioned.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Davi Tanajura Costa
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Briza Oliveira Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | | | | |
Collapse
|
9
|
Jafari E, Mahmoodi S. Design, expression, and purification of a multi-epitope vaccine against Helicobacter Pylori based on Melittin as an adjuvant. Microb Pathog 2021; 157:104970. [PMID: 34022362 DOI: 10.1016/j.micpath.2021.104970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
Helicobacter Pylori, a Gram-negative bacterium in the human stomach, causes adenocarcinoma and MALT (mucosa-associated lymphoid tissue) lymphoma in addition to infection and gastric ulcer. With regard to Helicobacter Pylori prevalence rate and widespread, producing an effective vaccine against this bacterium appears reasonable and necessary. Today, vaccine design by immunoinformatics is a promising solution in vaccine field. In the present study, potential immunodominant CD4⁺ T cell epitopes of UreB, HpaA, and NapA antigens were selected with a focus on IFN-γ secretion inducing ability. After joining the selected epitopes with KK and GPGPG linkers, sequence of Melittin, the major active protein of honey bee venom, was put in C-terminal by DPRVPSS linker as adjuvant. After reverse translation and codon optimization, the designed vaccine was cloned into pET-23a vector. The final construct was estimated as antigenic (71 & 74%) and non-allergenic with molecular weight of 36.785KD. The instability index (II) and codon frequency distribution were predicted to be 26.5 and 92%, respectively. The pET-23a vector transformed to the E.coli BL21 (DE3) strain. The evaluation of expression by SDS-PAGE analysis showed that the optimized expression is in SOB medium 8 h after induction by 0.5 mM IPTG. Finally, purification was performed by Ni-NTA affinity chromatography and Western blot analysis validated the purified protein. Future research is needed to investigate the designed vaccine efficiency against H. pylori, and also it's potential as a gastric cancer-preventive candidate.
Collapse
Affiliation(s)
- Elham Jafari
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
10
|
Chen J, Zhong Y, Liu Y, Tang C, Zhang Y, Wei B, Chen W, Liu M. Parenteral immunization with a cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) adjuvanted Helicobacter pylori vaccine induces protective immunity against H. pylori infection in mice. Hum Vaccin Immunother 2020; 16:2849-2854. [PMID: 32298215 PMCID: PMC7733891 DOI: 10.1080/21645515.2020.1744364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Under the trend of antibiotic resistance of H. pylori leading to the decrease of eradication rate, the development of a vaccine is the best choice to fight against H. pylori. In this study, we attempted to reduce the amounts of required antigens by using three different parenteral routes of immunization and an adjuvant cGAMP (cyclic guanosine monophosphate-adenosine monophosphate) to enhance the immunogenicity of the vaccine candidate. The immune protection and post-challenge immune responses were assessed and compared in mice immunized with recombinant Helicobacter pylori urease A, urease B, and neutrophil-activating protein adjuvanted with cGAMP. The gastric mucosal colonization by H. pylori was significantly reduced in mice immunized by intranasal and, to a less degree, subcutaneous route, but not by intramuscular route. All immunized mice, regardless of the route of immunization, displayed significant, but comparable, increases in antigen-specific serum IgG and mucosal IgA responses 5 weeks post-challenge. The magnitude of the vaccine-induced protection appeared to be associated with the level of antigen-specific Th1 and particularly Th17 responses, as IL-17 responses were only detected in intranasally immunized mice. Taken together, we explored and confirmed the possibility of using a novel adjuvant (cGAMP) to induce significant protective immunity with 10% of oral vaccine antigen dosage through parenteral immunization, especially intranasal immunization. This may provide an alternative approach to oral immunization for the development of effective H. pylori vaccines.
Collapse
Affiliation(s)
- Jing Chen
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Beijing, China
| | - Youxiu Zhong
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Beijing, China
| | - Yu Liu
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Beijing, China
| | - Chongfa Tang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Beijing, China
| | - Yanbin Zhang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Beijing, China
| | - Bo Wei
- JOINN Laboratories CA Inc., San Francisco, CA, USA
| | - Wangxue Chen
- Human Health Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada
| | - Meiying Liu
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Beijing, China
| |
Collapse
|
11
|
Hu C, Liu W, Xu N, Huang A, Zhang Z, Fan M, Ruan G, Wang Y, Xi T, Xing Y. Silk fibroin hydrogel as mucosal vaccine carrier: induction of gastric CD4+TRM cells mediated by inflammatory response induces optimal immune protection against Helicobacter felis. Emerg Microbes Infect 2020; 9:2289-2302. [PMID: 33000989 PMCID: PMC7594714 DOI: 10.1080/22221751.2020.1830719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tissue-resident memory T (TRM) cells, located in the epithelium of most peripheral tissues, constitute the first-line defense against pathogen infections. Our previous study reported that gastric subserous layer (GSL) vaccination induced a “pool” of protective tissue-resident memory CD4+T (CD4+TRM) cells in the gastric epithelium. However, the mechanistic details how CD4+TRM cells form in the gastric epithelium are unknown. Here, our results suggested that the vaccine containing CCF in combination with Silk fibroin hydrogel (SF) broadened the distribution of gastric intraepithelial CD4+TRM cells. It was revealed that the gastric intraepithelial TRM cells were even more important than circulating memory T cells against infection by Helicobacter felis. It was also shown that gastric-infiltrating neutrophils were involved as indispensable mediators which secreted CXCL10 to chemoattract CXCR3+CD4+T cells into the gastric epithelium. Blocking of CXCR3 or neutrophils significantly decreased the number of gastric intraepithelial CD4+TRM cells due to reduced recruitment of CD4+T cells. This study demonstrated the protective efficacy of gastric CD4+TRM cells against H. felis infection, and highlighted the influence of neutrophils on gastric intraepithelial CD4+TRM cells formation.
Collapse
Affiliation(s)
- Chupeng Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ningyin Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - An Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhenxing Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Menghui Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Guojing Ruan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yue Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Zhong Y, Chen J, Liu Y, Zhang Y, Tang C, Wang X, Wang P, Chen W, Wei B, Liu M. Oral immunization of BALB/c mice with recombinant Helicobacter pylori antigens and double mutant heat-labile toxin (dmLT) induces prophylactic protective immunity against H. pylori infection. Microb Pathog 2020; 145:104229. [PMID: 32353579 DOI: 10.1016/j.micpath.2020.104229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori infection and associated diseases remain a major public health problem worldwide. Much effort has been made over the last several decades in vaccine development, but there is no licensed vaccine on the market. We have previously reported that oral immunization with H. pylori lysates and double mutant heat-labile toxin (dmLT) affords prophylactic protection against H. pylori infection in mice. In the present study, we investigated the effects of oral immunization with recombinant H. pylori protein antigens (NAP/UreA/UreB) and dmLT on H. pylori challenge in BALB/c mice. We found that oral immunization with candidate antigens and dmLT significantly reduced the gastric colonization of H. pylori 6 weeks after challenge, as compared to unimmunized mice. Moreover, the subunit vaccine appeared to provide a better protection than the bacterial lysate vaccine. The immunized mice showed enhanced antigen-specific lymphocyte proliferation, and serum IgG and mucosal IgA responses. Furthermore, the immunization increased the proportion of CD4+ IL-17+ lymphocytes in spleen and mesenteric lymph nodes, and enhanced the production of IL-17, IL-16, IL-6 and TNF-α in lymphocyte culture supernatants. Taken together, our results suggest that oral vaccination with recombinant H. pylori antigens (NAP/UreA/UreB) and dmLT confers more effective prophylactic protection against H. pylori infection than whole bacterial lysates in BALB/c mice. The reduction of H. pylori colonization was associated with the induction of antigen-specific Th17 and local mucosal IgA immune responses.
Collapse
Affiliation(s)
- Youxiu Zhong
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Jing Chen
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Yu Liu
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Yanbin Zhang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Chongfa Tang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Xuewei Wang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Ping Wang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Bo Wei
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China
| | - Meiying Liu
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), 38 Second Jing Hai Road, Beijing, 101111, China.
| |
Collapse
|
13
|
Perivascular Lymphocyte Clusters Induced by Gastric Subserous Layer Vaccination Mediate Optimal Immunity against Helicobacter through Facilitating Immune Cell Infiltration and Local Antibody Response. J Immunol Res 2020; 2020:1480281. [PMID: 32411786 PMCID: PMC7201474 DOI: 10.1155/2020/1480281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/19/2019] [Indexed: 01/16/2023] Open
Abstract
Background In situ vaccination-induced local inflammatory response resulted in the establishment of a pool of tissue-resident memory T (TRM) cells and new vessels after the resolution of inflammation. TRM cells have received increasing attention; however, the role of new vessels in protective response is still unknown. Materials and Methods We performed the laparotomy to access the stomach and injected alum-based vaccine into the gastric subserous layer (GSL). At 28 days post vaccination, a parabiosis mouse model along with depletion of anti-CD90.2 antibody was employed to explore the function of perivascular lymphocyte clusters in recall responses. The composition of the gastric lymphocyte clusters was analyzed by immunofluorescence staining. Antibody responses were detected using ELISA. Gastric lymphocytes were analyzed using flow cytometry. Results GSL vaccination induced the formation of new vessels in the inflamed region. These new vessels were different from native vessels in that they were generally accompanied by perivascular lymphocyte clusters that mainly consisted of CD90-expressing cells. Additionally, histological analysis revealed the presence of CD4+ and CD8+ T cells in the perivascular lymphocyte clusters. Administration of a dose of an anti-CD90.2 antibody to GSL-vaccinated mice resolved these clusters. The efficacy of protection was compared in the parabiosis mice. Upon challenge, the presence of perivascular lymphocyte clusters was responsible for the fast recall response, as depletion of these clusters by CD90.2 antibody administration resulted in decreased expressions of VCAM-1, Madcam-1, and TNF-α, as well as lower recruitment of proinflammatory immune cells, decreased antibody levels, and poor protection. Conclusions Our research demonstrates that in situ vaccination-induced regional inflammatory response contributes to optimal recall response not only by establishing a CD4+ TRM pool but also by creating an “expressway,” i.e., perivascular lymphocyte cluster.
Collapse
|
14
|
Wiese-Szadkowska M, Helmin-Basa A, Eljaszewicz A, Gackowska L, Januszewska M, Motyl I, Andryszczyk M, Wieczynska J, Michalkiewicz J. Selected commensal bacteria change profiles of Helicobacter pylori-induced T cells via dendritic cell modulation. Helicobacter 2019; 24:e12614. [PMID: 31328382 DOI: 10.1111/hel.12614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The mechanisms of downregulation of protective immunity against Helicobacter pylori (Hp) infection strongly depend on dendritic cell (DC)-induced T-lymphocyte differentiation pattern. Lactic acid bacteria (LAB) strains can modulate Hp-induced immunoresponse by changes in DC activation profiles. Here, we want to find out if the LAB-pulsed DCs will change Hp-induced T-cell responsiveness patterns. MATERIALS AND METHODS The naive peripheral CD4+ T cells were co-cultured with Hp CagA + pulsed monocyte-derived DCs (DC/CD4+ T cell) in the presence/absence of the feces-derived probiotics: antagonistic or non-antagonistic to Hp (Lactobacillus rhamnosus 900, Lr, Lactobacillus paracasei 915, Lp, respectively), as assessed by the agar slab method. The regulatory T-cell (Treg) population was assessed by flow cytometry, and IFN-γ, IL-12p70, IL-10, and IL-17A levels were evaluated by ELISA method. RESULTS The Hp-pulsed DC/CD4+ T-cell co-cultures were characterized by high IL-10, decreased IL-12p70 and IFN-γ levels, and elevated Treg population. In contrast, Lr-pulsed DC/CD4+ T-cell co-cultures expressed low IL-10, high IL-12p70 and IFN-γ levels and declined Treg population; this responsiveness pattern was not changed by Hp. The responsiveness pattern of the Lp/Hp-pulsed DC/CD4+ T-cell co-cultures did not differ from those pulsed with Hp alone. CONCLUSION In contrast to Lp, Lr probiotic strain overcomes Hp-mediated immune profile in the DC/T-cell co-cultures toward Th1 pattern and limited generation of Tregs in vitro. Lr may therefore be used as a component of anti-Hp treatment.
Collapse
Affiliation(s)
| | - Anna Helmin-Basa
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Lidia Gackowska
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Ilona Motyl
- Faculty of Biotechnology and Food Sciences, The Institute of Technology Fermentation and Microbiology, Technical University of Lodz, Łodz, Poland
| | - Marek Andryszczyk
- Faculty of Mechanical Engineering, University of Technology and Sciences in Bydgoszcz, Bydgoszcz, Poland
| | - Jolanta Wieczynska
- Department of Clinical Microbiology and Immunology, Children's Memorial Hospital, Warsaw, Poland
| | - Jacek Michalkiewicz
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Clinical Microbiology and Immunology, Children's Memorial Hospital, Warsaw, Poland
| |
Collapse
|
15
|
Peng X, Zhang R, Wang C, Yu F, Yu M, Chen S, Fan Q, Xi Y, Duan G. E. coli Enterotoxin LtB Enhances Vaccine-Induced Anti- H. pylori Protection by Promoting Leukocyte Migration into Gastric Mucus via Inflammatory Lesions. Cells 2019; 8:982. [PMID: 31461854 PMCID: PMC6770474 DOI: 10.3390/cells8090982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Current studies indicate that the anti-H. pylori protective efficacy of oral vaccines to a large extent depends on using mucosal adjuvants like E. coli heat-lable enterotoxin B unit (LtB). However, the mechanism by which Th17/Th1-driven cellular immunity kills H. pylori and the role of LtB remains unclear. Here, two L.lactis strains, expressing H. pylori NapA and LtB, respectively, were orally administrated to mice. As observed, the administration of LtB significantly enhanced the fecal SIgA level and decreased gastric H. pylori colonization, but also markedly aggravated gastric inflammatory injury. Both NapA group and NapA+LtB group had elevated splenocyte production of IL-8, IL-10, IL-12, IL-17, IL-23 and INF-γ. Notably, gastric leukocytes' migration or leakage into the mucus was observed more frequently in NapA+LtB group than in NapA group. This report is the first that discusses how LtB enhances vaccine-induced anti-H. pylori efficacy by aggravating gastric injury and leukocytes' movement into the mucus layer. Significantly, it brings up a novel explanation for the mechanism underlying mucosal cellular immunity destroying the non-invasive pathogens. More importantly, the findings suggest the necessity to further evaluate LtB's potential hazards to humans before extending its applications. Thus, this report can provide considerable impact on the fields of mucosal immunology and vaccinology.
Collapse
Affiliation(s)
- Xiaoyan Peng
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Basic Medicine, Chuxiong Medical College, Chuxiong 675005, China
| | - Rongguang Zhang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Chen Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Feiyan Yu
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Mingyang Yu
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Qingtang Fan
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanlin Xi
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Ikuse T, Blanchard TG, Czinn SJ. Inflammation, Immunity, and Vaccine Development for the Gastric Pathogen Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:1-19. [PMID: 31123883 DOI: 10.1007/978-3-030-15138-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been over 30 years since a link was established between H. pylori infection of the gastric mucosa and the development of chronic gastric diseases. Research in rodent models supported by data from human tissue demonstrated that the host immune response to H. pylori is limited by host regulatory T cells. Immunization has been shown to induce a potent Th1- and Th17-mediated immune response capable of eradicating or at least significantly reducing the bacterial load of H. pylori in the stomach in small animal models. These results have not translated well to humans. Clinical trials employing many of the strategies used in rodents for oral immunization including the use of a mucosal adjuvant such as Escherichia coli LT or delivery by attenuated enteric bacteria have failed to limit H. pylori infection and have highlighted the potential toxicity of exotoxin-based mucosal adjuvants. A recent study, however, utilizing a recombinant fusion protein of H. pylori urease and the subunit B of E. coli LT, was performed on over 4000 children. Efficacy of over 70% was demonstrated against naturally acquired infection compared to control volunteers one year post-immunization. Efficacy was reduced, but still above 50% at three years. This study provided new insight into the strategies for developing an improved vaccine for widespread use in countries with high infection rates and where gastric cancer (GC) remains one of the most common causes of death due to cancer.
Collapse
Affiliation(s)
- Tamaki Ikuse
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, 13-015 Bressler Research Building, 655 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, 13-015 Bressler Research Building, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| |
Collapse
|
17
|
Karkhah A, Ebrahimpour S, Rostamtabar M, Koppolu V, Darvish S, Vasigala VKR, Validi M, Nouri HR. Helicobacter pylori evasion strategies of the host innate and adaptive immune responses to survive and develop gastrointestinal diseases. Microbiol Res 2018; 218:49-57. [PMID: 30454658 DOI: 10.1016/j.micres.2018.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/09/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori (H. pylori) is a bacterial pathogen that resides in more than half of the human population and has co-evolved with humans for more than 58,000 years. This bacterium is orally transmitted during childhood and is a key cause of chronic gastritis, peptic ulcers and two malignant cancers including MALT (mucosa-associated lymphoid tissue) lymphoma and adenocarcinoma. Despite the strong innate and adaptive immune responses, H. pylori has a long-term survival in the gastric mucosa. In addition to the virulence factors, survival of H. pylori is strongly influenced by the ability of bacteria to escape, disrupt and manipulate the host immune system. This bacterium can escape from recognition by innate immune receptors via altering its surface molecules. Moreover, H. pylori subverts adaptive immune response by modulation of effector T cell. In this review, we discuss the immune-pathogenicity of H. pylori by focusing on its ability to manipulate the innate and acquired immune responses to increase its survival in the gastric mucosa, leading up to gastrointestinal disorders. We also highlight the mechanisms that resulted to the persistence of H. pylori in gastric mucosa.
Collapse
Affiliation(s)
- Ahmad Karkhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Rostamtabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Veerendra Koppolu
- Scientist Biopharmaceutical Development Medimmune Gaithersburg, MD, 20878 USA
| | - Sorena Darvish
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Majid Validi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
18
|
Talebi Bezmin Abadi A, Kusters JG. Future of Helicobacter pylori and its feasibility. Expert Rev Anti Infect Ther 2018; 16:733-735. [PMID: 30211621 DOI: 10.1080/14787210.2018.1523715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amin Talebi Bezmin Abadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Johannes G. Kusters
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
19
|
Blosse A, Lehours P, Wilson KT, Gobert AP. Helicobacter: Inflammation, immunology, and vaccines. Helicobacter 2018; 23 Suppl 1:e12517. [PMID: 30277626 PMCID: PMC6310010 DOI: 10.1111/hel.12517] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori infection induces a chronic gastric inflammation which can lead to gastric ulcers and cancer. The mucosal immune response to H. pylori is first initiated by the activation of gastric epithelial cells that respond to numerous bacterial factors, such as the cytotoxin-associated gene A or the lipopolysaccharide intermediate heptose-1,7-bisphosphate. The response of these cells is orchestrated by different receptors including the intracellular nucleotide-binding oligomerization domain-containing protein 1 or the extracellular epidermal growth factor receptor. This nonspecific response leads to recruitment and activation of various myeloid (macrophages and dendritic cells) and T cells (T helper-17 and mucosal-associated invariant T cells), which magnify and maintain inflammation. In this review, we summarize the major advances made in the past year regarding the induction, the regulation, and the role of the innate and adaptive immune responses to H. pylori infection. We also recapitulate efforts that have been made to develop efficient vaccine strategies.
Collapse
Affiliation(s)
- Alice Blosse
- INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, Bordeaux, France,French National Reference Centre for Campylobacters and Helicobacters, Bordeaux Hospital, Bordeaux, France
| | - Philippe Lehours
- INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, Bordeaux, France,French National Reference Centre for Campylobacters and Helicobacters, Bordeaux Hospital, Bordeaux, France
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Mucosal Inflammation and Cancer, Nashville, TN, USA,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Mucosal Inflammation and Cancer, Nashville, TN, USA
| |
Collapse
|